A103651 is a WRONG version of A068318

zak seidov zakseidov at yahoo.com
Sat Dec 15 16:32:10 CET 2007


Neil, 

A103651 is a WRONG version of A068318
(terms for square semiprimes are WRONG in A103651),
Sorry, my bug...
Zak

%I A103651 
%S A103651
4,5,9,7,9,8,10,13,25,15,14,19,12,21,16,25,49,20,16,22,31,33,18,26,39,
 
%N A103651 Sum of factors of n-th semiprime. 

%I A068318 
%S A068318
4,5,6,7,9,8,10,13,10,15,14,19,12,21,16,25,14,20,16,22,31,33,18,26,39,

%N A068318 Sum of prime factors of n-th semiprime. 


      ____________________________________________________________________________________
Never miss a thing.  Make Yahoo your home page. 
http://www.yahoo.com/r/hs



This is a multi-part message in MIME format.

--Boundary_(ID_Cawq0M8R67EttM/F18XbtQ)

Dear Seqfans,


article about the sequences of equations mentioned therein:



A045944 <http://www.research.att.com/%7Enjas/sequences/A045944> 


Rhombic matchstick numbers: n*(3*n+2). 


+20
7 




0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800,
901, 1008,


The equations 1 + 2 = 3 and 3^2 + 4^2 =5^2 set the stage for considering
whether or not it is also true that 5^3 + 6^3 = 7^3 and 7^4 + 8^4 = 9^4.
Reflecting on Fermat's Last Theorem or resorting to a calculator dispels any
hope that either of the two equations could be correct.  However, 5^3 + 6^3
+ 2 does equal 7^3 and 7^4 + 8^4 + 64 equals 9^4.  More significantly, each
of these equations is the first of an infinite sequence of equations
featuring consecutive integers that conform to the spirit of the equations
mentioned in A000384. For n>0,

a(n)^3+(a(n)+1)^3 +...+(a(n)+n)^3 +2*A000217(n)^2=
(a(n)+n+1)^3+...+(a(n)+2n)^3;

e.g., 5^3+6^3+2*1^2=7^3; 16^3+17^3+18^3+2*3^2=19^3+20^3; see also A033954





A033954 <http://www.research.att.com/%7Enjas/sequences/A033954> 


n*(4*n+3). Also, second 10-gonal (or decagonal) numbers. 


+20
16 




0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945,
1072, 1207,


The equations 1 + 2 = 3 and 3^2 + 4^2 =5^2 set the stage for considering
whether or not it is also true that 5^3 + 6^3 = 7^3 and 7^4 + 8^4 = 9^4.
Reflecting on Fermat's Last Theorem or resorting to a calculator dispels any
hope that either of the two equations could be correct.  However, 5^3 + 6^3
+ 2 does equal 7^3 and 7^4 + 8^4 + 64 equals 9^4.  More significantly, each
of these equations is the first of an infinite sequence of equations
featuring consecutive integers that conform to the spirit of the equations
mentioned in A000384. For n>0,

a(n)^4+(a(n)+1)^4 +...+(a(n)+n)^4 +(4*A000217(n))^3 =
(a(n)+n+1)^4+...+(a(n)+2n)^4;

e.g., 7^4+8^4+(4*1)^3=9^4; 22^4+23^4+24^4+(4*3)^3=25^4+26^4; see also 045944




would greatly appreciate it.





Charlie Marion

Yorktown Heights NY 10598




--Boundary_(ID_Cawq0M8R67EttM/F18XbtQ)

<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:st1="urn:schemas-microsoft-com:office:smarttags" xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=Content-Type content="text/html; charset=us-ascii">
<meta name=Generator content="Microsoft Word 11 (filtered medium)">
<title>Dear Seqfans,</title>
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
<o:SmartTagType namespaceuri="urn:schemas-microsoft-com:office:smarttags"
<!--[if !mso]>
<style>
</style>
<![endif]-->
<style>
<!--
a:link, span.MsoHyperlink
a:visited, span.MsoHyperlinkFollowed
tt
@page Section1
div.Section1
-->
</style>

</head>

<body lang=EN-US link=blue vlink=purple>

<div class=Section1>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'>Dear Seqfans,<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'>     I have submitted the following two comments to
OEIS and am planning an article about the sequences of equations mentioned therein:<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 width="100%"
</table>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;display:none'><o:p> </o:p></span></font></p>

<table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0>
</table>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>The equations 1 + 2 = 3 and 3^2 + 4^2 =5^2 set the
7^4 + 8^4 = 9^4.  Reflecting on Fermat’s Last Theorem or resorting
to a calculator dispels any hope that either of the two equations could be
correct.  However, 5^3 + 6^3 + 2 does equal 7^3 and 7^4 + 8^4 + 64 equals
9^4.  More significantly, each of these equations is the first of an
infinite sequence of equations featuring consecutive integers that conform to
the spirit of the equations mentioned in A000384. For n>0,<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>a(n)^3+(a(n)+1)^3 +...+(a(n)+n)^3 +2*A000217(n)^2= (a(n)+n+1)^3+...+(a(n)+2n)^3;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>e.g., 5^3+6^3+2*1^2=7^3;
16^3+17^3+18^3+2*3^2=19^3+20^3; see also A033954<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>see also A033954 <tt><font face="Courier New">-
Charlie Marion (charliemath at optonline.net), Dec 8 2007</font></tt><o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0 width="100%"
</table>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt;display:none'><o:p> </o:p></span></font></p>

<table class=MsoNormalTable border=0 cellspacing=0 cellpadding=0>
</table>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>The equations 1 + 2 = 3 and 3^2 + 4^2 =5^2 set the
7^4 + 8^4 = 9^4.  Reflecting on Fermat’s Last Theorem or resorting
to a calculator dispels any hope that either of the two equations could be
correct.  However, 5^3 + 6^3 + 2 does equal 7^3 and 7^4 + 8^4 + 64 equals
9^4.  More significantly, each of these equations is the first of an
infinite sequence of equations featuring consecutive integers that conform to
the spirit of the equations mentioned in A000384. For n>0,<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>a(n)^4+(a(n)+1)^4 +...+(a(n)+n)^4 +(4*A000217(n))^3 =
(a(n)+n+1)^4+...+(a(n)+2n)^4;<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'>e.g., 7^4+8^4+(4*1)^3=9^4; 22^4+23^4+24^4+(4*3)^3=25^4+26^4;

<p class=MsoNormal><font size=2 face="Courier New"><span style='font-size:10.0pt;
font-family:"Courier New"'> <tt><font face="Courier New">- Charlie Marion
(charliemath at optonline.net), Dec 8 2007</font></tt><o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'>    If anyone could supply me with a past reference to
these sequences, I would greatly appreciate it.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'>   Thanks very much.<o:p></o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'>Charlie Marion<o:p></o:p></span></font></p>

<p class=MsoNormal><st1:place w:st="on"><st1:City w:st="on"><font size=3

<p class=MsoNormal><font size=3 face="Times New Roman"><span style='font-size:
12.0pt'><o:p> </o:p></span></font></p>

<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt;
font-family:Arial'><o:p> </o:p></span></font></p>

</div>

</body>

</html>

--Boundary_(ID_Cawq0M8R67EttM/F18XbtQ)--





More information about the SeqFan mailing list