Sliding numbers
Eric Angelini
keynews.tv at skynet.be
Thu Mar 10 10:53:03 CET 2005
Thanks a lot, Kerry -- before going to bed,
yesterday, I found also that the sequence had to
start with 2, which is solution of:
1/a+1/b = (a+b)/10^0
I will submit this shortly to the OEIS.
Best,
É.
__________________________________________________
http://angelink.be/?CeRaccourciFaitCinquanteSignes
----- Original Message -----
From: "Kerry Mitchell" <>
To: "math-fun" <math-fun at mailman.xmission.com>; "math-fun"
<math-fun at mailman.xmission.com>; <seqfan at ext.jussieu.fr>
Cc: "Eric Angelini" <keynews.tv at skynet.be>
Sent: Wednesday, March 09, 2005 7:32 PM
Subject: Re: [math-fun] Sliding numbers
> I ran an Excel spreadsheet and came up with these first 116 sliding
numbers:
>
> 2, 7, 11, 20, 25, 29, 52, 65, 70, 101, 110, 133, 200, 205, 205, 250, 254,
290, 425, 502, 520, 641, 650, 700, 785, 925, 1001, 1010, 1100, 1258, 1330,
2000, 2005, 2050, 2050, 2225, 2500, 2504, 2540, 2900, 3157, 3445, 4025,
4250, 5002, 5020, 5200, 6266, 6325, 6410, 6500, 7000, 7850, 8125, 9250,
10001, 10010, 10100, 11000, 12508, 12580, 13300, 15689, 16265, 16625, 20000,
20005, 20050, 20500, 20500, 22025, 22250, 25000, 25004, 25040, 25400, 29000,
31282, 31570, 34450, 35125, 40025, 40250, 42500, 50002, 50020, 50200, 52000,
62516, 62660, 63250, 64100, 65000, 70000, 78253, 78500, 79405, 79625, 80125,
81250, 90925, 92500, 100001, 100010, 100100, 101000, 110000, 125008, 125080,
125800, 133000, 156314, 156890, 160625, 162650, 166250
>
> They agree with what you posted and I included 2 because 1/1 + 1/1 = 2,
and that shows that 20 is a multiple. I'm reasonably sure that no integer
has been missed. I stopped at 116 because the next one should be 200,000
from 10^10 = 10^5 x 10^5 (I think), but I only checked exponents out to 9.
>
> The powers of 10 corresponding to these numbers are:
>
> 0, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 5, 5, 5,
5, 3, 4, 5, 4, 5, 6, 4, 5, 6, 6, 6, 4, 5, 6, 5, 6, 5, 6, 4, 5, 6, 5, 7, 6,
7, 7, 7, 6, 7, 4, 5, 6, 7, 5, 6, 7, 6, 7, 7, 8, 5, 6, 7, 8, 8, 8, 8, 5, 6,
7, 8, 6, 7, 8, 8, 6, 7, 8, 5, 6, 7, 8, 6, 7, 9, 8, 9, 9, 7, 9, 8, 9, 7, 8,
9, 9, 5, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 8, 9, 9
>
> and I think that the next one should be 10, but it was 6 in my truncated
list.
>
> As Eric pointed out, each sliding number leads to infinitely more, making
this a fractal sequence. Here are the first several "primitive" elements,
that is, those that aren't multiples of 10:
>
> 2, 7, 11, 25, 29, 52, 65, 101, 133, 205, 205, 254, 425, 502, 641, 785,
925, 1001, 1258, 2005, 2225, 2504, 3157, 3445, 4025, 5002, 6266, 6325, 8125,
10001, 12508, 15689, 16265, 16625, 20005, 22025, 25004, 31282, 35125, 40025,
50002, 62516, 78253, 79405, 79625, 80125, 90925, 100001, 125008, 156314,
160625
>
> Perhaps it would be interesting to look at this problem with bases with
more factors, like 6 or 12.
>
> Kerry Mitchell
>
>
>
>
> -------------- Original message from "Eric Angelini"
<keynews.tv at skynet.be>: --------------
>
>
> > Hello SeqFan and Math-fun,
> >
> > Let's start with an example of "sliding number":
> >
> > 1/4 + 1/25 = 0.29 --> 29 is a "sliding number"
> > 1/8 + 1/125 = 0.133 --> 133 is a "sliding number"
> > 1/2 + 1/5 = 0.7 --> 7 is a "sliding number"
> > etc.
> _______________________________________________
> math-fun mailing list
> math-fun at mailman.xmission.com
> http://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: Eric Angelini.vcf
Type: text/x-vcard
Size: 132 bytes
Desc: not available
URL: <http://list.seqfan.eu/pipermail/seqfan/attachments/20050310/7e103bee/attachment-0001.vcf>
More information about the SeqFan
mailing list