Young Tableaux
Emeric Deutsch (RP)[M}
deutsch at magnus.poly.edu
Wed May 12 21:14:10 CEST 1999
Hi,
By sheer coincidence, I am reading a paper where the
sequence A000085 (1,1,2,4,10,26,76, ...) comes up
(Duluck and Penaud; Discrete Math., 117, 1993, 89-105).
Defined as number of involutions (i. e. self-inverse
permutations) on n letters, one can easily derive
floor(1/2 n)
-----
\ n!
J := n -> ) ----------------
/ k
----- k! (n - 2 k)! 2
k = 0
(authors refer to Lucas' Theorie des Nombres, Vol. 1).
Indeed, Maple gives
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504,
2390480, 10349536, 46206736, 211799312, 997313824, 4809701440,
I couldn't resist the simple exercise of deriving the ordinary
generating function G(z). It is defined by
> deq:=z^3*diff(G(z),z)-(1-z-z^2)*G(z)+1 = 0;
3 /d \ 2
deq := z |-- G(z)| - (1 - z - z ) G(z) + 1 = 0
\dz /
ic := G(0) = 1
Maple gives the solution I couldn't decipher:
1
sol := G(z) = signum(exp(- 1/2 ----)) infinity
2
z
However, with the "series" command
> sol:=dsolve({deq,ic},G(z),series);
we obtain
2 3 4 5 6 7
sol := G(z) = 1 + z + 2 z + 4 z + 10 z + 26 z + 76 z + 232 z
8 9 10 11 12
+ 764 z + 2620 z + 9496 z + 35696 z + 140152 z +
13 14 15 16
568504 z + 2390480 z + 10349536 z + 46206736 z +
17 18 19 20
211799312 z + 997313824 z + 4809701440 z + O(z )
Emeric
More information about the SeqFan
mailing list