Fw: Divisible by 12: a^3 + b^3 = c^2

James Buddenhagen jbuddenh at earthlink.net
Mon Oct 25 00:34:18 CEST 2004


My apologies if you see this twice, it never showed up here in
San Antonio, Texas

JB

----- Original Message ----- 
From: "James Buddenhagen" <jbuddenh at earthlink.net>
To: "Pfoertner, Hugo" <Hugo.Pfoertner at muc.mtu.de>; "'Ed Pegg Jr'" <edp at wolfram.com>
Cc: "seqfan" <seqfan at ext.jussieu.fr>; "James Buddenhagen" <jbuddenh at earthlink.net>
Sent: Saturday, October 23, 2004 5:56 PM
Subject: Re: Divisible by 12: a^3 + b^3 = c^2


> Ed Pegg, based on numerical information from Kirk Bresniker, 
> asks whether a,b prime and a^3 + b^3 = c^2 implies that 
> c is divisible by 12. Hugo Pfoertner, Ralf Stephan, an 
> myself provided additional numerical evidence and comments.
> Finally, Paul C. Leopardi proved a lemma that is almost the 
> desired result, but unless I misunderstood, needed an 
> additional hypotheses.  
> 
> Here is additional information which amounts to a proof 
> and some parameterized solutions, but some details omitted.
> 
> Lemma 1:  if gcd(a,b)=1 then gcd(a+b,a^2-a*b+b^2)=1 or 3.
> 
> proof:  Since (a+b)^2-(a^2-a*b+b^2) = 3*a*b, any prime p<>3 
> which divides both a+b and a^2-a*b+b^2 will divide a or b and
> a+b hence it will divide both a and b contrary to gcd(a,b)=1.
> Similarly 3^k for k>1 cannt be a common divisor.
> 
> Lemma 2:  If gcd(a,b)=1 and a^3 + b^3 = c^2 then either
>   (1)  a+b and a^2-a*b+b^2 are both squares or
>   (2)  a+b and a^2-a*b+b^2 are both 3 times squares.
> 
> proof:  a^3+b^3 = (a+b)*(a^2-a*b+b^2) = c^2 and lemma 1.
> 
> Now complete parametric solutions can be given for both 
> (1) and (2).  The technique to find these is the standard 
> method of finding all rational points on a quadratic curve 
> when you know one point, by intersecting with lines of 
> rational slope through the point.  To get integers we need 
> to write the slope as a quotient of integers and multiply by
> appropriate squares to eliminate denominators.  I omit details.
> 
> But the results are:
> 
> (1) if a+b and a^2-a*b+b^2 are both squares then a paramterized: 
>     solution of a^3+b^3=c^2 is:
> 
>     a = -4*n*(-2*n+m)*(n^2-m*n+m^2)
>     b = (m-n)*(m+n)*(7*n^2-4*m*n+m^2)  
>     c = (n^2-4*m*n+m^2)*(13*n^4-14*m*n^3+6*m^2*n^2-2*m^3*n+m^4)
> 
>     Note:        a+b = (n^2-4*m*n+m^2)^2 and 
>          a^2-a*b+b^2 = (13*n^4-14*m*n^3+6*m^2*n^2-2*m^3*n+m^4)^2
> 
>     Note 2:  m and n are integers so certainly a and b cannot be
>              prime.  
>      
>     Note 3:  it is possible in this case for a and b to be relatively 
>              prime and c not divisible by 12.
> 
> (2) if a+b and a^2-a*b+b^2 are both 3 times squares then a 
>     parameterized solution for a^3+b^3=c^2 is:
> 
>     a =  3*m^4-n^4+6*m^2*n^2
>     b = -3*m^4+n^4+6*m^2*n^2
>     c =  6*m*n*(3*m^4+n^4)
> 
>     Note:        a+b = 12*m^2*n^2
>          a^2-a*b+b^2 = 3*(3*m^4+n^4)^2,
>          and each is 3 times a square.
> 
>     Note 2:  if m and n have the same parity then a and b are 
>              not relatively prime, so for relatively prime a,b 
>              exactly one of m,n is even.  In this case 
>              a+b is 48 times a square and c is divisible by 12.
> 
> Theorem:  if a,b are prime and a^3 + b^3 = c^2, then
>           48 divides a+b with the quotient a square, 
>           and 12 divides c.
> 
> proof:  since a and b are both prime we are not in case (1) above,
>         see note 2 of that case.  So we are in case (2) above and 
>         the result follows by Note 2 of that case.
> 
>              
> The parameterization in (2) allows us to very quickly find
> prime numbers a and b such that a^3 + b^3 = c^2.  Here are 
> the first 30, sorted by c, extending Hugo Pfoertner's data. 
> Following Paul Leopardi's notation let d=sqrt((a+b)/48).
> 
>     m     n           a            b                 c               c/12          a+b      d
> 
>     1     2           11           37                228                19           48      1
>     6     5         8663         2137             812340             67695        10800     15
>     8     7        28703         8929            4935504            411292        37632     28
>    10     7        56999         1801           13608420           1134035        58800     35
>     8    11        44111        48817           14218512           1184876        92928     44
>    11     8        86291         6637           25354032           2112836        92928     44
>    10    11        87959        57241           29463060           2455255       145200     55
>     7    16        16931       133597           48880608           4073384       150528     56
>    13    14       246011       151477          135516108          11293009       397488     91
>     9    20        54083       334717          194057640          16171470       388800     90
>    16    11       367823         3889          223078944          18589912       371712     88
>    17    14       552011       127717          412662012          34388501       679728    119
>    14    23       457511       786697          763311948          63609329      1244208    161
>    15    22       571019       735781          764539380          63711615      1306800    165
>    16    25       765983      1154017         1409359200         117446600      1920000    200
>    23    16      1586531        38557         1998370272         166530856      1625088    184
>    21    26      1915163      1662229         3408412644         284034387      3577392    273
>    22    29      2437751      2446777         5397667572         449805631      4884528    319
>    15    38        16139      3882661         7650577620         637548135      3898800    285
>    21    34      2305883      3811669         8224333236         685361103      6117552    357
>    26    29      4074743      2747449         9401817516         783484793      6822192    377
>    25    32      3963299      3716701        10658164800         888180400      7680000    400
>    19    40      1296563      5634637        13456391280        1121365940      6931200    380
>    28    31      5440991      3600097        14413082712        1201090226      9041088    434
>    25    44      4683779      9836221        32471808600        2705984050     14520000    550
>    22    47      2238023     10591849        34633513596        2886126133     12829872    517
>    32    37      9682703      7139569        35661291456        2971774288     16822272    592
>    30    41      8681639      9473161        38787516180        3232293015     18154800    615
>    29    44      8142803     11395309        44940252984        3745021082     19538112    638
>    29    46      8321723     13032949        52820789196        4401732433     21354672    667
> 
> We can also find silly prime curiosities such as: 
> 
> let a,b be the 99 digit primes
> 516311827796740838771674147960359381895640671834628612875993558021288236937751709944319900868251071
> and 
> 164347159141325505114613844644012165100482223256876273832159859778089839875893509442524862953510657
> respectively.   Then a^3 + b^3 is the square of an integer and
> a/b = 3.14159265358979323846259..
> 
> Jim Buddenhagen





More information about the SeqFan mailing list