Riffs & Rotes & A061396
Jon Awbrey
jawbrey at oakland.edu
Sat Jun 23 21:08:38 CEST 2001
¤~~~~~~~~~¤~~~~~~~~~¤~~~~~~~~~¤~~~~~~~~~¤~~~~~~~~~¤
Neil,
I wanted to try and do this trick for riffs
that you did with Goebel's correspondence:
Triangle in which k-th row lists natural number
values for the collection of riffs with k nodes.
k | natural numbers n such that |riff(n)| = k
--o------------------------------------------------
0 | 1;
1 | 2;
2 | 3, 4;
3 | 5, 6, 7, 8, 9, 16;
4 | 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27,
| 32, 49, 53, 64, 81, 128, 256, 512, 65536;
The natural number values for the riffs with
at most 3 pts are as follows (@'s are roots):
| o o o o
| | ^ | ^
| v | v |
| o o o o o o o o o
| | ^ | | | ^ | ^ ^
| v | v v v | v/ |
| Riff: @; @, @; @, @ @, @, @, @, @;
|
| Value: 2; 3, 4; 5, 6 , 7, 8, 9, 16;
---------------------------------------------------
Is this the right idea?
Jon
¤~~~~~~~~~¤~~~~~~~~~¤~~~~~~~~~¤~~~~~~~~~¤~~~~~~~~~¤
Tables for Reference:
o--------------------------------------------------------------------------------
| integer factorization riff r.i.f.f. rote --> in parentheses
| k p's k nodes 2k+1 nodes
o--------------------------------------------------------------------------------
|
| 1 1 blank blank @ blank
|
o--------------------------------------------------------------------------------
|
| o---o
| |
| 2 p_1^1 p @ @ (())
|
o--------------------------------------------------------------------------------
|
| o---o
| |
| o---o
| 3 p_2^1 = |
| p_(p_1)^1 p_p @ @ ((())())
| ^
| \
| o
|
| o---o
| o |
| ^ o---o
| 4 p_1^2 = / |
| p_1^p_1 p^p @ @ (((())))
|
o--------------------------------------------------------------------------------
|
| o---o
| |
| o---o
| |
| 5 p_3 = o---o
| p_(p_2) = |
| p_(p_(p_1)) p_p_p @ @ (((())())())
| ^
| \
| o
| ^
| \
| o
|
| o-o
| /
| o-o o-o
| 6 p_1 p_2 = \ /
| p_1 p_(p_1) p p_p @ @ @ (())((())())
| ^
| \
| o
|
| o---o
| |
| o---o
| |
| 7 p_4 = o---o
| p_(p_1^2) = |
| p_(p_1^p_1) p< @ o @ ((((())))())
| p^p ^ ^
| \ /
| o
|
| o---o
| |
| o---o
| o |
| 8 p_1^3 = ^ ^ o---o
| p_1^p_2 = p_p / \ |
| p_1^p_(p_1) p< @ o @ ((((())())))
|
| o-o o-o
| o | |
| 9 p_2^2 = ^ o---o
| p_(p_1)^2 = p / |
| p_(p_1)^(p_1) p< @ @ ((())((())))
| p ^
| \
| o
|
| o o---o
| ^ |
| / o---o
| o |
| 16 p_1^4 = p ^ o---o
| p_1^(p_1^2) = p< / |
| p_1^(p_1^p_1) p< @ @ (((((())))))
|
o--------------------------------------------------------------------------------
o--------------------------------------------------------------------------------
|
| p
| p< p_p p p
| p< p< p p_p p<_p p_p_p p_p<
| p< p< p< p< p< p<
|
| 2^16 2^8 2^6 2^9 2^5 2^7
| 65536 256 64 512 32 128
o--------------------------------------------------------------------------------
|
| p
| p< p_p p p
| p_p< p_p< p< p_p<_p p_p_p_p p_p_p<
| p p_p
|
| p_16 p_8 p_6 p_9 p_5 p_7
| 53 19 13 23 11 17
o--------------------------------------------------------------------------------
|
| p
| p< p_p p p p
| p< p< p< p< p^p p_p p p<
| p p p_p p^p p
|
| 3^4 3^3 5^2 7^2
| 81 27 25 49 12 18
o--------------------------------------------------------------------------------
|
| p p_p_p p p<
| p^p
|
| 10 14
o--------------------------------------------------------------------------------
More information about the SeqFan
mailing list