Beatty Log Series - Correction
Paul D. Hanna
pauldhanna at juno.com
Fri Jul 15 07:42:47 CEST 2005
Correction: my statement
> Note: the sum of differences of reciprocal Beatty sequences
> B(t) - B(1/t) = Sum_{n>=1} ( 1/[n(1+t)] - 1/[n(1+1/t)] )
> = log(1+t)*(1-t)/(1+t) + log(t)*t/(1+t) - 2*L(t)
> may be a clue to the mysterious L(t).
should have included -(1-t)/(1+t)/n in the sum:
B(t) - B(1/t)
= Sum_{n>=1} ( 1/[n(1+t)] - 1/[n(1+1/t)] - (1-t)/(1+t)/n )
= log(1+t)*(1-t)/(1+t) + log(t)*t/(1+t) - 2*L(t)
Can *this* sum be made to converge any faster?
Paul
More information about the SeqFan
mailing list