Notation A/B/C

N. J. A. Sloane njas at research.att.com
Sat Dec 29 20:09:35 CET 2007


This message is in MIME format.  Since your mail reader does not understand
this format, some or all of this message may not be legible.

----__JNP_000_30c1.7dfc.7670
Content-Type: text/plain; charset=us-ascii  
Content-Transfer-Encoding: 7bit

Seqfans, 
     Recall the identity: 
(2) Sum_{n>=0} log(1 + q^n*x)^n/n!  =  Sum_{n>=0} C(q^n,n)*x^n. 
 
 From this, I found the more general statements: 
 
(3) Sum_{n>=0} m^n*log(1 + q^n*x)^n/n!  =  Sum_{n>=0} C(m*q^n,n)*x^n.
 
(4) Sum_{n>=0} m^n * (1 + q^n*x)^b * log(1 + q^n*x)^n/n!  =  
     Sum_{n>=0} C(m*q^n + b, n)*x^n.
 
Identity (4) is very interesting ... I wonder if it leads to other
results? 
It certainly can lead to many significant sequences! 
 
What I would really like is for formula (4) to allow the g.f. 
    A(x,m,b) = Sum_{n>=0} C(m*q^n + b, n)*x^n 
to be manipulated to solve some functional equation ... 
 
Any ideas along these lines from anyone?
      Paul
  

On Sat, 29 Dec 2007 00:20:34 -0500 <pauldhanna at juno.com> writes:
Seqfans, 
        Just found an o.g.f. for A014070(n) = C(2^n,n): 

(1) G.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x)^n / n!.
  
More generally, we have the nontrivial identity: 

(2) Sum_{n>=0} log(1 + q^n*x)^n/n!  =  Sum_{n>=0} C(q^n,n)*x^n. 

The proof is easy given the following formula for A008275, 
the Stirling numbers of the first kind: 
   E.g.f. for k-th column of A008275 is ln(1+x)^k/k!. 

Can any other interesting result be derived from (2)? 
Thanks, 
     Paul 
----__JNP_000_30c1.7dfc.7670
Content-Type: text/html; charset=us-ascii  
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; charset=3Diso-8859-1">
<META content=3D"MSHTML 6.00.2600.0" name=3DGENERATOR></HEAD>
<BODY bottomMargin=3D0 leftMargin=3D3 topMargin=3D0 rightMargin=3D3>
<DIV>Seqfans, </DIV>
<DIV>     Recall the identity: </DIV>
<DIV>(2) Sum_{n>=3D0} log(1 + q^n*x)^n/n!  =3D  Sum_{n>=3D0=
}=20
C(q^n,n)*x^n. </DIV>
<DIV> </DIV>
<DIV>From this, I found the more general statements: </DIV>
<DIV> </DIV>
<DIV>(3) Sum_{n>=3D0} m^n*log(1 + q^n*x)^n/n!  =3D  Sum_{n>=
=3D0}=20
C(m*q^n,n)*x^n.</DIV>
<DIV> </DIV>
<DIV>
<DIV>(4) Sum_{n>=3D0} m^n * (1 + q^n*x)^b * log(1 + q^n*x)^n/n!  =
=3D =20
</DIV>
<DIV>     Sum_{n>=3D0} C(m*q^n + b, n)*x^n.</DI=
V>
<DIV> </DIV>
<DIV>Identity (4) is very interesting ... I wonder if it leads to other res=
ults?=20
</DIV>
<DIV>It certainly can lead to many significant sequences! </DIV>
<DIV> </DIV>
<DIV>What I would really like is for formula (4) to allow the g.f=
.=20
</DIV>
<DIV>    A(x,m,b) =3D Sum_{n>=3D0} C(m*q^n + b, n)*x=
^n </DIV>
<DIV>to be manipulated to solve some functional equation ... </DIV>
<DIV> </DIV>
<DIV>Any ideas along these lines from anyone?</DIV>
<DIV>      Paul</DIV></DIV>
<DIV>  </DIV>
<DIV> </DIV>
<DIV>On Sat, 29 Dec 2007 00:20:34 -0500 <<A=20
href=3D"mailto:pauldhanna at juno.com">pauldhanna at juno.com</A>> writes:</DI=
V>
<BLOCKQUOTE dir=3Dltr=20
style=3D"PADDING-LEFT: 10px; MARGIN-LEFT: 10px; BORDER-LEFT: #000000 2px so=
lid">
  <DIV></DIV>
  <DIV>Seqfans, <BR>        Just=20
  found an o.g.f. for A014070(n) =3D C(2^n,n): </DIV>
  <DIV> </DIV>
  <DIV>(1) G.f.: A(x) =3D Sum_{n>=3D0} log(1 + 2^n*x)^n / n!.</DIV>
  <DIV>  </DIV>
  <DIV>More generally, we have the nontrivial identity: </DIV>
  <DIV> </DIV>
  <DIV>(2) Sum_{n>=3D0} log(1 + q^n*x)^n/n!  =3D  Sum_{n>=
=3D0}=20
  C(q^n,n)*x^n. </DIV>
  <DIV> </DIV>
  <DIV>The proof is easy given the following formula for A008275, </DI=
V>
  <DIV>the Stirling numbers of the first kind: </DIV>
  <DIV>   E.g.f. for k-th column of A008275 is ln(1+x)^k/k!.=
=20
  </DIV>
  <DIV> </DIV>
  <DIV>Can any other interesting result be derived from (2)? </DIV>
  <DIV>Thanks, </DIV>
  <DIV>     Paul </DIV>
  <DIV> </DIV></BLOCKQUOTE></BODY></HTML>

----__JNP_000_30c1.7dfc.7670--






More information about the SeqFan mailing list