Smallest number to appear n times in Pascal's triangle

Alonso Del Arte alonso.delarte at
Sat Nov 20 01:09:19 CET 2004

Because of the imprecise way I worded it, Hugo Pfoertner is absolutely
right to answer A062527, where a(5)=a(6). If I had instead said
"Smallest number to appear exactly n times in Pascal's triangle", then
it'd be different. To look for that fifth term where Isabel Lugo said,
at 61218182743304701891431482520, appears to be quite a formidable
task. (Thanks for the MathWorld link, by the way, I hadn't thought to
look there).


On Fri, 19 Nov 2004 13:06:14 -0800, Marc LeBrun <mlb at> wrote:
> >=Alonso Del Arte
> > "Smallest number to appear times in Pascals triangle" gives no results.
> Not surprising.  Try searching on something pithier, like just "Pascal"?
> Some synonyms you might also try: "binomial", "least".
> > Could someone tell me what the fifth term is?
> Are you sure a number that appears exactly five time exists?  Or that if it
> does exist, it's not huge?  If not, would a(5)=a(6)?

More information about the SeqFan mailing list