# A third example

Robert G. Wilson v rgwv at kspaint.com
Fri Oct 4 20:40:57 CEST 2002

```
N. J. A. Sloane wrote:

>Dear Zak,  I'm rejecting this one because it is really two sequences:
>
>
>%I A075709
>%S A075709 1,1,4,2,5,1,4,12,7,7,2,4,3,43,10,10,33,19,42,62,19,35,12,16,17,27,52,
>%T A075709 28,59,13,18,74,65,107,2,18
>%N A075709 Distances from n^n to previous and next primes,
>{d1=n^n-prevprime(n^n),d2=nextprime(n^n)-n^n}
>%C A075709 At n=2, 6, and 9, n^n is interprime, d1=d2. What is the next n^n interprime?
>%F A075709 {d1=n^n-prevprime(n^n),d2=nextprime(n^n)-n^n}.
>%e A075709 n=3: n^n = 27, d1=27-23=4, d2=29-27=2.
>%O A075709 2,3
>%K A075709 more,nonn,unkn
>%A A075709 Zakir F. Seidov (seidovzf at yahoo.com), Oct 03 2002
>
>
>You might submit them as two separate sequences.
>
>NJAS
>
NextPrime(n^n) - n^n:
1, 2, 1, 12, 7, 4, 43, 10, 19, 62, 35, 16, 27, 28, 13, 74, 107, 18, 91,
32, 87, 14, 95, 96, 43, 68, 135, 120, 19, 58, 7, 58, 63, 54, 31, 42,
115, 10, 157, 110, 13, 4, 403, 122, 457, 534, 37, 18, 31, 226, 253, 20,
193, 102, 177, 392, 45, 194, 257, 102, 79, 454, 231, 306, 521, 240, 33,
140, 477, 228, 205, 1224, 1071, 256

n^n - PrevPrime(n^n):
1, 4, 5, 4, 7, 2, 3, 10, 33, 42, 19, 12, 17, 52, 59, 18, 65, 2, 51, 2,
23, 120, 35, 2, 63, 10, 39, 186, 7, 74, 47, 200, 53, 24, 19, 48, 333,
56, 57, 192, 127, 348, 63, 124, 213, 60, 359, 2, 213, 2, 387, 526, 269,
252, 863, 16, 131, 370, 503, 294, 83, 68, 317, 688, 307, 204, 345, 82,
141, 322, 67, 132, 803, 68

```