# Presentation with sequence = A084935?

Floor en Lyanne van Lamoen fvanlamoen at planet.nl
Wed Nov 16 20:14:02 CET 2005

```Dear Paul,

It seems that A084935(12)=48 exceeds the upper bound of A006066 given in
A032765(12)=47.

Similarly for A084935(16), A084935(18), A084935(20), etc.

This means that A006066 can't be equal to A084935.

Kind regards,
Floor.

________________________________________
Van: Paul D Hanna [mailto:pauldhanna at juno.com]
Verzonden: woensdag 16 november 2005 17:27
Aan: seqfan at ext.jussieu.fr
Onderwerp: Re: Presentation with sequence = A084935?

Seqfans,
It would be interesting if sequence A006066 is actually equal to
A084935,
which coincides with offset, and includes 65 in the correct offset position.

Merely Coincidence?
Paul
--------------------------------------------
ID Number: A084935
URL:       http://www.research.att.com/projects/OEIS?Anum=A084935
Sequence:  0,1,2,5,7,11,15,21,25,32,39,48,54,65,73,86,94,109,119,134,
145,164,176,194,208,228,243,265,282,305,321,348,366,392,411,
440,460,491,513,545,566,599,624,660,683,721,747,785,812,852,
881,921,950,995,1025,1070,1101
Name:      Diagonal sums of the array T in A084933.
Example:   The northwest corner of T includes
0 1 1 2
0 1 2
0 1
0,
from which the first four diagonals sums are 0,1,2,5.

-- Ed Pegg Jr <edp at wolfram.com> wrote:
http://mathworld.wolfram.com/KobonTriangle.html

http://www.research.att.com/projects/OEIS?Anum=A006066

n=15 was recently solved, but n=10 to n=14 are still unsolved.

Ed Pegg Jr.

David Wilson wrote:
> See problem 3 of
>
> http://www.stetson.edu/~efriedma/papers/planar.ppt
>
> for a sequence.  I did not find it in the OEIS, maybe the OEIS has a
> corrected version?
>
> --------------------------------
> - David Wilson

```