# Riffs & Rotes

Jon Awbrey jawbrey at att.net
Fri Jun 24 21:18:59 CEST 2005

```o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o

R&R.  Note 20

o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o

Re: A109301 [pending]

%I A109301
%S A109301 0, 1, 2, 2, 3, 2, 3, 3, 2, 3, 4, 2, 3, 3, 3, 3, 4, 2, 4, 3
%N A109301 a(n) = rhig(n) = rote height in gamma's of n, where the "rotes"
of positive integers are defined and illustrated in connection
with A061396, and where "gamma" refers to a graph of the form:

o--o
|
o

%e A109301 Example.  Writing (prime(i))^j as i:j, we have:

802701 = 2:2 8638:1
8638   = 1:1 4:1 113:1
113    = 30:1
30     = 1:1 2:1 3:1
4      = 1:2
3      = 2:1
2      = 1:1
1      = { }

So rote(802701) is the graph:
` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` o-o
` ` ` ` ` ` ` ` ` ` ` ` ` | `
` ` ` ` ` ` ` ` ` ` ` o-o o-o
` ` ` ` ` ` ` ` ` ` ` | ` | `
` ` ` ` ` ` ` o-o o-o o-o o-o
` ` ` ` ` ` ` | ` | ` | ` | `
` ` ` ` ` ` o-o ` o===o===o-o
` ` ` ` ` ` | ` ` | ` ` ` ` `
o-o o-o o-o o-o ` o---------o
| ` | ` | ` | ` ` | ` ` ` ` `
o---o ` o===o=====o---------o
|`  ` ` | ` ` ` ` ` ` ` ` ` `
O=======O ` ` ` ` ` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` `
Here, "extended lines of identity" (eloi)
indicate identified nodes, and capital O
is the root node.

So rhig(802701) = 6.

%Y A109301 A061396, A062504, A062537, A062860, A106177, A108352, A108371
%O A109301 1
%K A109301 nonn
%A A109301 Jon Awbrey, Jun 24 2005

o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
inquiry e-lab: http://stderr.org/pipermail/inquiry/
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o

```