the Mobius function
Max
relf at unn.ac.ru
Sat Jan 29 00:55:49 CET 2005
Let n=2^k*m, where m is odd. Then
SUM_{d|n}(-1)^(n/d)*mobius(d) = SUM_{d1|2^k} SUM_{d2|m} (-1)^(n/(d1*d2))*mobius(d1*d2) =
(since mobius is multiplicative and d2 is odd)
SUM_{d1|2^k} (-1)^(2^k/d1) mobius(d1) * SUM_{d2|m} mobius(d2).
The latter factor is 0 unless m=1. Hence, the statement is true if m>1.
Now let m=1. If n>2, then k>1 and
SUM_{d1|2^k} (-1)^(2^k/d1) mobius(d1) =
(all signs are plus except for d1=2^k)
SUM_{d1|2^(k-1)} mobius(d1) - mobius(2^k) = 0 - 0 = 0.
Max
Emeric Deutsch wrote:
>Dear Seqfans,
>It is well-known that for n>1 we have
>
> SUM_{d|n}mobius(d) = 0.
>
>Is it known or easy to see that for n>2 we have
>
> SUM_{d|n}(-1)^(n/d)*mobius(d) = 0 ?
>
>Thanks.
>Emeric
>
>
>
>
>
More information about the SeqFan
mailing list