No subject

N. J. A. Sloane njas at
Mon Oct 26 07:34:18 CET 1998

Wouter, that's certainly a new sequence!

but it's not a coordination sequence, the definition
is quite different.  nor does it come from a lattice
for that you would have to allow i j and k to go
from -n to n

here's the official version of the C.S. of the simple
cubic lattice:

%I A005899 M4115
%S A005899 1,6,18,38,66,102,146,198,258,326,402,486,578,678,786,
%T A005899 902,1026,1158,1298,1446,1602,1766,1938,2118,2306,2502,
%U A005899 2706,2918,3138,3366,3602,3846,4098,4358,4626,4902,5186
%N A005899 Points on surface of octahedron: 4n^2 + 2; coordination sequence for cubic lattice.
%R A005899 MF73 46. Coxe74. INOC 24 4550 1985. CoSl95.
%O A005899 0,2
%A A005899 njas
%K A005899 nonn,easy,nice
%F A005899 G.f.: ((1+x)/(1-x))^3.
%P A005899 My ref Latt 19 p. 144, Latt 76 p 102.
%D A005899 B K Teo & N J A Sloane, Magic numbers in polygonal and polyhedral clusters, INOC 24 (1985), 4545-4558.
%D A005899 Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
%D A005899 R.W. Grosse-Kunstleve et al., Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst. submitted.
%H A005899 <a href="">J. H. Conway & N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389.</a>
%H A005899 <a href="">Coordination Sequences & Encyclopedia of Integer Sequences</a>

i will add yours, of course - but under a different name!



More information about the SeqFan mailing list