an integer-analog of ln(m!)
Leroy Quet
qq-quet at mindspring.com
Sun Mar 7 02:55:22 CET 2004
Let a(m) = sum{k=1 to m} floor(ln(k)),
an integer-analog of ln(m!).
a(m) also is, for m = positive integer,
m*floor(ln(m)) - sum{k=1 to floor(ln(m))} floor(e^k).
Some questions:
First, is {a(k)} in the EIS?
Second, what is
ln(m!) - a(m) = sum{k=1 to m} {ln(k)}
asymptotical to?
({x} is the fractional part of x.)
Or, I might ask instead, what is
limit{m-> oo} (ln(m!) - a(m))/m ?
thanks,
Leroy
Quet
More information about the SeqFan
mailing list