x^3 + y^3 + z^3 = 3xyz
franktaw at netscape.net
franktaw at netscape.net
Mon Apr 24 18:16:28 CEST 2006
Leaving alpha out of it, this factorization is
x^3+y^3+z^3-3xyz = (x+y+z)*(x^2+y^2+z^2-xy-xz-yz).
A proof escapes me at the moment, but I'm sure the second term is >= 0 for all real x,y,z, with zeros only for x=y=z. This implies that the two classes of solutions described below are the only integer solutions.
Franklin T. Adams-Watters
-----Original Message-----
From: Edwin Clark eclark at math.usf.edu
On Mon, 24 Apr 2006, Emeric Deutsch wrote:
> Dear Seqfans,
> Do you know any literature on the solutions of
> x^3 + y^3 + z^3 = 3xyz in integers?
> Any other solutions than x=y=z=1,2,3,... ?
Since
x^3+y^3+z^3-3*x*y*z = (x-z-z*alpha+y*alpha)*(x-y-y*alpha+z*alpha)*(z+x+y)
where alpha is a root of x^2 + x + 1,
any roots of x+y+z=0 will be a solution. ...
___________________________________________________
Try the New Netscape Mail Today!
Virtually Spam-Free | More Storage | Import Your Contact List
http://mail.netscape.com
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://list.seqfan.eu/pipermail/seqfan/attachments/20060424/ace63ad3/attachment-0001.htm>
More information about the SeqFan
mailing list