**Number of classes of primitive binary forms of discriminant D = -4n; or equivalently class number of quadratic order of discriminant D = -4n.**

*1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 4, 4, 2, 3, 4, 2, 6, 3, 2, 6, 4, 3, 4, 4, 4*

Index of A-numbers in seqfan: by ascending order
by month
by frequency
by keyword

*20 seqfan posts*

*Fri Oct 29 05:35:16 CEST 2010* [seqfan] Implementing first 500 sequences in Java

*Sat Jul 17 23:53:08 CEST 2010* [seqfan] Excess permutation left moves over right moves

*Mon Jul 5 18:04:48 CEST 2010* [seqfan] Re: Energy-limited permutations?

*Mon Jul 5 16:34:04 CEST 2010* [seqfan] Energy-limited permutations?

*Sun May 23 17:53:23 CEST 2010* [seqfan] Re: 3D version of A000938: 3-in-line inside the nXnXn cube

*Thu Feb 25 21:50:31 CET 2010* [seqfan] Re: Permutations avoiding a pair sum

*Thu Feb 25 20:27:50 CET 2010* [seqfan] Re: Permutations avoiding a pair sum

*Thu Feb 25 20:24:27 CET 2010* [seqfan] Re: Permutations avoiding a pair sum

*Thu Feb 25 15:06:50 CET 2010* [seqfan] Permutations avoiding a pair sum

*Sat Feb 14 02:39:45 CET 2009* [seqfan] Re: Constants derived from Artin's constants

*Fri Feb 13 18:38:17 CET 2009* [seqfan] Constants derived from Artin's constants

*Sun Feb 8 21:50:46 CET 2009* [seqfan] Re: any value storing constants of power ratios?

*Mon Feb 2 06:05:14 CET 2009* [seqfan] UnitarySigma(x) = UnitarySigma(y) = UnitarySigma(z) = 3*(x*y*z)^(1/2)/(- x^(1/2) + 8*y^(1/2) ? 5*z^(1/2))

*Sun Feb 1 21:41:48 CET 2009* [seqfan] any value storing constants of power ratios?

*Fri Dec 12 03:17:26 CET 2008* [seqfan] 1/(UnitarySigma(m))^(1/2)=1/(UnitarySigma(n))^(1/2)=k^(1/2)*(1/m^(1/2)-1/n^(1/2))

*Mon Nov 24 23:10:45 CET 2008* [seqfan] Re: Sigma(x)=Sigma(y)=Sigma(z)=Sigma(u)=Sigma(v)=x+y+z+u+v

*Sun Nov 23 17:58:35 CET 2008* [seqfan] Re: Sigma(x)=Sigma(y)=Sigma(z)=Sigma(u)=Sigma(v)=x+y+z+u+v

*Sun Nov 23 05:27:14 CET 2008* [seqfan] Sigma(x)=Sigma(y)=Sigma(z)=Sigma(u)=Sigma(v)=x+y+z+u+v

*Thu Nov 13 07:42:16 CET 2008* [seqfan] RE : 1/sqrt[uphi[x]]= 1/sqrt[uphi[x]]= sqrt[k]*(1/sqrt[x] - 1/sqrt[y])

*Thu Nov 13 06:17:01 CET 2008* [seqfan] 1/sqrt[uphi[x]]= 1/sqrt[uphi[x]]= sqrt[k]*(1/sqrt[x] - 1/sqrt[y])

Index of A-numbers in seqfan: by ascending order
by month
by frequency
by keyword

Links to OEIS content are included according to
The OEIS End-User License Agreement
.