fractal-like plot
Santi Spadaro
spados at katamail.com
Fri Nov 2 20:48:02 CET 2001
Dear seqfans,
I think this curious fact deserves your attention:
ID Number: A064770
Sequence: 0,1,1,1,2,2,2,2,2,3,10,11,11,11,12,12,12,12,12,13,10,11,11,
11,12,12,12,12,12,13,10,11,11,11,12,12,12,12,12,13,20,21,21,
21,22,22,22,22,22,23,20,21,21,21,22,22,22,22,22,23,20,21,21,
21,22,22,22,22,22,23
Name: Replace each digit of n by the floor of its square root.
Example: 26 -> [1.414...][2.449...] -> 12, so a(26) = 12.
Keywords: base,nonn,nice,new
Offset: 0
Author(s): Santi Spadaro (spados at katamail.com), Oct 19 2001
The plot of this sequence shows a curious (even if maybe not so
surprising) fractal behaviour as you can see from the two plots
(kindly hosted by Professor Gerard) in the links below:
>http://www.seqfan.net/spadaro/A064770-1.gif
>http://www.seqfan.net/spadaro/A064770-2.gif
For further explorations here's the Mathematica code:
f[n_] := Floor[Sqrt[n]]
k[n_] := Map[f, IntegerDigits[n]]
ndig[a_, b_] := 10a + b
tonum[dig_] := Fold[ndig, 0, dig]
j = Table[tonum[k[n]], {n, 1, 100}]
ListPlot[j]
Change 100 in the 5th line with 10^k k=3,4,5,6,7... and see what happens.
Best Wishes,
Santi Spadaro
--
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://list.seqfan.eu/pipermail/seqfan/attachments/20011102/511a70f1/attachment.htm>
More information about the SeqFan
mailing list