Divisor
koh
zbi74583 at boat.zero.ad.jp
Sat Jan 6 06:40:01 CET 2007
Hi, Seqfans
I defined four divisor functions which are "difference" of divisors.
1.
SENSiguma(m) = (-1)^((Sum_i r_i)+Omega(m))*Sum_{d|m} (-1)^((Sum_j r_j)+Omega(d))*d
=Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^(r_i+1)
Where m=Product_i p_i^r_i , d=Product_j p_j^r_j
ex. SENSigma(240)=(-1+2+4+8+16)*(1+3)*(1+5)
SEN for Signed by Exponents of prime factors and Number of prime factors.
2.
SEPSigma(m) = (-1)^(Sum_i r_i)*Sum_{d|m} (-1)^(Sum_j r_j)*d
=Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^r_i
Where m=Product_i p_i^r_i , d=Product_j p_j^r_j
ex. SEPSigma(240)=(1+2+4+8+16)*(-1+3)*(-1+5)
SEP for Signed by Exponents of Prime factors .
3.
SENUnitarySigma
4.
SEPUnitarySigma
[SENSigma Multiply Perfect Number]
SENSigma(m)=k*m , for some integer k.
2^11*3^3*5^4*7^3*13*19*41 k=5
2^9*3*11*31 k=3
2^9*3^3*5*11*31 k=4
2^9*3^3*5^2*11*29*31 k=4
2^9*3^4*7*11*17*31 k=4
2^9*3*11^2*31*131 k=3
2^9*3^3*5*11^2*31*131 k=4
2^9*3^3*5^2*11^2*29*31*131 k=4
2^9*3^4*7*11^2*17*31*131 k=4
2^6*3*5^4*7*19*41 k=4
2^6*3^2*5^4*7*11*19*41 k=4
2^6*3^4*5^4*7^2*11*17*19*41 k=5
2^6*3^2*5^4*7*11^2*19*41*131 k=4
2^6*3^4*5^4*7^2*11^2*17*19*41*131 k=5
2^5*3*7 k=3
2^5*3^2*7*11 k=3
2^5*3^3*5*7 k=4
2^5*3^3*5^2*7*29 k=4
2^4*3*5*29 k=3
2^4*3^2*5*11*29 k=3
2^4*3^2*5*11^2*29*131 k=3
2^4*3^4*5*7*17*29 k=4
2^3*3*5*29 k=3
2^3*3^2*5*11*29 k=3
2^3*3^2*5*11^2*29*131 k=3
2^3*3^4*5*7*17*29 k=4
2^2*3*5 k=2
2^2*3*5^2*29 k=2
2^2*3^2*5*11 k=2
2^2*3^2*5^2*11*29 k=2
2^2*3^2*5*11^2*131 k=2
2^2*3^2*5^2*11^2*29*131 k=2
2*3 k=2
2*3^2*11 k=2
2*3^2*11^2*131 k=2
[SEPSigma Multiply Perfect Number]
SEPSigma(m)=k*m , for some integer k.
2^10*3^5*5*7*11^2*19*23*89 k=2
2^9*3*5*17*1021 k=1
2^8*3^5*5*7*73*181 k=2
2^8*3^6*7^2*13*19*1093 k=3
2^7*3^5*5*7*11^2*19*23*181 k=2
2^6*3^5*5*7*127*181 k=2
2^6*3^6*7^2*13*19*127*1093 k=3
2^5*3*5*61 k=1
2^4*3*5*31 k=1
2^3*3*13 k=1
2^2*3*7 k=1
2*3 k=1
Is the following conjecture correct?
"All SEPSigma Perfect Numbers are of the form 2^n*3^5*5*181*k, GCD(2*3*5*181,k)=1"
Yasutoshi
More information about the SeqFan
mailing list