From diana.mecum at gmail.com Sun Jul 1 05:58:30 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Sat, 30 Jun 2007 22:58:30 -0500 Subject: Question related to sequence A066452 Message-ID: Folks, I am trying to add extension terms for sequence A066452. I have a question. This is the internal text describing the sequence: %I A066452 %S A066452 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12, %T A066452 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23 %N A066452 Anti-phi(n). %H A066452 Jon Perry, Anti-phi function %F A066452 anti-phi(n) = number of integers <= n that are coprime to the anti-divisors of n %e A066452 10 has the anti-divisors 3,4,7. Therefore numbers coprime to 3,4,7 and less than 10 are are 1,2,5, therefore anti-phi(10)=3. %Y A066452 Cf. A058838, A066241. %Y A066452 Sequence in context: A024994 A051953 A079277 this_sequence A007104 A102627 A088296 %Y A066452 Adjacent sequences: A066449 A066450 A066451 this_sequence A066453 A066454 A066455 %K A066452 nonn,more,easy %O A066452 2,3 %A A066452 Jon Perry (perry(AT)globalnet.co.uk), Dec 29 2001 I found a definition for "anti-divisor" as follows: "Non-divisor: a number k which does not divide a given number x." "Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x." I see how Jon gets 3, 4 and 7 as anti-divisors of 10. However, 2 is not coprime to the anti-divisors of 10. He has 1, 2, and 5 as on the anti-phi list. The sequence which I derived for this sequence is: 1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 2, 5, 3, 5, 4, 9, 2, 4, 5, 6, 6, 6, 6, 10, 5, 8, 6, 5, 8, 8, 9, 12, 7, 10, 7, 12, 9, 8, 9, 13, 13, 9, 9, 14, 10 Can someone tell me if I am misunderstanding the definition of the sequence, or if I have found an error? Thanks, Diana M. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From joshua.zucker at gmail.com Sun Jul 1 06:44:41 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Sat, 30 Jun 2007 21:44:41 -0700 Subject: Question related to sequence A066452 In-Reply-To: References: Message-ID: <721e81490706302144v4a71e477jbca73f5e29577eea@mail.gmail.com> I don't understand it either, but at least I could use the wayback machine to track down the URL given, at http://tinyurl.com/2xuvgr And it says The anti-phi function is defined as the numbers wrote: > Folks, > > I am trying to add extension terms for sequence A066452. I have a question. > > This is the internal text describing the sequence: > > %I A066452 > %S A066452 > 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12, > %T A066452 > 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23 > %N A066452 Anti-phi(n). > %H A066452 Jon Perry, href="http://www.users.globalnet.co.uk/~perry/maths/antidivisorother2.htm > "> > Anti-phi function > %F A066452 anti-phi(n) = number of integers <= n that are coprime to the > anti-divisors of n > %e A066452 10 has the anti-divisors 3,4,7. Therefore numbers coprime to > 3,4,7 and less than > 10 are are 1,2,5, therefore anti-phi(10)=3. > %Y A066452 Cf. A058838, A066241. > %Y A066452 Sequence in context: A024994 A051953 A079277 this_sequence > A007104 A102627 A088296 > %Y A066452 Adjacent sequences: A066449 A066450 A066451 this_sequence A066453 > A066454 A066455 > %K A066452 nonn,more,easy > %O A066452 2,3 > %A A066452 Jon Perry (perry(AT)globalnet.co.uk), Dec 29 2001 > > I found a definition for "anti-divisor" as follows: > > "Non-divisor: a number k which does not divide a given number x." > "Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x." > > I see how Jon gets 3, 4 and 7 as anti-divisors of 10. However, 2 is not > coprime to the anti-divisors of 10. He has 1, 2, and 5 as on the anti-phi > list. > > The sequence which I derived for this sequence is: > > 1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 2, 5, 3, 5, 4, 9, 2, 4, 5, 6, 6, 6, 6, 10, 5, > 8, 6, 5, 8, 8, 9, 12, > 7, 10, 7, 12, 9, 8, 9, 13, 13, 9, 9, 14, 10 > > Can someone tell me if I am misunderstanding the definition of the sequence, > or if I have found an error? > > Thanks, > > Diana M. > > -- > "God made the integers, all else is the work of man." > L. Kronecker, Jahresber. DMV 2, S. 19. From zbi74583 at boat.zero.ad.jp Sun Jul 1 06:57:40 2007 From: zbi74583 at boat.zero.ad.jp (koh) Date: Sun, 01 Jul 2007 13:57:40 +0900 Subject: Quiz Message-ID: <20070701045738.zbi74583@boat.zero.ad.jp> Hi, Seqfans What are these sequences? S1 : 1,1,1,0,1,0,1,-1,0,1,2,2.... S2 : 1,2,3,-2,0,3,1,2,1,1.... Hint.... Graph, Euler Number, S1=English, S2=Japanese Yasutoshi From reismann at free.fr Sun Jul 1 11:52:37 2007 From: reismann at free.fr (reismann at free.fr) Date: Sun, 01 Jul 2007 11:52:37 +0200 Subject: =?iso-8859-1?b?Qe5vbg==?= and Chronos Message-ID: <1183283557.468779659d8ca@imp.free.fr> Hi seqfans, A?on and Chronos form the Deleuze's concept of time : Chronos : pulsated time (beats of our heart), the time of the history, the time which passes. A?on : the pure moment of time, the time of the events, of the "ecc??t?s", a time at the same time too late and too early. Ordinal and cardinal function of the numbers : There are apples on the table. 1, 2, 3, 4, 5, 6. I count apples, the numbers have an ordinal function, the action to count is held in the Chronos. There are thus 6 apples. 6 take a cardinal function, we are not located more in the Chronos, we are in another time : the A?on. In our vision of the natural numbers, in the vision of the fundamental theorem of the arithmetic, in the decomposition in weight*level with jump=0, we are in the A?on. To replace the natural numbers in the Chronos, it is enough to consider the decomposition in weight*level+jump with jump=1. We did not see the difference until now because the two decompositions give the same result (with a different offset). I think that it is thus because the jump is constant, the pulsation is regular. In A?on, the prime numbers are primes, they are of level 1, it is all. How to see in a new way prime numbers ? By considering them in the Chronos, by analyzing them by the decomposition in weight*level+jump. In this case the jump is not constant, the pulsation is irregular. There are "prime numbers" and "multiples" among the prime numbers ("prime numbers" and "multiples" remain to be defined in this case). The numbers have only one A?on but several Chronos. It is what I wanted to say by ?Numbers are nothings?. The numbers are nothing if one does not specify in which time one is located. Is the number in the A?on or the Chronos ? And if it is in the Chronos, in which Chronos is it ? 11 in A?on : 11 is prime, is of level 1. 11 in the Chronos of natural numbers : 11 has a weight of 2, 11 = 2*5+1. 11 in the Chronos of prime numbers : 11 has a weight of 3 : 11 = 3*3+2. Good thoughts, R?mi Eismann Deleuze on Wikipedia en : http://en.wikipedia.org/wiki/Deleuze Deleuze on Wikipedia fr : http://fr.wikipedia.org/wiki/Gilles_Deleuze On A?on and chronos (in french) : Le vocabulaire de Deleuze (r?alis? par Rapha?l Bessis) - http://tuxcafe.org/~renee/textes/deleuze/vocabulaire_deleuze.pdf From diana.mecum at gmail.com Sun Jul 1 16:56:15 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Sun, 1 Jul 2007 09:56:15 -0500 Subject: Question related to sequence A066452 In-Reply-To: <721e81490706302144v4a71e477jbca73f5e29577eea@mail.gmail.com> References: <721e81490706302144v4a71e477jbca73f5e29577eea@mail.gmail.com> Message-ID: Joshua, Thanks a bunch. I would never have been able to find this different spin on the definition of anti-phi. I have been able to replicate the original list. Diana M. On 6/30/07, Joshua Zucker wrote: > > I don't understand it either, but at least I could use the wayback > machine to track down the URL given, at > http://tinyurl.com/2xuvgr > > And it says > The anti-phi function is defined as the numbers any anti-divisor as a factor. > > Which may or may not be what they actually mean ... but at least it's > another possible interpretation to try. > > --Joshua Zucker > > > On 6/30/07, Diana Mecum wrote: > > Folks, > > > > I am trying to add extension terms for sequence A066452. I have a > question. > > > > This is the internal text describing the sequence: > > > > %I A066452 > > %S A066452 > > 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12, > > %T A066452 > > 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23 > > %N A066452 Anti-phi(n). > > %H A066452 Jon Perry, > href=" > http://www.users.globalnet.co.uk/~perry/maths/antidivisorother2.htm > > "> > > Anti-phi function > > %F A066452 anti-phi(n) = number of integers <= n that are coprime to the > > anti-divisors of n > > %e A066452 10 has the anti-divisors 3,4,7. Therefore numbers coprime to > > 3,4,7 and less than > > 10 are are 1,2,5, therefore anti-phi(10)=3. > > %Y A066452 Cf. A058838, A066241. > > %Y A066452 Sequence in context: A024994 A051953 A079277 this_sequence > > A007104 A102627 A088296 > > %Y A066452 Adjacent sequences: A066449 A066450 A066451 this_sequence > A066453 > > A066454 A066455 > > %K A066452 nonn,more,easy > > %O A066452 2,3 > > %A A066452 Jon Perry (perry(AT)globalnet.co.uk), Dec 29 2001 > > > > I found a definition for "anti-divisor" as follows: > > > > "Non-divisor: a number k which does not divide a given number x." > > "Anti-divisor: a non-divisor k of x with the property that k is an odd > > divisor of 2x-1 or 2x+1, or an even divisor of 2x." > > > > I see how Jon gets 3, 4 and 7 as anti-divisors of 10. However, 2 is not > > coprime to the anti-divisors of 10. He has 1, 2, and 5 as on the > anti-phi > > list. > > > > The sequence which I derived for this sequence is: > > > > 1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 2, 5, 3, 5, 4, 9, 2, 4, 5, 6, 6, 6, 6, 10, > 5, > > 8, 6, 5, 8, 8, 9, 12, > > 7, 10, 7, 12, 9, 8, 9, 13, 13, 9, 9, 14, 10 > > > > Can someone tell me if I am misunderstanding the definition of the > sequence, > > or if I have found an error? > > > > Thanks, > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From jvospost3 at gmail.com Sun Jul 1 18:28:56 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 1 Jul 2007 09:28:56 -0700 Subject: =?WINDOWS-1252?Q?Re:_A=EEon_and_Chronos?= In-Reply-To: <1183283557.468779659d8ca@imp.free.fr> References: <1183283557.468779659d8ca@imp.free.fr> Message-ID: <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> Drifting away from seqfans primary function as I understand it, but directly on your topic, as I understand it: There is profane time, and there is sacred time. According to Eliade, myths describe a time that is fundamentally different from historical time (what modern man would consider "normal" time). "In short," says Eliade, "myths describe ? breakthroughs of the sacred (or the 'supernatural') into the World".[7] The mythical age is the time when the Sacred entered our world, giving it form and meaning: "The manifestation of the sacred ontologically founds the world".[8] Thus, the mythical age is sacred time, the only time that has value for traditional man. [7] Mircea Eliade, Myth and Reality, pg. 6 [8] Mircea Eliade, The Sacred and the Profane, pg. 21 http://en.wikipedia.org/wiki/Eternal_return_(Eliade) From reismann at free.fr Sun Jul 1 19:05:19 2007 From: reismann at free.fr (reismann at free.fr) Date: Sun, 01 Jul 2007 19:05:19 +0200 Subject: =?iso-8859-1?b?Qe5vbg==?= and Chronos In-Reply-To: <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> References: <1183283557.468779659d8ca@imp.free.fr> <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> Message-ID: <1183309519.4687decf17576@imp.free.fr> I agree, it is not the place to speak philosophy but as nobody speaks about my mathematical work... I do not agree on this concept of time. The sacred time, the mythical age, the "jadis', the ?it was once? of the tales are not times. They are "ecc??t?s", they make much more than to define a temporal framework, they create an environment, an atmosphere. The time of these "ecc??t?s" is indeed A?on. But the disctinction between A?on and Chronos is not the same one as between the sacred time and the profane time. Not. A?on is the pure moment of time, it is the point on the arrow of time, it is the time of a photography. In mathematics and sciences in general, one uses A?on, one analyzes photographs. By putting the numbers in their Chronos, their fitting, their otherness, we see them in another manner. With the decomposition of the prime numbers in weight*level+gap, I replace the prime numbers in their Chronos. Best, R?mi Eismann From jvospost3 at gmail.com Sun Jul 1 19:18:16 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 1 Jul 2007 10:18:16 -0700 Subject: =?ISO-8859-1?Q?Re:_A=EEon_and_Chronos?= In-Reply-To: <1183309519.4687decf17576@imp.free.fr> References: <1183283557.468779659d8ca@imp.free.fr> <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> <1183309519.4687decf17576@imp.free.fr> Message-ID: <5542af940707011018g6dff5435w42ece630acbb0496@mail.gmail.com> I speak of your mathematical work: "It appears self consistent, correct, and, to me, interesting." Regarding Time, I have taught several hundred adult students a course on "Time Travel: Math, Physics, Fiction" using as textbook: Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction, by Paul J. Nahin, Springer-Verlag New York, 1993. There is greater clarity in studing primes, and asymptotic limits of real functions, than in the Philosophy of Time, or, perhaps, any Philosophy. So I shall for some time restrict my seqfans comments to Mathematics and Integers. Classically: "... But the position of these and similar authorities is made clear by Boethius, who says (V De Consolatione prosa 6), "When some people hear that Plato thought this world neither had a beginning in time nor will ever have an end, they mistakenly conclude that the created world is coeternal with the Creator. However, to be led through the endless life Plato attributes to the world is one thing; to embrace simultaneously the whole presence of endless life is quite another, and it is this latter that is proper to the divine mind." [PL 63, 859B] Medieval Sourcebook: Thomas Aquinas: On The Eternity of the World (DE AETERNITATE MUNDI) DE AETERNITATE MUNDI [[1]] Translation (c) 1991, 1997 by Robert T. Miller[[2]] Since people are posting sequence puzzles on seq.fan lately, I thought I would post this sequence puzzle of a different varity. I suspect this 'puzzle' is easy, and I'll probably regret I posted this. --- Let {c(k)} be as defined at sequence A022940. ({c(k)} itself is not in the EIS.) Define sequence {a(k)} as follows: Let b(n) = c(n) - n + 1. a(1) = the number of 1's in {b(k)}. a(2) = the number of 2's in {b(k)}. In general, a(n) = the number of n's in {b(k)}. So, {a(k)} begins: 0,1,1,3,5,6,7,9,... Define {a(k)}. (Define it in a simpler way than by the steps given above.) Thanks, Leroy Quet From qq-quet at mindspring.com Mon Jul 2 00:42:07 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Sun, 1 Jul 07 16:42:07 -0600 Subject: Another kind of sequence puzzle References: <1183283557.468779659d8ca@imp.free.fr> Message-ID: o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o SeqFiends, I can't recall the context, but we have several times over the past few years been discussing several questions about boolean functions B^k -> B and boolean mappings B^k -> B^n. I am finally getting some of the work that I referred to in slightly prettier shape. Here's a link to a paper on Differential Logic: http://www.centiare.com/Differential_Logic_and_Dynamic_Systems Related material can be found by perusing this directory page: http://www.centiare.com/Directory:Jon_Awbrey Some of this work even has a little bit to do with the love that Eternity bears toward the creatures of Time. Many Regards, Jon Awbrey CC: Arisbe Forum: http://stderr.org/pipermail/arisbe/ CC: Inquiry List: http://stderr.org/pipermail/inquiry/ o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o inquiry e-lab: http://stderr.org/pipermail/inquiry/ ?iare: http://www.centiare.com/Directory:Jon_Awbrey getwiki: http://www.getwiki.net/-User_talk:Jon_Awbrey zhongwen wp: http://zh.wikipedia.org/wiki/User:Jon_Awbrey http://www.altheim.com/ceryle/wiki/Wiki.jsp?page=JonAwbrey wp review: http://wikipediareview.com/index.php?showuser=398 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o From Eric.Angelini at kntv.be Mon Jul 2 17:28:54 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 2 Jul 2007 17:28:54 +0200 Subject: Seq and first diff show the same "digit pattern" Message-ID: Hello SeqFan, could someone compute a few more terms of this seq: 1 12 14 155 160 211 271 292 419 548 572 691 ... The principle is: - Seq and first diff show the same "digit pattern". S = 1 12 14 155 160 211 271 292 419 548 572 691 ... d = 11 2 141 5 51 60 21 127 129 24 19 ... Rules: - start S with "1" - add to the last term of S the smallest integer d no yet added and not present in S such that the concatenation of S's terms and the concatenation of all ds are the same string of digits So, never twice the same integer in sequence or first differences. I'm quite sure that all N's will be split between S and d. Best, ?. http://www.research.att.com/~njas/sequences/A110621 has a close Mathematica pgm by Robert G. Wilson. (thanks again to him!) Something is wrong with my email, and I haven't been receiving all emails have. I will post the solution now, even though only a short while has passed Original email as spoiler-space. >Since people are posting sequence puzzles on seq.fan lately, I thought I >would post this sequence puzzle of a different varity. > >I suspect this 'puzzle' is easy, and I'll probably regret I posted this. > >--- > >Let {c(k)} be as defined at sequence A022940. ({c(k)} itself is not in >the EIS.) > >Define sequence {a(k)} as follows: > >Let b(n) = c(n) - n + 1. > >a(1) = the number of 1's in {b(k)}. a(2) = the number of 2's in {b(k)}. >In general, a(n) = the number of n's in {b(k)}. > >So, {a(k)} begins: 0,1,1,3,5,6,7,9,... > >Define {a(k)}. (Define it in a simpler way than by the steps given above.) > >Thanks, >Leroy Quet I get that a(1)=0, a(2)=1. a(n) = c(n-2) -1, for n >= 3. I don't know if there is a "closed form" (nonrecursive representation) for {c(k)}. Thanks, leroy Quet From qq-quet at mindspring.com Mon Jul 2 19:29:58 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Mon, 2 Jul 07 11:29:58 -0600 Subject: Another kind of sequence puzzle Message-ID: sent to me. So I don't know if someone has posted the solution before I since I posted the question. Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:mime-version:content-type; b=bSWl7aVbAs0oQbKU+XGs+hIRBCABvZolGVZSiOQaoA4/29VkR4fyEMOQsyDenI510MzeSIv4B9jlgctY63FiUJyiVnzveXggkdxLfIspQQEGMMOMPkVtla3Mv5agO+29sgn92yhCz9MQ2ygh30g/Ay7fE75p/deamJcomUqhDuE= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:mime-version:content-type; b=R68LxrgxATculV2CXcXwou+Lxjh5z5n8CGCDmCnBL3kJIsFx+OhuTNnS6bosGN3/uY/lO/iwRhl0JtDdioauF6kKhcS6QLjEqzAHtEJQUwMwI7g4HpOUDZEO/dIPdO4Z6yOZTt+4cW8RtvFBVh2bQQPwW8O31axqNab+MKCzoj0= Message-ID: Date: Mon, 2 Jul 2007 20:36:10 -0500 From: xordan To: seqfan at ext.jussieu.fr Subject: relatively primes and prime numbers graphs. MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="----=_Part_104140_14761177.1183426570634" X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Tue, 03 Jul 2007 03:36:12 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3575/Mon Jul 2 21:19:14 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 4689A80C.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.000 -> 1 X-Miltered: at shiva.jussieu.fr with ID 4689A80C.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! ------=_Part_104140_14761177.1183426570634 Content-Type: multipart/alternative; boundary="----=_Part_104141_23199308.1183426570635" ------=_Part_104141_23199308.1183426570635 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline I understand that the attached file and the folloging words that don't coincide with the strict discussion line in seqfan, but they contain some graphic curiosities that I wanted to share with the members of the list. I wait some benevolent comments. Again I notice that the translation of the original in Spanish is made with the help of software: The attached file (coprimes.zip ) contains one book of calculation sheets that has 5 work sheets that give results (to my view) interesting related with the numbers relatively primes. The first sheet shows the numbers (1 to 256) relatively primes to each other that added (arithmetic sum) becomes a prime number as result; the second sheet shows the numbers relatively primes whose absolute difference becomes a prime number as result; the third are the conjunction of the previous two , that is to say the numbers relatively primes whose their algebraic sum gives as result a prime number. The fourth is the same graph that it appears in the current page http://mathworld.wolfram.com/RelativelyPrime.html (RelativelyPrime.gif) and that it shows the primes numbers relatively to each other. The fifth work sheet is the conjunction of RelativelyPrime.gif and the previous sheet "abs(r+-c)=prime". - With this it is shown graphically that all the numbers (r,c) whose algebraic sum is a prime number (p) they are relatively prime to each other. IF r+c=p THEN coprime(r,c)=1.- -- xordan at hotmail.com xordan_co at yahoo.com xordan.tom at gmail.com ------=_Part_104141_23199308.1183426570635 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline
I understand that the attached file and the folloging words that  don't coincide with the strict discussion line in seqfan, but they contain some graphic curiosities that I wanted to share with the members of the list. I wait some benevolent comments. Again I notice that the translation of the original in Spanish is made with the help of software:
 
The attached file (coprimes.zip ) contains one book of calculation sheets that has 5 work sheets that give results (to my view) interesting related with the numbers relatively primes.  
The first sheet shows the numbers (1 to 256) relatively primes to each other  that added (arithmetic sum)   becomes  a prime number as  result; the second sheet shows the numbers relatively primes  whose absolute difference becomes a prime number  as  result; the third are the conjunction of the previous two , that is to say the numbers relatively primes  whose their  algebraic sum  gives as  result a prime  number. The fourth is the same graph that it appears in the current page http://mathworld.wolfram.com/RelativelyPrime.html (RelativelyPrime.gif) and that it shows the primes numbers relatively to each other. The fifth work sheet is the conjunction of RelativelyPrime.gif and the previous sheet "abs(r+-c)=prime". - With this it is shown graphically that all the numbers (r,c) whose algebraic sum is a prime number (p) they are relatively prime to each other.
IF  r+c=p  THEN   coprime(r,c)=1.-
--
xordan at hotmail.com
xordan_co at yahoo.com
xordan.tom at gmail.com
------=_Part_104141_23199308.1183426570635-- ------=_Part_104140_14761177.1183426570634 Content-Type: application/zip; name=coprimes.zip Content-Transfer-Encoding: base64 X-Attachment-Id: f_f3npjtxd Content-Disposition: attachment; filename="coprimes.zip" UEsDBBQAAAAIAGSg4jbfFzBvq8oCAAD8DQAMAAAAY29wcmltZXMueGxz7Np3 VFSHtsfxMwjSpDPM0EcQlCr2imDvDXtFUFQERcFesaaoiYm9995j7733XtI0 iTFYYm+JCW/PYeYbJeO997217np/3Htcv5kP+5Q5zDns2bA8f87t1sKNPreV fEsVpYDyZ669UvCdmrNEY/7CVVHOykor4Z+5ubnmcrLkR0kX2fCOpKtscFfS vYCi5Eh6WCvKfUm6jaI8lPSSY+T+d/l/W/6QnJFrIJdGkcuiyCVRr7mtxE5i L3GQOEoKSZxM94FL3i2guEncJR4ST4lW4iXRSfQSb4mPxFfiJ/GXBEgCJQZJ YUmQJFhSRBIiCZUUlRSThEnCJRGSSEmUJFpSXBIjKSEpKSklKS0pIykrKScp L6kgqSipJKksiVWM97aixEniJVUl1STVJTUkNSW1JLUldSR1JfUk9SUNJA0l jSSNJU0kTSUJkmaS5pIWkpaSVpLWkjaStpJ2kvaSDpKOkkRJJ0mSpLPEeB26 yHOKpKukm6S7JFXSQ5ImSZf0lPSSZEh6S/pIMiVZkr6SfpL+kgGSgZJBksGS IZKhkmGS4ZIRkmzFeO4Z8q+vXIuacty+cizjHv/64iV3jPleMvYCg52VWt+f t9r4VirlR1rr7Pcc05wfpr3nJM8X5AaLD8vboJW8eqZ8d8nqeaRZeIV/vLgr VhrjPWc+h3+6g5LXs4YNdlKdKFermtwFiXI1E+Sq1pP3obpcyUR5bKFe2X+8 BCkajbEnGu9/9w9sk10zPcfpne//3XV5r/5/X+ykI5u/d/sPbNMpcqD6+q4b /sjJ//r2dvJTXNBGeaA9Y3visFAawW15hzZYH1Dfpx8U433b29gDWqX26pIx IMvQuonh379UU88hSWM8h/1yxrEaB+lPNvL9FpDv+JJUd2pcjB2peffUrFYZ mWnJGRlpc2QnZ2k5xp3c1UcP9XG9epjd6mOsrBkoP1b1owrqy8shreRwra3i 1e0mqo9B6qOzumabus9NtVJCGtlxec4dMSnvLTxno6kqN2+q/BCn/5vXLvjg 2gBrP3lbpN0GFQlqbwiODA6OqaSyfZT6RYB1YWnofu+tb5eQ0qXD+xsFScf3 f3ej6Jj3jyNfB1gXlfc/KP9WfzuaummstG1pwIkGdU143uaJhkoUTBu/WwqK ClK/jE80BFhHS+8PMx7g3X3f3y3fHjXlEyI+/0vKyVh41XxVOUxc3F8HKisf NyXeeWnz1n/bPd+et9SPQEV5kWtQ/lr2q3WNuf78X6tb/S/ryn9gXaOOEO/X NXLt1O1f56+HfaAe+YF6+Afq9hbrxkU9n/j825vqdf5J3druA3VXy8c31f++ vdP723cy1fOfp+EDdfP2pvP5e93JMNnKWnHNLpBrfHbLLqg+u2dbq88e2bbq s0wX6rNntk1uJ7WLjpVu3NTWeAhHpVhmROew2N6ZqT1TxsoMEZqQ13KTkrOK ZUb9tUavTC5unEpd89ZEsMowVibKKeOMR/NQElLSk/qm9k9JH9TEuC66W2pX 42sFrrBXX6tzRu/MCHWvrAnS8INkJlynMX6WaKx16udn3nJAYyeR5rZXo7yV TxYrRTG9uUp0rnz+SeezzZuBO9tpJQqL1vS8zDgo532gur73gepoFcPGryRh snNPmR6j5sggkqMom8pplJyxGqXCJY3yJsBKWdrUSgZt4+eP8TS6yLBtPBk3 9dFVTuTtyicXGyY3iUtUtwlX6xHq4yi1kq38dXYhxmuh5CojZc0Ba0/T6Y5W tx6jPi5UB/Bc2c/4z1qxvLSQbR1kfDS+AYpmq5VWvpZtrZzVta/yNpL3ys7K 1WTTLCYf08aaxkLNykKtgIWatYWajYVaQQs1Wws1Ows1ews1Bws1Rwu1QhZq ThZqzhZqLhZqrhZqbhZq7hZqHhZqnhZqWgs1Lws1nYWa3kLN20LNx0LN10LN z0LN30ItwEItMF9NY2W8CwrI+eTJBtkiR+SE3JAH0iF/FIhCUBiKQMVRGVQJ xaLqqDaqixqjZqgNSkIpqBtKQz1RHzQCjUafoPFoKpqO5qLFaDlaizahLWgf OoCOoGPoEvoe/YjuoBz0CD1Bv5tk7GtmFUR2qBByRu7IE+lRADKgUBSOIlEM KosqoyqoBqqD6qEmqDlqi5JRV9QdpaNeKBNlozHoUzQBTUMz0Dy0BK1A69Bm tBXtRwfRUXQcXUa30E/oZ3QPPUZP0VuTrOgMVnQGK/kUMMsJuSAPpEXeKBAV RkVRBIpCJVA5FIviUE1UF9VHTVEL1A51Rt1QKuqJMlAWGonGovFoIpqOZqL5 aClaidajLWgbOoAOoWPoBLqCbqM76C66j56gZ+gPk4yTh1kFkR1yQM7IFXki L+SDDCgIFUORKBqVROVRFRSPaqF6qAFKQC1Re9QFdUc9UC/UG/VFo9A4NAF9 hmagWWgBWoZWoQ1oK9qODqLD6Dg6ia6iH9DP6Bf0AD1Fz9GfJllL5zDLFtkj R+SC3JAW6ZAvKoyCURiKQsVRKVQBxaGqqDaqjxqiZqgV6oBSUCpKQxmoD+qH RqOP0ET0OZqJZqOFaDlajTaibWgHOoSOoBPoFLqGfkR3UQ56iJ6hFyjXJBv6 ho1iheyQAyqEXJE78kJ65IeCUBEUjqJRDCqNKqJ4VA3VQQ1QI9QctUYdUVfU A6Wj3igT9Udj0MfoMzQJzUJz0CK0Aq1BX6HtaCc6jI6ik+g0uo5+Qr+ge+hX 9By9NKkgfcPYTcyyR47ICbkhD6RD3sgfBaMQFIGKoxKoDKqEqqLqqC5qiBqj FqgNSkTdUBrqifqgLDQAjUWfoM/RF2g2mosWo5VoLdqEdqBd6Ag6hk6hM+gG uoNy0H30CL1Ar0yypW/Y0jdsFWvkgAohZ+SOPJEe+aAAVASFokgUg0qisqgy qoZqoHqoEWqCWqK2qBPqjtJRL5SJ+qKBaBz6FE1CX6I5aB5aglahdWgz2ol2 o6PoODqNzqKb6Gd0Dz1Aj9FL9NokOzqIHR3ETrFBjsgJuSAPpEXeyBcFohBU FEWhEqgUKodiUXVUE9VHjVFT1Aq1Q0koFfVEGSgL9UOD0EdoPPoCTUZz0Xy0 FK1G69EWtAvtQcfQCXQGnUNfo7voPnqInqBX6I1J9nQQezqI8T/vmFUIOSNX 5Im8kA/yQwYUioqhaFQSlUblURVUA9VCDVATlIBao/YoGfVAvVBv1Bf1R4PR x2gC+hJNQfPQArQMrUEb0Fa0G+1Fx9FJdBadR9+gX9AD9Ct6il6j30xyoIM4 0EEcFFvkhFyQG9IiHfJF/qgwKorCUHFUCpVBFVAcqolqo4aoKWqG2qAOqDNK QxmoD+qHBqAh6BM0EU1GU9F8tBAtR2vRRrQN7UH70Al0Cp1DF9C3KAc9RI/Q M/QGmf9W6shc4kgvcaSXOCp2yBm5InfkhfTIDwWgIFQMhaMYVBqVRRVRPKqF 6qBGKAE1R21RR9QFpaPeKBP1RwPRUPQp+gxNQdPQArQIrUDr0FdoO9qL9qOT 6DQ6jy6i79A99Ct6jJ6j35D5L6mFmFAK0VUK0VUKKfbIBbkhD6RD3sgfBaJg FIYiUAlUBpVDlVBVVBvVRY1RM9QCtUOJKAX1RH1QFhqABqFhaDz6HE1F09FC tBitROvRJrQD7UMH0Cl0Bl1Al9D36D56hJ6gF+h3ZP47qxP9xYmpxYn+4kR/ cVIckCtyR55Ij3xQADKgIigcRaKSqCwqjyqjaqgOqoeaoOaoJWqPOqGuqBfK RH3RQDQYDUcT0CQ0Dc1Ai9AStAptQJvRTrQfHUSn0Vl0EV1Gt9AD9Bg9RS/R W2T+K6wzncaZScaZTuNMp3FWHJEb8kBa5I18USAqjEJQBIpCpVA5VAHFouqo LqqPmqIWqBXqgJJQN5SBslA/NAgNQSPQRPQFmo5mosVoKVqNNqItaBc6gA6h M+gcuoSuoNvoIXqCnqFX6A9k/hutC53GhZnGhU7jQqcx/pdSs9yRJ/JCPsgP GVAQCkWRKBqVRuVRRVQF1UD1UAOUgFqi1qgjSkbdUW/UF/VHg9FQlI0+Q1+i GWgWWoKWoTXoK7QV7UYH0WF0Fp1Hl9FV9AP6FT1Fz9FrZO40rvQXV2YaV/qL K/3F+P98zPJAWqRDvsgfFUbBqCiKQsVRGVQBVUJxqCaqjxqiZqgVaoMSUWeU ivqgfmgAGoKGoZHoczQZzUSz0VK0HK1Fm9A2tAcdQkfQOXQBXUHX0I/oEXqG XqA3yNxf3Jhp3Ogvbsw0bvQXN/qLm+KMPJEX0iM/FICCUBFUDEWjGFQWVUSV UTyqhRqgRqg5ao3aok6oC+qBMlF/NBANRcPRKDQJTUGz0By0DK1A69BmtB3t RYfRUXQeXURX0XX0E3qMnqOXyPzbkzuTjDv9xZ1Jxp3+4k5/cVdckBbpkDfy R4EoGIWgMFQclUDlUCUUi6qi2qghaoxaoDaoHUpCKSgNZaEBaBAahkag0egL NBXNRnPRcrQSrUdb0A60Dx1Bx9AFdAldQzfQHfQEvUCvkPm3Jw/6iweTjAf9 xYNJxoP+4kF/8VBckRfSIx8UgAyoCApF4SgGlUTlUWVUBVVDdVAj1AS1RG1R e5SMuqJ01BcNRIPRcJSNxqAv0TQ0B81DK9AqtAFtRTvRfnQUHUcX0WV0Hd1E P6On6CV6jcy/PXnSaTyZaTzpNJ7MNJ50Gk86jafihnTIG/miQFQYhaCiKAKV QKVQBRSL4lB1VBc1Rk1RK9QOdUCdUTfUE/VDg9AQNAKNRGPRZDQdzUXz0Uq0 Gm1E29AudAAdQyfQJXQF3UBfo7voGXqF3iDzb09aOo2WmUZLp9Ey02jpNFo6 jVZxR3rkg/yQAQWhUFQMRaKSqDSqiKqgeFQD1UNNUAJqjdqjjqgL6o56of5o MBqKstEoNA5NQTPQPLQArUJr0FdoO9qNDqLj6CS6jK6im+gb9At6jl6j35D5 tycvOo0X040XncaL6caLTuNFp/FSPJA38kX+qDAKRkVRGIpCpVAZVAnFoaqo JqqPmqJmqA3qgBJRCkpFGWgAGoKGoZFoNPoITUUz0Xy0EK1Ga9EmtAPtQYfQ CXQKXUHX0NfoW5SDXqA36Hdk/j1Kx5yjo+fomHN09Bwdc46OnqOj5+gUT+SD /FAACkJFUDEUjqJRaVQWVUbxqBqqhRqgBNQctUUdUSfUFfVAvdFANBQNR6PQ GPQxmoZmoQVoEVqD1qHNaCfaiw6jk+g0uoquo2/Qd+geeol+Q+Y5R8+co6fn 6Jlz9PQcPXOOnp6jp+foFS3yRf4oEAWjEBSGIlBxVAaVQ7GoKqqOaqOGqBlq gdqhRJSEuqE01AcNQsPQCDQajUWfoOloNlqIFqO1aD3agnahfegIOoXOoGvo BvoWfY/uo1fod2Sec7yZc7zpNN7MOd50Gm/mHG86jTedxlvxQn4oABlQERSK wlEkikFlUXlUBVVDNVAd1Ag1Ry1Re9QJJaPuKB1losFoOMpGY9A49Cmageag RWgJWoc2oK1oN9qPjqLT6Cy6jm6i79At9AC9Rm+Rec7xYc7xodP4MOf40Gl8 mHN86DQ+dBofRYf8USAqjEJQURSBolAJVA5VQHGoOqqJ6qLGqAVqhTqgJNQZ paKeKAsNQSPQSDQWfYTGo5loLlqMlqL1aCPahvagA+gYOoPOoRvoa/Q9uo0e ojfoD2Sec3yZbnzpNL5MN750Gl+mG186jS+dxlfRowBkQEEoFP0PH/8BXuV5 oIn7ZzKZcSYTz87OzuzOJnEcx3Fsh7jghjHGGNuAaTbFmGbANs2Aaaabjqmm 995776ACoiMhIRCqCARCQg0J1JBwS3b+R9k592TzO9c/ut7kni+ecs2Fn/M8 73eip+gP9Cy9QK/Sa/QmvUONqRm1og+pA3WlT6kH9aUBNJTG0ASaRFNpOs2i FbSGNtEW2kcHKIJi6DTF0SVKomuURbcol0rpewolzS91ml/Kl1/qNL+UL7/U aX4pX34pX2o+l0J6lB6jx+lJepqeoefoRapL9aghNaIm1JxaU3vqSN2oO/Wk fjSQhtFYmkhf0TSaQbNpJa2lzbSV9tNBiqQTdIYu0GW6QtfpBuXQbSqjHyiU L4/YUY/oNI/Il0d0mkfkyyM6zSPy5RH58kjg5/Rr+g39lp6i39Oz9Dy9RK/R 6/QWNaZ3qQW1oQ7UiT6mHtSLPqdBNJzG0SSaTNPpa5pDq2gdbaFtdIAOURSd pLMUT0mUTFl0k3Ipj8op1Gl+ZT39SpP5lXz5lSbzK/nyK03mV/Kl5jMopF/Q Y/Q4PUFPUy16jmrTy1SP6tPb1ISaUktqSx2pM31CPak39afBNILG01c0hWbQ TJpLq2k9baXtdJAOUzSdonOUQFcohW5QNt2mfKqgUJN5VL48aj09qsk8Kl8e 1WQelS+PajKPypdH5cujgV/Sb+i39Dv6Pf2BnqcX6BV6nd6gd+hdakbv0QfU iT6iT6kXfUYD6AsaSRNoMk2lr2kWzaM1tIG20Q46REfoGJ2m83SRkimVbtIt yqMCqqSaJpMR/P/2L98NBD7/0b/8+eeX//nzu//8eT7481rw5/n//Hntr35C z2t+78uvg38C//p3wTwW5tlvwjx7PMyz34Z59kSYZ78L8+zJMM+eCvPs6TDP fh/mWa0wz/4Q5tkzYZ49G+bZc2GePR/mWe0wz14I8+zFMM9eCvPs5TDPXgnz rE6YZ6+GeVY3zLPXwjyrF+bZ62Ge1Q/z7I0wzxr81bOaP9G/9on5a7cAv9bN f+0T89e6+a99Yv5aN6/pUiH9gh6hx+kJepJq0TNUm16kOlSfGlAjakrN6X1q R52pC3Wn3tSHBtIQGkUTaQpNo5k0m+bTWtpI22knHaajdJzOUCwlUgqlUTbl UD4V0n0KdfPHfGI+5hbgMd38MZ+Yj+nmj/nEfEw3f8wn5mM+MR8L/Ip+S7+j p+gP9Cy9QC/Rq/QGvUmNqRm1oFb0IX1EXakHfUZ9aRANpS9pEk2l6TSL5tAC WkebaAftoiMUQTF0luLoEqVSOt2iXCqgIgq9a/2NfPmNW4Df6Oa/kS+/0c1/ I19+o5v/Rr78Rr78JvAoPUFP0tP0DD1HL9LLVJcaUENqQs2pJbWm9tSFulFP 6kP9aDANo9H0FU2jGTSb5tJCWk+baSftpqMUSSfoHF2gy5RGGZRDt6mQ7lDo DevjUuVx2/9xjfxxqfK4Rv64VHlcI39cqjwuVR4P/Jp+R0/R7+lZep5eolfo NXqT3qJ3qQW9R22oA3Wlj6kX9aXP6QsaTmNoMk2nr2kOzaNFtIG20C7aQxEU RSfpPMVTEqXTVcqlPCqiYgq9Tf2tVPmt7f9b/eW3UuW3+stvpUrNp0xIj9Cj 9Bg9SU9TLXqOatPLVIfqUUN6m5pSS3qf2lJH6kafUG/qR/1pCI2gsTSFZtBM mkvzaTFtpK20m/ZSJEXTKYqlBLpCGZRJtymf7lAJhd6h1qyikP6efkL/RP9C /0r/Tj+nX9Gv6Tf0FP2e/kDP0wv0Cr1Kr9Nb9A41o/eoFX1Anehj+pQ+o89p AA2lkTSOptLXNIvm0QJaQptoG+2hfRRFx+g0xdFFSqardI3yqICK6S6F3qH+ zmb6naT5nc30O03md5Lmd5pMzedNSL+gR+kxepyeplr0DNWmF6kO1aX69DY1 oub0PrWmdtSZPqHu1If600AaRqNoPE2jmTSb5tNCWkqbaTvtpf0UTcfpDF2g REqhTLpO+VRIJXSPQu9Qn7SZnpQ0T9pMT+o0T0qaJ3WaJyXNkzrNk5LmSUnz ZOC39Hv6Az1LL9BL9Cq9Rm/QO9SYWlArakMf0kf0KfWgvjSABtFw+pIm0HSa RXNoAS2iZbSFdtA+OkDHKIbOUjxdolS6RllUQEV0l0op9A71KevpKUnzlPX0 lHbzlKR5Srt5StI8pd08JWmekjRPBZ6gWvQMPUcv0stUl+pRA2pETagltaa2 1J66UHfqSf1oIA2mETSaJtIMmk1zaSEtpuW0lXbSfjpIx+kEnaMEukxpdJ1u UCHdoXtURqG3qU/rOU9bVE/LnKctqqf1nKdlztN6ztMy52k952mZ87TMeTrw O/oDPUvP00v0Cr1Gr9Ob1JjepfeoDX1AHagr9aBe9DkNoi9oJI2hSfQ1zaF5 tIiW0AraRrvoAB2iGDpJ5+kiJVE6ZdFNKqJiKqVyCr1X/b3G83sr6/fS5/dW 1u81nt9Ln5rPoJAeoUfpcXqCnqRn6DmqTS9THapH9akhNaGm9D61pXbUkbpR T+pN/WkwDaFRNJa+opk0l+bTYlpKK2k77aaDdJhO0CmKpUS6Qhl0g7LpDpVQ GVVQ6F1rLTlUSwuqZXnVkkO1LK9aWlAtOVRLC6olh2ppQbXkUC05VCvwFD1L z9ML9Aq9Sq/TG/QWvUvNqBV9QB9SJ/qYetFnNIC+oKH0JY2jyTSL5tECWkLL aBXtoD10iI7QSTpNcXSJkukq3aRbVEx3qZwqKfRNsj9IpD9oRn+wxv4gkf5g jf1BM6r5XArpF/QoPUZP0JP0ND1HtelFqkN1qT41oLepKTWn1tSO2lNn+oR6 Ux8aSENoGI2m8TSFZtN8WkhLaTmtpp20lw7TUTpFZ+gCXaYUyqRsyqESukcV dJ9C77KekUjP6EjPWGjPSKRnLLRndKRnJNIzOtIzEukZHekZifSMRHom8Ht6 nl6gl+hVeo3eoDfpHWpGLagNfUgd6CP6lD6jvjSIhtJwGkMTaCrNoQW0iJbR ClpDu2gfHaEIOk1nKZ6SKJWu0S3KpbtUSpUUer/1rBx6Vkd61lZ7Vg49a6s9 qyM9K4ee1ZGelUPP6kjPyqFn5dCzgVpUm16kl6ku1aMG1JAaUXNqSW2pPXWk LtSd+lA/GkzDaASNpYk0jebSQlpMy2klraXdtJ+OUiSdoXOUQFcoja5TDt2m e1RG9yn0zus5Hek5OfScjvSc1facHHrOantOR3pODj2nIz0nh57TkZ6TQ8/J oecCf6AX6CV6hV6j1+lNeosaUwt6jz6gDtSJulIP6kuf0xc0nEbSOJpE02ke LaIltIJW0TraQwcogqLoLJ2ni5RM6ZRFuZRHpVROVRR6I/a8jvS8RHpeR3re fnteIj1vv9V8GoX0CD1Kj9MT9DTVomfoRXqZ6lA9qk8N6W1qQi3pfWpHHakz daOe1I/60xAaQaNoPH1FM2g+LaaltJJW03raSwcpkqLpHMVSIqVQBt2g25RP ZVRB1RR6X1ZbR6otkWrrSLXtt9oSqbb9VltHqi2RautItSVSbR2ptkSqLZFq B56ll+gVepVepzfoLXqH3qX3qBV9SJ3oI/qYetHnNICG0kj6kibQZPqaFtAS WkaraA1toH10iKLoGJ2nOLpEqXSVblIeFVA5VdIDCr1De0FbekEivaAtvWC/ vSCRXrDfXtCWXpBIL2hLL0ikF7SlFyTSCxLphcBz9DLVobpUnxrQ29SImtL7 1JraU2fqQp9Qb+pPA2kYjaLRNJGm0ExaSEtpOa2mtbSR9tNhiqbjFEsX6DKl USZlUz4VUgXdp28o9F7tRW3pRYn0orb0ov32okR60X57UVt6USK9qC29KJFe 1JZelEgvSqQXA8/TK/QqvUZv0Jv0DjWmZtSK2lAH+oi60qf0GQ2gQTScvqQx NImm0ixaRMtoBa2hdbSJDtAROkYxFEfxlETpdI1uUQEVUSVV0bcUetf2krb0 kkR6SVt6yZJ7SSK9ZMm9pC29JJFe0pZekkgvaUsvSaSXJNJLgdpUh+pSPWpA DakRNaHm1JraUkfqQt2oO/WhgTSYRtBoGktf0TSaTYtpOa2ktbSeNtNBOkrH 6QRdoAS6Qhl0nXKokO7Qfaqm7yj0/u1lm+5lvell2fSy3vSyTfeybHrZpntZ b3pZNr2sN70sm17Wm16WTS/LppcDL9Cr9Bq9Tm/SW9SY3qUW1IY+oE7UlT6m HtSXBtEXNJLG0DiaTNNpDi2hFbSK1tEG2kKHKIJi6CTF00VKpquURblURMVU RQ/oewq9k3vFuntFg3pFSr2iQb1i3b0ipWo+oUJ6lB6nJ+hpqkXPUW16kepS PapPDeltakJNqSW1pXbUmbrRJ9ST+tFgGkKjaCyNpyk0g+bSUlpJq2k9baSt dJgi6QSdogRKpBTKpBt0m+5QCVXTN/QDhd7T1bHz6uhSdaRUHV2qjp1XR0rV sfPq6FJ1pFQdXaqOlKqjS9WRUnWkVJ3AS/QavU5v0Fv0Dr1Lzeg9+oA+pI/o Y/qUetHn9AUNpS9pHE2gqfQ1zaNltIrW0AbaRNvoCEXRSTpNF+kSpdI1ukl5 VEx36QF9S3+k0Bu7Vy2+V7WqV6XUq1rVqxZfzSdUSL+gx+gJepJq0TNUm16k l6ke1acG9DY1oqbUnN6ndtSeutAn1J16U38aQsNoNI2niTSNZtJ8Wk6raS1t pM20nY5SNJ2iM5RIlymNrlM25VMJ3aNv6Dv6E4Xe3dW1/epqVXWlVF2tqq7t V1dK1bX96mpVdaVUXa2qrpSqq1XVlVJ1pVTdwCv0Or1Bb9I71JiaUQtqRR9S B+pKn1IP+owG0FAaTmNoAk2i6TSLFtAKWkPraBNtoR0UQcfoNJ2lS5RE6ZRF t6iA7lIpfUvfUyilXrP9XtOlXpNNr+lSr9l+r8mm12y/13Sp12TTa7rUa7Lp NV3qNdn0mmx6LVCH6lMDakiNqAk1p5bUmtpTR+pG3akn9aGBNIxG0FiaSF/R DJpNC2klraX1tJm20k6KpON0hs7RZbpCGXSDcqiQ7lEZfUc/UCib6tl+9Wy/ erpUPdlUT5eqZ/vVk031bL96ulQ92VRPl6onm+rpUvVkUz3ZVC/wKr1Bb9Jb 1JjepRb0HrWhDtSJPqYe1Iv60iAaTiNpHE2iyfQ1zaFFtIrW0QbaQttoF0VR DJ2l85REyXSVblIuFVEpldP3FOpSr1t8r1t8r2tQr8um1zWo1y2+12XT6xbf 6xrU67LpdQ3qddn0ugb1umx6XTa9HqhLDaghvU1NqCm1pPepLXWkzvQJ9aTe 1I8G0wgaRePpK5pCM2kuLabVtJ420lbaTrspmk7QOYqlK5RCmZRNt+kOlVEF /UChBlVfNtW3+OpbfPU1qPqyqb4GVd/iqy+b6lt89TWo+rKpvgZVXzbV16Dq y6b6sql+4DV6k96id+hdakbvUSv6gDrRR/Qp9aLP6HP6gkbSlzSBJtNUmkXz aAmtoQ20ibbRDtpDx+gknac4SqZUuka3KI+KqZwq6Y8UalBvSKk3LL43LL43 dKk3pNQbulTNp1FIj9Jj9CTVomeoNr1Idagu1aOG9DY1oqbUnN6n1tSOOlMX 6k69qQ/1pyE0ikbTRJpC02g2zaeltJY20mbaTjtpLx2nUxRLFyiF0ug65VA+ lVAF3ac/UahLNZBSDSy+BhZfA12qgZRqoEs1sPgaSKkGFl8DXaqBlGqgSzWQ Ug10qQZSqoGUahB4nd6id6gxNaMW1Ira0If0EXWlHvQZ9aUBNJS+pDE0iabS dJpDC2gZraNNtIV20C7aRzF0muIonlIpnbIolwroLlVSFdWkVM3v7xrZvOb3 d/1/f0fXO8Gf94I/oX8N/XT4z5+//K9rfqfSm2F+z1LDMM/eCvPs7TDP3gnz rFGYZ43DPGsS5tm7YZ41DfOsWZhnzcM8axHmWcswz94L8+z9MM9ahXnWOsyz NmGetQ3z7IMwz9qFefZhmGftwzzrEOZZxzDPOoV51jnMs4/CPOsS5lnXMM+6 /dWzmj/Rb/qMfdPNxZtuLt60Cd70GfumTfCmm4s3fca+6ebiTZvgTZ+xbwae oxfpZapL9ag+vU2NqAk1p5bUmtpSe+pC3agn9aF+NJCG0WgaS1/RNJpBc2kh Laf1tJm20k7aTfvpBJ2hC5RAaZRBN+g2FdI9uk/VFPqMbeiTtaH7iobuKxpa Ag19sja0BBq6r2jok7Wh+4qGlkBDn6wNLYGGPlkbWgINfbI29MnaMPAGvUON 6V1qQe9RG/qAOlBX+ph6UV/6nAbRcBpD42gyTaevaR4tohW0gbbQNtpFe+gA naSzFE8XKZ2u0k3KoyIqpSoKvQV6Sw695ZbiLbcUb2n9b8mhmrYU0iP0OD1B teg5qk0vUx2qR/WpATWiJtSUWtL71JbaUUfqRp9Qb+pH/WkwjaCxNJ6m0Aya SfNpMa2kjbSVttNu2ksH6RSdowRKpAzKpGzKpztURtUUeuNT04xC+nv6Cf0T /Sv9O/2cfkW/pd/RH+h5eoFeoVfpdXqD3qTG9C41o/eoFX1AH1In+pg+pc/o cxpAX9BIGkcTaCp9TbNoAS2hVbSJttEO2kP76BCdpvN0kS7RVbpGt6iAiqmc HlDoPc87biTekUjvuJF4x43EOzpSzWdLSL+gR+kJepKeodr0ItWhulSfGlBD akJNqTm9T62pHbWnzvQJdac+1J8G0hAaReNpIk2jmTSbFtJSWk2baTvtpL20 nw7TGYqlRLpMmXSdcqiQSqiCvqHQe55G7iEaSaRG7iEauYdopCM1kkiNdKRG 7iEaSaRG7iEa6UiNJFIjHamRRGqkIzWSSI0kUqPAW/QuNaMW1Ira0IfUgT6i T6kH9aUBNIiG0pc0gSbRdJpFc2gRLaM1tIV20C7aRwfoCJ2lOLpESXSNsiiX iuguVdK3FHq709h+ayyRGttvje23xtpSY4nUWFtqbL81lkiN7bfG2lJjidRY W2oskRprS40lUmOJ1DjwNjWl5tSSWlNbak8dqQt1p57UjwbSYBpGo2kifUUz aDbNpcW0nNbSVtpJu2k/HaSjdI4u0GW6QtfpBt2mO3SP7tN3FHq700RvamLJ NZFNTSy5JpZcE72piWxqojc1seSayKYmllwTvamJbGqiNzWRTU30piayqYls ahJ4h5pRC3qP2tAH1IE6UVfqQb3ocxpEX9BwGkOTaDJ9TXNoHi2hFbSOttEu 2kMH6BBF0HmKpyRKpiy6SXlUTKVURd9T6O3OuxrUu9bdu1LqXevuXeuu5vMm pEfoUXqcnqZaVJtepjpUj+pTQ3qbGlFzaknvU1tqRx2pM3WjntSb+tNgGkIj aCx9RVNoJs2l+bSUVtJ62k67aS8dpMMUSbGUQFcohW5QNuVTCZVRNf1Aobc7 TeVVU62qqcXXVF41tfiaWnxNtaqm8qqpVtXU4msqr5pafE21qqbyqqlW1VRe NdWqmsqrpvKqaaAxtaD3qBV9QB9SJ/qIPqZe9BkNoC9oKI2kcTSZptIsmkcL aBmtog20g/bQPjpERyiK4ugiJVMq3aRbVEB3qZwe0B8p9Da6meRqpmk1swKb Sa5mVmAzK7CZptVMcjXTtJpZgc0kVzMrsJmm1UxyNdO0mkmuZppWM8nVTHI1 CzShlvQ+taZ21J46Uxf6hHpTHxpIQ2gYjaLxNIWm0WyaTwtpOa2mjbST9tJ+ OkxHKZouUCKlUBplUw4V0j2qoG/oTxS6M28uuZrrXM0tw+aSq7ll2NwybK5z NZdczXWu5pZhc8nV3DJsrnM1l1zNda7mkqu5ztVccjUPNKZ36T1qRW3oQ+pA H1FX+pQ+o740iIbScPqSJtBUmk5zaAEtohW0hjbRLtpHB+gIRdAxiqdLlErp dItyqYhKqZK+pVBytZBXLXSuFjZiC3nVwkZsYSO20LlayKsWOlcLG7GFvGph I7bQuVrIqxY6Vwt51ULnaiGvWsirFoGm9D61prbUnjpSF+pG3akP9aPBNIxG 0GiaSNNoBs2lhbSYVtJa2ky7aT8dpKMUSccpgS5TGmVQDt2mO1RG9+k7CuVV SynVUtNqaSO2lFItbcSWNmJLTaullGqpabW0EVtKqZY2YktNq6WUaqlptZRS LTWtloHG9C41o1bUhj6gDtSJutLH1IP60uf0BQ2nkTSGJtF0+prm0SJaQqto HW2hPXSADlEERVEMXaQkSqerlEt5VEzlVEWhjfiebHpPq3rPMnxPNr1nGdZ8 yoT0KD1OT9DT9BzVpjoUzKaJwSExKXi+Cp7JwTMleKYGz7TgmR48M4Ln6+CZ GTyzgmd28MwJnrnBMy945gfPguBZGDyLgmdx8CwJnqXBsyx4lgfPiuBZGTyr gmd18KwJnrXBsy541gfPhuDZGDybgmdz8GwJnq3Bsy14tgfPjuDZGTy7gmd3 8OwJnr3Bsy949gfPgeA5GDyHgudw8BwJnqPBExE8kcETFTzRwXMseI4HT0zw nAiek8FzKnhOB8+Z4DkbPOeC53zwxAZPXPBcCJ744EkInovBkxg8l4LncvAk Bc+V4EkOnpTgSQ2etOBJD56M4LkaPJnBcy14rgdPVvDcCJ6bwZMdPLeCJyd4 coMnL3j+9B//8R/5wX8tCJ7C4CkKnjvBUxw8JcFzN3juBU9p8JQFT3nwVARP ZfDcD56q4KkOngfB803wfBs83wXP98HzQ/D8seZ/R/D8n+D585dh/qbm/PlP Qn1/JhrS29SEmlJzak1tqR11pM7UjT6hntSP+tMQGkGjaCx9RTNoJs2nxbSU VtN62kp76SAdpkiKphOUSFcogzLpNuVTCVVQNYVuBmq+IRbS39NP6Gf0L/Sv 9HP6Nf2Wfke/p+fpBXqVXqc36C16h96lZtSC2tAH9CF1oo/oY/qUetHnNICG 0kj6ksbRZPqaZtECWkLLaA1toG20jw7REYqiY3SSLlEyXaVrlEcFdJcq6QGF 7gNauQVo5VOqlS7dyi1AK59SrdwCtHIL0EqXbuVTqpUu3cotQCufUq3cArTS pVtJqVa6dCsp1UqXbiWlWkmpVoGW1JbaUXvqTF3oE+pOvak/DaRhNIpG03ia QjNpNi2kpbSc1tJG2k776TAdpWg6TqfoMqVQJl2nfCqke3SfvqHQLUBr27+1 lGqtS7e2/VtLqda2f2vbv7Uu3VpKtdalW9v+raVUa9u/tS7dWkq11qVbS6nW gcbUjFrQe/QBfUgd6CPqSp9SD/qMBtAgGk5f0hiaQFNpFs2hRbSMVtA62kQ7 6AAdoQg6RjF0mpIola5RFhVQEZVSFX1Loe3fxvZvI6XaaNVtbP82UqqN7d/G 9m+jVbeRUm206ja2fxsp1cb2b2Pxt5FSbbSqNlKqjVbVRkq1kVJtAu9TO2pP HakLdaPu1JP60EAaTCNoNI2liTSNZtNcWkzLaSWtp820kw7SUYqk43SCztAV SqPrdIMK6Q6VUTV9R6Ht31a/ausWoK28aqtftXUL0FZetXUL0NYtQFv9qq28 aqtftXUL0FZetXUL0Fa/aiuv2upXbQON6V1qQe9RK/qQOlAn6kofUw/qRX1p EH1BI2kMjaNJNJ3m0DxaQitoFW2gLbSLDlEERVEMnaSzlEzplEU3qYiKqZwe UOgW4AP96gP3AR/Iqw/0qw/cB3wgr2o+b0J6lJ6gp6kWPUcvUx2qTw3pbWpC TaklvU+tqT11pM7UjT6hntSb+tFgGkKjaCyNp69oBs2l+bSUVtJq2khbaTcd pkiKphN0is5RCmXQDcqmO1RCFfQNhfZgO/2qnT3YTkq106/a2YPtpFQ7e7Cd PdhOv2onpdrpV+3swXZSqp092E6/aiel2ulX7aRUO/2qnZRqJ6XaBdpQB+pE H9HH9Cn1os/oc/qChtKXNI4m0GT6mubRAlpGq2gNbaJttIeOUBQdo5N0ms5T Kl2lm3SLiukuVdK3FNqDH+pXH9qDH0qpD/WrD+3Bms+WkH5Bj9GTVIueodpU h+pSA3qbGlFTak7vU2tqSx2pM3WhT6g79aY+1J+G0DAaTeNpIk2hmTSfFtJy Wk1raTNtp710lKLpOJ2iMxRLaZRJ2ZRDJXSP7tN3FNqD7bWq9vZgeynVXqtq bw+2l1Lt7cH29mB7raq9lGqvVbW3B9tLqfb2YHutqr2Uah9oTM2oBbWiNvQB daKPqCt9Sj3oM+pLA2goDacxNIEm0VSaRQtoEa2gNbSOttAO2kcRdIxi6DSd pThKp2t0i3LpLpVSFX1PoT3YQavqYA92kFIdtKoO9mAHKdXBHuxgD3bQqjpI qQ5aVQd7sIOU6mAPdtCqOkipDlpVBynVQavqIKU6SKkOgXbUmbpQN+pOPakP 9aOBNIxG0FiaSF/RNJpNC2kxraS1tJ620k7aT5F0nE7QGTpHFyiDrlMO3aZ7 VEbV9AOF9mBHe7CjftXRHuworzrqVx3twY7yqqM92NEe7KhfdZRXHfWrjvZg R3nV0R7sqF91DDSmd6kFvUdt6AP6kD6irvQx9aBe1Jc+p0E0nEbSOJpEk2k6 zaFFtIRW0TraQNtoFx2gKIqhk3SWzlM8XaUsyqU8KqVyekChftXJHuykX3Wy BzvJq076VSd7sJO86mQPdrIHO+lXneRVJ/2qkz3YSV51sgc76Ved5FUn/aqT vOqkX3WSV53kVadAe+pC3egT6km9qR/1p8E0gkbRePqKptAMmkuLaSmtpvW0 kbbTbjpI0XSCTtE5iqUEyqQbdJvyqYwq6BsK9avO9mBn/aqzPdhZSnXWrzrb g52lVGd7sLM92Fm/6iylOutXne3BzlKqsz3YWb/qLKU661edpVRn/aqzlOos pToHOlBX+pg+pV70GX1OA+gLGklf0gSaTFPpa5pHS2gZraENtIl20B46RMfo JJ2m8xRHF+ka3aQ8KqByqqRvKdSvPrIHP9KvPrIHP5JSH+lXNZ8oIT1Kj9GT 9AzVphepDtWnBtSImlJzep9aUztqTx2pG31C3ak39aH+NJCG0CgaTRNpCk2j mTSfltJyWksbaTPtpL10mI7TKTpDsXSBEuk6ZVM+FVIF3afvKNSvutiDXbSq LvZgFynVRavqYg92kVJd7MEu9mAXraqLlOqiVXWxB7tIqS72YJdAY2pGLagV taEPqQN1oo/pU+pBn1FfGkCDaCh9SWNoEk2l6TSLFtAyWkHraBNtoV20j45Q DJ2msxRH8XSJsugWFVARVVIVhfZgVyuwqy7V1QrsKpu66lJdrcCusqmrFdjV CuyqS3WVTV11qa5WYFfZ1NUK7KpLdZVNXXWprrKpqy7VVTZ1lU1dA53pE+pO PakP9aOBNJiG0WgaS1/RNJpBs2khLaeVtJ4201baTfvpKJ2gM3SOLlACXaYb lEOFdIfuUzWFVmA3i6+bBtXN4usmkbppUN0svm4SqZvF183i66ZBdZNI3TSo bhZfN4nUzeLrpkF1k0jdNKhuEqmbBtVNInWTSN0CH9Gn1IN6UV/6nAbRFzSc xtA4mkzT6WuaQ4toBa2iDbSFttEeOkARdJLO0nmKp4uURDcpl4qomKroAdUs vprfp/eTljW/T+///b15Nb8j79PgT+j35nX4//NT8+/X/I6zj//8hc7/9/ee fRLm2adhnnUP86xHmGc9wzzrFeZZ7zDPPgvzrE+YZ33DPOsX5tnnYZ71D/Ns QJhnA8M8GxTm2eAwz74I82xImGdDwzwbFubZ8DDPRoR5NjLMs1Fhnn0Z5tno MM/GhHk2NsyzcWGejf+rZzV/oj92X/Gx/v+x+4qPfbLWNJ6QHqHH6QmqRbXp ZapD9aghvU1NqSW9T22pHXWkztSFulNP6k39qD8NpiE0gsbSeJpCM2gmzaXF tJJW00baSttpLx2kSDpF5yiWEiiRrlA23aY7VELV9A2F7itqkiukn9A/0b/Q v9PP6Vf0W/od/YFeoFfoVXqd3qJ3qBm9R63oA/qQOtFH1JV6UC/6jD6nAfQF DaWRNI4m0FT6mmbRPFpCq2gNbaJttIP20SGKotN0nuLoIl2iZLpFeVRMd+kB fUuh+4pP3a9+6r7iU0vgU/cVNd0npF/Qo/QEPUnP0ItUh+pSfXqbGlFzep9a UztqT52pC3WjntSb+lB/GkhDaBiNovE0kabRTJpN82kpraa1tJm2007aT4cp ms5QLF2gRLpMKZRD+VRC9+gb+o5C9xXd3a92d1/R3Sbo7r6iu5TqbhN0d1/R XUp1d1/R3X1Fd5ugu5TqbhN0d1/RXUp1DzSmFtSK2tCH1IE+oq70MfWiz6gv DaBBNJSG05c0gSbRdJpFc2gBLaM1tI620A7aRQfoCB2jsxRH8XSJkiiVcqmA 7lIpfUuh+4oeblV7uK/ooUv1cF/RQzb10KV6uK/oIZt6uK/oEXiOXqa6VI8a UCNqQi2pNbWl9tSRulA3+oR6Ux/qRwNpMA2jETSaJtJXNINm01xaSMtpLa2n rbSTdtNBOkrH6RxdoAS6TFcojW5TId2jMvqOQvcVPXWpnm5Ve7q56KlL9XRz 0VM29dSlerq56Cmberq56Onmoqcu1VM29dSlerq56BloTO/Se9SGPqAO1Im6 0sf0KX1GfelzGkRf0HAaSWNoEk2mr2kOzaNFtILW0QbaRrtoDx2iCIqh8xRP FymJkimd8qiISqmcvqfQu+peulQv96u9bL9eulQv26+XlOqlS/Wy/XpJqV62 Xy/br5cu1UtK9dKletl+vaRUL9uvly7VS0r10qV6SaleulQvKdVLSvUKdKc+ 1I/602AaQiNoFI2lr2gKzaS5NJ8W00paTxtpO+2mvXSYIukExVICJdIVSqEM yqc7VEYV9AOFtl9vedVbq+rtzrW3Fdhbq+ptBfaWV721qt5WYG951dsK7G0F 9taqesur3lpVbyuwt7zqbQX21qp6y6veWlVvedVbq+otr3rLq96BHtSXPqcB 9AUNpZH0JY2jyTSVZtE8WkBLaBVtoE20g/bQPjpCUXSS4ugiXaJkSqWrVEDF VE6V9EcKrcDPJNdnmtZn7q8+swc/07RqPkdCepQeoyeoFj1DL1Jdqk8N6G1q Ss2pNbWj9tSZutAn1J16Uj/qTwNpCA2jUTSaxtMUmkazaT4tpKW0mjbSZtpJ e2k/HaVoOkUXKJEuUwqlUSYVUglV0H36E4X2YB/J1Ufn6uMmq49l2Efn6mMZ 9pFcfXSuPpZhH8nVxzLsYxn20bn6SK4+Olcfy7CP5OpjGfbRufpIrj46Vx/J 1Ufn6iO5+kiuPoFe9DkNoEE0lIbTlzSGJtBUmk5zaAEtomW0hjbRFtpF++gA RdAxOk3xdImSKJXS6RoV0V2qpCoKJVdfedVX5+rrJquvjdhX5+prI/aVV311 rr42Yl951ddG7Gsj9tW5+sqrvjpXXxuxr7zqayP21bn6yqu+OldfedVX5+or r/rKq76B3tSfBtJgGkYjaDSNpYk0jWbQXFpIi2k5raXNtJV20346SJF0nM5Q Al2mK5RGGXSd7tA9uk/VFMqrfjpXP3nVT+fq506rn7XYT+fqZy32k1f9dK5+ 1mI/edXPWuxnLfbTufrJq346V79AY2pB79EH1IE6UVf6mHpQL/qMBtAg+oKG 00gaQ+NoEk2nr2keLaIltILW0RbaRnvoAB2iKIqhs3SRkiiZ0ukqZVExlVIV he7gP9e0PpdXn2tan7vd+txarPnMCOkRepyeoKfpOapNdag+NaS3qQm1pPep HXWkztSNPqGe1Jv60EAaTENoBI2isTSevqIZNJPm02JaSitpPW2l7bSXDtJh iqYTdI4S6QqlUAZl0g0qoTKqptAdfH951V/T6i+v+mta/d1z9bcW+2ta/a3F /vKqv6bV31rsL6/6W4v9rcX+mlZ/edVf0+pvLfaXV/2txf6aVn951V/T6i+v +mta/eVVf3nVP9CXBtEXNJRG0pc0jibQZPqaZtECWkLLaBVtoG20g/bRITpC x+gknadLlEypdJWu0U26S+X0gEK38QMk1wCda4DkGqBzDXDjNcBaHKBzDbAW B0iuATrXAGtxgOQaYC0OsBYH6FwDJNcAnWuAtThAcg2wFgfoXAMk1wCda4Dk GqBzDZBcAyTXgEA/GkxDaBiNotE0nibSFJpJs2khLaXltJo20nbaSfvpMB2l 43SKYukypVAaZdJ1yqZ7VEHfUOiGfqDkGqhzDZRcA3WugW68BlqLA3Wugdbi QMk1UOcaaC0OlFwDrcWB1uJAnWug5BoYaEzNqBW1oQ70EXWlT6kHfUZ96XP6 gobScPqSxtAEmkRTaRbNoUW0jFbQGtpEO2gXHaAjFEExdJriKIlSKZ2uURbd olKqpG8pdFc/SHIN0r4GSa5B2tcgN16D7MZB2tcgu3GQ5BqkfQ2yGwdJrkF2 4yC7cZD2NUhyDdK+BtmNgyTXILtxkPY1SHIN0r4GSa5B2tcgyTVIcg0K9Kch NIxG0GgaSxPpK5pGs2kuLabltJLW0mbaSbvpIB2lSDpBZ+gCXaE0yqDrdINy qIzu03cUurUfrIcNlmGD9bDBMmywHjbY3ddgC3KwHjbYghwswwbrYYMtyMEy bLAFOdiCHKyHDQ40pnepBbWhD6gTdaWPqQf1or70OQ2goTScRtIYGkeTaDJN pzk0j5bQClpF62gL7aI9dIgiKIpO0lmKp2RKp6uURTcpl8qpir6n0P39FxrZ F9LsC43sC2n2hUb2hfuwmk+UkB6lx+lpqkXP0ctUh+rT29SEmlJLakvtqDN1 o0+oJ/WmftSfBtIwGkGjaCyNp69oCs2guTSfltJKWk3raSvtpr10mCIpmk7R OUqgFMqgTLpB2XSbKqiafqDQTf4Q3WyINBuimw2RZkN0syFuxobYl0N0syH2 5RBpNkQ3G2JfDpFmQ+zLIfblEN1siDQbopsNsS+HSLMh9uUQ3WyINBuimw2R ZkN0syHSbIg0GxIYRMNpJH1J42gCTaap9DXNowW0jFbRGtpA22gP7aMjFEXH 6DSdp4uUSlfpGt2kW5RHlfSA/kihO/2hWtpQaTZUSxsqzYZqaUPdlg21NIdq aUMtzaHSbKiWNtTSHCrNhlqaQy3NoVraUGk2VEsbamkOlWZDLc2hWtpQaTZU SxsqzYZqaUOl2VBpNjQwmEbQKBpN42kiTaFpNJPm00JaTqtpLW2k7bSX9tNR iqbjdIZiKZHSKJOuUzblUD7dp2/oTxS65x+mpQ2TZsO0tGHSbJiWNsy92TCb c5iWNszmHCbNhmlpw2zOYdJsmM05zOYcFmhMzagFtaIPqQN1pU+pB31GfWkA DaIvaCR9SWNoAk2iqTSdZtECWkQraA2to020g/bRAYqgYxRDZymOLlE6XaMs ukW5VEBV9C2F0my4bjZchg3XzYbLsOG62XD3ZsNtzuG62XCbc7gMG66bDbc5 h8uw4TbncJtzuG42XIYN182G25zDZdhwm3O4bjZchg3XzYbLsOG62XAZNlyG DQ8MoVE0msbSRPqKptEMmk0LaTGtpLW0njbTTtpPBymSjtMJOkcX6DJl0HW6 QTl0mwqpmr6jUIaN0MhGSK4RGtkIyTVCIxvh3myEpTlCIxthaY6QXCM0shGW 5gjJNcLSHGFpjtDIRkiuERrZCEtzhOQaYWmO0MhGSK4RGtkIyTVCIxshuUZI rhGBofQljaFxNIkm03T6mubQIlpCq2gdbaAttIsO0CGKohg6SecpnpLoKmXR TcqlPCqiBxRamiO1r5HyaqT2NVJejdS+RrotG2lVjtS+RlqVI+XVSO1rpFU5 Ul6NtCpHWpUjta+R8mqk9jXSqhwpr0ZalSO1r5HyaqT2NVJejdS+RsqrkfJq ZGAYjaaxNJ6+oik0g2bSXFpMS2k1raeNtJV200E6TNF0gk5RLCXQFcqkG5RN tymf7tA3FFqVozStUVJqlKY1SkqN0rRGuRkbZUGO0rRGWZCjpNQoTWuUBTlK So2yIEdZkKM0rVFSapSmNcqCHCWlRlmQozStUVJqlKY1SkqN0rRGSalRUmpU YDiNoXE0gSbTVPqaZtE8WkLLaA1toE20jfbQITpCx+gknaY4ukjJdI1u0i3K owIqpm8ptCC/1K++lFJf6ldfSqkv9auaT4WQHqMnqRbVphepDtWnBtSImtP7 1JraUWfqQt2pN/Wh/jSQhtAwGkFjaTxNpCk0jWbSbJpPS2k5raWNtJm20146 TEfpOJ2iM3SBEimFrlM25VA+FVIJfUehtThaqxotpUZrVaOl1GitarQbr9GW 4WitarRlOFpKjdaqRluGo6XUaMtwdKAxtaBW1IY+pI+oK/Wgz6gvDaBBNJSG 00gaRxNoEk2l6TSL5tACWkYraB1toi20g/bREYqgGDpNZymeLlEqZdEtyqUC KqK79D2FluEYrWqMlBqjVY2RUmO0qjFut8bYg2O0qjH24BgpNUarGmMPjpFS Y+zBMfbgGK1qjJQao1WNsQfHSKkx9uAYrWqMlBqjVY2RUmO0qjFSaoyUGhMY ReNpIn1F02gGzaa5tJCW00paT5tpK+2k/XSUIukEnaFzlECXKY1uUA7dpkK6 Q/foBwrtwbFa1VgpNVarGiulxmpVY91kjbUCx2pVY63AsVJqrFY11gocK6XG WoFjrcCxWtVYKTVWqxprBY6VUmOtwLFa1VgpNVarGiulxmpVY6XUWCk1NvAl TaBJNJmm09c0h+bRIlpBq2gDbaFttIsOUARF0Uk6S+fpIiVROt2kXMqjIiqm Ugq1qnG61DjZNE6XGiebaj4BQnqEnqBa9By9THWoHjWkt6kpvU9tqR11pG70 CfWmftSfBtMQGkGjaDRNpK9oCs2gmTSX5tNiWkmraSNtpe20mw5SJEXTKTpH sZRIVyiDsuk25dMdKqEyCnWp8b4fMV6XGi+bxutS42XTeF1qvLuq8bbfeF1q vO03XjaN16XG237jZdN422+87Tdelxovm8brUuNtv/GyabztN16XGi+bxutS 42XTeF1qvGwaL5vGB8bQJJpMU+lrmkXzaAEtoVW0hjbRNtpBe+gQRdExOk3n KY4uUTJdpVuURwVUTHepnGq6VM1vjSv9z98a95e/IS70G+NCrvn5/D9//vLf +8vfGjchzG/3mhjm2aQwz74K82xymGdTwjybGubZtDDPpod5NiPMs6/DPJsZ 5tmsMM9mh3k2J8yzuWGezQvzbH6YZwvCPFsY5tmiMM8Wh3m2JMyzpWGeLQvz bHmYZyvCPFsZ5tmqMM9Wh3m2JsyztX/1rOZP9ATf6ZlgE0zwaTvBJqjpLyH9 gh6lJ+kZqk11qC7Vp7epETWn1tSO2lNn+oS6Ux/qTwNpCA2jUTSaxtJXNIWm 0UyaTfNpIS2l1bSWNtN22kl76TBF03E6Q7F0gS5TCmVSDuVTIZXQPaqg0CaY 6Ps7E22CiT5tJ9oEE33aTrQJJrpznegOY6JNMNEdxkSfthNtgonuMCb6tJ0Y aEwtqA19SB3oI/qUelBfGkCDaCgNpy9pDI2jyTSVptMsmkMLaBEtozW0jrbQ DtpF++gIHaMYOktxFE9JlErXKJcKqIjuUimFvr8zyTd0JtkEk2TTJJtgkmya ZBNMctM6yc3FpMBz9CLVpXrUgBpRE2pJbak9daQu1J16Uj8aSINpGI2g0TSW xtMUmkYzaDbNpYW0mJbTWlpPW2kn7ab9dJSO0wk6Rxcoga5QGl2n21RId+ge lVHoGzo1vSmkH9O/0P+kf6df0q/oN/R7ep5eotfodXqTGtO79B59QB2oE3Wl HtSLPqdB9AUNp5E0hsbRBJpK0+lrmkPzaBEtoRW0jjbQNtpFe+gARVAMnaTz FE8XKZnSKYvyqIiKqZTKKfRtnMm61GTfwZmsS02WUjVpH9Ij9Cg9TrWoNr1M 9ag+NaQm1JTep3bUkTpTN+pJvak/DaYhNIJG0VgaTxNpGs2gmTSX5tNiWkor aT1tpO20m/bSQYqkE3SKYimBEimFMugG5dMdKqEyqqDQd3Cm6FJTfPNmii41 RUpN0aWmSKkputQUN61T3GFM0aWmuMOYIqWm6FJT3GFMkVJT3GFMCbSiD6kT fUQfUy/6jAbQFzSURtKXNI4m0CSaTl/TLJpHC2gJLaNVtIE20Q7aQ/voEEXR STpNcXSRLlEqXaWbVEDFdJfKqZJC37yZqlVN9c2bqVpVTdqH9At6lB6jJ+gZ epHqUH1qQG9TU2pOrak9daYu9An1pj40kIbQMBpFo2k8TaSvaAbNpNk0nxbS UlpOq2kjbaadtJf202GKplN0hi5QIl2mNMqkbCqkErpHFXSfQt+8maZVTfPN m2la1TQpNU2rmialpmlV09y5TrP9pmlV02y/aVJqmlY1zfabJqWm2X7TbL9p WtU0KTVNq5pm+02TUtNsv2la1TQpNU2rmialpmlV06TUNCk1LTCZvqZZNIcW 0CJaRitoDW2iLbSL9tEBOkLH6DSdpXi6REmUTtfoFhXRXSqlSqqi0DdvpmtV 033zZrpWNV1KTdeqpkup6VrVdHdV063A6VrVdCtwupSarlVNtwKnS6npVuB0 K3C6VjVdSk3XqqZbgdOl1HQrcLpWNV1KTdeqpkup6VrVdCk1XUpND0yhmTSb 5tJCWkzLaSWtpc20lXbTfjpIR+k4naFzlECX6Qpl0HXKoTt0j8roPlVT6Js3 M+zBGfrVDN/BmaFfzZBXM/SrGfJqhn41w63VDHtwhn41wx6cIa9m6FczAo2p Bb1HH1An6kofUw/qS5/TFzScRtIYGkeTaDJNpVk0h+bRIlpCK2gVraMttI32 0AE6RBEUQ2fpPF2kJEqmq5RFuVRMpVROVfSAQt/B+doy/FrT+tq3cWpyP6RH 6FF6nJ6gp6k21aF61JDepibUkt6ndtSZutEn1JP6UX8aQiNoFI2l8fQVTaFp NJvm0nxaTEtpJa2m9bSVttNeOkiHKZJO0DmKpUS6QimUSTfoNpVQGVVQNX1D oW/jzJRhM63FmdrXTN/Qmal9zZRhM7WvmTJspvY10+3WTGtxpvY101qcKcNm al8zrcWZMmymtTjTWpypfc2UYTO1r5nW4kwZNtNanKl9zZRhM7WvmTJspvY1 U4bNlGEzA9NpDs2jBbSEltEqWkMbaBvtoH10iI5QFJ2k8xRHlyiZUuka3aQ8 ukvlVEkP6FsKfUNnljSbZUHO0shm+f7OLI1sljSbpZHNkmazNLJZbrxmWZCz NLJZFuQsaTZLI5tlQc6SZrMsyFkW5CyNbJY0m6WRzbIgZ0mzWRbkLI1sljSb pZHNkmazNLJZ0myWNJsVmEFzaT4tpKW0nFbTWtpI22kn7afDdJSi6RTF0gW6 TCmURtcpm/LpHlXQffqGvqPQ93dmS7PZVuVs3Wy27/TM1s1mS7PZutlsaTZb N5vtFmy2VTlbN5ttVc6WZrMDjakZtaI21IG60qfUgz6jATSIhtOXNIYm0CSa StPpa5pHC2gRLaMVtIbW0SbaQbvoAB2hCDpGpymO4imJUimdsugWFVApVVIV fUvf0//5T82RZnMszTla2hzfj5ijpc2RZnO0tDnSbI6WNsfN2BxLc46WNsfS nCPN5mhpcyzNOdJsjqU5x9Kco6XNkWZztLQ5luYcaTbH0pyjpc2RZnO0tDnS bI6WNkeazZFmcwIzaT4tpMW0nFbSWlpPm2kn7aaDdJQi6TidoQuUQFcojTLo BuVQIZXRfaqm7+gHCn0/Yq40m2tzztXS5vrOxFwtba40m6ulzZVmc7W0uW7L 5tqcc7W0uTbn3EBjepdaUBv6gDrRx9SDelFfGkRf0EgaQ+NoEk2m6fQ1zaIF tIiW0ApaRetoA22hXbSHDlEERVEMnaV4ukjJlE5X6SblUhGVUxU9oO8p1NLm ybB5Nuc83Wye71HM083mybB5utk8GTZPN5vn3myezTlPN5tnc86TYfN0s3k2 5zwZNs/mnGdzztPN5smwebrZPJtzngybZ3PO083mybB5utk8GTZPN5snw+bJ sHmB2bSQFtNSWkmraT1tpK20m/bSYYqkaDpB5yiBEimFMiiTsuk23aEKqqZv 6AcKdbP5kmu+pTlfI5vvGxXzNbL5kmu+RjZfcs3XyOa7N5tvac7XyOZbmvMl 13yNbL6lOV9yzbc051ua8zWy+ZJrvkY239KcL7nmW5rzNbL5kmu+RjZfcs3X yOZLrvmSa35gDi2iJbSMVtEa2kCbaBvtoX10hKLoGJ2k83SRLlEqXaVrdIvy qJgq6QF9S3+kUCNbILkW2JcL9LAFvluxQA9bILkW6GELJNcCPWyBe7MF9uUC PWyBfblAci3QwxbYlwsk1wL7coF9uUAPWyC5FuhhC+zLBZJrgX25QA9bILkW 6GELJNcCPWyB5FoguRYE5tJiWkrLaTWtpY20mbbTXtpPRymajtMpiqVEukxp lEnXKYfyqYTu0zf0Hf2JQj1soeRaaFUu1L4W+pbFQu1roeRaqH0tlFwLta+F bssWWpULta+FVuVCybVQ+1poVS6UXAutyoVW5ULta6HkWqh9LbQqF0quhVbl Qu1roeRaqH0tlFwLta+Fkmuh5FoYmEdLaBmtoDW0jjbRFtpB++gARdAxiqHT FEeXKInS6RplUS4V0F2qom/pewol1yJ5tciCXKRzLfIti0U61yJ5tUjnWiSv Fulci9yMLbIgF+lciyzIRfJqkc61yIJcJK8WWZCLLMhFOtciebVI51pkQS6S V4ssyEU61yJ5tUjnWiSvFulci+TVInm1KDCfltJyWklraT1tpq20k/bTQYqk 43SCztAFukxXKIOu0w26TYV0j6rpO/qBQnm12D3/Ynm12G5crHMt9n2LxTrX Ynm1WOdaLK8W61yL3YctthsX61yLA42pBb1HbagDdaKPqRf1pc9pEA2nkTSO JtFkmk5f0xyaRwtoGa2gVbSONtAW2ka76AAdoiiKoZN0luIpiZLpKmXRTcqj IiqlB/Q9hTrXEnf6S+TVEmtxiaa1xPctlmhaS+TVEk1ribxaomktcfe1xFpc omktsRaXyKslmtYSa3GJvFpiLS6xFpdoWkvk1RJNa4m1uEReLbEWl2haS+TV Ek1ribxaomktkVdL5NWSwEJaTitpNa2njbSVttNuOkiHKZpO0Ck6Rwl0hVIo k25QNuXTHSqjb+gHCjWtpfJqqZv8pfJqqbW4VNNa6vsWSzWtpfJqqaa1VF4t 1bSWuvFaai0u1bSWWotL5dVSTWuptbhUXi21Fpdai0s1raXyaqmmtdRaXCqv llqLSzWtpfJqqaa1VF4t1bSWyqul8mppYBGtoFW0hjbQJtpGO2gPHaIjdIxO 0mk6TxcpmVLpGt2kW1RAxVRO39IfKdS0lkmuZe7vl0muZdbiMp2rJu1DepJq 0TNUm16kOtSAGlFTep9aUzvqTF2oO/Wh/jSQhtAoGk0TaQpNo5k0m+bTQlpM K2k1raWNtJm2007aS4fpKB2nU3SGYimRUiiNrlM25VAhlVAFfUd/olDnWi65 lru1Xy65lluLy3Wu5b5lsVznWi65lutcyyXXcp1ruRuv5dbi8kBjakatqA19 SB9RV+pBfWkADaKh9CWNoUk0labTLJpDC2gRLaFVtIbW0SbaQjtoF+2jIxRB MXSazlIcXaJUSqcsukW5VER3qZK+p1ByrZBXK9zVr5BXK6zFFTrXCt+oWKFz rZBXK3SuFfJqhc61wj3XCmtxhc61wlpcIa9W6FwrrMUV8mqFtbjCWlyhc62Q Vyt0rhXW4gp5tcJaXKFzrZBXK3SuFfJqhc61Ql6tkFcrAktpNa2l9bSZttJO 2k376ShF0gk6Q+foAl2mNMqgG5RDt+kO3aP79AOF8mqllFrphn6llFppI67U tFb69sRKTWullFqpaa2UUis1rZVut1baiCs1rZU24koptVLTWmkjrpRSK23E lTbiSk1rpZRaqWmttBFXSqmVNuJKTWullFqpaa2UUis1rZVSaqWUWhlYRmto HW2gLbSNdtEeOkARFEUn6Sydp3hKonS6Sjcpl/KomEqpikJNa5VsWuU2fpVs WmUZ1qR4SI9QLXqOatPLVIfq0dvUlFpSW2pHHakbfUK9qT8NpiE0gsbSeJpC M2gmzaX5tJiW0nJaS+tpI22l7bSb9tJBiqRoOkXnKJYS6AplUCZl023KpxIq o2oKtarV9uBq2bTaHfxq2bTaHlytS632XYjVutRq2bRal1otm1brUqvdZK22 B1frUqvtwdWyabUutdoeXC2bVtuDq+3B1brUatm0WpdabQ+ulk2r7cHVutRq 2bRal1otm1brUqtl02rZtDqwgtbRBtpE22gH7aF9dIii6BidpvMURxcpma7S NbpFeVRAd6mcHlCoS62xAtdIqTXu4NdIqTVW4Bpdao1vQKzRpdZIqTW61Bop tUaXWuMma40VuEaXWmMFrpFSa3SpNVbgGim1xgpcYwWu0aXWSKk1utQaK3CN lFpjBa7RpdZIqTW61BoptUaXWiOl1kipNYGVtJ420mbaTjtpL+2nwxRNx+kM xdIFSqQUyqTrlEP5VEj3qIK+oVCXWmv7rZVSa928r5VSa22/tbrUWt97WKtL rZVSa3WptVJqrS611v3V2kBjakGt6EPqQB/Rp9SD+tIgGkrD6UuaQJNoOs2i ObSAFtEyWkGraANtoi20g3bRPjpAR+gYxdBZiqN4ukSpdI2yKJcKqIhKqZJq 7q/+67fG/ddvjPvL3xb3l78p7q9/k9xf/pa5mt/ktS7Mb/daH+bZhjDPNoZ5 tinMs81hnm0J82xrmGfbwjzbHubZjjDPdoZ5tivMs91hnu0J82xvmGf7wjzb H+bZgTDPDoZ5dijMs8Nhnh0J8+xomGcRYZ5FhnkWFeZZdJhnx8I8Ox7mWUyY Zyf+6lnNn+h1bi7W+Yxd573ROp+x69xcrLMJ1vmuzrrAc/QivUx1qR41oCbU klpTe+pIXag79aR+NJiG0QgaTRPpK5pBs2kuLaTFtJxW0mraSJtpK+2k3bSf DtJROk4n6BxdoAS6TGl0nW7QbSqkO1RG9yl057refcV6n6zrvSNa75N1vfuK 9ZbAet/LWW8JrPfJut4SWO+Tdb0lsN796nr3FestgfXuK9b7ZF1vCax3X7He J+t69xXr3VestwTW+2Rdbwmsd1+x3ifrevcV6y2B9T5Z11sC632yrrcE1vtk Xe+TdX1gDW2iLbSNdtEeOkCHKIJi6CSdp3i6SEmUTll0k/KoiIqpnKoodL+6 wX3FBom0wfugDRKppm+E9Cg9TrXpZapD9ag+NaSm9D61pY7UmbpRT+pN/WkI jaBRNJa+oik0k+bSfFpMS2klraa1tJm20nbaTXvpIB2mSDpBpyiWEiiRrlAG 3aBsyqc7VEIVVE2hW9WathTS39PP6J/o3+nn9Gv6Lb1Ar9Cr9Dq9QW9RM2pF H1An+og+pl70GQ2goTSSvqRxNJmm0iyaRwtoCS2jVbSG1tEW2kY7aA/to0N0 hKLoJJ2mOLpIlyiZrtJNukUFVEx3qZIeUOhWdZP7ik3uKzZJqU3eAtUkdki/ oMfoCXqR6lBdqk8N6G1qTq2pHXWmLvQJ9aY+NJCG0SgaTeNpCk2j2TSfFtJS Wk6raS2tp620nXbSXtpPh+koRdMpOkMXKJEuUwplUjblUCGV0D26T99Q6H51 s/uKze4rNkupzd4CbZZSm91XbNalNvvmzWZdarOU2qxLbZZSm3Wpze5XN7uv 2KxLbXZfsVlKbdalNruv2CylNruv2Oy+YrMutVlKbdalNruv2CylNruv2KxL bZZSm3WpzVJqsy61WUptllKbAxtoG+2gXbSPDtARiqBjdJrOUjxdoiRKpWt0 i3KpiO5SKVXRtxS6X91i8W2x+LZIqS3eB22RUlssvi1a1Rbft9miVW2RUlu0 qi1SaotWtcX96haLb4tWtcXi2yKltmhVWyy+LVJqi8W3xeLbolVtkVJbtKot Ft8WKbXF4tuiVW2RUlu0qi1SaotWtUVKbZFSWwIbaTvtpN20nw7SUYqk43SG zlECXaYrlEbXKYdu0x26R2VUTd9R6H51q3611QrcagVulVdbvRnaKq+2WoFb 9autvm+zVb/aKq+26ldb5dVW/WproDG9Rx9QB+pKH1MP6kuf0xc0ksbQOJpE 0+lrmkeLaAmtoFW0jjbQJtpBu2gPHaBDFEFRFENn6TxdpCRKpnTKolzKo2Iq pXJ6QKEVuE2/2mYPbrMHt8mrbd4MbZNX2+zBbfrVNt+32aZfbZNX2/SrbfJq m361zV3VNntwm361zR7cJq+26Vfb7MFt8mqbPbjNHtymX22TV9v0q2324DZ5 tc0e3KZfbZNX2/SrbfJqm361TV5tk1fbAptpJ+2mvXSQDlMkRdMJOkexlEhX KIUy6AbdpnwqoTKqoG8otAe361fb7cHt9uB2KbXdm6HtUmq7Pbhdv9ru+zbb 9avtUmq7frVdSm3Xr7a7tdpuD27Xr7bbg9ul1Hb9ars9uF1KbbcHt9uD2/Wr 7VJqu3613R7cLqW224Pb9avtUmq7frVdSm3Xr7ZLqe1SantgC+2iPbSPDtER iqJjdJLOUxxdomRKpat0k/KogO5SOVXStxTagzv0qx324A57cIeU2uFufYeU 2mEP7tCvdvjmzQ79aoeU2qFf7ZBSO/SrHe6vdtiDO/SrHfbgDim1Q7/aYQ/u kFI77MEd9uAO/WqHlNqhX+2wB3dIqR324A79aoeU2qFf7ZBSO/SrHVJqh5Ta EdhKu2kv7afDdJSi6Tidoli6QJcphdIok7IpnwrpHlXQffqOQntwp1a10x7c aQ/ulFI73bLvlFI77cGdWtVO37zZqVXtlFI7taqdUmpnoDE1ozbUgT6iT6kH fUYDaBANpzE0gSbRVJpFc2gRLaMVtIbW0SbaQttoD+2jA3SEIugYxdBpiqN4 SqJUSqdrdIsKqIhKqZKq6HsK7cFdWtUue3CXPbhLSu1y375LSu2yB3dpVbt8 82aXVrVLSu3SqnZJqV1a1S73V7vswV1a1S57cJeU2qVV7bIHd0mpXfbgLntw l1a1S0rt0qp22YO7pNQue3CXVrVLSu3SqnZJqV1a1S4ptUtK7Qpsp720nw7S UYqk43SCztAFSqArlEYZdJ1yqJDuUBndp2r6gUJ7cLc9uFu/2m0P7rYHd8ur 3W7ed8ur3fbgbv1qt+/g7Navdsur3frV7kBjepda0AfUibpSD+pFfWkQfUEj aRxNosk0nebQPFpCK2gVraMNtIW20Q7aRwfoEEVQFMXQSTpL8XSRkimdrlIW 5VIRFVM5VdEDCvWrPfbgHv1qjz24xx7cI69qsjukx+kJqkXPUX1qSG9TE2pK LakddaZu1JN6Uz8aTENoFI2nr2gKzaC5NJ+W0kpaTetpI22l7bST9tNBOkyR FE0n6BSdowRKpBTKoEy6QbfpDpVQBVXTNxTqV3vtwb361V57cK89uFdK7XXz vldK7bUH9+pXe32fYa9+tVdK7dWv9kqpvfrVXvdXe+3BvfrVXntwr5Taq1/t tQf3Sqm99uBee3CvfrVXSu3Vr/bag3ul1F57cK9+tVdK7dWv9kqpvfrVXim1 V0rtDeyiA3SIjlAUHaOTdJrO00W6RKl0la7RTcqjYrpLlfSAvqVQv9pnD+7T r/bZg/vswZqcDukX9AQ9Sc9QbWpAb1MjakrN6X1qT13oE+pNfag/DaFhNJom 0hSaRjNpPi2k5bSa1tJG2kzbaSftpoN0mI5SNB2nU3SGYimRLlMaZdJ1yqZ8 KqF7dJ++oe8o1K/224P7tar99uB+e3C/lNrvvn2/lNpvD+7Xqvb7ZsN+rWq/ lNofaEzNqAW1og7UlT6lz6gvDaChNJzG0CSaStNpFi2gRbSC1tA62kRbaAft oj10iI5QBB2jGDpNZymOLlESpdM1yqJbVEB3qZSq6FsK7cEDVuABXeqAFXjA Cjwgmw64ZT8gmw5YgQd0qQO+z3BAlzogmw7oUgdk0wFd6oBbqwNW4AFd6oAV eEA2HdClDliBB2TTASvwgBV4QJc6IJsO6FIHrMADsumAFXhAlzogmw7oUgdk 0wFd6oBsOiCbDgT20mE6SpF0nE7QGTpHF+gyXaEMuk43KIcK6R6VUTV9R6EV eND2O2j7HdSlDtp+B22/g7LpoFv2g7LpoO13UJc66PsMB3Wpg4HG9C61oPeo DXWij6kH9aXPaRANp5E0jibTdPqa5tAiWkKraB1toC20jXbRHtpHRyiCoiiG TtJZOk/xlETJdJWy6CblUhGVUjk9oO8ptP0O2X6HbL9DutQh2++Q7XdISh1y y35ISh2y/Q7pUod8n+GQLnVISh3SpQ5JqUO61CG3Vodsv0O61CHb75CUOqRL HbL9DkmpQ7bfIdvvkC51SEod0qUO2X6HpNQh2++QLnVISh3SpQ5JqUO61CEp dUhKHQrsp6MUSdF0gk7ROYqlBLpCKZRJNyibbtMdKqMK+oZ+oND2OyyvDluB h63Aw1rVYSvwsBV4WF4ddt9+WF4dtgIPa1WHfZ/hsFZ1WF4d1qoOy6vDWtVh t1aHrcDDWtVhK/CwvDqsVR22Ag/Lq8NW4GEr8LBWdVheHdaqDluBh+XVYSvw sFZ1WF4d1qoOy6vDWtVheXVYXh0OHKAIiqJjdJJO03mKo4uUTKl0jW7SLcqj YiqnSvqW/kihFXhEch2xB4/Yg0c0rSP2YE1ih/QoPUa16Bl6kepQI2pKzel9 ak3tqAt1p97UnwbSEBpFo2kiTaOZNJvm01JaTmtpI22m7bST9tJ+OkiRFE3H 6RSdoVi6QImUQml0nbIph/KphCroPn1Hf6LQHjwquY5ahkctw6M611HL8Khl eFRyHXXzflRyHbUMj+pcR33H4WigMTWjFtSK2tCH1JV60Gc0gAbRUPqSxtAk mk6zaA4toGW0gtbRJtpCO2gXBZPrb/4mEPhR8Pxt8Pw4eP4ueP4+eB4Knp8E zz8Ez0+D5x+D52fB83Dw/FPw/Lfg+efg+e/B8y/B8z+C51+D59+C538Gz/8K nn8Pnv8dPD8Pnl8Ezy+D55Hg+VXwPBo8vw6ex4LnN8HzePD8NnieCJ7fBc+T wfNU8DwdPL8PnlrB84fgeSZ4ng2e54Ln+eCpHTwvBM+LwfNS8LwcPK8ET53g eTV46gbPa8FTL3heD576wfNG8DQInjeDp2HwvBU8bwfPO8HTKHgaB0+T4Hk3 eJoGT7PgaR48LYKnZfC8FzzvB0+r4GkdPG2Cp23wfBA87YLnw+BpHzwdgqdj 8HQKns7B81HwdAmersHTLXg+Dp5PgufT4OkePD2D50//8R//0Sv4r72D57Pg 6RM8fYOnX/B8Hjz9g2dA8AwMnkHBMzh4vgieIcEzNHiGBc/w4BkRPCODZ1Tw fBk8o4NnTPCMDZ5xwTM+eCb8Tc1/pPLPfxIO+DNxiKLoGMXQaTpLcRRPlyiV 0imLblEuFdBdqqQq+p5Cn1wRPq8i3BFEuCOI0Lkj3BFEuCOI8HkV4c1LhM+r CHcEETp3hO+4ROjcET6vInTuCJ9XETp3hJvMCHcEETp3hDuCCJ9XETp3hDuC CJ9XEe4IItwRROjcET6vInTuCHcEET6vItwRROjcET6vInTuCJ9XETp3hM+r CJ9XEYHDFE3H6QSdoXN0gRLoMqVRBt2gHLpNhXSP7lM1/UChz6tIn1KR7ggi 3RFEatqR7ggi3RFE+pSK9OYl0qdUpDuCSE070ndcIjXtSJ9SkZp2pE+pSE07 0k1mpDuCSE070h1BpE+pSE070h1BpE+pSHcEke4IIjXtSJ9SkZp2pDuCSJ9S ke4IIjXtSJ9SkZp2pE+pSE07UkpFSqnIwBE6RjF0ks7SeYqni5RE6XSVblIu 5VERlVIVPaBQ046STVFuBqLcDERp1VFuBqLcDETJpijvW6JkU5SbgSitOso3 W6K06ijZFKVVR8mmKK06yk1mlJuBKK06ys1AlGyK0qqj3AxEyaYoNwNRbgai tOoo2RSlVUe5GYiSTVFuBqK06ijZFKVVR8mmKK06SjZFyaaowFE6TifoFJ2j WEqgRLpCGZRJ2XSb8ukOlVE1fUOhVh0tkaLdAkS7BYjWoKPdAkS7BYiWSNHe skRLpGi3ANEadLRvsURr0NESKVqDjpZI0Rp0tPvLaLcA0Rp0tFuAaIkUrUFH uwWIlkjRbgGi3QJEa9DREilag452CxAtkaLdAkRr0NESKVqDjpZI0bZ/tESK lkjRgQiKoZN0ms5THF2kS5RMV+ka3aI8KqBiKqcH9C2FGtQxiXTM4j9m8R/T m2pSN6RH6Ql6kmrTi1SX6lNzep9aUztqT52pO/Wh/jSEhtEoGk8TaRrNpvm0 kJbSalpLm2k77aS9tJ8O01GKpBN0is5QLF2gRLpMKZRJ1ymH8qmQSqiCvqHv KNSbjkuk49b9cev+uLZ03Lo/Hvg1/Y6eohfoJXqN3qAW1Ira0IfUgT6iHtSX BtBQGk5f0gSaRNNpDi2gRbSM1tA62kI7aBftowN0hCIoik7SaTpLcRRPlyiJ UukaZVEuFVAR3aVK+pZC6y5GDsVYcjGWXIyOFGPJxVhyMXIoxnuUGDkUY8nF 6Egxvp0SoyPFyKEYHSlGDsXoSDHuIGMsuRgdKcaSi5FDMTpSjCUXI4diLLkY Sy5GR4qRQzE6UowlFyOHYiy5GB0pRg7F6EgxcihGR4qRQzFyKCYQTafoDJ2j C5RAl+kKpdF1ukG3qZDu0D26T99RaMmd8M7khBw6Yb+dsN9O6Egn7LcT9tsJ OXTCO5MTcuiE/XZCRzrhOykndKQTcuiEjnRCDp3QkU64bzxhv53QkU7Ybyfk 0Akd6YT9dkIOnbDfTthvJ3SkE3LohI50wn47IYdO2G8ndKQTcuiEjnRCDp3Q kU7IoRNy6ETgGJ2ms3Se4ukiJVEypVMW3aQ8KqJiKqUq+p5q9lvN79P7yZ9/ n957/5/fp/fXP6F//y9/l17NzzvBn5rfcXYyzO89OxXm2ekwz86EeXY2zLNz YZ6dD/MsNsyzuDDPLoR5Fh/mWUKYZxfDPEsM8+xSmGeXwzxLCvPsSphnyWGe pYR5lhrmWVqYZ+lhnmWEeXY1zLPMMM+uhXl2PcyzrDDPboR5djPMs+y/elbz J/qk93wnfbKedA9x0j1ETVMI6RF6nJ6mWvQy1aH61JDep7bUjjpSZ+pGvak/ DaYRNIrG0lc0hWbSfFpMS2klraeNtJ120146SIcpkqLpOJ2hcxRLCZRIVyiF MugGZVM+3aESKqNq+oFC9xA1yRXSj+hn9E/0r/Rz+hX9ln5Pf6BX6FV6g96i VvQBfUid6CP6mD6jAfQFjaQvaRxNpqk0ixbQElpGq2gDbaIdtIf20SE6QlF0 jGLoLJ2nOLpIlyiZUukq3aRbVEDFdJfK6QH9kUI3Eqel1Glvd05LqdPuJk67 mzhtCZx2N3Ha3cRpKXXa253TUuq0u4nTlsBp3606bQmcllKnLYHTUuq0JXDa velpdxOnLYHT7iZOS6nTlsBpdxOnpdRpdxOn3U2ctgROS6nTlsBpdxOnpdRp dxOnLYHTUuq0JXBaSp22BE5LqdNS6nTgBJ2jWLpAiXSZUiiNMimbcqiQSuge VdA39CcK3U2ckVJnvN05I6XOuKU445bijE1wxi3FGbcUZ6TUGW93zkipM24p ztgEZ3yj6oxNcEZKnbEJzkipMzbBGTeoZ9xSnLEJzrilOCOlztgEZ9xSnJFS Z9xSnHFLccYmOCOlztgEZ9xSnJFSZ9xSnLEJzkipMzbBGSl1xiY4I6XOSKkz gZN0nuIoni5REqVSOl2jW5RLRXSXSqmSvqVQSp2VTWe93Tkrm866rzjrvuKs LnXWfcVZ9xVnZdPZwHNUl+pRQ2pEbak9daQu1I26Uz8aTMNoNI2liTSNZtBc WkzLaSWtpc20lXbTfjpIRymSjtMJOkWxdIES6DJdoTTKoOuUQ7fpDt2jMrpP 31Eom87pUudk0znvec7JpnNuLs65uTinS51zc3HOzcU52XTOe55zsumcm4tz utS5QGP6gDpQJ+pKH1MP+py+oOE0hsbRJJpOX9M8WkIraBWtoy20jfbQATpE ERRFMXSSTlMcxdNFSqJkSqerlEW5lEfFVErlVEWhm4vzGtR52XTee57zsum8 xVeTtSE9So/T0/Qc1aZ6VJ/epibUjjpSZ+pGn1BP6k9DaASNpfH0Fc2gmTSf ltJKWk3raSttp710kA5TJEXTCTpFZ+gCJVAiXaEUyqBMukG3KZ9KqIwqqJpC iy9WNsVqULGyKdYbn1jZFGvxxVp8sRpUrMUXa/HFyqZYb3xiZVOsxRerQcX6 pkysBhUrm2I1qFjZFKtBxbpfjbX4YjWoWIsvVjbFalCxFl+sbIq1+GItvlgN KlY2xWpQsRZfrGyKtfhiNahY2RSrQcXKplgNKlY2xcqm2MBZiqeLdImSKZWu 0jW6SXlUQHepnCrpAYUWX5yUitOl4qRUnLdAcVIqzuKLs/jidKk4iy/O4ouT UnHeAsVJqTiLL06XivOdmThdKk5KxelScVIqTpeKc0MVZ/HF6VJxFl+clIrT peIsvjgpFWfxxVl8cbpUnJSK06XiLL44KRVn8cXpUnFSKk6XipNScbpUnJSK k1JxgXOUQIl0mVIojTLpOmVTPhXSPaqg+/QNhRbfBSl1QZe6IKUueB90QUpd sPguWHwXdKkLFt8Fi++ClLrgfdAFKXXB4rsQaEzNqAN9RF3pU+pBn9EgGk5f 0gSaRFNpFs2hRbSC1tA62kQ7aBcdoCMUQccohk7TWTpPF+kSJVEqpdM1yqJb VEBFVEqVVEXfUmjxxUupeK0qXkrFu1GPl1Lxtl+87RevVcXbfvG2X7yUinej Hi+l4m2/eK0q3vdo4rWqeCkVr1XFS6l4rSreDVW87RevVcXbfvFSKl6rirf9 4qVUvO0Xb/vFa1XxUipeq4q3/eKlVLztF69VxUupeK0qXkrFa1XxUipeSsUH YimRLtMVSqMMuk43KIcK6Q6V0X2qpu8otP0SpFSCVpUgpRLcqCdIqQTbL8H2 S9CqEmy/BNsvQUoluFFPkFIJtl+CVpXgGzUJWlWClErQqhKkVIJWleCGKsH2 S9CqEmy/BCmVoFUl2H4JUirB9kuw/RK0qgQplaBVJdh+CVIqwfZL0KoSpFSC VpUgpRK0qgQplSClEgJxdImSKJnS6Spl0U3KpSIqpnKqogcU2n4XZdNFXeqi bLroHv2ibKrJ2pAepSfoaXqOXqY61JDepqbUkjpTN/qEelJv6kdDaBSNpa9o Cs2guTSfltJqWk8baSvtpr10mCIpmk7QKTpHsXSBLtMVSqEMyqQblE236Q6V UAVV0zcU2n6JEilRg0qUSIluzxMlUqLFl2jxJWpQiRZfosWXKJES3Z4nSqRE iy9Rg0r03ZpEDSpRIiVqUIkSKVGDSnQvlWjxJWpQiRZfokRK1KASLb5EiZRo 8SVafIkaVKJEStSgEi2+RImUaPElalCJEilRg0qUSIkaVKJESpRIiYF4SqJk SqWrdI1u0i3Ko2K6S5X0gL6l0OK7JJEu6U2XJNIlt+c1aRrSL+gxepJqUW2q Q3XpbWpEzel96kKfUHfqTX2oPw2j0TSeptA0mknzaSEtp7W0kTbTdtpL++ko RdNxOkVnKJYuUAJdoRRKo0y6TtmUQ/lUQvfoPn1D31Fo512WSJe1pcsS6bI7 88sS6bJ1d9m6u6wtXbbuLlt3lyXSZXfmlyXS5UBjakGtqCt9Sj3oM+pLA2g4 jaEJNJWm0yxaQItoBa2jTbSFdtA+OkARdIxi6DSdpTiKp4uUTKmUTtcoi25R LhXQXSqlKvqWvqfQukuSSEnaUpJESnJnniSRkmy6JJsuSVtKsumSbLokiZTk zjxJIiXZdEnaUpLvHyRpS0kSKUlbSpJISdpSkjuoJJsuSVtKsumSJFKStpRk 0yVJpCSbLsmmS9KWkiRSkraUZNMlSaQkmy5JW0qSSEnaUpJEStKWkiRSkkRK CiRSCqVRBl2nG5RDt6mQ7lEZVdN39AOFNt0ViXRFW7oika64Kb8ika5Yclcs uSva0hVL7oold0UiXXFTfiXQmN6l96gNfUw9qBf1pc9pEI2kcTSJptPXNIcW 0RJaRRtoC22jXXSADlEUxdBJOkvnKZ4u0iVKpXS6Sll0k3Ipj4qolMrpAX1P obaULIeSdaRkOZTsVjxZDiXbb8n2W7KOlGy/JdtvyXIo2a14shxKtt+SdaRk 3zVI1pGS5VCyjpQsh5J1pGS3TMn2W7KOlGy/JcuhZB0p2X5LlkPJ9luy/Zas IyXLoWQdKdl+S5ZDyfZbso6ULIeSdaRkOZSsIyXLoWQ5lBy4TGmUQZl0g7Lp NuXTHSqjCvqGfqBQR0rx7i5FDqXoSClyKMVdeIocSrHfUuy3FB0pxX5Lsd9S 5FCKu/AUOZRiv6XoSCm+YZCiI6XIoRQdKUUOpehIKe6WUuy3FB0pxX5LkUMp OlKK/ZYih1LstxT7LUVHSpFDKTpSiv2WIodS7LcUHSlFDqXoSClyKEVHSpFD KXIoJZBE6XSVrtFNukV5VEDFVE6V9C39kUIdKdUbu1SJlKojpUqkVDfgqRIp 1X5Ltd9SdaRU+y3VfkuVSKluwFMlUqr9lqojpfqGQaqOlCqRUnWkVImUqiOl ultKtd9SdaRU+y1VIqXqSKn2W6pESrXfUu23VB0pVSKl6kip9luqREq131J1 pFSJlKojpUqkVB0pVSKlSqTUwBXKoEy6TtmUQ/lUSCVUQffpO/oThTpSmvd0 aRIpTUdKk0hp7r3TJFKa/ZZmv6XpSGn2W5r9liaR0tx7p0mkNPstTUdK872C NB0pTSKl6UhpEilNR0pzt5Rmv6XpSGn2W5pEStOR0uy3NImUZr+l2W9pOlKa RErTkdLstzSJlGa/pelIaRIpTUdKk0hpOlKaREqTSGmBZLpK1yiLblEuFVAR 3aVKqqLvKZRI6d7JpcuhdB0pXQ6lu+1Ol0PpVlu61ZauI6VbbelWW7ocSnfb nS6H0q22dB0p3XcI0nWkdDmUriOly6F0HSndjVK61ZauI6VbbelyKF1HSrfa 0uVQutWWbrWl60jpcihdR0q32tLlULrVlq4jpcuhdB0pXQ6l60jpcihdDqUH UiiTrtMNyqHbVEh36B7dp2r6gUI5lOH9W4b0ydCMMqRPhjvuDOmTYatl2GoZ mlGGrZZhq2VInwx33BnSJ8NWy9CMMnxfIEMzypA+GZpRhvTJ0Iwy3CNl2GoZ mlGGrZYhfTI0owxbLUP6ZNhqGbZahmaUIX0yNKMMWy1D+mTYahmaUYb0ydCM MqRPhmaUIX0ypE9GIJWuURbdpFzKoyIqplKqogcUakZXvWu7KnOuakFXZU5N Nob0OD1Btag2vUz1qCG9TS3pfWpHHak39aP+NJiG0AgaT1NoBs2l+bSYVtJq 2kjbaTftpYMUSdF0is5RLCVQIl2hFEqj63SDsuk25dMdKqEyqqZvKNSCMr1X y5Q0mRpPpqTJdHedKWkyrbFMayxT48m0xjKtsUxJk+nuOlPSZFpjmRpPpnf+ mRpPpqTJ1HgyJU2mxpPpfijTGsvUeDKtsUxJk6nxZFpjmZIm0xrLtMYyNZ5M SZOp8WRaY5mSJtMay9R4MiVNpsaTKWkyNZ5MSZMpaTID6ZRFN+kW5VEBFdNd KqcH9C2FGs8179CuSZprek5N+oX0C3qCnqRn6EWqQ/XpbWpE71Nrak+dqQ/1 p4E0hIbRKJpI02gmzaeFtJRW01raTDtpL+2nwxRNx+kMxdIFSqTLlEJplEE3 KJtyKJ8KqYTuUQV9Q99RqOdc977suqS5rt1clzTX3UlflzTXrazrVtZ17ea6 lXXdyrouaa4HGlMrakMd6CPqSwNoEA2l4fQlTaLpNIsW0CJaRmtoHW2hXbSP DtAROkYxdJbiKJ4uURKlUjpdpZt0i3KpgIroLpVSJX1LoZWV5Y1YlnzJ0mmy 5EuW++cs+ZJlUWVZVFk6TZZFlWVRZcmXLPfPWfIly6LK0mmyvK3P0mmy5EuW TpMlX7J0mix3PFkWVZZOk2VRZcmXLJ0my6LKki9ZFlWWRZWl02TJlyydJsui ypIvWRZVlk6TJV+ydJos+ZKl02TJlyz5khXIpGzKodtUSHfoHpXRffqOQovq hndeN6TKDU3mhlS54Yb5hlS5YT3dsJ5uaDI3rKcb1tONQGN6l9rQB9SJutLn NIi+oOE0ksbQZPqa5tAiWkIraB1toG20hw7QIYqgGDpJ5ymeLlISJVM6XaVr dItyKY+KqJhKqZyq6HsKraeb3m/dlCo1qRbSI/QoPU21qDbVoXrUkJpQU2pL 7agzdaP+NJiG0AgaRWNpCs2kubSYltJKWk8baTvtpYN0mCLpBJ2iWEqgRLpC KZRBmXSdcug25dMdKqEyqqBq+oFCmynbu6xs77Ky5Uu2/pItX7LdF2fLl2yb KdtmytZfsm2mbJspW75kuy/Oli/ZNlO2/pLt7Xq2/pItX7L1l2z5kq2/ZLun ybaZsvWXbJspW75k6y/ZNlO2fMm2mbJtpmz9JVu+ZOsv2TZTtnzJtpmy9Zds +ZKtv2TLl2z9JVu+ZMuX7EAW5VIeFVAx3aVyqqQH9Eeq2Uw1v79rZPP/+/u7 /vJ3cv3l7+z6y9/TFfrX1/7z5/n//Kn5nUq3wvyepZwwz3LDPLsd5llemGf5 YZ4VhHlWGOZZUZhnd8I8Kw7zrCTMs7thnt0L86w0zLOyMM/KwzyrCPOsMsyz +2GeVYV5Vh3m2YO/elbzp+OWd5m3vMus+cwL6Rf0KD1GtegZepHqUn16m5pS c2pH7akLfUIDaQgNo1E0msbTNJpN82kpLafVtJE2007aT4fpKEXTKTpDFyiR LlMKpVEmXacbdJvyqZBK6B5V0H36hv5EoR2d471ljveWOT59cvTcHJ8+Od4X 5Pj0ybGjc+zoHD03x47OsaNzfPrkeF+Q49Mnx47O0XNzfKciR8/N8emTo+fm +PTJ0XNz3N3l2NE5em6OHZ3j0ydHz82xo3N8+uTY0Tl2dI6em+PTJ0fPzbGj c3z65NjROXpujk+fHD03x6dPjp6b49Mnx6dPTuAm5VEBFdFdKqVKqqJvKXRj l+sdZa53lLnyJVfPzZUvud4S5MqXXDs6147O1XNz7ehcOzpXvuR6S5ArX3Lt 6Fw9N9e3JnL13Fz5kqvn5sqXXD03141drh2dq+fm2tG58iVXz821o3PlS64d nWtH5+q5ufIlV8/NtaNz5UuuHZ2r5+bKl1w9N1e+5Oq5ufIlV77kBrIpnwrp Dt2jMrpP1fQdhfKlpimE9GP6Z/ol/Yp+Q7+lZ+l5eoVepzepMbWg96gDdaKP qQd9QcNpJI2hcTSJvqZ5tIhW0CpaR1toG+2hQxRBURRDZ+k8XaQkSqZ0ukpZ dJNuUQEVUTGVUjlV0QMKLeo8TSbP+8g87yPz5EueJpMnX/K8G8iTL3kWdZ5F nafJ5FnUeRZ1nnzJ824gT77kWdR5mkyeb0PkaTJ58iVPk8mTL3maTJ4buzyL Ok+TybOo8+RLniaTZ1HnyZc8izrPos7TZPLkS54mk2dR58mXvEAsJdIVSqEM yqQblE05VEh3qITKqIKq6RsKLep8+ZKvyeR7H5nvfWS+fMnXZPLlS753A/ny Jd+izreo8zWZfIs636LOly/53g3ky5d8izpfk8n3HYh8TSZfvuRrMvnyJV+T yXd3l29R52sy+RZ1vnzJ12TyLep8+ZJvUedb1PmaTL58yddk8i3qfPmSb1Hn azL58iVfk8mXL/maTL58yZcv+YFcKqJiukvlVEkP6FsKLeoCSVOg0xR4H1ng fWSBpCnQaQokTYG3BAWSpsB6KrCeCnSaAuupwHoqkDQF3hIUSJoC66lApynw HYgCnaZA0hToNAWSpkCnKXCLV2A9Feg0BdZTgaQp0GkKrKcCSVNgPRVYTwU6 TYGkKdBpCqynAklTYD0V6DQFkqZApymQNAU6TYGkKZA0BYHbdIdK6B5V0H36 hr6j0HoqlDSFOk2h95GF3kcWSppCnaZQ0hR6X1AoaQqtp0LrqVCnKbSeCq2n QklT6H1BoaQptJ4KdZpC34Eo1GkKJU2hTlMoaQp1mkK3eIXWU6FOU2g9FUqa Qp2m0HoqlDSF1lOh9VSo0xRKmkKdptB6KpQ0hdZToU5TKGkKdZpCSVOo0xRK mkJJUxjIo2K6S6VUSVX0LX1PofVUJGmKtJsibyaLvJkskjRF2k2RpCny5qBI 0hTZUUV2VJF2U2RHFdlRRZKmyJuDIklTZEcVaTdFvgNRpN0USZoi7aZI0hRp N0VubIrsqCLtpsiOKpI0RdpNkR1VJGmK7KgiO6pIuymSNEXaTZEdVSRpiuyo Iu2mSNIUaTdFkqZIuymSNEWSpiiQTyV0j8roPlXTd/QDhXbUHT3njsy5o+fc 8bbyjreVd2TOHT3njsy54x3CHZlzx6K6Y1Hd0XPuBBpTC2pDH1BX+ph6UV8a SWNoHE2iyTSd5tESWkHraANtoV20hw5RFMXQSTpL8XSRkimdrlIW3aRcyqMC ukulVE5V9IC+p1DPKdZzimVOsZ5T7L1lsfeWxTKnWM8pljnF7ouLZU6xbVVs WxXrOcW2VbFtVSxzit0XF8ucYtuqWM8p9r2IYj2nWOYU6znFMqdYzyl2i1Ns WxXrOcW2VbHMKdZzim2rYplTbFsV21bFek6xzCnWc4ptq2KZU2xbFes5xTKn WM8pljnFek6xzCmWOcWBQrpHZVRB1fQN/UChnlOi55RImhI9p8R7yxLvLUsk TYmeUyJpStwXl0iaEtuqxLYq0XNKbKsS26pE0pS4Ly6RNCW2VYmeU+IbEiV6 TomkKdFzSiRNiZ5T4hanxLYq0XNKbKsSSVOi55TYViWSpsS2KrGtSvScEklT oueU2FYlkqbEtirRc0okTYmeUyJpSvScEklTImlKAkVUSuVUSQ/oW/ojhXrO XT3nrqS5q+fc9Y6qJt9CeoKepFr0DNWhutSAGlFTep/aUXv6hLpTH+pPo2k8 TaQpNI1m0kJaTqtpI22m7bSX9tNROk6n6AzFUiJdpjTKpOuUTTmUT4V0h8qo gu7TN/Qd/YlCPeeednNP0tzTbu55R3XPO6p7kuaednNP0txzc3xP0tyzre7Z VvcCjakZtaIPqQN9Sj2oLw2gMTSBJtFUmk6zaBGtoDW0ibbQDtpHByiCYug0 naU4ukRJlE7XKItuUS4VUBEVUzlVUhV9S99TKGlKdZpS+VKq05R6R1XqHVWp fCnVaUrlS6mb41L5UmpRlVpUpTpNqUVValGVypdSN8el8qXUoirVaUq9DS/V aUrlS6lOUypfSnWaUrc4pRZVqU5TalGVypdSnabUoiqVL6UWValFVarTlMqX Up2m1KIqlS+lFlWpTlMqX0p1mlL5UqrTlMqXUvlSGiihCrpP1fQd/UChfCmz o8p0mjL5UqbTlHlHVeYdVZl8KdNpyuRLmZvjMvlSZkeV2VFlOk2ZHVVmR5XJ lzI3x2XypcyOKtNpyrwNL9NpyuRLmU5TJl/KdJoytzhldlSZTlNmR5XJlzKd psyOKpMvZXZUmR1VptOUyZcynabMjiqTL2V2VJlOUyZfynSaMvlSptOUyZcy +VIWuEuVVEUP6HsKdZpy66lckymXL+WaTLl3VOXeUZXLl3JNply+lLsvLpcv 5dZTufVUrsmUW0/l1lO5fCl3X1wuX8qtp3JNptzb8HJNply+lGsy5fKlXJMp d3dTbj2VazLl1lO5fCnXZMqtp3L5Um49lVtP5ZpMuXwp12TKrady+VJuPZVr MuXypVyTKZcv5ZpMuXwply/lgXt0n6rpG/qBQk2mQr5UWE8VmkyFfKnQZCq8 o6rwjqpCvlRoMhXypcJ9cYV8qbCeKqynCk2mwnqqsJ4q5EuF++IK+VJhPVVo MhXehldoMhXypUKTqZAvFZpMhRubCuupQpOpsJ4q5EuFJlNhPVXIlwrrqcJ6 qtBkKuRLhSZTYT1VyJcK66lCk6mQLxWaTIV8qdBkKuRLhXypCJRSFT2gb+mP FGoylZKm0nqq1GkqJU2lTlPpHVWld1SVkqZSp6mUNJXuiyslTaX1VGk9Veo0 ldZTpfVUKWkq3RdXSppK66lSp6n0XrxSp6mUNJU6TaWkqdRpKt3YVFpPlTpN pfVUKWkqdZpK66lS0lRaT5XWU6VOUylpKnWaSuupUtJUWk+VOk2lpKnUaSol TaVOUylpKiVNZaCMqukb+o7+RKFOc1/S3Lee7us09yXNfZ3mvndU972jui9p 7us09yXNfbfE9yXNfevpfqAxtaBW9CF9RF3pM+pLg2goTaKpNJ1m0RxaQCto HW2iHbSL9tERiqAYOktxFE+XKJXSKYtuUS4VUBHdpVIqpwf0LX1PoaSpki9V 1lOVTlMlX6p0mipvpqq8maqSL1U6TZV8qXI3XCVfqqynKuupSqepsp6qrKcq +VLlbrhKvlRZT1U6TZW34VU6TZV8qdJpquRLlU5T5Z6mynqq0mmqrKcq+VKl 01RZT1Xypcp6qrKeqnSaKvlSpdNUWU9V8qXKeqrSaarkS5VOUyVfqnSaKvlS JV+qAhX0DX1HP1AoX6qlSrXNVK3JVEuVak2m2luoam+hqqVKtSZTLVWq3QhX S5Vqm6naZqrWZKptpmqbqVqqVLsRrpYq1TZTtSZT7R14tSZTLVWqNZlqqVKt yVS7nam2mao1mWqbqVqqVGsy1TZTtVSptpmqbaZqTaZaqlRrMtU2U7VUqbaZ qjWZaqlSrclUS5VqTaZaqlRLlepAJX1L31OoyTyQJQ/+vJQygp8dPV4IBCL+ 5r/+cyev/dXPXz6v+dff/eiNH/1LMG9r/vFm4L/+sS74J/Bvgp9ojwSz6W// 8z/58J//Vs2M/7tAnaCi/uYnQQXeHdj3k5d+Gvyv/+En/xwI/P0/B+7+W+JD F84GGfzv/McfPf9f/1OD/yP+T5sfBSoX/yjQOO1HgTf++98GFjT/28CAKX8b +FXM3wYePAj+Nzz342Dx+lHwL/1Z8J97BP/X/yj43/jf//zP/xys9X/cXpHc 8tNWDbr9+a/5/Z+f1/rzP0/685MJwb8m9I8nfvTj4D//R7AA/Shw6sf/GvS/ Bc9Xf/6rJ//5n9cH/2ap+Sv+5s8/Pw6E/0e74F/708DY4P9FwX/8zZEf1fzf FPxrf/RP//ff/pvQP9f8h0X+r//f/wDJ34R59qMwz/42zLMfh3n2d2Ge/X2Y Zw+FefaTMM/+Icyzn4Z59o9hnv0szLOHwzz7pzDP/luYZ/8c5tl/D/PsX8I8 +x9hnv1rmGf/FubZ/wzz7H+FefbvYZ797zDPfh7m2S/CPPtlmGePhHn2qzDP Hv2rZzVREDBqAkpHQFAEzJuA+hFQPwLqR0D9CLjGDbhmCXhdHXC1G3D1ElBT AspJwNVuwNVLQDkJmEEBNSWgpgTUlICaElBOAi55Ay5hAgpLQGEJmEYB170B 0yigsAQUloByEnDJG1BTAmpKQE0JqCkB5STg6iVg/ASUk4AZFFBTAq5ZAupH QP0IqB8B9SOgdASUjoCCEVAranIopB/Rj+kn9FP6J/pn+lf6Of2SfkO/o6fo D/QCvUqv0Zv0DjWmFtSKPqSu9Cn1oM+oLw2gMTSBptJ0WkCLaAWto020g/bR ATpGMXSazlISZdEtyqUCukul9C2FJkrNZ2dIf0sP0T/Qw/Tf6H/Q/6Zf0GP0 BD1Jtag21aG61IDepkbUnN6ndtSFPqHu1Jv6UH8aTeNpCk2j+bSQltNa2kjb aS/tp2g6TqfoDF2m65RNOZRPJXSPvqHQdcffSou/DfyI/p5+Qj+jf6J/oX+n n9Ov6bf0O/o9PU+v0Kv0Br1F71Azeo8+oI/oY/qUetFn9Dl9SeNoMk2lebSA ltEa2kDbaA/toyg6RifpNF2ia3STblEeFdNdekChwfFjGfFjjeLHMuLHGsWP ZcSPNYof+7JbzedNSI/S4/QEPU3P0ctUh+pTQ3qbmlJLakudqRt9Qj2pN/Wj UTSWvqIpNJfm01JaTetpK+2mvRRJ0XSCTlEiZdINyqbbdIdKqJpCFxV/Jxn+ LvBj+nv6Kf2M/pn+J/07/Yp+Q7+lp+hZeoleodfpTXqL3qUW1IY6UVf6mHpQ L+pLI2kMTaLJNIfm0RJaRetoC+2iPRRBURRDJ+kiXaUsukm5VETFVEWhq4ia bAjp7+gf6B/pv9G/0f+iR+gxepyepGfoRXqZ6lEDakhNqDm1po7UhbpRd+pJ fWgEjaaJ9BXNprm0mFbSWtpMO2k3HaVIOk4nKIEy6DrdoBwqpDt0n76j0K54 SD94SB48pB88JA8e0g8esiEekgcP2RAP6QcPyYOH9IOHbIiHbIiH5MFDNsRD +sFD8uChQGNqRq2oA31EXelT6kGf0XD6kibQJJpFc2gRraA1tIl20C46QhF0 jGIontLpGmXRLSqgIqqkbym0IX6iH/xEMvwk8BD9Az1M/4P+jX5Bj9Jj9ATV otr0ItWl+tSAGlFTep/aU2fqQp9Qd+pNw2gUjaeJNJNm00JaTqtpI22nnXSY jlI0HacLlEaZdJ2yKZ8KqYK+odBy+Af94B8kwz8E/p5+Qj+jf6F/pZ/Tr+jX 9Fv6PT1PL9Cr9Dq9Qe/Qu/QefUid6CP6mD6lXjSURtI4mkBf0yxaQMtoFW2g bbSDDtERiqJjFEepdJWu0U3KowIqpwcU2gs/lQc/1Q9+Kg9+qh/81Er4qTyo +cwI6RF6lB6np+k5qk11qB7Vp7epCbWkdtSROlM3+oR60hAaQWNpPM2gmTSf ltJKWk9baTsdpMMUSdEUSymUQZl0g25TPpVRNYVWwj9KgX/UCv5RCvxj4Kf0 z/Qv9O/0S/oV/YaeomfpeXqFXqPX6S1qTC3oA+pAnagrfUw96AsaTmNoHE2n r2keLaEVtI620DY6QIcogqLoPCVTOl2lLMqlPCqlKgptg59pAD/z9/7PAv9A /43+O/0v+gU9Qo/Rk/QMPUcvU12qRw2pETWnttSeOlIX6kbdaTANo9E0lqbR DJpLi2k5raXNtJX200E6SpF0jq5QGmXQdcqh23SP7tN3FFoED/vcf9jf+w/7 3H/YDnjY3/sP2wEP+9x/2N/7D/vcf9gOeNgOeNjf+w/bAQ/73H/Y3/sP2wEP +9x/2A542G3Awz73H/b3/sM+9x/29/7DPvcf9vWph33uP/z/4+tP4LMuz7Tx +27H1s48ta2dltZapVbBamoRLSJLREWWiAgIyL4KRPZ9M7LIKlsWVtmRiOw7 BNkJO7LvWyCQAFkgIRAIIDD873Tm/k6nn/t9y+dqv3PVp31mxiPncZ2/oXoH PCH7T9gOPiH7T3gHPOEd8IS5/4R3wBPeAU/I/hO2g0/I/hPm/hOy/4QvCE/4 gvCEuf+E7D9h7j/hHfCE7D9hO/iEd8AT3gFPeAf8wtz/hZ8CvzD3fxF4gn5J v6Wn6GkqSsUogl6h16k0laEKVJGiqBbVpXrUiJpQC+pM3akvxdBQGk5jaBxN oumUSHNoKS2n1bSGttFBOkrH6TSl0kW6SjfoDj2k0E+BX2oAv/Tz4JcawC8D P6df0G/o9/QHepZeoJfpr/QavUFv0lv0LlWlmlSHPqaG1JiaUyfqRn3oMxpC w2g0jaWJNI1m0ze0hJbRKkqirXSAjtAxOkXn6QJlUx4V0AMK/Tz4lZ8Hv9IF Cv+vSUJ6gv6TfkdP0TP0PL1EEVSSSlFpiqR3qArVoNpUlxpQI2pGHakr9aa+ NJiG0ihKoAk0lb6mRFpMS2klraZk2k+H6SidpHOUSll0nW7TfQr9PHjST4En dYEntf8n/RR4Uvt/Uhd40k+BJ3WBJ7X/J7X/J/0UeFL7f1IXeNJPgSe1/yd1 gScDlelD+ojqUH1qSE2pA3WhXtSHBtEQGknxNJ6m0CyaTYtoCa2gVbSF9tEh OkInKIXOUybl0i36gUI/BX6tAfxa+/+17P868CT9ln5HT9Nz9CK9RCXodSpF 5agCVaLqVItqUz1qQE2oPXWmntSbvqDBNILiaBxNppn0NS2kxbScVtJm2ksH 6TAdp7N0jjIoh/LpHoWy/5+m/X/q/P8p8f8Z+BX9horQH+hPVJz+Qn+j1+jv VJbeovfoA6pJH9HHVJ8aUzvqRD2oFw2kQfQlxdJY+opm0CxaQItoGa2gTfQ9 HaBDdIzOUApdoWt0k+5SKPG/MeN/o+n/RuJ/E/gl/Sf9lp6iolSMXqRXqCS9 TmUokipSNapBtagu1aNG1JY6UnfqSQPoCxpOYyiBJtF0mknzaSEtpeW0kfbQ fjpIR+k0naXLdJVu0B26R6Gm/1sz/rf6/W9l/7f6/W8Dv6bf0O/pWXqBitNf 6VV6jd6k8vQuvU8fUk2qQx9TQ/qUOlA36kH9aSANo9EUTxNpGs2gebSAltAy 2kC7aR8doCN0is7QJcqmPCqguxTq90W0+iKyX0SrL2LGF5H9ImZ8Ea2+iFZf RPaLaPVFzPgisl9Eqy9ixhfR6ot42xcx44vIfhEzvojsFzHji/ieV8SML6LV F5H9IvZ6RWS/iFZfRKsvYsYX0eqLaPVFZL+IvV4R2S9ixheR/SI2+UVs8ouY 8UVkv4gZX0SrLyL7Rez1imj1RbT6Ilp9EdkvotX/Tpf/ncT/Tpf/nRn/O4n/ XaAI/ZH+TC/Qy/Q3epXeoLL0NlWlD+hD+ojqUH1qQ+2oC3Wjz6k/DaGRFEvj aQpNo29pHi2iJbSOdtL3tI8O0Qk6RWmUSbl0iwoo1OV/r8v/XuJ/r8v/3oz/ vcT/PvBbepqeo+fpJXqFSlApKkMVqApVo+pUi2pTPWpNbakzdaUY6keDaQSN oXE0mabSHJpLC2kxraUdtIf20kE6TifpImVQDuXTbbpPoRn/lFb/lOw/pdU/ ZcY/JftPmfFPafVPafVPyf5TWv1TZvxTsv+UVv+UGf+UVv9UoDK9Tx9QTfqI PqZW9Cl1oi70GX1Og+hLGk1j6SuaQt/Qt7SAFtF3tJ120/d0gI7RCbpAV+ga 3aRb9AOFZvwf9Ps/+CnwB/3+D6b9H/wU+INpX/i/+5CK0nP0IkXQK/Q6laZI qkRRVI1qUC2qS59QNHWkztSXYugLGk6jKIEm0WRKpDk0nxbSGtpGu2gP7aej dJxS6TJdpRuUT/foIYV+Cjyt6T/t58HTmv7TGsDTfh48rQE8Hfg9PUt/ouL0 Mv2VXqM3qDy9R1XpffqQalIdakltqAN1oj70GQ2kYTSS4mkifUWz6RuaRwso ibbSTtpN++gIHaPzdImyKY9u0l16QKGfB3/08+CPOv8fdYE/+nnwR13gj4Hf 0TNUlIrRSxRBJakUlaOKVIWiqDrVoNrUglpTe+pIvakvDaChNILiaAJNoq8p kebSfFpNybSDdtFeOkxH6RylUxZdpxt0h+5T6OfBM34KPKP9P6MLPOOnwDO6 wDPa/zOBP9Kz9AL9hV6mV+nvVJbepcpUlT6gD+kjak6tqB11oF7Uh/rTEPqS Ymk8TaRZNJu+pXm0irbQdtpJ39MhOkIplEaZlEt5VEA/UOinwLPa/7MawLOy /6wG8Kz2/2zgaXqGnqcX6SUqQa9TGXqHKlEVqkbVqRY1o0+oLbWnntSb+tFg Gk5jaBxNoJn0Nc2hubSSNtM22kF76CAdprN0kTIoh67TbbpHoewX1fmLmvZF Jb6oaV9U5y8a+AP9kf5Mxekv9Dd6jd6kt+k9qkzv0wdUk5pSS/qU2lEP6kWf 0yAaRqNpLI2nGTSLvqFvaQVtoq20nXbTATpEZ+gCXaFrlEu36C4VJr7wL3y7 793Cv/DtH4O/fh389bN/+vVfP/rvXyHfCv7653/83/vC/5yCPwWnxb/+Zxc8 F+buz2Hung9z90KYu2Jh7oqHuXsxzN1fwty9FObu5TB3EWHu/hrm7pUwd38L c1cizN2rYe5Khrl7Lczd62Hu/h7mrlSYuzfC3JUOc/dmmLsyYe7KhrkrF+au fJi7yDB3b4W5q/Avd4V/Rv/Ji/VPuuqfTK4/6ap/8mItfJOE9DQ9R8XoRXqF SlJpqkAVqRJFUTWqQU2oBUVTW+pOPSmGvqChNIoSaBxNp5mUSHNoOW2kZNpG u2g/HaTTlEqX6SrlUD7dodDkes7r9DkN9TmT6zkN9Tmv0+e8Tp8zuZ4L/Ile oOL0V3qV3qC36F16j6rS+/QhNabm1IY+pW7Ugz6jgTSERlI8jaVpNINm0ze0 jDbQFtpKO2kfHaBTdJ4uUTZdo5tUQKHJ9Wdv0j9rqH+W+D9rqH/2Jv2zN2lh LwmpKD1PxSiCSlApiqR3qCJVoSiqTo2oGbWmaOpK3akvDaDBNILiKIGm0nT6 mhJpKa2nzZRMO2gv7aeTdI7SKYuu0g26TaHEF/aDkB6jn9J/0K+oCP2enqU/ 0wv0Mv2N/k7l6W16lypTVfqAGlJTakVtqAt1oz7UnwbRlxRL8TSFptEsmk1L aB1toi20nb6nfXSCUiiNMimb8ugWhRL/gnn+gpy/YJ6/4P35gvfnC3L+gvfn C4Hn6Hl6iV6h16kcVaB3qBJVoWrUgJrQJ9SaOlNX6k396AsaTmMojibTVJpJ X9NiWksbaTNtoz20l47TWbpIGZRF1ymfblNo71zMPC8m58XM82Len8W8P4vJ eTHvz2LmeTE5L+b9Wcw8L+b9WcyeqZh5XkzOi5nnxQKV6X2qT42pJbWiTtSF etHnNJCG0WiKpa9oCs2gWbSIvqMNtIm20m76no7RGbpAVyiTcukm3aLQjrm4 eV5c4oub58X19uJ6e3GJL663FzfPi0t8cb29uHleXG8vbs9U3DwvLvHFzfPi El/cPC/u23Jx87y43l5c4ovbLBeX+OJ6e3G9vbh5XlxvL663F5f44jbLxSW+ uHleXOKL+75U3Pel4uZ5cYkvbp4X19uLS3xxm+Xientxvb243l5c4ovr7cXN 8+ISX9xm+UXz/EWJf9E8f1Fvf1Fvf1HiX9TbXzTPX5T4FwPF6WV6ld6k8vQW vUvvUVX6mBpSc2pJHagT9aDPqD8NoZE0mibSVzSNZtACSqJ1tIG20E7aTUfo FJ2nS3SFrlEe3aTQPvkvcv4X8/wv2vpftPW/yHnhT+yQnqGiVIxeohJUmspR JL1DFakK1aUG1IxaUHvqSN2pL/WjwTSCRtEEmkRTaTrNp9W0ltbTZtpBu+gw naRzlE6X6SpdpxsU2iK/JN0vmeIv6egv6egvSfdLOvpLpvhL0v1S4AX6C/2N 3qCyVJ7epnepMtWh+tSUmlM76kDdqA99ToPoSxpJ42kiTaFpNI9W0Xe0jjbR dtpJh+gEpVAaXaJsyqU8Cn0tetnEflkzf1kzf1mmX9bMXzaxX5bplzXzlwMv 0itUispQOapA71Alqk31qAk1o7bUnrpSb4qhL2g4jaBxNIEm01SaSytpDa2l jbSNdtBBOk5n6SKlUxbl0HUK7dciTOcILTxCC4+Q5AgtPMJ0jpDkCC08wnSO 0MIjvLEjTOcISY4wnSMkOcJ0jvCNN8J0jtDCIyQ5wi4tQpIjtPAILTzCdI7Q wiO08AhJjrBLi5DkCNM5QpIjfPuJ8O0nwnSOkOQI0zlCC4+Q5Ai7tAgtPEIL j9DCIyQ5QguPMJ0jJDnCLu2vZvJfNe6/atx/leS/atyF/1sL6Wl6jopRBL1O pakMRVIFqki1qC41oiYUTW2pM/WkvjSAhtJwSqBxNIkm0xxaTqtpDa2nZNpG ++konaZUukgZdJVyKLQ3e8UkfkW7fkW7fkWSX9GuXzGJX5HkV7TrV0ziVwIv 02v0Br1J5ektepdqUh1qSI2pDX1KnagH9aH+NISGUTyNpYn0FX1Dy2gVJdE6 2kJbaR8doVN0ni7QFcqmaxTakf1Nk/6bJv03+f2bJv0387ewNYVUlJ6nl6gk laLSVI4i6R2qQbWpATWi1hRNHak79aZ+NJiGUhwl0ASaRIm0lFbSalpLmymZ 9tJhOknnKJUuUxZdpdA+rITWXEJrLiG1JbTmEqZuCaktoTWXMHVLaM0lvIRL mLolpLaEqVtCakuYuiV8typh6pbQmktIbQkbrxJSW0JrLqE1lzB1S2jNJbTm ElJbwsarhNSWMHVLSG0J++wS9tklTN0SUlvC1C2hNZeQ2hI2XiW05hJacwmt uYTUltCaS5i6JaS2hI3Xq7ryq7ryq1L7qq78qln7qtS+qiu/ata+qiu/GihB r1MpKkPlqAJVp1pUjxrQJ9Sa2lNX6kkx9AUNpjEUR+NoAn1Ni2k5raQ1tJE2 0x46SMfpLJ2jdMqgLArttEpqyCU15JJSW1JDLmnClpTakhpySRO2pIZcMvA3 eo3+Tm9SWXqLPqCa9DHVp5bUitpRF+pBn9FAGkSjKZbG0niaRYtoGa2gJNpA m2g3HaBjdIZSKI2uUCaFtlav6cWv6cWvSe1revFrJuxrUvuaXvyaCfuaXvxa 4BUqSa9TaSpDkVSNalBdqkct6BNqS52pO/WlAfQFjaIxlEDjaCYtpKW0nFbT etpIu2g/HaXTdJYu0mXKoBsU+s70ul78ul78uvy+rhe/bta+Lr+v68Wvm7Wv 68WvB/5Kr9Jr9Aa9SeXpffqQ6tDH1Jxa0qfUibpRH+pPA2kkjaZ4GkszaAEt oWW0itbRBtpJ++gInaIzdIEu0RXKo9A3pb/rxX+X37/rxX83a/8uv4U/V0N6 hp6nCCpBJakUlaZyFEXVqTbVpWbUgqKpI3Wl3tSPBtAIGkVxlEChvfIXPwoE BgXP4OAZEjxDg2dY8AwPni+DZ0TwjAyeUcEzOnjGBE9s8MQFT3zwJATP2OAZ Fzzjg2dC8EwMnknB81XwTA6eKcEzNXimBc/04JkRPDODZ1bwfB08s4MnMXi+ CZ45wfNt8MwNnnnBMz94FgTPwuBZFDyLg2dJ8CwNnmXBszx4VgTPyuBZFTyr gycpeNb8qPAvlxcIrP1R4V/NLhBYHzwbgmdj8GwKns3BsyV4koNna/BsC57t wbMjeHYGz67g2R08e4Ln++DZGzz7gmd/8BwInoPBcyh4DgfPkeA5GjzHgud4 8JwInpPBcyp4TgfPmeA5GzwpwXMueM4HT2rwXAiei8GTFjzpwXMpeK4Ez8NH jx5lBP8xM3iygic7eK4Gz7XgyQme3OC5Hjx5wXMjeG4GT37w3Aqe28FTEDx3 gudu8NwLnh+C537wPCj81w6e/wqeR8ETrDHBPxPm+3NiMS2llbSW1tMO2kuH 6SSdplRKp8t0nUJfDUt5F5XyU7uUd1EpXauUn9qlvItK6VqlvItK2WGU0rVK +aldKvB3eoPKUlX6gD6iOtSUmlMb6kBdqBd9Tv3pSxpJsRRP02geLaIltIK+ o3W0nb6nQ3SCTtF5SqNLlEuh74JveBe94af2G95Fb+hab/ip/YZ30Ru61hve RW/YYbyha73hp/YbgdepFJWhKlSNalFtakLNqDW1p87Uk2KoHw2nETSG4mgq zaWFtJiW0xpaS9toDx2k43SSztFFSqccuk+hrlXaC6m0/Jb2Qiqta5WW39Je SKV1rdKBP9Ff6K/0N3qN/k5vUmV6n2rSR9SYmlIrakedqAd9Rp/TMPqSRlMs TaFvaQEtomWURN/RVtpNB+gYnaAUukBpdI1+oFDXetNb6U1JftNb6U2t601J ftNbqfB/LyEVpRcpgl6hkvQ6laZKFEU1qBY1oib0CbWljtSd+lIMDaXhNIrG 0GSaQ/NpIS2l1bSGkmkX7aejdJzOUipdpKt0jx5SKMllvJrKyHQZr6YyJnEZ mS7j1VTGJC7j1VTGrqOMSVxGpsuYxGVkukzgDXqPqtKHVJMaUmNqSZ9SB+pG fegzGkLDaCSNpq/oG5pHC2gJraIk2kI7aR8doWN0hs7TBcqmu/SAQpkuK9Nl vZ/KmsllZbqs91NZM7ms91NZW4+yZnJZmS5rJpeV6bJmclnfAMuayWW9n8rK dFkbyrIyXdb7qaz3U1kzuaz3U1nvp7IyXdaGsqxMlzWTy8p0WV8TyvqaUNZM LivTZc3ksvpzWZkua0NZVn8uqz+X1Z/LynRZ/bmsmVxWpsvaUJb1DbCsmVxW pstJcjlNupyZXE6Sy2nS5czkcpp0OVuPcmZyOUkuZyaXk+RyZnI53wDLBSrT B/Qh1aeG1JzaUDvqQr2oDw2iIfQljaSJNJu+pXm0iFbQKtpE2+l7OkRH6BSl 0HnKpAL6gUJJLq9JlzeJy8tveU26vElcXpMub+tR3iQuL7/lTeLy8lveJC7v G2B5k7i8Jl1efsvbVZaX3/KadHlNurxJXF6TLq9Jl5ff8naV5eW3vElcXn7L +65Q3neF8iZxefktbxKX16TLy295u8rymnR5Tbq8Jl1efstr0uVN4vLyW96u srxvgOVN4vLyW94kjtSkI83fSPmN1KQjzd9ITTrS+zfS/I2U30jzN1J+I83f SF8DI83fSE06Un4j7Soj5TdSk47UpCPN30hNOlKTjpTfSLvKSPmNNH8j5TfS F4ZIXxgizd9I+Y00fyM16Uj5jbSrjNSkIzXpSE06Un4jNelI8zdSfiPtKiN9 DYw0fyPlN9L8fUuTfsv8fUuS39Kk3zJ/C7/8hPQcFaMXKYJeoZJUgSpSFFWj ulSPmtAnFE0dqTv1pAH0BQ2l4TSOZlIizaH5tJSW03pKpl20nw7ScTpNZ+ky 5dMdukeh+VtBf65g/laQ5Ar6cwXzt4L+XMFLuIL5W0GSK5i/FSS5gvlbIfAW vUtV6X2qQx9TY2pJbagDdaMe1J8G0hAaRmNpBs2mb2geLaFltI620E7aRwfo GJ2iM3SJblIB3aXC+Vv4n6nw8wqF/5kKt370f39lB39d+J9fJ/7nV8iF//jP //yFf/xnKrwd5ve+vxPm7t0wdxXD3L0X5q5SmLvKYe6qhLmrGuYuKszd+2Hu qoW5+yDMXfUwdx+GuasR5q5mmLtaYe4+CnNXO8xdnTB3dcPcfRzmrl6Yu/ph 7hqEuWsY5q5RmLvGYe6ahLlrGuau2b/cFf4Z/bZ34Nsa5dsm0tvegW9rlG97 B75to/O2Rvm2ifS2Rvm2ifR2oARF0jtUhaKoNtWlRtSCWlN76krdqR8NoME0 lBJoOn1NiTSXFtNSWkubaQftpf10lE7SaUqnG3Sb7lCoURb+LAnpMfop/Zx+ RUXoWfozvUB/oZfpb1Se3qbKVJU+ojrUkJpTK2pHXagbfU79aRANoXiaRrNo Nn1Li2gJfUebaDt9T/voCJ2gU5RGeXSLCijUKN/VI9+V33e9A9/VI9/1DnzX 9uZdPfJd+X1Xj3xXft/VI98NlKMKVImqUC2qTQ2oGX1CbakzdaUY6kdf0GCK o6k0k76mObSQFtMa2kjbaA/tpcN0nE7SRbpO+XSbQj2yovZYUWorev1V1B4r ev1VtLOpqD1WlNqK2mNFqa2oPVYMlKW36D2qTDXpI6pPTaklfUqdqAt9Rp/T QBpEsTSFZtAs+oYW0CJKog20lXbT93SIjtEJukC5dJNuUag9vmfWvie173nz vWfWvufN956dzXtm7XtS+55Z+57UvmfWvhcoQ5FUkSpRDapF9agJtaBo6kid qS/F0AD6gsbQZJpOMymR5tNCWk3rKZl20R46SEfpOKVSDt2gfArN2kombCWp reSlV8mEreSlV8mmppIJW0lqK5mwlaS2kglbKfAmlad36T36kGrSx9SYmlMb 6kCdqA99Rv1pII2mr2gazaDZNI8W0CpaR1toJ+2mA3SEjtF5ukZ5dJNCE7ay rFbWhiubq5W14cKfjSE9Q0XpeSpGL1FpKkfvUEWqTjWoLjWiZtSa2lNH6k19 qR8NoFE0iabSdPqa5tJ8WklraTPtoF20nw7TUTpHV+k63aDQXK0ioVU03yqm aRXNt4oNTBXTtIqEVjFNq0hoFdO0iu+WVUzTKppvFQmtYoNaRUKraL5VNN8q pmkVzbeK5ltFQqvYoFaR0CqmaRUJreK7RxXfPaqYplUktIppWkXzrSKhVWxQ q2i+VTTfKppvFQmtovlWMU2rSGgVG9QqvltWMU2rSGgV07SqllvV5Kyq5Vb1 Nq1qclaVy6omZ1W5rGpyVvVlsqrJWVXLrSqXVe1Iq8plVS23qpZb1eSsquVW 1XKrymVVO9KqclnV5Kwql1V946jqG0dVk7OqXFY1OatquVXlsqodaVUtt6qW W1XLrSqXVbXcqiZnVbmsakda1ZfJqiZnVbmsanJGabRRpmSURhvl9RllSkZJ Y5QpGSWNUaZklG+PUaZklEYbJY1RtqBR0hil0UZptFGmZJRGG6XRRkljlC1o lDRGmZJR0hjlK0aUrxhRpmSUNEaZklEabZQ0RtmCRmm0URptlEYbJY1RGm2U KRkljVG2oFG+PUaZklHSGGVKvq+9vm82vq+9vu+lWfg/5ZCepqL0HBWj16k0 RVIFiqJqVIvqUSNqQdHUlrpTT+pLMTScxtEkmkzTKZHm0FJaTespmbbRHtpP B+k0ZdBVyqEbFPrOWE1nrWY2VtNZq3lfVjMbq8llNbOxmlxWMxur+aZYzWys prNWk8tqgar0PtWkj6khNac29Cl1ox7Uhz6jYTSWJtJXNI1m0ze0hFbROtpC W2k37aMDdIquUDZdozwKfVP8QGf9wJT8QGf9wKvyA1Oy8KdfSM9QUXqeSlIp KkeRVIWiqAbVpQbUjFpTNHWl7tSb+tJQSqAJNImm0teUSItpJa2lzZRMu2gv 7aeTdJmy6Cpdp9D3w+o6a3XzsrrOWt1bsrp5WV1Cq5uX1SW0unlZ3bfC6uZl dZ21uoRWD1SmqvQh1aH61JRaURvqQt2oF/WhIRRP42kiTaFZNJsW0Qr6jjbR FtpJ39M+OkGXKJOyKZdC/7c6H5qXH+qsH3pBfmhefiiXH5qXH8rlh+blh76i fGhefqizfiiXHwYqURWqTrWpHjWhT6g1daau1JN602CKo3E0gSbTTPqaFtJy WkMbaTPtoD20l45TOmVQFuVQ6CtKDVOyhs5aw7uxhilZQxprmJI1pLGGKVnD d5IapmQNnbWGNNawz6kRqEwf0Ef0MTWmltSKOlEX6kG9aBDF0lgaT1/RDJpF C2gZJdEG2kTbaTd9T8coja5QJl2j0HeSmmZjTZ21pndjTbOxpjQWNpCQnqai 9AqVpNJUhipSJapGtaguNaIW9Al1pM7UnXrSFzSGEmgcTaLpNJPm01JaTetp I22jXbSHjtJFukwZdJXuUaiz1jIba+mstbwga5mNteSyltlYSy5rmY21fAmp ZTbW0llryWUtW5xacllLZ60VqEl1qCE1p5bUgTpRN+pBA2k0xdNYmkjTaAbN oyW0itbRBtpKO2k3HaELdImuUDbdpVBn/UhT/cgL8iOz8SO5/MhsLPyZF9Iz FEElqBSVpneoIkVRDapNDagZtaD21JG6UncaQKMojhJoAk2l6TSXFtNKWkvr KZl20C46TKmUTpcpi+5QqKnW1k9rezfWNhtrS2Nts7G2NNY2G2v7wlHbbKyt n9aWxtq2OLWlsbZ+WjvwIX1E9akpNad21IG6UDfqTyMpluJpPE2hafQtLaIV 9B2toy20nXbSITpPaXSJMqmAQv20jn5ax2uxjtlYRxrrmI11pLGO2VjHd406 ZmMd/bSONNaxxakjjXX00zr6aZ1ALapHTagZtaX21Jm6Uj8aQWMojsbRZJpK c2ghLac1tJY20zbaQQfpHF2kdMqg2xTqp3X107reiHVNxLrSWNdErCuNdU3E ur5m1DUR6+qndaWxrt1NXWmsG6hMH1BN+pgaU1P6lNpRJ+pCn9OXNJpiaSx9 RVPoG1pAyyiJvqNNtJW20wFKoQuURlfoFoX66cf66cfeiB+biB9L48cm4sfS WPg/25BepAgqSa9TJFWgSlSNalBdakRNKJraUkfqTDE0nEbRGEqgSTSZEmk+ LaXVtIY2UjJto/10llLpIl2mfAr103paaT1vxHomYj1prGci1pPGeiZiPV8z 6pmI9bTSetJYz56mnjTW00rraaX1TMR6gTrUkBpTG/qUOlAn+oyG0UgaTfE0 kb6i2TSPltAqSqINtIW20j46Q+fpAl2imxRqpfW9DOubg/VlsL45WF8G65uD 9X3DqG8O1tdF68tgfduZ+jJYXxetr4vWNwfrB2pTA2pErSma2lNH6ktDaQSN ojiaQJPoa5pLi2klrab1tJmSaS+dpnOUSul0g0JdtIFXYAPTr4HkNTD9Gkhe A9Ovge8VDUy/BhpoA8lrYCfTQPIaaKANNNAGpl8DDbRBoD41pFbUhtpRB+pD Q+hLGkmxNJ4m0iz6lhbRClpF62gTbaHv6RSl0HlKozwKNdCG3n4NzbyGktfQ zGsoeQ3NvIa+TTQ08xrqnQ0lr6FNTEPJa6h3NtQ7G5p5DfXOhoF61IA+odbU ltpTbxpMw2kEjaFxNIFm0hxaSMtpJa2ljbSZ9tBJOkvn6CJdp9sU2sQ08vZr ZOY1ksFGZl4jGWxk5jXyRaKRmddI72wkg43sXxrJYCO9s1GgMr1PNeljqk8t qRV9Su2oFw2iYfQljaaxNJ5m0De0gJbRCvqONtAm2k0n6Ayl0AXKpVsU2r80 9vZrbPo1lsbGpl9jaWxs+jX2RaKx6ddY72wsjY3tXxpLY2O9s7He2dj0a6x3 NtY7G0tjY/uXxtLY2PRrLI2NbUMb24Y2Nv0aS2Nj06+x3tlYGhvbvzTWOxvr nY31zsbS2FjvbGz6NZbGxvYvjX2RaGz6NZbGxqZfY18kGuudje1fGktjE6/A JiZiE7lsYiI2kcsmJmIT3yaamIhNNNAmctnEJqaJXDbRQJtooE1MxCYaaBMN tIlcNrGJaSKXTUzEJnLZxDa0iW1oExOxiVw2MRGbaKBN5LKJTUwTDbSJBtpE A20il0000CYmYhO5bGIT08S3iSYmYhO5bGIiNvFtookG2sQmpolcNvUebGpK NpXQpqZkUwltako29ZWiqSnZVCttKqFN7WSaSmhTrbSpVtrUlGyqlTbVSptK aFM7maYS2tSUbCqhTe1Fm9qLNjUlm0poU1OyqVbaVEKb2sk01UqbaqVNtdKm EtpUK21qSjaV0KZ2Mk19pWhqSjaV0KamZFNfKZpqpU3tZJpKaDMvw2bmZTMJ bWZeNpPQZuZlM18pmpmXzTTVZhLazHammYQ201SbaarNApXpA/qI6lBTak6t qA11o/40iIbQlxRL8TSFZtG3tIiW0Cr6jtbRdjpCJ+gUpVA25dEPVJjQwt/3 u6xc4e/7/eff37sv+Gtr8Ne+//kV8tZ/+vVd8Nf//jGFvxezeZjfn9kizF3L MHefhLlrFeaudZi7NmHuosPcfRrmrm2Yu3Zh7tqHuesQ5q5jmLtOYe46h7nr Euaua5i7bmHuuoe56xHmrmeYu15h7nqHuesT5q5vmLvPwtzFhLn7PMxdvzB3 /cPcDfiXu8I/o5vrfc3Nl+Z6X3Pzpbne19zXtuZ6X3Nvr+bmS3NbxubmS3Nv r+beXs31vubeXs29vZqbL80DTagZfUKtqSv1oy9oMA2nMRRHk2kmzaGFtJhW 0hpaS9voMB2nk3SWsug63aP7FOp9LfS+FuZLC72vhfnSQu9r4btbC72vhVdY C/OlhX1jC/OlhVdYC6+wFnpfC6+wFoGa9BE1pqbUklpRF/qcBtIgGkajKZa+ ohn0DS2gRbSCkug72kqH6BidoDOUSbl0l36gUO9rqfe1lNCWel9LCW2p97X0 Ba6l3tfSe6ylhLa0g2wpoS29x1p6j7XU+1p6j7X0HmspoS0DjagJtaBPqDPF 0AD6gobSKBpDk2g6JdJ8WkjLaTWtoWQ6SEfpOJ2mDMqhO3SPQr3vk0CAfkw/ pZ/Rz+kP9Cy9QMXpVXqN3qS36F2qSh9STWpIjak5taRO9Bn1p4E0hEbSaJpI 02g2zaMFtIxWURJtoQN0hI7RKbpC16iA7lLoZdZKLluZl63kspV5WfgTLKRn 6HkqRiWoJJWmSHqHqlB1qkENqBE1oxbUkfpSPxpAg2kEjaIJNJW+prk0n5bS SlpNm2k/HaajdJIu01W6TXcoNC9bS2NrU7K1NLY2JVv7FtfalGzt7dVaGlvb ULaWxtbeXq29vVqbkq0DlekD+pDqU0NqSs2pA/Whz6k/DaIvaSSNpyk0i76l ebSEVtAq2kT76BAdoRN0ibLpFhVQaEq2MRHbyGAbE7GNb3FtTMQ2mmobGWxj L9lGBttoqm001TYmYhtNtY2m2kYG29hLtpHBNiZiGxls49tAG98G2piIbWSw jYnYRlNtI4Nt7CXbaKptNNU2mmobGWyjqbYxEdvIYBt7yTa+xbUxEdvIYBsT sY1vcW001Tb2km1ksI2J2EZTjTYHo2Uw2hyM9lUu2hyM1k+jZTDaNjJaBqP1 02j9NNocjNZPo/XTaBmMto2MlsFoczBaBqN9G4j2bSDaHIyWwWhzMFo/jZbB aNvIaP00Wj+N1k+jZTBaP402B6NlMNo2MtpXuWhzMFoGo83BaF/lovXTaNvI aBmMNgej9dNPzcFPpfFTc/BT3+cK97YhFaXnKIJeodepDEVSRYqialSX6lEj akJtqSf1pRgaQENpOCXQJJpOiTSHFtJSWk7raQ/tp4N0lC5SBt2gfLpDoVba 1hxsK41tzcG2vs+1NQfb6qJtpbGtzWNbaWyri7bVRduag2110ba6aFtpbGvz 2FYa25qDbaWxbeBT6kF96DPqT0NoGMXTRJpGs+kbWkBLaBmto920jw7QEbpA VyiPblIBhbpoOxlsZw6281WunTnYTgNtJ4Pt7GnayWA7DbSdBtrOHGyngbbT QNvJYDt7mnYy2M4cbCeD7QLR1J16U1/qR4NpKMXRBJpKX1MizafFtJTW0i7a S/vpMKXSZbpON+g2hRpoe8lrb/q19wWuvenXXu9sL3nt7WTaS157vbO93tne 9Guvd7YPVKaq9BHVofrUkNpQN+pFfehzGkRDKJbG0xSaRbNpHi2iJfQd7aTv aR8dovN0iXIpj25RqHd2MOk6+MbWwaTroG12kLcOti4d5K2DttlB2+xg0nXQ Njtomx3krYOtSwd562DSdZC3DoHW1JV6Um+KoS9oMI2hcTSZZtLXNJcW0mJa QztoD+2lg3SO0imHrlM+hdpmR1Oto69oHU21jpplRynraK/SUco6apYdNcuO plpHzbKjZtkxUJlq0kf0MdWnVtSFelAv+owG0iAaTWPpK5pBs+hbWkCLKIm2 0276ng5QCqXRNcqlmxRqlp3Msk6+NHQyywq3TSE9TcXoRXqFXqfSFEkVqRLV oFpUl+rRJ9SZulNP6ksD6AsaRQk0iabTTJpD82khraZttIv20H46SxfpKuXQ DbpDoZdcZ7Oss68Knc2yzrpjZ3nrbHPSWd46646ddcfOZlln3bGz7thZ3jrb nHSWt85mWWd562x72TnQibpRD+pD/WkgjaR4mkjTaAZ9Q/NoAa2irbSTdtM+ OkMXKJuuUR4VUOj91sV3gy5mWReNsfCnUEjPUzGKoJJUisrRO1SRqlMNqk11 qQV1pK7UnXpTPxpAIyiOJtBUmk6JNJfm00pKph20i/bSaUqlLLpK1+k2hd5q XX0Z6GqWddUTu0pZV7uRrlLWVU/sqid2Ncu66old9cSuUtbVbqSrlHU1y7pK WVdbya6BDtSFulEv+pz605cUS+NpCk2j2fQtzaMVtIW20076nk7RecqkbMql WxR6l3XzFaCbWdZNT+wmZd3sQbpJWTc9sZue2M0s66YndtMTu0lZN3uQblLW zSzrJmXd7CK7BdpTZ+pKPSmG+tFwGkPjaDJNpa9pDs2l5bSZttEO2kMn6Rxl UBblUD6FXmPdbfy7m2Dd9cTuUtbdzqO7lHXXE7vrid1NsO56Ync9sbuUdbfz 6C5l3U2w7lLW3d6xe6AddaIu1IM+o89pGI2msfQVTaFZ9A19S8toE22l7bSb TlAKXaFMukY3KfQG62HP38ME66En9pCyHjYdPaSsh57YQ0/sYYL10BN76Ik9 pKyHTUcPKethgvWQsh52jD0Cbakjdabu1JdiaCiNogSaRJNpJiXSHFpKGymZ ttEuOk5n6TJl0FW6Qfco1BN72u73NMt66ok95a2nTUdPeeupJ/bUE3uaZT31 xJ56Yk9562nT0VPeepplPeWtp81iT5vFnmZZT3nrGehGfegzGkIjKZ4m0lc0 g2bTN7SENtAW2ko76RidoUt0hbIpj+5SqCf2stPvZar10hh7SV4vO49ektdL Y+ylMfYy1XppjL00xl6S18vOo5fk9TLVekleL5vFXjaLvUy1XpLXy1TrpTH2 krxedh69NMZeGmMvjbGX5PXSGHuZar0kr5edRy87/V6mWi/J62Wq9bLT76Ux 9rLz6CV5vUy1XhpjL++yXhpjb5v83uZbb92xt+T1tv3oLXm9dcfeumNv8623 7thbd+wteb0DlakqfUAfUkNqQ+2oA3WhXtSHBtGXFEvjaSJNo1k0mxbROtpE W2g7HaFTlEaXKJNyqYBC3bGPTX4fk66PFtlH8vrYg/SRvD5aZB8tso9J10eL 7KNF9pG8PvYgfSSvj0nXR/L62DH2sWPsY9L1kbw+Jl2fQE/qTV/QcBpD42gC TaWZ9DUtpLW0kTbTNjpMJ+kipVMG5dBtCrXIvjb5fU26vvpkX8nraw/SV/L6 6pN99cm+Jl1ffbKvPtlX8vrag/QNVKb36QOqT63oU2pHnagH9aKBNIxG01ga T1NoBs2iBfQdbaBNtJUO0Qm6QGl0ha7RLQr1yc/s9D8z6T7TLD+TvMIJH9LT 9By9SBFUkkpTGapIlSiKqlE9+oSiqS11pO7UkwbQUBpFCTSOJtN0mknzaQ2t p42UTAfpOKXSRbpMVymf7lGoWcbY88eYeTE6ZowMxtiSxMhgjI4Zo2PGmHkx OmaMjhkjgzG2JDEyGGPmxchgjA1kjA1kjJkXI4MxZl6MjhkjgzG2JDE6ZoyO GaNjxshgjI4ZY+bFyGCMLUmMPX+MmRcjgzFmXow9f4yOGWNLEiODMWZejI4Z 4yUXo2PG6Jif2/1/bvp9rm1+Lo2f25wUvmpDKkrF6CUqQaWoNL1DFakKRVFd akGtKZraU1fqTv1oMI2gOEqgSTSVptNcWk1raT1tpv10lM5RKqVTFt2gOxRq m/18BehnDvbTO/tJYz/blH7S2E/v7Kd39jMH++md/fTOftLYzzalnzT2C1Sm qlSHmlMrakPtqAt1o89pEH1JsRRPE2kKTaNvaRV9R+toE+2jI5RC5ymNMimP CijUO/ubg/31zv4y2N9epb8M9tc7++ud/c3B/npnf72zvwz2t1fpL4P9zcH+ MtjfzrK/nWV/c7C/DPY3B/vrnf1lsH8ghr6g4TSG4mgCTaapNIdW0hpaSxtp Lx2ms3SOLlIGXafbdJ9Cc3CAOThAAx0ggwNsWAbI4AANdIAGOsAcHKCBDtBA B8jgABuWATI4wBwcEKhMH1FTakmt6FPqRF3oMxpIw2g0xdJ4+oqm0De0gpLo O9pA39MhOkMpdIGuUC7doh+ocA7+468lW7bw95T+8+8f/effN7ok+Cv0jyGH fv3vH1n4+/wGhvm9f1+EuRsU5m5wmLshYe6GhrkbFuZueJi7L8PcjQhzNzLM 3agwd6PD3I0Jcxcb5i4uzF18mLuEMHdjw9yNC3M3PszdhDB3E8PcTQpz91WY u8lh7qaEuZsa5m5amLvpYe5mhLmb+S93hX9GD9TnBnpTDTRVBtoZDjRVBnpT DfSmGqjPDfSmGuhNNdBUGWhnONBUGajPDTRVBtrRD7SjH6jPDTRVBupzA72p BpoqAwN9aQANpVE0hsbRJJpMibScVtMaWk976CCdprOUSpcph/LpHoX6XOFP i5B+Sj+jX9Nv6A/0J3qBXqZX6TUqT2/Ru/Qe1aTG1JxaUhvqQJ2oD/WnITSS RtNYmkhf0WxaRqsoidbRbjpAp+gMnadLdI1u0l0K9blBXlKDZHCQ7eEgGSzs sSEVpefpJSpBJakcRdI7VJFqUCNqRi2oNbWnjtSb+tFgGkGjKIEm0CT6mpbS SlpNa2kX7aeTdJrOUTpdpRt0h0J9brD302DJG2x7OFjyBns/DfZ+GqzFDfZ+ Guz9NFjyBtseDpa8wVrcYMkbbFs/2LZ+sBY3WPIGa3GDvZ8GS95g28PB3k+D A4PoSxpJ8TSeJtIsWkIraBV9RztpH52gU5RCaZRNeVRAoRY3xPtpiOQNsT0c InlDvJ+GeD8NMfOGeD8N8X4aInlDbA+HSN4QM2+I5A2xrR9iWz/EzBsieUPM vCHeT0Mkb4jt4RDvpyGBL2g4jaA4GkcTaCYtpuW0ktbQDtpLx+kknaWLlEXX 6Tbdo9D7aaj301AZHGp7OFQGh3o/DfV+GmrmDfV+Gur9NFQGh9oeDpXBoWbe UBkcam8/1N5+qJk3VAaHmnlDvZ+GyuBQ28Oh3k9DAwNpGH1JsTSWxtMMWkTL aAUl0Xb6no7RCTpDFyiTcukW3aXQHnGY3jlMGofZHg6TxmF65zC9c5jpN0zv HKZ3DpPGYbaHw6RxmOk3TBqH2eAPs8EfZvoNk8Zhpt8wvXOYNA6zPRymdw7T O4cFhtJwGkMJNI6m00JaSstpNW2jPXSUjtNpSqUMyqF8ukOh3jlc7xwujcNt D4dL43C9c7jeOdwcHK53Dtc7h0vjcNvD4dI43BwcLo3DbfCH2+APNweHS+Nw c3C43jlcGofbHg7XO4frncMDQ2gYjaZ4GkvTaAEtoWW0irbSbjpCx+gUnacr dI1uUgGFeueXMvil7eGXMvil3ln4EyekZ+h5eokiqBSVpnIUSVFUlxpQI2pG rSmaulJv6keDaSiNojhKoKk0nxbTUlpJybSLDtNROknn6DJdpRt0m0K9c4Tk jbAzHCF5I/TOEXrnCNNvhN45Qu8cIXkj7AxHSN4I02+E5I2wrR9hWz/C9Bsh eSNMvxF65wjJG2FnOELvHKF3jtA7R0jeCL1zhOk3QvJG2BmO8MVshOk3QvJG mH4jfDEboXeOsDMcIXkjTL8ReucI77wReucIvXOE6TdC7xxprzJS3kZqmyO1 zZEm3Uhtc6S2OVLeRtqrjJS3kSbdSHkbaUc/0o5+pEk3Ut5GmnQjtc2R8jbS XmWktjlS2xypbY6Ut5GBETSG4mgyzaWFtJiW02baQQfpMB2ns5ROWXSd8inU NkfZoYySslGa5SjNcpSpNkqzHKVZjpKyUXYoo6RslKk2SspGBSrTR/Qx1afG 1JJaUSfqQZ/RQBpEX9JoiqWv6FtaQItoGW2i7XSADtExOkNplEm5dJNCzXK0 zcloKRutRY7WIgv/OwupKBWjF6kkvU6lqQxVolpUl+pRI2pBn1BH6k59aQB9 QcNpFI2hSTSH5tNCWkobaRvtp4N0lE7TRcqgHLpBdyj0khtjczJG3sbojmN0 xzFm2RjdcYzuOEbexticjJG3MWbZGHkbY1M5xqZyjFk2Rt7GmGVjdMcx8jbG 5mSM7jhGdxyjO46RtzG645jASBpNE+kbmkcLaAltoK20jw7QETpFF+gKXaM8 KqDQ+y3W5iRW8mJ1x1jdMdZUi9UdY3XHWMmLtTmJlbxYUy1W8mJtKmNtKmNN tVjJizXVYnXHWMmLtTmJ1R1jdcdY3TFW8mJ1x1hTLVbyYm1OYn0jiDXVYiUv 1lSL9Y0gVneMtTmJlbxYUy1Wd4z1aovVHWN1x1hTLVZ3jPVqi7MviZO8ON0x TneMM9/idMc43TFO8uLsS+IkL858i5O8OJvKOJvKOPMtTvLizLc43TFO8uLs S+J0xzjdMU53jJO8ON0xznyLk7w4+5I4XwbizLc4yYsz3+J8GYjTHePsS+Ik L858i9Md47zV4nTHON0xznyL0x3jvNXibUniJS9ei4zXIuNNungtMl6LjJe8 eFuSeMmLN+niJS/epjLepjLepIuXvHiTLl6LjJe8eFuSeC0yXouM1yLjJS9e i4w36eIlL96WJN6XgXiTLl7y4k26eF8G4rXIeFuSeMmLN+nitch4b7V4LTJe i4w36eK1yHhvtXiTLsGWJEEGEzTLBM0ywcxL0CwTNMsEGUywJUmQwQQzL0EG E2wqE2wqE8y8BBlMMPMSNMsEGUywJUnQLBM0ywTNMkEGEzTLBDMvQQYTbEkS fCNIMPMSZDDBzEvwjSBBs0ywJUmQwQQzL0GzTPBqS9AsEzTLBDMvQbNM8GpL MPPG2peMlcax2uZYbXOs6Vf432NIRek5iqBXqCS9ThWoGtWgWlSXGlETiqaO 1J36Ugx9QUNpOCXQTEqkOTSf1tBG2kV7aD8dpbN0kTLoKt2gexSafuNsTsZJ 4zi9c5zeOc4cHKd3jtM7x0njOJuTcdI4zhwcJ43jbCrH2VSOMwfHSeM4c3Cc 3jlOGsfZnIzTO8fpneP0znHSOE7vHGcOjpPGcYF4mkGz6RuaR0m0gXbSbtpH R+gMXaArlE15dJdCc3C8DI7XO8frnePNwfF653i9c7wMjrdDGS+D483B8TI4 3qZyvE3leHNwvAyONwfH653jZXC8Hcp4vXO83jle7xwvg+P1zvHm4HgZHB+I o+n0NSXSXFpN62kH7aK9dJhOUypdpiy6TncoNAcnSN4EvXOC3jnB9Jugd07Q OydI3gTblAmSN8H0myB5E2wqJ9hUTjD9JkjeBNNvgt45QfIm2KZM0Dsn6J0T 9M4JkjdB75xg+k2QvAmBWJpGs2g2fUuraB1tp530PR2iU3SeLlEm5VIBhabf RG1zorY50aSbqG1O1DYnyttE25SJ8jbRpJsobxNtKifaVE406SbK20STbqK2 OVHeJtqmTNQ2J2qbE7XNifI2UducaNJNlLeJgTE0lWbS1zSHVtJa2kY7aA8d pJN0jtIpg3LoNoUm3STNcpJmOclUm6RZTtIsJ0nZJDuUSVI2yVSbJGWTbCon BSrT+/QB1aSPqT61pE+pE/WgXvQ5DaRBNJqm0AyaRd/QCvqOttJ22k0H6ASl UBpdoWt0i0JT7Sst8ist8iuz7CstsnDzGtLTVIxepAh6hcpQJYqialSD6lI9 akHR1JG6U0+KoQH0BY2iyTSdZlIiLac1lEzbaBftp+N0li7SZbpK+XSHQi+5 ybrjZN1xslk2WXecrDtOlrfJNieT5W2yWTZZ3ibbVE62qZxslk2Wt8lm2WTd cbK8TbY5maw7TtYdJ+uOk+Vtsu442SybLG+TbU4mB76iaTSDZtMySqIttJV2 0j46RmfoAl2ibLpJBRR6v03RHafojlNMtSm64xTdsfAnSUjPUzF6iSKoNFWk KhRF1ak21aVm1JraU1fqTn2pHw2gETSJptJ0+pqW0mraTMm0g/bSUTpNqZRO WXSDblPo1TZVd5yqO04136bqjlN1x6mSN9W+ZKrkTTXfpkreVJvKqTaVUwOV qSp9QB9RHWpKragddaFu1Ic+p/70JU2kKTSNZtESWkWbaAttp+/pCJ2i85RG mZRHtyj0VpumO04z36bpjtN0x2nyNs1uZJq8TTPfpsnbNPvJafaT08y3afI2 zXybpjtOk7dpdiPTdMdpuuM03XGavE3THaeZb9PkbZrdyLTABJpMU2kmLaaV tJE20zbaQ4fpJJ2ji5RB1ymfQi+06brjdFNtuu44XXecLmXT7UGmS9l0U226 lE23i5xuFzndVJseqEzvU036iBpTS/qUOlEX6kWf0ec0jMbTVzSFZtAiWkEb aBNtpd10iE5QCl2gK5RLNyn0LpuhO84wy2bojjN0xxlSNsP2Y4aUzTDLZkjZ DHvHGfaOM8yyGVI2wyyboTvOkLIZth8zdMcZuuMM3XGGlM3QHWeYZTOkbIbt x4zAOJpEk2k6LaTltJ42UjLtooN0nM5SKl2mHLpBoXfZTI1xpgk2U2OcqTHO lLKZdh4zpWymCTZTymbaMc60Y5xpgs2Uspkm2EyNcaaUzbTzmKkxztQYZ2qM M6VspsY40wSbKWUz7TxmBsbSRPqKptECWkbraANtoZ10gI7RGTpPl+ga5VHh u6zw93aOL1P4ezv/+a8B+q+/r/P/3/1//47Pwt9vNyvM78H7Oszd7DB3iWHu vglzNyfM3bdh7uaGuZsX5m5+mLsFYe4WhrlbFOZucZi7JWHuloa5WxbmbnmY uxVh7laGuVsV5m51mLukMHdrwtx9F+ZubZi7dWHu1oe52xDmbmOYu01h7jb/ y13hn9GzvHdmaWKzvHdmee/MMi1m2d3NMi1maWKzTItZNuSzbMhnaWKzTItZ mtgs751ZpsUsu7tZ3juzvHdmee/MMi1mee/M0sRmmRaz7O5m+TY1SxObZVrM 0sRm+TY1y3tnlt3dLNNiliY2K7CD9tNROk3nKJ2u0nUK7RcKfzKE9Bj9B/2K fk1/pGfpz/QCvUrl6W16lyrTB/Qh1aem1IraUQfqRr2oDw2ieBpPE2kKzaMl 9B2to020nfbRETpFKZRG2ZRLoa3CbP1rtrfNbG+b2bI128ZutmzN1r9my9bs QAkqRxXoHapE1ag61aMm9Am1pfbUlXpSb/qC4mgcTaDJNJcW0xpaSxtpG+2l w3SSztJFyqIcuk2hjV2i/pXobZPobZMoW4n2dImylah/JcpWom14om14ov6V KFuJ+leit02ibCXa0yV62yR62yR62yTKVqK3TaL+lShbifZ0ib40JepfibKV qH8l+tKU6G2TaE+XKFuJ+leit02ivUGit02it02i/pXobZNob5CofyXaGyTa 031jbn3jbfONt803Ula4yQ/paSpKz9ErVIYiqQJVpCiqRnWpEbWgaGpLnak7 9aQBNIYSaBxNojm0kFbTGlpPybSHDtJxOk2plEFXKZ8eUihlc0ywOV45c7xy 5sjbHNu5OfI2xwSbI29zbMPn2IbPMcHmyNscE2yOV84ceZtjOzfHK2eOV84c r5w58jbHK2eOCTZH3ubYzs3xzWmOCTZH3uaYYHMC39ACWkVJtI620G46QMfo FJ2nK5RNN+kBhfL2rXb4rXb4rbx9aztX+LMipGeoKEVQaSpHkfQOVaEoqk0N qBm1pmjqSF2pO/WjURRHCTSBEmk+raTVtJY20y7aT0fpJJ2jy5RFN+g+hfI2 Vzucqx3OlbK5tnNzpWyuWTZXyubafM+1+Z5rls2Vsrlm2dxAZapKH1F9akqt qA11oC7UjT6nkRRL8TSeZtM8WkGr6DvaRDtpHx2hE5RClyiT8ugHCqVsnp44 T0+cJ2XzbOfmSdk8s2yelM2z+Z5n8z3PLJsnZfPMsnl64jwpm2c7N09PnKcn ztMT50nZPD1xnlk2T8rm2c7N831pnlk2T8rmmWXzAl/TXFpOK2kNbaQdtJcO 03E6S+mUQdfpHoVSNl9PnK8nzpey+bZz86Vsvgk2X8rm23zPt/meb4LNl7L5 Jth8PXF+oDLVpI+pMbWkVtSOOlEX+oy+pNEUS2NpFn1Ly2gFJdEG2k7f0yE6 Rmcoja5QLt2lUMoW6IkL9MQFUrbAVmOBlBVO35CephfpdSpNZSiSKlIlqkF1 qRG1oE+oLXWkztSXhtMoGkMJNJPm0FJaTqtpPW2jPXSQjtJpukiXKYfuUChl C7XDhdrhQilbaKuxUMoWmmALpWyhzfdCm++FJthCKVtogi3UDhdK2UJbjYXa 4ULtcKF2uFDKFmqHC02whVK20FZjoa9KC02whVK20ARbGJhB39ASWkaraB1t pd10gI7QKbpAl+gaFVAoZYt0wkWytchWY5FsLTK3Ct+PIRWjklSKSlM5eocq UnWqTQ2oGbWgaGpPHak3DaURNIriaDol0mJaSitpLSXTLtpPh+kkpVI6XaXb FMrWYk1wsUQttstYLFGLTavFErXYdnCx7eBi02qxRC02rRZrgoslarFdxmJN cLEmuFgTXCxRizXBxabVYolabJex2BekxabVYolabFot9gVpsSa4OLCIltAK +o620E7aR4foBJ2nNMqmWxRK1BL9b4lELbHBWCJRS8yoJRK1xHZwie3gEjNq iUQtMaOW6H9LJGqJDcYS/W+J/rdE/1siUUv0vyVm1BKJWmKDscS+fYkZtUSi lphRS+zbl+h/SwILaTEtpzW0mXbQXjpIx+kcXaQsyqfbFNpgLNX/lsrWUnuL pbK11IxaKltLbQeX2g4uNaOWytZSM2qp/rdUtpbaWyzV/5bqf0v1v6WytVT/ W2pGLZWtpfYWS+3bl5pRS2VrqRm11L59qf63NLCAFtEySqJNtJ2+pwN0jFLo AmXSTbpFob3FMv1vmZQts7dYJmXLTKtlUrbMdnCZ7eAy02qZlC0zrZbpf8uk bJm9xTL9b5n+t0z/WyZly/S/ZabVMilbZm+xzOZ9mWm1TMqWmVbLbN6X6X/L AvNpIS2l1bSRttEe2k9H6SylUgbdoHx6SKGULdcEl8vbchuM5fK23ARbLm/L bQeX2w4uN8GWy9tyE2y5Jrhc3pbbYCzXBJdrgss1weXytlwTXG6CLZe35TYY y+3gl5tgy+VtuQm23A5+uSa4PDCPFtASWkUbaCvtpn10hM7QebpCeXSTHlAo byvkbYUNxgp5W2GWrZC3FbaDK2wHV5hlK+RthVm2QidcIW8rbDBW6IQrdMIV OuEKeVuhE64wy1bI2wobjBV28CvMshXytsIsW2EHv0InXGGDsULeVphlK3TC FV5ZK3TCFTrhCrNshU64witrhVm2witrhQ3GCnlbYYOxQt5WStlKG4yVUrbS LFspZSttB1faDq40y1ZK2UqzbKV2uFLKVgYq0wf0EdWnhtScWlEb6kL9aRAN oS9pIk2jb2keLaIVtI620E76ng7RKUqhS5RLefQDhVK2yt5ilWytMsFWydYq O8FVdoKrTLBVsrXKBFulHa6SrVX2Fqu0w1Xa4SrtcJVsrdIOV5lgq2Rrlb3F Kvv2VSbYKtlaZYKtsm9fpR2usrdYJVurTLBVgeW0ljbTDtpDB+kknaV0yqHr dI9C2VptW7FaolabVqslarVN4GqbwNWm1WqJWm1ardYJV0vUatuK1Trhap1w tU64WqJW64SrTavVErXatmK1Lftq02q1RK02rVbbsq/WCVfbVqyWqNWm1erA MvqONtF22k0H6ASdoTS6Rrl0l0KJSrKtSJKoJDMqSaKS7P+S7P+SzKgkiUoy o5I0wSSJSrKtSNIEkzTBJE0wSaKSNMEkMypJopJsK5Ls1pPMqCSJSjKjkuzW kzTBJNuKJIlKMqOSNMEkr6wkTTBJE0wyo5I0wSSvrCQzKskrK8m2Ikmikmwr kiQqSRNcY2+xRrbWmFFrZGuN/d8a+781ZtQa2VpjRq3R/9bI1hp7izX63xr9 b43+t0a21uh/a8yoNbK1xt5ijd36GjNqjWytMaPW2K2v0f/W2Fuska01ZtQa /W9NIIk20FbaSfvoGJ2iC5RN16iA7lKo/31ng/GdlH1nWn0nZYXJD6kYvUQR VIJKUWl6h6pQdapNdakRNaMW1J76Uj8aQIMpgSbR15RIc2kxrab1lEw7aC8d pZOUSll0lW7THQr1v7U2GGulbK25tVbK1toJrrUTXGturZWytebWWv1vrZSt tcFYG6hMH9BHVIcaUlNqTu2oD31O/WkQxdNEmkWz6VtaRKtoHW2h7fQ9HaET dJ4yKZtuUQGF+t86G4x1UrbOBFsnZetsB9fZDq4zwdZJ2ToTbJ0muE7K1tlg rNME12mC6zTBdVK2ThNcZ4Ktk7J1NhjrbNnXmWDrpGydCbbOln2dJrjOBmOd lK0zwdZpgusCK2ktbaZttIcO03E6RxmURfl0m+5TaIKtt8FYL2/rzbL18rbe nnC9PeF6s2y9vK03y9Zrh+vlbb0NxnrtcL12uF47XC9v67XD9WbZenlbb4Ox 3uZ9vVm2Xt7Wm2Xrbd7Xa4frbTDWy9t6s2y9drjeK2t94DvaRFtpNx2iY5RC VyiTbtIt+oFCs2yDXcYGydtgqm2QvA02hhtsDDeYahskb4OptkFj3CB5G+wy NmiMGzTGDRrjBsnboDFuMNU2SN4Gu4wNtvEbTLUNkrfBVNtgG79BY9xgl7FB 8jaYahs0xg1eXhsCa2gjJdMuOkhH6Sxdpgy6Qfl0j0JTbaOtxkbJ22i+bZS8 jTaGG20MN5pvGyVvo/m2UXfcKHkbbTU26o4bdceNuuNGyduoO2403zZK3kZb jY328hvNt42St9F822gvv1F33GirsVHyNppvG3XHjV5jG3XHjYENtIV20gE6 QmfoEl2hPLpJdyk03zbJ2ybzbZO8bbIx3GRjuMl82yRvm8y3TbrjJnnbZL+x SXfcpDtu0h03ydsm3XGT+bZJ3jbZb2yyl99kvm2St03m2yZ7+U264yb7jU3y tsl826Q7bvIu26Q7bgqsp820g/bTYTpN6XSZrtMNukOh+bZZyjabapulbLON 4WYbw82m2mYp22yqbdYdN0vZZpuOzbrj5kBl+oA+pDpUnxpSK+pGvagPfU4j KZ6m0DSaRd/SElpF62gTbad9dIhOURpdolzKowIqnGqFv1/x0zcLf7/iP/+1 Jpf8069vgr/++T70X//f37NY+HvItoT5fWXJYe62hrnbFuZue5i7HWHudoa5 2xXmbneYuz1h7r4Pc7c3zN2+MHf7w9wdCHN3MMzdoTB3h8PcHQlzdzTM3bF/ +Ec/DgR+HDz/FjyPBc9PguenwfN48PwseP49eP4jeP5f8Pw8eJ4Inl8Ezy+D 51fB82Tw/Dp4/jN4fhM8vw2eIsHzu+D5ffA8FTx/CJ6ng+ePwfNM8DwbPEWD 50/B81zw/Dl4ng+eF4KnWPAUD54Xg+cvwfNS8LwcPBHB89fgeSV4/hY8JYLn 1eApGTyvBc/rwfP34CkVPG8ET+ngeTN4ygRP2eApFzzlgycyeN4KngrB83bw vBM87wZPxeB5L3gqBU/l4KkSPFWDJyp43g+easHzQfBUD54Pg6dG8NQMnlrB 81Hw1A6eOsFTN3g+Dp56wVM/eBoET8PgaRQ8jYOnSfA0DZ5mwdM8eFoET8vg +SR4WgVP6+CJDp6Hjx49+jT4j22Dp13wtP9xYQoDgY7B0yl4OgdPl+DpGjzd gqd78PQInp7B0yt4egdPn+DpGzyfBU9M8HwePP2Cp3/wDAiegcHzf/+cOB7m z5MTYe5Ohrk7FebudJi7M2Huzoa5Swlzdy7M3fkwd6n/clf4E22LJr5FR9ji y8cWXz62aOJbdIQtmvgWL98tgRJUhipQJapG1ak21aMG9Al1pZ7Um2JoBMXR ZJpKM2kOLaaVtJY20jbaSwfpJF2kdMqh63Sb7lHo5ZusfyfrCMm+gST7BpKs fyfrCMn6d7L3brKOkGxjm+y9m+y9m+y9m6wjJHvvJuvfyTpCso1tsm+Jyfp3 so6QrH8n+5aY7L2bbGObrCMk69/J3rvJtkrJ3rvJ3rvJ+ney926yrVKy/p1s q5RsY5usIyTb2CbrCMneu8n6d7L37lb9e6uUbfU1ZKuvIVv1761StlX/3uqV u1XKttrYbvXK3eqVu9Urd6uUbfXK3ap/b5WyrTa2W31V3Kp/b5Wyrfr3Vl8V t3rlbrWx3SplW/XvrV65W22VtnrlbvXK3ap/bw0k0x7aT8cplS7SVcqhfLpD oVduYZsK6cf0C/oDPUt/ohfoZforvUHl6V2qSu9TTapDH1Nz6kTdqAf1oWE0 mibSVzSNZtMCWkZJtI620G7aR8foPF2gbLpGN6mAQm/b7bK13TeQwtYf0jNU lJ6nlyiCSlE5eoeqUBTVoNpUl5pRR+pK3ak3DaVRNIEm0VT6mubTUlpNa2kz 7aK9dJTOUSpl0VW6Qbcp9KLdIVE7fPnY4cvHDtNqh0TtMK12eMfukKgddrI7 vGN3BN6mylSVPqSPqA41pQ7UhbpRLxpCI2k8TaQpNIvm0RJaRd/RJtpJ39MR SqHzlEnZlEe3KLSd3ekrx05fOXaaTDvlaKfJtFPr2ylHO21dd2p9O7W+nVrf TjnaqfXtNJl2ytFOW9edviDuNJl2ytFOk2mnL4g7tb6dtq475WinybRT69tp H7RT69up9e00mXZqfTsDO2gPHaazdI4yKIuuUz6FWt8u3zF2+Y6xyxTaJT27 TKFdGt4u6dllr7pLw9ul4e3S8HYFKtMHVJM+osbUjjpRF+pBg+hLGkvj6Sua Qd/SIlpBSbSBttNuOkRnKIWuUCbl0k0KNbzdvlTs9qWi8N8rpKepKBWjF6kk laZIqkiVqBrVoFrUiNpSR+pM3ekLGk4JNI4m0XSaQwtpOa2m9bSNdtFBOk1n 6TJlUA7doDsUeint8VVij68Se8yePXK0x+zZo8PtkaM9Nqd7dLg9OtweHW6P HO3R4faYPXvkaI/N6R5fAfeYPXvkaI/Zs8dXwD063B6b0z1ytMfs2aPD7fE+ 2qPD7dHh9pg9e3S4PYGttJMO0Ck6Q5foCl2jPCqg0Pvoe98ivvct4ntTqHDi hfQMPU/FqASVonL0DlWkKKpONagBRVN76khdaQANpThKoAk0lRJpPi2llbSW kmkH7aeTdJrS6TJdpet0m0Kvor2+QOz1BWKvebRXovaaR3t1uL0StdeeYa8O t1eH26vD7ZWovTrcXvNor0TttWfY6+veXvNor0TtNY/2+rq3V4fba8+wV6L2 mkd7dbi93kJ7dbi9Otxe82ivDrfXW2ivebTXW2ivPcNeidprz7BXovbqcHvN o7063F5voX02d/ts7vaZTPskap/JtE+b2ydR+2wX9mlz+7S5fdrcPonap83t M5n2SdQ+24V9vuntM5n2SdQ+k2mfb3r7tLl9tgv7JGqfybRPm9vnLbRPm9un ze0zmfZpc/u8hfaZTPsCe+k4naSLlE5ZlEP5dJ9Ck2m/zd1+m7v9ZtR+2dpv Ru3X8PbL1n7bhf0a3n4Nb7+Gt1+29gcq0/v0AX1MrehTaked6HMaRKMplsbS VzSLvqVFtIySaBNtpe/pGJ2gC5RGmXSNbtIPFJpRB2zuDtjcHTCtDkhZ4YwM qSg9RxFUkkpTJFWgShRF1agufULR1JY6Ugx9QaNoDCXQJJpJc2ghLaXVtJGS aQ8dpeOUShcpg67SDbpHDymUsoN2eAft8A6aYAfl7aAJdlATPChvB+0eDmqC BzXBg5rgQXk7qAkeNMEOyttBu4eD9uMHTbCD8nbQBDtoP35QEzxo93BQ3g6a YAc1wYPeUQc1wYOa4EET7KAmeNA76qAJdjCwm47QMTpPF+gKZVMe3aUHFMrb IXu9Q/Z6h0y1Q5J3yFQ7pB0ekrxDNhOHtMND2uEh7fCQ5B3SDg+Zaock75DN xCGb8kOm2iHJO2SqHbIpP6QdHrKZOCR5h0y1Q9rhIa+sQ9rhIe3wkKl2SDs8 5JV1yFQ75JV1yGbikOQdspk4JHmHtMNDptoh7fCQV9YhU+2Q5B226zts13fY fDsseYfNt8Ma42HJO2xvcVhjPKwxHtYYD0veYY3xcKAyVaWPqDm1ojbUjvpQ f/qSRlIsjadpNJvm0SJaQetoE+2kQ3SEUug8XaJMyqUC+oFCyTti/3fEfDsi b0fMtyO64xF5O2KXcUR3PKI7HtEdj8jbEd3xiPl2RN6O2GUcsT0/Yr4dkbcj 5tsR2/MjuuMRu4wj8nbEfDuiOx7xBjuiOx7RHY+Yb0d0xyPeYEfMtyPeYEcC B+kwnaVzlE4ZlEO36R7dp9B8O2o7eNR8OypvR823o1rkUXk7ar9xVIs8qkUe 1SKPyttRLfKo+XY0UJlqUlNqSa3oU+pFn9Mw+pJG01iaQrPoW1pAy+g72kDb 6QAdojOUQml0ha7RLbpLP1Bovh2zOzxmvh2TvGPmW+F8DelpKkYRVJJKUxmq QBWpEtWgJtSCPqFo6kkxNJSG0yhKoMk0k+bQfFpKa2g9baP9dJBO01m6SJfp KuXTHbpHofl23D7xuPl2XPKOm2/H9cnjknfcHuS4PnlcnzyuTx6XvOP65HHz 7bjkHbcHOW4bf9x8Oy55x82347bxx/XJ4/YgxyXvuPl2XJ887tV2XJ88rk8e N9+O65PHvdqOm2/HvdqOB/bRATpFZ+gCXaJsukkFdJdC8+2EHeMJk+6E5J0w 6U7ok4Xvx5Cep5eoBJWi0hRJ71BFqk6NqBm1oNbUnfrSYBpKIyiOJtF0SqS5 tJhW01pKpr20n07SaUqldMqiG3Sb7lBo0p20dzxp0p2UvJMm3Ul98qTknbQl OalPntQnT+qTJyXvpD550qQ7KXknbUlO2t+fNOlOSt5Jk+6k/f1JffKkLclJ yTtp0p3UJ096v53UJ0/qkydNupP65Envt5Mm3Unvt5O2JCcl72TgBJ2i85RG mZRHt6iAQpPulF3kKZPulOSdMulOaZanJO+UfckpzfKUZnlKszwleac0y1Mm 3SnJO2VfcspO/5RJd0ryTpl0p+z0T2mWp+xLTkneKZPulGZ5yvvtlGZ5SrM8 ZdKd0ixPeb+dMulOeb+dsi85JXmnAsfpJJ2ji5RB1ymfblNo0p22lTxt0p2W vNMm3WnN8rTknbYvOa1ZntYsT2uWpyXvtGZ52qQ7LXmn7UtO2/OfNulOS95p k+60Pf9pzfK0fclpyTtt0p3WLE97v53WLE9rlqdNutOa5Wnvt9Mm3Wnvt9P2 Jacl73TgGJ2gFLpAVyiXbtItCk26M/aTZ0y6M5J3xqQ7o1mekbwz9iVnNMsz muUZzfKM5J3RLM+YdGck74x9yRm7/zMm3RnJO2PSnbH7P6NZnrEvOSN5Z0y6 M5rlGS+5M5rlGc3yjEl3RrM84yV3xqQ74yV3xr7kjOSdCRyl43SWUuky5dAN yqfQpDtrP3nWpDsreWdNurOa5VnJO2tfclazPKtZntUsz0reWc3yrEl3VvLO 2pec9RXgrEl3VvLOmnRnfQU4q1metS85K3lnTbqzmuVZL7mzmuVZzfKsSXdW szzrJXfWpDvrJXfWvuSs5J0NHKFjdIbO0yW6Rnl0k0KTLsV+MsWkS5G8FJMu RbNMkbwUm5MUzTJFs0zRLFMkL0WzTDHpUiQvxeYkxfeAFJMuRfJSTLoU3wNS NMsUm5MUyUsx6VI0yxQvuRTNMkWzTDHpUjTLFC+5FJMuxUsuxeYkRfJSbE5S JC8lcJrOUTpdpet0g0KT7pz95DmT7pzknTPpzmmW5yTvnM3JOc3ynGZ5TrM8 J3nnNMtzJt05yTsXqEx1qD41pKbUgbrR59SfBtGXFE8TaRrNom9pCa2gdbSd dtIhOkKnKIXSKJtyKY9Ck+68+XZe3s6bb+f1yfPydt6+5Lw+eV6fPK9Pnpe3 8/rkefPtvLydty857yvAefPtvLydN9/O+wpwXp88b19yXt7Om2/n9cnz3m/n 9cnz+uR58+28Pnne++28+Xbe++28fcl5eTtvX3Je3s7rk+cDZ+kiZVEOXad8 Cu0nU823VHlLNd9S9clUeUu1L0nVJ1P1yVR9MlXeUvXJVPMtVd5S7UtSfQVI Nd9S5S3VfEv1FSBVn0y1L0mVt1TzLVWfTPV+S9UnU/XJVPMtVZ9M9X5LNd9S vd9S7UtS5S3VviRV3lL1yVTzLVWfTPV+SzXfUuUt1XxL/cd+svD3tcb/n9/X Wvj7VqcEf33zP7/++fev/v/+Vfh7zS6E+f1nF8PcpYW5Sw9zdynM3eUwd1fC 3GWEucsMc5cV5i47zN3VMHfXwtzlhLnLDXN3PcxdXpi7G2Huboa5yw9zdyvM 3e0wdwVh7u6Eubsb5u5emLsfwtzdD3P3IMzdwzB3/xXm7tG/3BX+GX1BT7tg glzQ0y54F10wQQozE1JRKkYR9Aq9TqWpDFWkWlSX6lEjakudqS/F0AAaSmNo HE2m6ZRIC2kpraFk2kb76SAdp9OUShl0lXLoBoX27IU/I0L6Mf2Ufk6/oN/T s/QCvUx/pdfoDXqT3qWaVIc+pob0KXWiPvQZ9achNJrG0lc0jWbTAlpCSbSF ttI+OkDH6BSdpyuUTdcoj0J79jR5S9PT0ryG0uQtzbYvzWsozWsozWsoTd7S vIbS9LQ0eUuz7UvzNStNT0uTtzQ9Lc3XrDSvoTTbvjR5S9PT0ryG0mwf0ryG 0ryG0vS0NK+hNNuHND0tzfYhzbYvTd7SbPvS5C3NayhNT0sLnKPLlEVX6TqF tuvpUpaunaV7A6VLWbodX7o3ULo3ULo3ULqUpXsDpWtn6VKWbseX7htWunaW LmXp2lm6b1jp3kDpdnzpUpaunaV7A6XbOaR7A6V7A6VrZ+neQOl2DunaWbqd Q7odX7qUpdvxpUtZujdQunaW7g2UbueQrp2lS1m6dpZup37JBLvk5XNJti7Z 513y8rnk5XPJy+eSbF0KlKDXqRRVoOpUi2pTPWpN7akn9aYY+oJGUBxNoMk0 k+bSQlpJG2kz7aG9dJiO01lKpwzKohwK7c8vm1aXvXIuS9Rlu7vLXjmXvXIu e+VclqjLXjmXTavLEnXZ7u6yb1OXTavLEnXZtLrs29Rlr5zLdneXJeqyaXXZ K+eyXcJlr5zLXjmXTavLXjmX7RIum1aX7RIu291dlqjLdneXJeqyV85l0+qy V87lQBpdoUy6RqFd+RUz6oomeEWirtjTFf6rhVSUitGL9AqVpNcpkqpRDapF dekTakvdqSf1pQE0nMbQOJpE02kOzafltJ420i7aQwfpKJ2mi3SZMugq3aHQ BiHDjMrQ/zJkK8N2LkP/y9D/MvS/DNnK0P8yzKgM2cqwncvw9SnDjMqQrQwz KsPXpwz9L8N2LkO2MsyoDP0vw94gQ//L0P8yzKgM/S/D3iDDjMqwN8iwncuQ rQzbuQzZytD/MsyoDP0vI3CBLtEVyqYCCv3fNWVqfZmylWknl6n1ZWp9mVpf pmxlan2ZZlSmbGXayWX60pRpRmXKVqYZlelLU6bWl2knlylbmWZUptaX6W2V qfVlan2ZZlSm1pfpbZVpRmV6W2XayWXKVqadXKZsZWp9mWZUptaX6W2VaUZl ylamGZVp853pbZWl62VJVJb9W5aul6XrZel6WRKVpetlmVFZEpVl/5blq1KW GZUlUVlmVJavSlm6Xpb9W5ZEZZlRWbpelndUlq6XpetlmVFZul6Wd1SWGZXl HZVl/5YlUVn2b1kSlaXrZZlRWbpelndUlhmVJVFZgUy6RaF3VLauly1R2XYU 2bpetq6XretlS1S2rpdtRmVLVLYdRbYvSNlmVLZEZZtR2b4gZet62XYU2RKV bUZl63rZXk/Zul62rpdtRmXretleT9lmVLbXU7YdRbZEZdtRZEtUtq6XbUZl 63rZXk/ZZlS2RGUHMiif7lNoRl3V+q7K1lWbiata31Wt76rWd1W2rmp9V82o q7J11WbiaqAyvU8fUE1qSq2oE3WhHvQZDaIvKZbG0lc0i76hRZRE39FW2k7f 0wE6Ril0gdLoCt2kHyg0o67pf9ek7JrNxDX9r7A5hlSUnqMXKYJeodJUiaKo GtWgJvQJdaTO1J360hc0nMZQAk2imZRIC2k1raFk2kZ7aD8dpbOUShfpMt2g exSaVjn6X46U5dhM5Oh/Ofpfjv6XI2U5+l+OuZUjZTk2Ezm+FuWYWzlSlmNu 5fhalKP/5dhM5EhZjrmVo//leFHl6H85+l+OuZWj/+V4UeWYWzleVDk2EzlS lmMzkSNlOfpfjrmVo//leFHlmFs5UpZjbuXY+uV4UeWYW7mylWszkav/5ep/ ufpfrmzl6n+55laubOXaTOTaqOeaW7mylWtu5dqo5+p/uTYTubKVa27l6n+5 XlS5+l+u/pdrbuXqf7leVLnmVq4XVa7NRK5s5dpM5MpWrv6Xa27l6n+5XlS5 5laubOWaW7l2fbleVLnm1nWJum4zcV3/u67/Xdf/rkvUdf3vuml1XaKu20xc tz2/HqhMVekDakjNqR11oC7Ui/rTEBpJsTSeptEsmkcraBVtoi20k76nQ3SK Uug8pVEuFVBoWuXZR+RpfXlaX57WlydHeVpfnsmUJ0d59hF5NuV5JlOeHOWZ THk25XlaX559RJ4c5ZlMeVpfntdTntaXp/XlmUx5Wl+e11OeyZTn9ZRnH5En R3n2EXlylKf15ZlMeVpfntdTnsmUJ0d5JlNeIIduU2gy3bB7uKHh3dDwbmh4 N6TnhoZ3wxS6IT037B5u2IrfMIVuBCrT+1SfmtKn1I46UQ/6nAbRlzSaxtIU mkHf0jJaQRtoE22n3XSATtAZSqELdI1uUWgK3bRxuKnN3dTmChthSE/Tc1SM XqSSVIEqUiWKonrUhKKpLXWk7hRDX9BwGkUJNJmm0xxaSstpPW2kbbSL9tNx Ok1nKZWuUj7dodBLKd/GIV+Hy9fh8nW4fDnK1+HyzZ58Ocq3cci3C883e/Ll KN/sybcLz9fh8m0c8uUo3+zJ1+HyvY/ydbh8HS7f7MnX4fK9j/LNnnzvo3wb h3w5yrdxyJejfB0u3+zJ1+HyvY/yzZ58Oco3e/ID2XSTCij0Prpl43BLh7ul w93S4QoTGFJRep6KUQmKpHeoIlWhutSIWlM0taeu1JcG0FAaQXE0iaZSIi2m pbSW1lMy7aC9dJRO0mk6R1l0g25T6FV0257htg53W4e7rcPdlqjbOtxt8+i2 RN22Z7htA37bPLotUbcDlakONaRW1IbaURfqQ/1pCH1JsTSRptBsWkRL6Dta R1toO31PR+gEnaIUyqQ8ukWht1CB7UKBNlegzRVocwUSVaDNFZhMBRJVYLtQ YANeYDIVSFSByVRgA16gzRXYLhRIVIHJVKDNFXgLFWhzBdpcgclUoM0VeAsV mEwF3kIFtgsFElVgu1AgUQXaXIHJVKDNFXgLFZhMBRJVYDIV2NwVBK5TPt2n 0GS6Y7twR8O7o+Hd0fDuyNYdDe+OGXVHtu7YLtyxC79jRt2RrTtm1B278Dsa 3h3bhTuydceMuqPh3fEquqPh3dHw7phRdzS8O15Fd8yoO15Fd2wX7sjWHduF O7J1R8O7Y0bd0fDueBXdMaPuyNYdM+qOzd0dr6I7ZtQdr6I7ZtRde4a7Wt9d re+u1ndXyu5qfXdNq7tSdtee4a6t+F3T6q6U3TWt7tqK39X67toz3JWyu6bV Xa3vrpfSXa3vrtZ317S6q/Xd9VK6a1rd9VK6a89wV8ru2jPclbK7Wt9d0+qu 1nfXS+muaXVXyu6aVndt7u56Kd01re56Kd01re7ZONzT/+7pf/f0v3tSdk// u2du3ZOyezYO92zF75lb96Tsnrl1z1b8nv53z8bhnpTdM7fu6X/3vJ7u6X/3 9L975tY9/e+e19M9c+ue19M9G4d7UnbPxuGelN3T/+6ZW/f0v3teT/fMrXtS ds/cumdzd8/r6Z65dS9wl0Jz6wf97wf97wf97wfZKkxlSM9QUXqJSlM5iqR3 qAbVpWbUglpTe+pOfWkADaYRlEATaDrNpfm0klbTetpMO2g/HaajdJLS6Spd pzsUmlv39b/7+t99/e++RN3X/+6bVvcl6r4txH0b8Pum1X2Jum9a3bcBv6// 3beFuC9R902r+/rffe+o+/rfff3vvml1X/+77x1137S67x113xbivkTdt4W4 L1H39b/7ptV9/e++d9R90+q+RN03re7b3N33jrpvWt0PFFBoWj3Q/x7ofw/0 vwcS9UD/e2BGPZCoB/YRD2zAH5hRDyTqgRn1wAb8gf73wD7igUQ9MKMe6H8P vKMe6H8P9L8HZtQD/e+Bd9QDM+qBd9QD+4gHEvXAPuKBRD3Q/x6YUQ/0vwfe UQ/MqAcS9cCMemCH98A76oEZ9SBwm+5RqP891P8e6n8P9b+HsvVQ/3toRj2U rYc2Ew/twh+aUQ9l66EZ9dAu/KH+99Bm4qFsPTSjHup/D72oHup/D/W/h2bU Q/3voRfVQzPqoRfVQ5uJh7L10GbioWw91P8emlEP9b+HXlQPzaiHsvXQjHpo r/fQi+qhGfXQi+qhGfVQ//sv/e+/9L//0v/+S8r+S/8r/H8Z0tNUjF6n0lSG Iqka1aJG1IRaUDR1pp4UQwNoKI2hBJpMiTSHltJyWkPrKZn20H46SEcplTLo KuXTHQr1v0f63yP975H+90jKHul/j8ytR1L2yLbikZ35I3PrkZQ9Mrce2Zk/ 0v8e2VY8krJH5tYj/e+Rt9Uj/e+R/vfI3Hqk/z3ytnpkbj3ytnpkW/FIyh7Z VjySskf63yNz65H+98jb6pG59UjKHplbj2z9HnlbPTK3HnlbPTK3HgUK+9/D YJt4FPz1y3/8JqrC3wm4tXTh7wT817+C5T//lSzD/e7A//vHvPXjXwf/uyr8 29uB//3brGCH+VHw3++Z4L/bv/3P79r6n3/qevBPk58EgxgIrPvRz4IKVO3c rkWp/wj+1//+s18FAj/9VeDab/c/vmd7kP9W+JdffPV//1WD/xLtX30s8Lvp jwWq//tPAgd7/CQw5sJPAj/54KeB15N+Gjhe9PHAj4Y9HvxR8ePgH/rz4N+3 Cv7b/zj4//DJf/z9r4I//B/Mv3GkesuaFZr94495+R/3Ef/4+0H/uBkY/GNC fyv248cChX+hwC+C/0zyY78J+rfBM/gff/SQf/z914E//+OP+NE/fj0WCP+3 usE/9j+Cg/bnhf/Fj5J+XPj/p+Af++Nf/Pc//aPQ3xf+Rrf/9n//RreBP/rt P+5+FObux2Hu/i3M3WNh7n4S5u6nYe4eD3P3szB3/x7m7j/C3P2/MHc/D3P3 RJi7X4S5+2WYu1+FuXsyzN2vw9z9Z5i734S5+22YuyJh7n4X5u73Ye6eCnP3 hzB3T4e5+2OYu2fC3D0b5q7ov9wV/qgIGL4BFTfg0RgwkANqb8BDMmBIBwzp gCoc8LgMGNwB9ThgcAfU44AHZ8CiNGCsB5TngOdowKonYKEa8IkioAgEAqWo DJWjSHqHKlIlqkJRVJ1qUC2qTfWoATWjFvQJtaZoakvtqSN1pq7UjwbQFzSY htMIGkXjaAJNoqk0nb6mRJpDc2khLabltJJW00baTMm0jXbQLjpMR+kcpdJF SqfLlEFZlEPX6Qbdo/sUeq4U/rwP6cf0GP2Ufkb/QT+nX9Cv6Nf0G/o9/YH+ SM/Sn+jPVJz+Qi/TX+lVeo3eoDepLJWnt+hteo8qU1V6nz6gmlSHPqaG1JRa UitqQ59SO+pAnagbfU4DaQgNoy9pJI2msTSeJtJXNIVm0Cz6hubRAlpCy2gF raIk2kCbaAttpe20k3bTITpGKXSB0ugSXaFsuka5lEc36S49oNBztLAVhvRv 9BN6nP6dnqBf0n/Sb+kpepqK0nNUjF6kCHqFSlJpKkORVIEqUiWKompUg2pR XWpETagFfULR1JY6UmfqTjE0gL6goTScRtEYSqBxNIkm00xKpDk0n5bSclpN a2g9baRk2ka7aA8dpON0llLpIl2mDLpKOXSD8ukOhR72/2YK/Vvgx/RT+hn9 B/2cfkG/ol/Tb6gI/Z7+QH+iP9MLVJz+Qi/TX+lv9Cq9Rm/Qm/QWvU3v0ntU md6nD+hD+ojq0MfUmJpTS2pFbehTakcdqBN1oR70GfWnQTSEhtFoiqV4Gktf 0RSaQbNoNn1L82gBLaFllETf0TraQFtoK22n3fQ9HaATdIbO0wVKo0t0hTIp m67RTbpFBfSAQlPoMVPoMbPnMbPnMbPnMa+xx0yhx0yhx7zGHjOFHvMGK2yY IT1NRek5ep6K0Uv0CpWg16kUlaYyFEkV6B2qSFUoiqpRdapN9agRNaFm1IJa UzS1pfbUmbpST+pL/WgwDaXhNIbiKIEm0WSaStPpa5pLC2kxLaXltIbW0nra TMm0jXbQHtpL++kknaZzlErplEFZdJVyKJ9u030KvbJ+Yr79xHz7SeAx+in9 jP6Dfk6/ol9TEfo9/ZGepT/TC/QXepn+Rq/S3+kNKkvl6W16l6rSB/QhfUR1 qD41pKbUnFpRG2pHHagLdaNe1Ic+p0E0hL6kWIqniTSFptEsmk3f0jxaREto BX1H62gTbaHttJO+p310ilLoPKXRJcqkbMqlW1RAoY/YPzVTCidNSD+hf6f/ R0/QL+lJ+k/6Lf2OnqJn6Dl6norRixRBr1AJKkmvUykqRxXoHapIVSiKqlF1 qkG1qC41oCbUjD6h1hRNbak9daSu1J16Uwx9QYNpKI2gMRRHCTSBptJ0mkmJ NIfm00JaTCtpDa2l9bSRNtMO2kV7aT+dpNN0ls7RRbpMGZRFV+k65dNtukP3 KDRxHjdxHjdxHjdxHjdnHjdnHjdnHveietycedw76nET53ET53HvqMfNnsfN nse9rR43hR43hR73tnrcO+pxs+dxr6fHTaHHTaHHTaHHTaHHvageN48eN48e 96J6PFCZ3qcPqSZ9TPWpITWmptScWlIr+pQ6UCfqRj2oF/Whz2ggDaJhNJJG UyzF01gaT1NoGs2gb2gB/X882vf/zfX/x/H3T59vxgsH73He64RkZYVkJcnK 3nuHbNmyRWQk2SsrW/aeadh7ZUsaIiJbuVy+l34419+uf8C5XG7P++O8VtFq 2kibaSttp520m/bRATpER+gYnaOLdJl+ot/oJt2iP+ke/U2P6SlF19NLSveS 0r2kdC/F/B+loXQUUEbKQrEUpiSKUDbKSbkoH+WnwlSEilMJKkNlqTxVoCpU lWpSbWpITak5taa21IE6UlfqTr2oDw2goTScRtM4mkCTaDLNpLk0jxbRYlpO K2kNbaIttIN20X46SEfpOJ2lC3SJrtGv9Dvdpjt0n57QM4pe89JoTxrtSaM9 aWL+Ry9RespAmSgzZaU4SqRkSqWX6RV6lXJTXipAheh1KkpvUml6i96lilSZ qlENqkV1qAE1oibUjFpRG2pPnagb9aDe1Jf600c0hIbRGBpL4+kLmkIzaA59 SfNpIS2hZbSCVtFa2kibaTvtpN10gA7RMTpBZ+g8XaTLdJV+od/oJv1Jd+ke /U2P6Sk9p+gNL632pNWetNqTVnvSKk5axUmrOGmtrLTak1Z70lpZ/70co0qi FIpQNspBuSgPFaTCVISKUXEqQaWoDJWl8lSBKlF1qk11qT41pqbUnFpSa2pL 7agzdacPqRf1oX40kAbTUPqUxtEEmkSTaSpNp9k0jxbQUlpOX9M62kCbaAtt ox20i/bQfjpIh+k4naTT9CNdoCt0g36lP+gO/UUP6BE9o+jVL536pdO8dJqX TvPSxaSlDJSJMlMcJVAypVJ2yk15qQAVoqL0BpWk0vQ2vUMVqTJVoxpUh+pR I2pCLagVvU9dqAf1pL7UnwbREBpDY+kz+pym0DSaRfNpIS2hZbSa1tNG2krb aTd9Q/voEB2hE3SKztF5ukxX6Wf6hW7RXbpHD+k5RduTXnvSa0967UmvPelj 0lBGClEWiqcwJVEKRSgb5aBclIfyUX4qSIWpGBWnElSKylEFqkRVqCrVpLpU nxpSY2pKzakltaV21JU+pF7Uh/rRABpIg2k0fUrjaCJNpek0k+bRAlpEi2kp Lac1tI420BbaRntoL/1Ah+konaTTdJZ+pEt0ja7TDbpNd+gvuk8P6BE9o3/o BUVvfYHiBPZWoD2B9gTaE2hPoD2B9gTaE9hbgQoFKhRYXoEeBXoUWF6B5RVY XoEyBa5+gUYF9lagUYFGBZZXoFaBWgVqFahVYI0FahW4+gWWV6BWgVoFNlig W4HlFehWoFuBDRbYYIHlFShYoGCBDRYoWGB5BVoWaFngwheoWmB5BaoWqFqg aoGqBdZYYIMFqha48AX6Flhegb0V6Fugb4HlFShdoHSBvgW+mQj8bxXoW2CD BUoXKF1gjQWaF1hjgVtfoHSBvRWoWmBlBVZWYGUF+ha48GVQugxKl0HfMuhb hph0FFBGClEWiqUwJVGEslFOykf5qQgVpxJUhspSeapCVak21aeG1JSaU2vq QN2pF/WhATSQhtIoGk0TaBJNpuk0k+bSIlpMK2kNraNNtIV20F76jo7ScTpN Z+kCXaPrdJvu0H16QE/oBUVbkVErMmpFRq3IqBUZtSKjVmSMSU8ZKDNlpThK oERKplR6mbLTK/Qq5aXXqAC9TkXpDXqTStJb9A69S5XpPapGtagO1aMG1Iia UDNqQa2oDX1A3agH9aTe1Jf600c0iIbRSPqExtNn9AVNoxk0i+bQQvqKltAq Wk1raT1tpM20k76l7+kYnaBTdIbO0Xm6Sj/Rz3SL7tI9+pse0mN6Sv9StCmZ NCWTpmSynjJpSiZNyaQpmfQjk35ksp7+e9VFlUQplI1yUC7KQ/koPxWkwlSM ilMJKkVlqCyVowpUiapSdapJdak+NaTG1JRaUlvqSF3pQ+pD/WgADaTBNJw+ plE0jibSJJpMU2kmzaYFtIgW01L6mtbQBtpEW2gX7aXv6Ac6SsfpJJ2ms/Qj XaFrdIP+oL/oAT2iZ/QPvaBo/ULqF9K8kOaFlC6kdCGlCyldSOlCShdSupC+ hfQtpGohVQu50oVULaRlIVe6kJaFtCykYCG7J2T3hGIqUjWqQXWoHjWiJtSC WtH71Im6UA/qSX2pPw2iITSCRtJY+pym0CyaQ/NpIS2hZbSKVtN62khbaTd9 Q9/TPjpCJ+gUnaPzdJmu0i90k+7SPXpIj+k5RTuTWV0yq0tmdclsu2TWmcw6 k1lnMsdkpBDFUjyFKYlSKELZKAflpFyUhwpSYSpCxag4laIyVJbKUQWqRNWp JtWmulSfGlJjakrNqTW1o87UnXpRH+pHA2gwDaXh9DF9ShNpEk2mqTSTZtNc mkcLaCktp5X0Na2hdbSBNtE22kM/0H46TMfpJJ2ms/QjXaBLdIV+pd/pDt2n B/SIntAzijYqix5lscay6FEWGyyLMmVRpizKlCUmE2WlOEqgREqll+kVepVy U14qQIXodSpKb1JJKk1v0Tv0LlWmalSDalEdakCNqAk1ozbUnjpRF+pGvakv 9aePaAgNoxE0ksbQZ/QFTaMZNIe+pPm0jFbQKlpL62kzbafd9A3towN0iI7R CTpFZ+g8XaTL9Bv9SX/TY3pKzynat6z6llXfsqpaVlXLqmVZtSyrlmWNyUKx FE9hSqIIZaOclIvyUX4qTEWoBJWhslSeqlBVqkm1qT41pKbUnNpSB+pIXakX 9aEBNJCG0nAaRaNpAk2iyTSd5tI8Wk4raQ2toy20g3bRXtpPB+koHafTdJYu 0CX6lX6n23SfHtATekYvKLpiYlUjVjVi7ZlY/YjVj1j9iFWNWNWIjclMWSmB EimZUullyk6v0KuUm16jQvQ6FaU3qSSVprfobXqH3qX3qAbVojpUjxpQI2pC zagFvU8fUBfqRj2pN/Wlj2gQDaFhNII+ofH0OU2haTSD5tCXNJ+W0QpaRatp La2nrbSTvqUDdIiO0DE6RWfoHJ2ni3SZfqGbdIvu0UN6TE/pOUWvdHHqEmc9 xelMnM7EWU9xihOnOHGKE6c4cTrz37stqiRKoWyUg3JSLspD+Sg/FaTCVISK UXEqRWWpHFWgKlSVqlNNqk11qT41pubUktpRB+pInak7fUi9qB8NpME0lIbT xzSKRtM4mkhTaSbNprk0jxbQUlpOK+lrWkMbaBvtoF30He2ng3SYjtJJOks/ 0gW6RFfoBv1Bf9EjekLP6B96QdEOxutgvPrFq1+85sXbTPGaF6958ZoXHxNH iZRMqZSdXqHclJcKUCEqSm9QSSpNb9M7VJEqUzWqQXWoHjWiJtSCWlF76kQ9 qCf1p0E0hEbQSBpDY+kzmkLTaBbNofm0kJbQMlpFq2kjbafd9D3to0N0hE7Q OTpPl+kq/Uw36RbdpYf0mJ5TdO0kWDsJepSgRwl6lKBCCSqUoEIJKpSgQgkx sZREKRShbJSDclIeykf5qSAVo+JUgspQWSpH5akSVaXqVJvqUn1qSE2pJbWm dtSBOlJn6k4f0gAaSINpKH1Mo+hTmkCTaTrNpNm0gBbRYlpKK+lrWkObaBvt oD30Ax2kw3SUjtNZ+pEu0BW6Rtfpd7pNd+gBPaIn9A+9oGhTwhZVWFPCmhK2 qMLqElaXsG0V1pmwzoR1JqwzYZ0J60xYZ8K2VVhxwooTtq3C2hPWnrCVFVah sAqFVSisQmF7K2xbhbUnbFGFYypSZXqPqlENqkV1qB41oGbUitrQ+/QBdaFu 1IN60kc0iIbQMBpBI+kTGkNjaTx9QTNoFs2hhfQVLaEVtIpW01raTFtpJ31D 39M+OkCH6AgdozN0js7TRbpKP9Fv9Cf9TQ/pKT2nfym6vBI1L1HzEpUu0fJK VLpEpUvUt0R9S4yJpzClUISyUU7KRfkoPxWmIlScSlAZKkvlqQJVoapUk2pT fWpIzak1taUO1JG6UnfqRQNoIA2l4TSKRtM4mkTTaSbNpUW0mJbTSlpD62gL 7aK99B3tp4N0lI7TaTpLF+gSXaPr9Cvdpjt0nx7QM3pB0UYl2T1JapWkVkka laRRSRqVpFFJGpWkUUkalaRRSTEJlEovU3Z6lXJTXnqNCtDr9Aa9SSWpNL1N 71JFqkzvUQ2qRfWoATWiFtSG3qf21Im6UDfqTf3pIxpEw2gEfUJjaCyNp89p Gs2gWfQlLaSvaAktoxW0ltbTZtpKu+lb2kcH6AgdoxN0is7QRbpMV+kn+pl+ oVt0l+7R3/SUntO/FK1Qsgol21vJKpSsQsmWV7IeJetRsuWVrEfJevTfOzCq FIpQNspBOSkX5aF8lJ8KUmEqQsWoBJWiclSeKlAlqkJVqTrVpNpUlxpSY2pJ rakttaPO1JW6Ux/qRwNoMA2l4fQxjaLR9ClNoIk0labTbJpHC2gRLaaltJzW 0QbaRNtoD+2l7+gH2k8H6TAdp5N0mi7RFbpON+gP+ovu0xP6h15QtIMpOphi oaVoXormpShditKl6FuKvqXEJFIypdLLlJ1eodyUlwpQISpKJak0vUMVqTJV oxpUhxpRE2pF71N76kRdqAf1pf40hEbQSBpDY+kzmkLTaA7Np4W0hJbRetpI 2+kb+p720SE6QafoMl2ln+kXukl36R49pucULUmqfqTqR6p+pOpHqn6k6keq fqTqR6plk6okqUry3y83qiRKoWyUg3JSLspD+aggFaYiVIxKUCkqQ+WoPFWg SlSFqlJ1qk11qTE1pZbUmtpSO+pAHakzdaUPqQ/1o8E0lD6mUTSaPqVxNIEm 0mSaSnNpHi2gxbSUltMG2kQ7aA/tpe/oBzpIh+k4naTTdImu0DW6TjfoV/qd 7tBfdJ8e0TP6h6JNiShJxKKKWFQRiyqiLhF1iVhUEXWJ2FERdYmoS0RdIkoS UZKIHRXRlIimROyoiLpE1CViUUUsqohFFdGZiAtfxKKKWFSRmIpUmd6jalSD alE9akLNqAW1ofb0AXWibtSTelNf6k+DaBiNoJH0CY2l8fQ5fUFT6EuaTwvp K1pCy2gFraeNtJl20m76lr6nfXSAjtAxOkGn6Axd/H+27ivW6jJfA/COTCYn k8nJZHIymRyGoe3FZrHYde1NR5ogCNIEQZogCIIgTZAmgoD03jv2Qkd6RzqC INJReu/NOuccz7cv1nMxWRevPn4xXmHe3/tnJ9A5ukBX6BrdoXv0iJ7QL/Qb 5S+q/D8WbnjX/D8WbniBCQV+eWpCgcYFnirQo8CA8NcBBYaHlwHhnzY/NatA x+BZBWoXuBde8v/NVgVmFfhzgXyvCu/5f75UkfB/8L//mVNFk7wVS/JWPMlb apK3SJK3Ekne0pK8lUzyFk3yVirJWyzJW+kkb+lJ3jKSvGUmectK8pad5C0n yVs8yVtukre8JG9lkryVTfJWLslb+SRvFZK8VUzyVinJW+Ukb08neavyb2/5 v6KLuOyK+D5dxGVXxGVXxD1XxD1XxBVXxBWXvzUSKkiFqCgVpwilUYzSKZvi VJYqUxWqQTWpDtWlBtSUWlJrakftqRN1pu7Um/pQfxpIQ2kEjaSxNJ4m01Sa TwvpQ/qYPqfFtJLW0DraQjtoJ+2lQ3SYvqPjdJrO00W6StfpNt2lx/Qz/UqJ vV3UbVQ05Q/0R/oP+hP9mf6T/kJ/pf+iv9Hf6b/pH/RPKkKpVIJKUmnKoCzK oVwqQ+XoaapK1ekZqkW16TmqR/WpIb1IragNtaUO1JFeoy7Ug3rRmzSAhtC7 NJzeo1E0hsbRBJpEU2geLaBF9AF9RF/QElpBa2k9baattJ2+ol20h/bRQfqG jtEJOkXn6AJdoit0jW7QLbpDj+gJ/USJu6qY7imme4r5vlBMCxXzVaGY7inm W0Ix3VPMF4T8dZJQQSpEhak4RSiNohSjdMqkOOVReapMVaga1aBnqQ7Vpeep ETWjltSaXqZXqRN1ptepJ/WmPtSfBtI7NIxG0mgaTxNpMk2luTSf3qcP6WNa TEtpOa2jDbSJttEO2k376Ws6RIfpOJ2kH+giXabrdJNu00P6kRL9ln/zJ/QH +iP9if5Mf6G/0t/o7/QP+icVoWKUSiWoJJWiDMqiXCpDFagSVaXqVItqUz2q T42pObWgNtSWOlBH6kJdqQf1or7UjwbRYHqXhtMoGkMTaBJNozk0jxbRB/QJ LaFltJ420lbaTrtoDx2gg3SETtAp+p4u0RW6QbfoAT2hRH+k6opUXZGqK1It llSLJVVrpGqNVNslVX+k6o/8X+EJFaLCVJSKUxpFKUbplEnZFKc8KksVqQpV oxpUk56lOlSXnqcG9AK9RK3pZWpH7elV6kSvUzfqTj2pN71Fb9NQGkEjaTSN pfE0kSbTdJpNc2khvU8f0qe0lJbTBtpEW2gb7aCdtJf209f0LR2nk3SaztJF ukxX6TrdpNt0nx7Tj/QzJbZVRB9FrKyIZopopoiVFbGoIvooYkdFNFNEM0Xs qIiOiuioiI6K6KiIPoroo4gdFdFHEespoo8iNlNEM0U0U8SOiuioiI6K2FGR lFr0HNWnhtSEmlMLakVt6RXqQK9RV3qDetCb1Jf60SAaTEPoPRpD42gCTaIp NINm0RxaQIvoI/qMltAyWkHraSNtpq30Fe2jA3SQjtIxOkVn6AJdoWt0g27R HbpHj+gJ/UKJn+QpYTOV0IMltF8J7VdC+5XQfiV0Xgmdl3/BJVSQClNRKk5p FKUYpVM2xakslafKVIVqUE2qQ3WpATWiptSMWlI7ak+dqRt1pz7UnwbSOzSC RtJYGk+TaSrNpNk0nxbSx/Q5LabltJLW0SbaQjtoJ+2l/XSIvqPTdJbO01W6 TrfpLj2kx/QrJX6nM03PpOmZNO2Spl3SLKA0CyjNAkrTOGkaJ03jpOmZND2T pmfS9EyanklLSaUSVIpKUwZlUQ7lUjmqQJXoaapOz1Atqk31qCE1phepBbWi tvQKdaAu1JXeoB70JvWlATSYhtBwGkVjaBxNoCk0jWbQLJpHC+gT+oJW0Cpa SxtpM22l7bSL9tA+OkDf0FE6RqfoDH1P5+gKXaMbdIfu0QN6RL9R4md/Smqc khqnpOVVUuOU9JWupJVVUuOU1Dglraz8Gy2hglSIClNRKk4RilKM0imT4pRH Zak8VaTKVIWqUQ2qSc/S89SIXqCm1Ixeotb0MrWj9vQqvU7dqDv1pN70FvWn gfQ2DaVhNJrG0niaSFNpOs2k2TSX5tOn9DktppX0Ja2hDbSJttA22k176Ws6 TN/ScTpJZ+kHukxX6TrdpNt0l+7TQ0r87E9UD0atrKjOi+q8qM6L6ryopova VlFNF9V0Uf0W1W9R/RZNKUmlKYOyKJfKUAWqRFWpOtWi2lSfGlMTak5tqC11 oI7UhbpSD+pF/WgQvUujaAxNoEk0jWbQHJpHn9ESWkWraT1tpK20nXbRHjpI R+gEJdolOvSplJR3Q4aFDA8ZEfJeyMiQUSGjQ8aEjA0ZFzI+ZELIxJBJIZND poRMDZkWMj1kRsjMkFkhs0PmhMwNmRcyP2RByMKQRSHvh3wQ8mHIRyEfh3wS 8mnIZyGfh3wRsjhkScjSkGUhy0NWhKwMWRXyZcjqkDUha0PWhawP2RCyMWRT yOaQLSFbQ7aFbA/ZEfJVyM6QXSG7Q/aE7A3ZF7I/5EDI1yEHQw6FfBNyOORI yLchR0O+CzkWcjzkRMjJkFMhp0POhJwN+T7kh5BzIedDLoRcDLkUcjnkSsjV kGshN0L+9/fff78Z/n4r5HbInZC7IfdC7oc8CHkY8ijkcciTkB9Dfgr5OeSX kF9Dfgv5V8j/5P83Q/4v5PeQ0PUprouoL7dRd0bUdRG1bKOui6jrIuqmiLop SrkpSrkpSrkpSrkpSrkpStmzpezZUu6MUu6MUq6L/Cs8oYJUiApTcYpQGqVT JmVTHpWl8lSRKlMVqkY16VmqQw3oBWpKzeglak0v06vUiTrT69SNelJveov6 00B6m4bSMBpJo2ksTaTJNJWm00yaTXPpU/qcltKXtIbW0QbaQttoB+2k3bSX DtFh+paO00k6Sz/QebpIl+km3aa7dJ8e0q+UWNQxl0TMoo5Z1DGLOuamiPly G3NdxOzomOsi5rqIWdQxd0bMnRGzqGMujpiLI+biiLk4Yi6OmIsj5uKIWdQx t0fM7RGzrWOukJgrJGZbx1KqUnV6hmrTc9SQGlMTepFaUCtqQ22pI71GXegN 6kG96E3qSwNoMA2h4fQejaJxNImm0DSaQbNoDs2jT+gLWkaraDWtpfW0mbbT V7SL9tE3dJSO0Sk6Q+foAl2iG3SL7tA9ekCP6BdKfNctrRFLa8TSvuuW1n6l tV9pizr//4mEClJhKkoRSqMoxSiTsilOZak8VaYqVIPqUF1qRE2pGbWk1tSO OlFn6k69qQ/1p4H0Do2gkTSeJtNUmkmzaT59TItpOa2kNbSONtEO2kn76RAd pu/oNJ2ni3SdbtNdekiP6WdK/M5fuv5I1x/pNmm6JknXJOmaJF2TpGuSdE2S rknSNUm6JknXJOn6I11/pOuPdP2Rrj/SU0pRFuVQLpWhclSBKtHTVJWq0zP0 HNWjhtSYmtCL1JxaUCt6hTrSa9SF3qAe9Cb1pX40iAbTEBpO79EEmkRTaBrN oFk0hxbQR7SEVtBqWkvraSNtp69oFx2gg3SEjtIxOkVn6BxdoEt0jW7RHbpH j+gJJX7uJUMvZFhKGZZShqWUoSsydEWGpZRhKWVYSvmXVEIFqRAVpqJUnNIo SjHKpjjlUVkqTxWpMlWhalST6tLz1IBeoGb0ErWk1tSeXqVO1Jlep27Uk3pT H3qL3qahNIxG0EiaSJNpKk2nmTSb5tJC+pCW0nJaSV/SGlpHG2gb7aCdtJu+ pm/pOJ2ks/QDnaeLdJmu0k26TXfpPj2mxM+4ZGq1TF2WqcsyfWnN1GWZGizT l9ZMDZapwTL1VqYFlKm3MvVWprbK1FaZKaUpi3Iol8pQBapEVak61aJ6VJ8a UxNqTi2oDXWgjtSFulIv6kv9aBANpndpOI2iCTSJptEMmkPzaBF9QMtoFa2m 9bSRttJ22kV76AAdpCN0lE7Q93SOLtEVukG36B49oCeUaJcs+yNLz2TpmSxL JEvjZGmcLO2SpV2yrJMsPZP/KzehQlSYilJxilAaRSlG6ZRJccqjslSeKlJl qkLVqAY9S89TA2pETakZvUQt6WVqT6/S69SNelJv6kNvUX8aSO/QUBpGo2k8 TaTJNJWm00yaS/PpfVpKy2klfUnraANtoi20jXbTXtpPh+gwfUfH6SSdpR/o Ml2l63ST7tNDekw/UmJbZdtR2Ron23rK1j3Zuidb92Trnmw7KlsLZVtP2Voo Wwtl21HZWijbesrWQtlaKDslg3Iol8pQOapAlehpqk7PUG2qR/WpIb1IzakF taK29Ap1oI7UhbrSG9SD3qR+NICG0Ls0nMbQOJpAU2gazaBZNI8W0CL6gJbQ ClpFq2ktbaTNtJX20D76ho7RKTpD39M5ukRX6BrdoAf0iH6ixFe1HF2Wo8ty NFiOBsuxlHIspRwNlqPBcqyiHG2Vo61ydFSOjsrRTDmaKUcz5aRkU5zyqCyV p8pUhWpQTapDdakBNaKm1IxaUmtqR+2pE3WmbtSdelMf6k8D6R0aSiNoLI2n yTSVZtJsmk8L6UNaTMtpJa2hTbSF9tJ+OkSH6Ts6TqfpLJ2ni3SVrtNDekw/ 06+U+EoXt2fi9kxcu8S1S1y7xH2bi+uUuE6J65S4TonrlLhOieuUuI0T1y5x 7RK3duLaJa5d4ilZlENlqBxVoEr0NFWlZ6gWPUf1qSE1pib0IjWnVtSG2tIr 9Bq9QT2oF/WlfjSABtFgGkLv0ns0hsbRJJpC02gWzaEFtIg+oi9oGa2gVbSa 1tJG2kxbaQ/towN0kI7QUTpBp+gMXaArdI1u0AN6RE/oF/qNEr+3k2tH5Wqh XC2Ua0fl6qNcfZRrW+VqplzNlGtb5d9eCRWiolSc0ihKMUqnTMqmPCpL5aki VaFqVJOepTpUl56nRvQCNaWXqDW9TO2oPXWiztSNulNPeosG0tv0Dg2jkTSa xtJ4mkiTaTrNprk0nxbS+/QxfU5LaTl9SetoA22iLbSNdtN++pq+pZN0ms7S ebpIl+kqXaebdJ8e04/0K/2LEj/tkKcH8/Rgnh7M0355tlWebZWnB/O0X57v ennaL0/75em8PJ2Xp+nyLKo8TZen6fI0XV5KLpWhclSBKlFVqk61qDbVo8bU hFpQG2pLHagjdaGu1IN6UV/qR4NoMA2nUTSGJtAkmkFzaB4tog/oE/qMltAy WkWraT1tpK20nXbRATpIR+gonaBT9D2do0t0hW7QLbpHT+gn+o0SP5tXxnoq Yz2V0WBlNFgZvfX/bN1XrNR1n8dxIpu9ei42e7HZhHUJj0tYH8K6xAeH+c8M M5w5c/5nzpyhN+lNkN6RJk2qUkRRivTeiw27FKVJU4qCSBMrgigK1s16zM7r YjMxMS9/1ye+/58vJOcB3XpAtx7QrQc0qupnuKAaVJNq0T1Um+6lulSP7qP6 dD81oCjFKEGNKU0hZSlHeWpOLak1daBO1IW60UPUjwbREBpGI2g0jaVHaQJN pek0k2bTXFpAz9FSWkmraT1tpq20k16iXfQqvU17aB8dovfoKB2nk3SaPqSz 9Aldpk/pK7pG1+lHukO/0u9U2GURt76IHkWssYgeRfQoYpdFlCmiTBFliihT xEKLWGMRPYrYYBFliihTxBqLaFREoyIaFdGoiDJFlCmiTBFrLKJMEWssUq2M yqmCmlAzakGtqA11pM7UlbpTT+pFfak/DaShNJzG0DgaTxNpGs2gx2kWzaEn aSEtpiW0jFbRGlpHG2gTbaEd9DK9Qq/RbtpLB+kIHaNTdIbO0Xm6QJfoCl2l r+kbuk0/0S/0GxV2WUOla6h0De2yhqrWUNUa2mANbbCqn/qCalBNqkW1qQ7V pXpUn+6nBhShGCUoSWnKUJZy1JSaU2tqSx2oE3WjHtSb+tAAGkYjaDSNpQk0 iabSdHqCZtM8WkRLaTmtprW0kTbTdnqJdtHrtIf20QE6SsfpJJ2mj+kiXabP 6Bpdpzv0M/1OhfZEbaGoCkVVKKpCURWKqlBUhaIqFHUdjGpPVHui9lHUPora R1EViqpQVIWiKhRVoagKRVUoqkLRag9QnBpRikqpjMqpgiqpCTWjNtSO2lNH 6kzdqSc9TP1pIA2l4TSSRtEYGkcTaTJNoWk0gx6nWfQULaTFtIxW0BpaRxto E22jF+lleoXeoN20l96h/XSEjtEJ+oBO0Rk6R+fpAl2iz+lr+oZu0E/0C/1G hR4FehTYW4G9FdhbgTIFyhTYW4FGBRoV2GCBRgXuhIG9FWhUoFGB5RWoVaBW geUV6FagW4FuBboVqFWgVoHlFehWoFuBDRboVmB5BQoWKFigW4E7YaBggeUV KFigYIENFmhZoGWBXRbYZYFdFqha4HYY6FtgjQWqFrgdBvoWWGOBvgX6Fvgz r8AuC+yyQN8CuyxQukDpAgst0LxA8wJbLXAxDNQvsNACd8LAVgvUL3AxDCy0 QP0CF8NABwO7LLDLArssUMRAEQN3wsBCCxQxcDEMtDHQxsBCC1QyUMmYSsbc CWOKGFPEmA7GrLGYNRZTv5j6xWywmObFNC+mdDGli+lbTN9i1RpSI0pRCZVR OVVSE2pB7ag9daWe1Iv60mAaSaNoPE2mKTSDHqc5NJ+epSW0glbROtpAW+h5 epFeo7foHdpPh+kEfUAf0Xm6QFfoS7pBN+k2/UKFasS1Iq4Vca2IWzFx1Yir Rlwr4loR14q4VsS1Iq4Vccsmrhpx1YirRlw14qoRV424asRVI64acdWIq0a8 WpSS1JjSlKGQspSjPDWlltSWHqQO1IW60UPUm/pQPxpEQ2gEPUKjaQJNosdo Kk2nmfQEzaVnaCmtpNW0ltbTRtpMW2knvUCv05v0Nu2jd+kAHaLj9D6dpA/p LH1Mn9BF+pS+oK/oW/qOfqSf6Vf6nQr9SOhHwspKWFkJKyuhKQnbKqEpCU1J WFkJKythZSXUJeHWl7CyElZWQnESipOwshLak9CehJWV0J6E9iSqBZSiEiql cqqgSmpCzagVtaF21J46UmfqTj2pFz1M/WkgDaXhNJJG0RiaSJNpCk2jGTSL nqT59CwtoxW0itbQOtpAm2gb7aDn6Q3aTXtpPx2kY3SCPqBTdIbO0Xm6RFfp c/qabtL39AP9RL/Qb1TYVo30spFbXyO9bKSXjSyqRtrYSBurvrMKqkm1qDbV obpUj+rT/RShKMUoSY0pTRnKUo6aUnNqTW2pA3WiHtSb+tAAGkYjaDSNpQk0 iabSdJpN8+hpWkDLaTWtpY20mbbTTnqd3qQ9dIAO0VE6TifpNJ2lj+kyfUbX 6Du6RXfoZ/qdCsVJ6kxSZ5K2S1JxkoqTVJyk4iQVJ6k4SXsmqT1J7UkqTlJx kjZOUnuS2pPUnqT2JLUnqT1J7UlaQEntSWpPslqcGlEJlVIZlVMFVVIzakGt qA11pM7UnXpSL3qY+lJ/GkhDaTiNoXE0nibSZJpC02gGzaGnaCEtoxW0itbQ OtpAm2gLbaMd9Bq9RbtpL+2ng3SYjtAxOkVn6CM6R+fpCl2lz+kb+p5+oNv0 E/1GVRWq+q1xN/pV/da4q3ctrP736ndVn1N98J+/K25O9f1//ia55+8a/Odv jJtSvbz6X6pP+eOfv/3x31P+/B1yc6ovu2vVH/++elfVb/JKFfntXo2LvJUU eUsXeSst8pYp8lZW5C0s8lZe5C1b5K2iyFuuyFtlkbd8kbcmRd6aFnlrVuSt eZG3FkXeWhZ5a1XkrXWRtzZF3toWeWtX5O3BIm/ti7x1KPLWschbpyJvnYu8 dfl/b1U/0SlfUylfUyl3iJTvqpTrQ8r1IeX6kPJdlXJzSLk5pHxhpXxhpdwc Ur61Ui4NKd9aKd9aKZeGlG+tVLUGFKUYJagxpSlDIWUpR3lqTi2pNbWlDtSJ ulA3eoj6UD8aRENoGI2gsfQoTaDHaCpNp5k0l+bR07SIltJKWk1raT1tpq20 nXbSq/Q27aN36RC9R0fpJJ2mD+ksfUKf0hd0nb6jW/Qj3aFfqfAVV/X/8YL+ gf6R/kL/RP9M/0L/Sv9G/05/pf+g/6S/0X/Rf9Pf6QEKKE6NKEWlVEblVElN qAW1onbUnjpTV+pJvagv9afBNJRG0jgaT5NpCs2gx+lJmk+LaQmtoFW0jjbQ FtpGz9Mr9BbtpnfoMB2hD+gMfUQX6ApdpS/pBt2kH+g2FbZ6iX6U6EeJfpTo R4l+lFjoJRZ6iZKUKEnV139Bd1MtuodqUx26l+pSPbqP6lMDilCMEpSkDIWU pTw1pebUklrTg9SFulEP6k19qB8NoEE0hB6hsfQoTaBJ9BhNpZn0BM2lefQM PUfLaSWtprW0njbSZtpK2+kF2kVv0h7aR+/SIXqPjtL7dJo+pLN0kS7TZ/QV fUu36Ee6Q4VrQVpT0m4EaXVJq0vajSDtRpB2I0i7B6TVJe0KkNaZtM6kXQbS ipNWnLTLQFp70u4BacVJuwKkFSftCpDWnrT2pLUnrT1p7UlXK6NyqqAm1Ixa UCtqQ+2oPXWmrtSdHqb+NJAG01AaRWNoHI2niTSZptHjNIvm0FP0LC2mJbSM VtAa2kCbaAttox30Ir1Mb9Be2k8H6TAdoWN0gk7RGfqIztEl+py+pht0k76n H+g2Fe4BpTZTqeaVKl2pC3Sp0pUqXanSlSpd1U9zQTWoJtWi2lSH6lI9qk/3 U4SilKAkNaY0ZSikLOWoKTWn1tSWOlAn6kY9qDf1oQE0iIbRaBpLE2gSTacn aDY9TQtoES2l5bSa1tJG2kzbaSe9RK/THtpHB+gQHaXjdJJO01n6mC7SZfqC rtF1+o5u0R0qNCqjURmNyuhRRo8yFlDGAspYQBkLKKNMGWXKKFNGmTJ6lNGj jB5lbKGMLZTRo4wtlNGjjB5l9CijRxk9ylQroVIqpwqqpCbUjFpQG2pHHakr daee1Iv6Un8aSINpOI2iMTSeJtJkmkGzaA7Np4W0hJbRKlpHG2gTbaEd9Dy9 SC/Ta7Sb3qH9dJCO0Qn6gE7ROTpPF+gKfUnf0E36nm7TT1TYVmWKU6Y4ZYpT pjhlVlaZ21yZHVX1rVRQDbqbalItuodqUx26l+6j+6kBRShKMUpSY0pTlnKU p6bUnFpSa2pLD1IH6kRdqAc9RP1oAA2iITSCHqHRNJYepQk0iR6jmfQEzaa5 9AwtoEX0HC2l5bSS1tNG2kxbaSe9QLvoVXqb3qUDdIiO0nF6n07Sx/QJfUpf 0TW6Tt/Sd3SLfqSfqXDXC1UttLdCeytUtVDVQlULVS20t0ItC7UstK1CLQsV LFSw0KIKdSu0qELdCnUrVKtQrUK1CjUq1KhQo0JlCm2mUJlCSym0lEI9CvUo 1KNQj0IVCu2j0L0u1KPQPgr1KFSh0OUutIpCFQpd7kJbKLSFQj0KLaBQhUIV CrUntHtC7Qm1J3S5C13uQsUJFSe0dkJrJ1ScUHFCdQnVJXSvC+2Z0J4J1SW0 YkIlCf1ZZrmmlLvXlStJuZKUWzHlVky5FVOuLlXfOwXVoLupJtWie6gO3Ut1 qT41oAhFKUYJSlJjSlOGcpSnptSSWtOD1IE6URfqQQ9Rb+pD/WgADaFhNIIe obH0KD1GU2kmPUFzaR49QwtoET1Hy2klraX1tJG20nbaSS/QS7SLXqU3aR+9 SwfoPTpO79NJ+pg+oYv0GX1F1+g6fUu36Ef6lQp/4yerKVlLKasuWXXJWk9Z dcm65mVd87I2U9ZmyupMVmeyNlNWcbKKk7WesoqTdc3L2kxZ7clqT9Z6ympP 1mbKqlBWhbIqlK1WRhVUSU2oGbWgVtSG2lF76khdqTv1ooepLw2koTScRtIo GkPjaDxNoWk0g2bRk/QUzaeFtJiW0DJaRWtoHW2ibbSDXqSX6TV6g/bSO3SQ DtMROkYn6AM6RefoAl2iz+lL+oZu0E36nm7Tb/Q//6cKlaywvCosrwptrNDG Cne9qp/hgmpQTapFtaku1aP7KUJRSlCS0pShkLKUozw1pebUmtpSB+pE3ag3 9aFBNIxG0GgaSxNoKk2n2TSPnqYFtIiW0mpaS5tpO+2kl2gXvU57aB8doqN0 nE7SaTpLF+kyfUHX6Dp9R3fodyr8nYSczuR0JqczOZ3J6UxOZ3L2TE5xcoqT s2xy2pPTnpz25LQnpz057clpT05xcu51Oe3JaU9Oe3Lak7OAciqUU6GcCuW0 J1etjMqpgppQM2pBbagdtaeO1Jm6UnfqRQ9TXxpMQ2k4jaRRNIYm0jSaQXPo KZpPz9JCWkxLaBmtojW0hbbRDnqeXqSX6RV6jd6g3bSXDtJhOkLH6BSdoY/o El2hz+lL+pq+oRt0k76nn6jQmUqdqdSZSrus0i6rtMsqFafSra/SLqu0y6q+ nwq6m2pSLbqH6lA9uo/qUwOKUowSlKTGlKGQstSUmlNLak1t6UHqRF2oBz1E vakP9aMhNIxG0CM0msbSJJpK02kmzaV59DQ9QwvoOVpOK2k1raWttJNeoF30 Kr1Jb9MeOkDv0VE6TqfpQ7pMn9Jn9BVdo2/pFv1Mv1Ohb3mLKq9veX3Lu9Ll tSzvNpfXsryW5RUsr2B53crrVt6VLq9WeVe6vFrl1SqvUXmNyitT3j7KVyuj cqqgJtSMWlArakftqTN1pZ7Ui/pSfxpMQ2kkjaJxNJmm0Ax6nJ6k/2XrzoKk Lvc7Dk9JLlKpVC5ylYoxHssQYhnLIhxDPIZDDAHZnJ6enp5+u3u6e5ieZt83 ZV8E2Xdkk00QZJNNNtkE2XHDBQVFVARBUdxAlhOr4pyqfi5SfYNPvddTfP7f H1bNXJpHi2gxLacVtJo20EbaSttoF+2m/XSAjtJJepNO0Yd0hi7QRbpC39A1 +oGu0x0qLpZy1ShXjXI7pVw/yvWjXDXKVaPcdinXj4afr6LupnvoXrqP7qfG 9AA9TE2pGTWnR+kxakGPUytqTU9QO+pAT1KUYhSnBCUpTRnKUSfKU4F6UC/q Q/1oAA2ip2gIjaBnaBJNoRk0i+bQczSfFtISWkYv0Eu0njbRFnqFttNOepX2 0D56jY7QCXqD3qJ36TR9RGfpS7pEl+lrukrf0Y90g4oXvogKReytiApFrKyI lRXRo4geRaysiDJFbKuIMkUsqogeReyoiBteRJkiyhSxqCLWU0SZIsoUsZ4i yhSxniJlbagttaeOVElVVE0pqqFaqqN66kw9qTf1pYE0mJ6moTSSxtI4mkxT aTrNprk0jxbQUlpOK2gNraPNtI120G7aS/vpAB2m43SS3qb36AM6Qx/TBbpI X9EV+pZ+ol/oDhVbVmELVShYhYJVuLlVWEAVClahYA1fQ0XdTffSfdSYmtCD 9BA1pWbUnB6lFtSSWlFrakcd6EmKUozilKA0ZagT5akL9aI+NIAG0RAaRqNo DI2nKTSNZtEcmk8LaQkto5W0ljbRFtpOO2kP7aODdIiO0Ql6h96ns/QJfUGX 6DJdpe/oZ7pJt+lXKu6ZqJJElSSqJFEliVo2Ufe6qJJElSSqJFEbJ6opUU2J WjtRayeqKVFrJ+pKF9WUqKZE7Z6o3RPVmajORNUlagFFdSaqM9GyNtSeOlI5 VVAVVVOgFNVQlmqpjuqpK/Wk3tSX+tNAGkxDaTiNpmdpKk2nmTSb5tI8WkCL aDEtpeX0Iq2hdbSRttI22kG7aDftpf30Oh2l43SK3qMP6GM6R5/TRfqKrtA3 dI2u0y0qXukqraxKK6tSmSptq0qNqtSoSnurUq0q1arS3mr4QirqHrqfmtAD 9CA9RA9TM3qEmtNj1JIep1bUmp6gdtSBnqQIxShOCUpShnLUifJUoG7Ug3pR H+pHA+gpGkYjaBSNoQk0habRDJpFz9FCep6W0Au0il6i9fQyvUI76VXaQ/vo NTpIh+gIHaN36TR9Qp/SZ/QlXaLL9DV9TzfoJt2mX6lYxJgixlz4YuoXs6hi FlVMB2PqF1O/mObFNC9mR8WULmZHxeyomL7F9C1mM8W0LKZlsbI21JY6UjlV UCVVU6AUZamW6qkzdaee1Jf609M0nEbSWJpIk2k6zaS5NI8W0WJaQatpA22l bbSLdtN+OkCH6SidovfoQzpH5+kCXaQr9A39QL/QHSqunSprp0pdqtSlSlOq NKVKU6o0pUpJqpSk4cunqLvpXmpMD9CD9BA9TM3oEWpOLaglPU6t6AlqR09S hKKUoCSlKUM56kQF6kLdqAf1oX40gIbQCBpFz9AkmkYzaBbNofm0kJ6nJbSS VtFLtJ5epi20nXbSq7SHXqODdIiO0Dv0Pn1En9Jn9AV9SZfpa7pKP9INuknF S1vcKopbRXE1iKtB3CqK60JcF+L2UVwh4goRt4/iLm1xWyiuEHGFiFtFcaso bhXFVSOuGnGrKG4LxfUjrh9xWyhe1obaUnvqSOVUQZVUTYFSVENZqqU66kxd qTv1pN7Ul/rTQBpKw2kkjaZxNJEm01SaTjNpNi2gRbSYltKLtIbW0UbaTDto F+2mvbSfDtDrdJiO0tv0AZ2hc3SePqcL9BV9Q9/ST3SdbtEdKrasWsuqtaza Da/aUqrWsmotq7aKqrWs4WezqLvpPmpCD9JD1JSaUXN6lFpQS2pFrakddaAI RSlGcUpSmjLUifLUhbpRL+pDA2gQDaNRNIbG0wSaQtNoFs2h+bSQltAyWkmr aC1tou20k/bQPjpIh+gYvUWn6Sx9Qp/RF3SJrtJ39DPdpuImSVgiCUsk4SKX 0J6E9iS0J6E9Ce1JKE5CcRLWScIdLqE9Ce1JaE9CexJ2SkKFEiqUUJyEO1zC dkmoUEKFEtqTKGtD7akjlVMFVVIVpaiGslRH9dSZulJ36km9aSANpqE0nEbT WHqWJtNUmkmzaS7NowW0iJbSclpBq2kNraONtJm20Q7aRXtpPx2g1+kwHac3 6UP6mM7T53SBLtK3dI1+out0i+5Q8foWrKKgKUFTgqUU1CWoS7CUgs4EnQk2 U9CZ4PoWXN+CzRRspqA4wVIK2hO0JyhOcHML2hMspaA9QXuCzRRUKKhQsJ6C CgUVCioUVCioUFChYD0FFQrWU9CjoEfBegrKFJQp6FFwaQt2VLCjgjIFOypo VNCoYFsFtQpqFaysoFbB9S3oVrCtgloF17dgUQWLKlhUwaIKrm9BwYJFFRQs KFiwrYKWBS0LtlXwr1DB/9kQbKugakHVgr0V9C3oW7C3gqoF17dgZQUrK1hZ wcoKrm9JzUvaW0l7K6l5SaVLKl3StkqqWtLNLenmllS1pKoltSypZUk7Kqlg SQVL2kzJsjbUljpSOVVSFVVToBTVUJZqqZ46U3fqSX1pMD1NI2ksjaOJNJmm 01yaR4tpOa2g1bSGNtBW2ka7aT8doMN0lE7SGTpH5+kCXaRr9AP9QsUlkrJE UqqRUo2UaqRUI6UVKa1IaUVKK1JakVKIlKtaSitSWpGyU1J2Sko1UqqRUo2U +1pKNVKqkVKNlGqkVCOlFSmtSGlFSitStktKNVKqkVKNVFmCkpShHHWiPBWo C3WjHtSL+tFTNIRG0TM0nibQJJpGM2gOPUfzaQktoxdoJa2itbSeXqYt9Aq9 SntoH71GB+kIHaMT9AZ9RGfpE/qUvqAv6RJ9Tz/SDbpJv1KxEGkXubRVlLaK 0lqR1oq0fZRWjbRqpO2jtH2UVo20i1zaPkrbR2lbKK0faf1I20Jpd7i0VZTW lLSmpK2itFWUtorSZW2oLbWncqqgKqqmQFmqpTqqp87UlbpTT+pN/WkwPU1D aTSNpXH0LE2kyTSVZtJsmkvzaAEtpRX0Iq2jjbSZttI22kV7aT8doNfpKB2n N+lD+pjO0Xn6nC7SV3SNfqCf6DrdouIWqnFfq1G1GlWrsYBqVK1Gy2q0rOHr pah76T5qTE3oQXqImlIzak6PUgtqSa2pHXWgCEUpTglKUo46UZ66UDfqRX1o AA2iITSMxtB4mkBTaBbNofm0kJbQMlpJq2gtradNtIW2007aQ/voIB2iY3SC 3qLTdJY+oc/oEl2m7+hH+plu069UrEtGXTLqkrFEMjqT0ZmMzmR0JqMuGXXJ WCcZ17eMumTUJWOnZOyUjJ2SUZyM4mR0JmOxZBQnozgZdcmoS0ZdMmVtqC21 p45UThVUSVVUTYFSVEt1VE+dqSt1p97UlwbSUBpOo2ksjaNnaSJNpqk0k2bT AlpEi2k5raAXaTWtoQ20kTbTDtpNe2k/vU6H6Sgdp5P0Nn1AZ+hjOkfn6XP6 iq7Qt/QTXac79L9UrFDWyspaWVk9ytpWWT3K6lHWysrqUda2yrrDZZUpq0xZ KyvrDpdVpqxFldWjrEWVVaasMmWVKatMWdsqa1tlbausRmUtqqxGZe2orFpl 1SqrVtmyNOWoE+WpQF2oG/WgPtSPBtAgGkYjaBQ9Q+NpAk2iaTSDZtEcWkjP 0wu0il6il2kTbaHttJNepT30Gh2iI3SC3qB36H36iM7Sp/QFXaav6Sr9SD/T DfoTFZuXc2nLKV1O6XL6ltO3nPWU07KczZRzc8tZTzlVy6laTtVyqpazmXIK llOwnKWUs5RyCpZzh8uVtaG21JHKqZKqKFCKaihLtVRH9dSZulNP6kv9aTAN p5E0lsbRRJpM02kmzaVFtJiW0wpaTWtoA22krbSNdtFuOkCH6SidpDfpFL1H H9IZOkfn6QJdoW/oB7pOv9AdaqhQw2/g+sOffwNXTaNrdzX8Zq3fNar87c9T d41rtOK3Pxc0atvo1l3TG/2x0V83mv7n9z/+9t9rd/X9zWvuGvrn3801vVFN o4bfilRb4jcldSrxVlfiLV/irb7EW6HEW+cSb11KvHUt8datxFv3Em89Srz1 LPHWq8Rb7xJvfUq89S3x1q/EW/8SbwNKvA0s8TaoxNvgEm9PlXh7usTbkBJv Q0u8DSvxNrzE24gSbyNLvI36f28NP9G1lnytb6ha31C1Nn2tr6laX1O1vqZq fU3V+oZq+JuwqHvoPrqfGlMTeoAepKbUjB6h5vQYPU6tqDW1ow70JEUoSjGK U5LSlKEc5alAXagH9aJ+NICeohE0isbQMzSeJtAkmkLTaAY9RwvpeVpCy2gl raKXaC2tp5dpE71CO+lVOkiH6AgdozfoLXqXTtNH9Al9Rl/S13SVvqcbdJNu 05/oVypeFRr+vi/qLvoL+kv6K/ob+lv6O/p7+gf6R/od/RP9M/0L/Sv9G/2e /p3+g/5A/0n/Rf9N/0PtqZwqqJKqqJpSVENZqqN66kxdqSf1pr7UnwbS0zSc RtJoGkvP0mSaStNpJs2jBbSYltKLtIbW0QbaTFtpG+2gXbSbXqejdJzepLfp FL1HH9CH9DF9ThfpCn1D39I1+oVu0R0qXgvqXAvqNK9O6eqUrk7f6vStzvW6 4aeqqLvpXmpMTeghakrNqDk9Si2oJbWi1tSOOlCEohSnBKUpQznqRHkqUBfq Rr2oDw2gQTSEhtEoGkPjaQJNoWk0i+bTElpGK2kVraX1tIW2007aQwfpEB2j E/QWvUPv02k6S1/QJbpMV+k7ukm36VcqdiavM3mdydv0eZ3J60zeus9b93k3 67zO5HUmrzN5ncnrTF5n8jqTd6nO2/l5xckrTl5n8jqTd7POq0teXfJlbagt daRyqqBKqqZAKaqhLNVSHXWmrtSdelNfGkiDaSiNpNE0lsbRRJpMU2k6zaZ5 tIAW01JaTitoNa2hdbSBNtNW2kY7aC8doMN0nE7S23SK3qMP6AxdoK/oW7pG v9AtukPFq3S9utSrS71FVa8z9XZUvc1U7wLd8KVS1N10D91H91NjakIP0MPU lB6h5vQoPUYtqCU9Tq3pCXqSIhSlGCUoSWnKUI46URfqRj2oF/WhfjSInqIh NIxG0CgaQ8/QJJpC02gGzaHnaCE9T8voBXqJ1tJ6epk20Su0nXbSPnqNjtAJ eoPeonfoXXqfTtNH9CVdost0lb6j7+kG3aTbVFxUBVUr2EwFVStoWUHLCjZT waW6YD0VtKygZQWX6oKWFRSs4FJd0LKClhUspYJuFeyjgn1UKGtDbanj//Fo 72FTz38ex+9de/7t+bxrrbXWWmuttdZa+1trbSshUURCSGbumbnnnnvuz8x3 vnPP3VEppZTSSSelVFIk5JQSISJRRETOOZVy/rnspz/m8cf78vjfdc3z8/re UR/qRxfTABpIg+hqGkytlKc26qBOSiilbhpGo2g0jaPxNIkm0zSaTQtoIS2h pbSCVtJqWkNraR1tos30PG2lbbSD3qOPaC99TvvoIH1N31OzKRlNyWhKRlMy FkvGYsnYKRnf4TJKklGSjMWS0ZSMpmT0I+PrW8aKyWhKRlMympLRlIySZJQk oyQZJckoSUZJMpZNxrLJqEtGXTKakrFxMuqSUZeMumTUJaMuGXXJtFxLOSpQ kcoUqEZ1atBQGknX0xgaSzfSBLqZptBUupVm0W00n26nRbSY7qRldDetonvp PrqfHqLH6HF6mp6jLfQivUQv03Z6ld6l9+lj+oL20wH6ir6jH+hHau6orOJk 7ais9mS1J2tRZX2vy1pPWe3Jak/WospqT9aOyqpQVoWy2pP1vS6rQlk7KmtH Ze2orB5l9ShrUWUtqqxFlVWmrC93WY3K2lFZZcraUVmNympU1o7KqlVWrbJq lW0ZQnlqo3bqpAollFIXddMwGkGj6QYaRzfRZLqFptNMmkPzaCHdQUtoOa2g lXQPraYH6GF6lNbTM7SZnqcXaCtto1foNdpDH9BHtJf20Zd0kL6lX1DzG16r IrYqYqtt1ep7XatFdeiV09SRdBQdQ8fTCXQynUan0xnUg86h86gv9adL6XK6 kq6ha+k6ylGBilSiQFWqU4OG0xgaSxNpCk2lGTSXFtFiuotW0b30ID1CG+hZ 2kIv0su0nXbSO/QhfUL76QB9Qz9S85c/55c/55c/55c/55c/55c/57tZzi9/ zi9/zi9/zi9/zi9/zi9/zi9/zhe0nF/+nF/+nF/+nF/+nF/+nF/+nF/+nF/+ nF/+nE2S04CcBuQ0IKcBOQ3IWSc5DchpQE4DchqQ04CcBuT88uf88udaMtRK bdROHVShhFLqom4aRiNoNN1A42gSTaZbaBpNp5k0h+bRQrqDltByWkEr6R5a TWvpYXqUnqBnaDM9Ty/QVtpGr9AOep3epg/oI/qU9tGXdJC+pl9Qswt5Xcjr Qt5SyltKed/c8pZS3lLKW0p5SymvGnnVyFtKed/c8jZTXknySpK3mfI2U95m yttMeZspry55SylvKeUtpbzi5BUnbynl7aO89uS1J28f5VUor0J5+yivQnkV yrdkqUglKlOgKtWoTg0aSiPpehpDY+lGupmm0q00i26j+XQ7LaLFdCcto7tp Fd1L99FD9BhtpKfpOdpCL9JLtJ1epTdoN71PH9Nn9AXtpwP0Ff1AzQ4WdLCg fgX1K/jmVvClraB5Bc0r+NJW0LyC0hVsnIIvbQXNKyhdwZe2gi9tBX0r6FtB 1QqqVmjpSb2oN/WhfnQxDaCBNIiupiGUoVZqpw7qpIRS6qZhNIpG0zgaT5No Mk2j6TSbFtBCWkJLaQWtpNW0htbSw7SOnqRNtJmep620jXbQa7SL3qL3aC99 TvvoIH1Nza90bYrTpjhtitNmk7T5e0+b9rRpT5udcugd09ThdAQdTcfQsXQc nUgn0Sl0Kp1Gp9MZdCb1oLPobDqfLqC+dBH1p0vpMrqcrqJr6DrKUo5KVKZA VapRnRo0lIbTSLqebqQJNJGm0FS6lWbQLLqN5tPtdCcto7voblpF99H99CA9 Qo/TU/QsPUdb6EV6iV6mV2knvUnv0if0GX1BB+gr+oaa3+aK2lO0wYraU7S8 iv7eU7TBijZY0d4qqlBRhYraU7S3iipUVKGiChVVqGh5FS2vouVVtLKKKlS0 rYotPakX9aELqR9dQgNoIF1BV9NgGkIZaqU8dVAnVSihlLpoGI2gUTSaxtNN dAtNp5k0h+bRAlpIS2gpLacVdA+toQfoUVpPT9ImeoY20wu0jV6h1+h12kVv 0R76lD6nffQlfU3Nr2rtutWuW+1q1W4ptfubUruvau261a5bh14vTR1OR9Ix dCwdTyfQSXQynUqn0el0BvWgs+gcuoD6Un+6lC6nK+kaupaylKMClahMgapU pwYNp5E0hibQRJpCU2kGzaK5NJ8W0WJaRnfRvXQ/PUiP0QbaSE/Ts7SFXqSX aTvtpDdoN71Dn9BntJ++oe+ouWJKSlJSkpI9U1KSkj1T8neckmVTsmxKlk1J XUrqUvI1r6QuJXUpqUvJ17ySkpSUpGTjlGycko1TsnFK6lJSl1JLTzqX+tCF 1I8upktoAF1Bg2gwDaFWylMbtVMnVSihlLqom4bRCBpFN9B4uokm0WSaRtNp Js2mOTSP7qCltJxW0GpaQw/QWlpHT9Ameoaep630Cu2g12kXvU176VP6nPbR l/Q1fUvfU/MrXYfidFhKHYrTYSl1aE+H9nRYTx2+1x16lTR1BB1FR9MxdCwd R8fTCXQSnUyn0M/pTOpBZ9HZdB6dTxdQX7qI+tNldCVdRdfQtXQd5ahARSpT oCrVqEFDaTiNpOtpLN1IE+lmupVm0W00l+bTIlpMd9IyuovupvvoQXqIHqcN tJGeoqfpWXqOXqLt9CrtpDfoTdpN79DH9Al9QQfoK/qOfqDm37LKmldWurL1 VFa6svVUtp7KSldWurLNVPblrqxvZVUr20xlm6lsM5X1raxvZX0r61tZ38r6 Vm7pSb2oN/WhfnQxDaRBdDUNoQzlqY3aqYM6qUIJpdRNw2gUjaZxNIkm0zSa TrNpDi2ghbSEltIKWkmraQ2tpYdpPT1Jm2gzbaMd9BrtordoD31Ee+lz2kcH 6Xtq/v2o0xbq1KNOW6hTjzr1qFOPOvWo0xbqVKZD/++bOpKOoqPpODqeTqST 6RQ6lU6j0+kMOpN60Nl0Dp1H51Nfuoj60+V0FV1D11GWClSkEpWpSjWqU4OG 0nC6nsbQWLqRJtLNNIWm0gyaRbfRXLqdFtOddDetonvpfnqIHqHHaQNtpKfo WXqOXqZXaSe9SbvpXfqQPqbPaD8doK/oB2oWJ9hWQWeCbRUUJyhOsLKClRV8 uQsqFKysYFsFFQoqFFQoqFCwsoIeBT0KllfQo+AbXvANL+hRsLKCCgUrK+hR 0KNgbwVlCsoU7K1gZQWNChoV7K2gUcHeCmoV1CqoVVCroFFBo4JGBXsrqFVQ q2BvBbUK9lawt4K9FXQr+MIXbKugW0G3gm0VFCwoWLC3gpYFLQsKFnzhC1ZW 0K3gC1+wt4K9FbQsaFmwvILlFeytoGpB1YLlFfQt6FuwwYK/UQX/ZiJoXrDL gg0WbLCgdEHpgg1WscEqSlexwSpKV1G6iq9+FaWr+NZX0beKvlXsrYq9VdG3 ipVVsbIqqlZRtYqqVVStYltVFKyiYBWLqqJgFd2q+NZXsaMqulWxniq6VbGe KrpV0a2KblVaAtWoTg0aTiNpDI2lCTSFptIMmkVzaT4tosW0jFbRvfQgPUKP 0QbaSE/TFtpOO+kN2k3v0Pv0IX1C++kAfUPf0Y/U/MJXtXGqilNVnKriVBWn au1UtaeqPVVf86p2T1V7qtpT9V2vqjNVnanqTFVnqjpT1ZmqBVS1gKraU9We aktP6kXnUm/qQxfSJTSArqBBNJiGUCvlqY3aqYM6KaUu6qYRNIpG0w00jsbT TTSZbqFpNJ1m0myaRwtoId1By2kl3UOraS09SutoPT1BT9ImeoZeoFdoB71O u+ht2kPv0Qe0l/bRQfqWmk1JrKdEUxJNSVp+9kuHtbT8crzD4v1KvF+N92vx fj3eb8T7zXi/Fe9n8X473u/E+914vxfv9+P9Qbw/jPdH8f443p/E+9N4fxbv z+P9Rby/jHd4vL+Kd0S8v453ZLy/iXdUvL+Nd3S8v4t3TLy/j3dsvH+Id1y8 f4x3fLx/indCvH+Od2K8f4l3Urx/jXdyvH+Ld0q8f493arz/iHdavP+M9/N4 /xXv9Hj/He+MeP8T78x4/xuvR7z/i3dWvJ7xzo7XK9458c6Nd1683vHOj9cn 3gXxLozXN16/eBfFuzhe/3iXxLs03oB4l8UbGO/yeFfEuzLeoHhXxbs63jXx Bse7Nt6QeNfFy8TLxsvF+/Gnn37Kx/8W4rXFK8Zrj1eK1xGvHK8zXohXiVeN l8SrxUvj1eN1xWvE6443NN6weMPjjTjMF6fEmyKxnhOvi8TrIvE1N/G6SGzm xOsi8bpIvC4Sr4vEjk7s6MSOTrwzEl9zEy+OxHpObObEiyPx4khs5sTbI/H2 SLw4Et9wE+s5sZ4Tb4/Eek68QhKvkMSOTrxHEu+RxHsk8R5JvEcS75HEeySx oxPvkcSOTrxHEus5sZ4T6znxMkl8zU28URKbOfFGSbxREus58VpJvFYS33AT OzrxWkl8zU2s58S7JfFuSezoxAsmsZ4T6znx98jEek6s58RbJvGWSezoxFsm saMTr5rEqyaxqBPfcBPrOfGqSbxqEq+axKumZkfXvGVq3jI1L5iaF0zNZq55 wdS8YGqWcs1SrlnKNe+WmndLzffamjdKzRul5ttsraUn9aLe1If60QAaSFfT EMpQntqogzqpQgml1EXdNIxG0WgaR+NpEk2j6TSHFtBCWkIraDWtoYdpHa2n J2kTbaattI1eo130Fu2h9+gj+py+pu+puT9TL4TUCyH1Qkh9aU3tz1QrUq1I tSL1pTW1RFPVSFUjVY1UNVLfXFOtSLUitUlT1UhVI1WNVDVS1Uh9aU3t1FQ/ Uv1I9SPVj1Q/Ut9cU9VIVSO1WFOtSLUi1YpUK1KtSLUi1YpUK9KWKtWoQUNp OI2k62kMjaUbaQJNpJtpKt1KM+g2mkvz6XZaRHfSXXQ33Uf300P0CD1Gj9MG 2khP03P0Er1KO+lN2k3v0Lv0Pn1IH9Nn9BV9Q80vsnVbuG4L11WjbgHX9aOu H3ULuO4vf3VfX+uaUreF67Zw3Rauq0tdXer2cV1d6lZx3SquW8V1xakrTt0q rvsOW2/pSedSb+pDF9LFNIAG0hU0mIZQhlopT23UTp1UoYS6aRiNoNF0A42n m2gy3ULTaDrNpNk0jxbQQrqDltJyWklr6AFaS4/SOlpPT9Az9DxtpW20g16n t+ht2kPv0Qe0lz6lg/QtfU/N0nX5vtqldF1K16VvXfrWpWpdFtCht0hTh9NR dCwdTyfRyXQqnUan0xnUg86ic+g8uoD6Un+6lC6nK+laylKOilSiQFWq0VAa TiNpDI2lCTSRptBUmkGzaC7Np0W0mJbRKrqfHqRH6DHaQBvpWdpCL9LLtJ3e oN30Dr1PH9IndIC+ox+puT8a/qLXsEQalkhDUxqa0tCUhpI0bJKGpjQ0paEk DSVpKElDSRpK0lCShpI0lKRhsTQ0paEpDf1o+KrasGIamtJo6Um96FzqTRdS P7qErqBBNJiGUIZaKU9t1E4d1EkVSiilYTSCRtFouoHG0Xi6iSbRZLqFZtJs mkPzaAHdQUtoKS2ne+gBWksP06O0jtbTE/QkbaYX6BXaRW/R27SH3qMP6CPa S5/Sl/QtfU/Nr6/d/hVLt5XVbVF1K0634nRbVN2K021RHXp3NHU4HUlH0zF0 HJ1AJ9L/s3WnMVLXe77HOzKZ3NzMg8nJzcnkehyv4xjnjHE8juPlchwv43BF OCoqgiCCoiAcEBRFkK1ptj9F0/S/q6h/V290ddtN0dU0u+w7su8IguwIgiCb IAoux+SKSb0eTConIa/84qOD8V2fb3XSj9Cj1JraUFt6gtrRU9SRnqUX6EXq St2oF71Gr9Ob1J8G0Fv0Dr1LQ2kYfUAjqZCKaDxNpBgVUymVUYKSVEFVVEO1 9CFlqIlaaCEtoWW0glbROtpIm2kn7aa9dIAO0gk6RafpCzpPX9EVuk636Cf6 mXKlK3S7LrSeCpWuUOkK9a3QZirUt0J9K7SUCl3fCl3fClWtUNUKXd8KFaxQ wQptoULdKtStwoL21IE6UWfqQt3pVepNfakfDaRBNITeo+E0gkbRGBpHE2gS TaGpFFKcIkpRNc2gBppFWZpDi2gxLaeVtJbW0ybaQrtoH+2nQ3ScTtIZOksX 6CJdpWt0k3KLZazFMtZOGasfY/VjrGqMtVjG6sdY/bj9eSKnu+heuo/upwfo QXqIHqFHqTU9Rm3pCWpHT9JT1JGeoxepK71Mr9Hr1IfepP40gN6iwfQOvUtD 6QMaSaNpPE2kgGJUTCVUSmWUoHKqohqqpUbKUBM101z6iJbRClpFa2gDbaat tJN20yf0GR2jE3SKTtMXdI7O01d0ib6m7+gn+plyTSnSlCI7qshFrkhdiqyn Ik0psp6K1KVIXYqspyKdKdKZIjuqyI4qspmKbKYim6lIcYoUp8hmKnJ9K7Ke ilSoSIWKrKeigvb0J3qeOlMXeol60KvUm96gvvRnGkRv0xB6j96nETSKxtA4 mkCTaDJNpWkUUpymU0QpqqRqmkFpmklZmk3zaBEtpqW0nFbSavqYttA22kF7 aB/tp8N0lI7T53SWvqSLdJmu0jX6ln6k25vp9m9vG/7rb2+b1Kpfqzta9Ww1 qtXROyp/+XPcL38O+eVl1K+/ue32b2v7m1/+ifDX3/E2pNWiX//5s7/+5raz dwz59be3jcvzW7bG53mbkOdtYp63SXnegjxvk/O8xfK8TcnzVpznbWqet5I8 b9PyvJXmeQvzvJXleYvneUvkeZue5y2Z5y3K81ae5y2V560iz1tlnreqPG/V ed5q8rzNyPNWm+ctneet7r+83f43epztP861eZxPceMs/nE+sY3zie32f8Ny upPupnvoPrqfHqAH6WF6hFpTG3qc2lI7epKepheoK3WjV6gXvU59qD8NoMH0 Dg2lYTSSRlMhFdFECihGJVRKCUpSBVVRLdVRI2WomVpoPi2kJbSMVtEa2khb aTvtpQN0hI7RKTpN5+g8XaIrdJ1u0A/0M+U+Yd3+L3BOd9Bf03+jv6Xf0P+g 39L/pN/R/6J/pH+if6Z/oT/Qv9L/oT/Sv9P/pf+k/0ft6Rl6njrTS9SdelJv eoP6Uj8aSIPobRpC79NwGkGjaAyNpUk0mabQVJpGIU2niFJUSWmqpwaaRbNp Di2gxbSUVtJqWkubaBvtoD20jz6lw3SUTtIZOktf0gW6TFfpG/qecpeBCS4D E1yWJ+jMBPeACeoyQV0muAfc/oSc0510F91N99C99Ht6iB6mR6gNPUaPU1t6 gtrRk/QUPUvP0YvUjV6mV6gXvUavUx96k96iwfQOvUvD6AMaTYVURBMpoBgV UwmVUhklKEnlVEFVVEcfUhO10FyaTwvpI1pCy2gFraF1tJm20nbaSbvpEzpI n9EROkYn6As6T1/RJbpCX9N1ukG3KHdLmKhqEwv+iv6a/pZ+Q7+lv6Pf0d/T P9A/0T/Tv9Af6N/oj/Tv9B/0n9SeOlAn6kLdqQe9Sr2pL/WjgTSIhtB7NJxG 0BgaS+NoAk2mKTSVQopTRCmqpnpqoCzNoXm0iBbTclpL62kL7aBdtJ8O0WE6 TmfoLF2gi3SVrtG3dJNyu3ySFTNJcSYpziQrZpLiTFKcSTpz+7NDTnfR3XQP 3Uv30wP0ID1ED9Oj1IYeo8epLT1BT1FHepaeo670Mr1Cveg16kNvUn8aQG/R YHqXhtIw+oBG0mgqpCIaTzEqphIqowQlqZwqqIbq6ENqpGaaS/NpIX1Ey2gF raMNtJm20k7aTQfoIH1Gx+gEnaZz9BVdoq/pOn1HP1BuCwUWUKAagWoEbsyB fgQWUKAfgX4EtlCgJIGSBFZRYBUFrs2Ba3OgKYEtFLgxB1ZRoC6BugRWUaAz gc4E6hK4MQf2UWAfBVZRoDiB4gT2UaA9gfYEllKgPYFrc6BCgX0UaE9gHwXa E1hFgfYE2hNoT6A9gfYE2hNYRYEKBSoU2EeBHgV6FNhHgctyYCkFyhS4MQf2 UaBRgUYFllKgVoFaBTZTYDMFahW4MQc2U2AzBQoWKFhgPQU2U6BlgZYF1lNg PQWuzYHNFKhaoGqB9RToW6BvgR0VKF2gdIFtFfipncmaN1nzJttWk33rOln9 JttWt/8tyOlOupvuofvoAXqQHqHW1IYep7bUjjrS0/QCdaNXqBe9Tv1pAL1D Q2kYjaTRVETjaSIFFKNiKqFSSlCSKqiKaqmRMtRC82khLaFVtIE20nbaTXvp AB2kI3SKztMlukLX6Qbdotx9LWZ/xDQlpikxV7WYn4qJqUtMU2KaElOSmJLE lCSmJDHrJKYpMU2J2SkxdYmpS8xOialLTF1imhLTlJimxFzaYkoSU5KY+1pM SWJKElOSmJLElCSmJDEliSlJTEliShKzYmJKElOSmD0T05SYpsQsm5i6xNQl pi6xgkk0mabSNAopTtMpokqqphmUppk0i2bTHJpHC2gRLaaltJo+pk20jXbQ HtpH++lTOkSH6SidpM/pS7pAl+kqfUPf0k36nnJXuilKMsVmmuI7oCl+kmeK pkyxnqZYT7c/T+R0J91F99C9dD/9nh6gh+hRak1t6DF6nNrSE/QkdaSn6Vl6 kbrSy/QK9aLXqA+9Sf1pAL1F79Iw+oBGUyGNp4kUUAmVUhklKEnlVEU1VEcZ aqJmmkvzaSF9RMtoDW2gjbSZttJO2kuf0AH6jI7RCTpN5+grukRX6Gu6Tjfo O/qBcje3Ys0rtpmK/YROsdIVu7kVW0rFqlasasVaVqxlxW5uxVpW7NJWrGDF ClZsFRUrWLFuFdtCxQXtqQM9Q52oC3WnHvQq9aa+1I8G0iAaQu/RcBpBY2gs TaBJNJmm0jQKKU4RpaiaZlA9zaIszaF5tIgW03JaS+tpE22hXbSP9tMhOkzH 6QydpYt0la7Rt3STcne4qUoy1RKZqiRTlWSqO9xU/bj9t5HTnXQX3U330L10 H91Pv6eH6RF6lFpTG3qMnqB29BQ9S8/Ri9SVutHL9Ar1otfodepDb9JbNJje oaE0jD6gkTSaCqmIxtNECihGxVRKZZSgcqqgKqqhWvqQmqiZWmguzaeF9BEt oRW0jjbTVtpNe+kTOkAH6QgdoxP0BX1Fl+hruk436Du6RT9QrjglilNiZZXY ViXaU6I9JS53JbZViW1Voj0lFlWJ9pTYUSUqVKJCJW5zJSpUYj2VqFCJCpVo T4n1VFLQnjpQJ3qeOtNL1J16Um96g/pSPxpEb9P7NIJG0VgaRxNoEk2mKTSN QorTdEpRJc2gNDXQLMrSbJpDC2gxLaWVtJbW0ybaQttoD+2j/fQpHaWTdIbO 0gW6TFfpGn1DN+l7yi2gabo1zS1tmoJNU7BpFtA0V7Vprmq3//5yupPupnvo PrqfHqCH6RFqTW3ocWpHT1JHeo5eoK7UjV6hXvQ69aH+NJjeoaE0jEbSaCqi 8RRQjIqphEqpjBKUpAqqolqqo0bKUDO10HxaSEtoGa2iNbSBNtJW2k67aS8d oIN0hI7RKTpN5+g8XaHrdINu0Q/0M+W+FypVl1I3vFIbp1RxShWn1DWv1DWv 1NoptXZKFadUcUrtnlLtKdWeUu0pdcMrtYBKVahUhUptoVI9KtWjUte8UhUq LWhPf6LnqTN1oZeoO/WgV6k3vUF96c80iN6mIfQeDacRNIrG0FgaRxNoMk2h qTSN4jSdIkpRJVVTmuppJmVpNs2hebSIltJyWk0f0zbaQbtoD+2j/fQpHaLD dJw+py/pMl2la/QNfUs36Xv6kXLfBoW6FbrhhQoWWl6hgoUKFrrmhdZYaHmF uhXaW6GChQoW2luhb4hCN7xQ1ULLK1S10N4KXe5CVQtVLbS8Qpe7UN9CfQtt sFDpQssrtLJCfQv1LbSyQve60N4KlS50uQttq1DfQosqVLpQ6UKLKtS8UPNC zQs1L9S3UN9CiyrUt9COCvUttKNCpQuVLrStQs0LNS+0rUI7KlS60I4KNS/U vFDzQs0LlS50zQs1L7StQqULXfNCOypUulDpQqULlS60rULbKlS60KIKlS60 o0LNCzWvTOnKlK7Mjiqzo8pc88osqjJ9K9O3MlUrU7UyLSuzo8p8H1WmamVa VqZlZXZUmWtemUVVVtCeOtAz1Ik6UxfqTj3oVepNfakfDaQh9B4NpxE0hsbS BJpEU2gqTaPpFFGKqmkG1VMDzaIszaF5tJiW00paS+tpE+2gXbSP9tMhOkwn 6QydpQt0ka7SNfqWbtKPlFtKcZ2J60xcZ+I6E9eZuFtf3FKK20dx+yiuM3Gd ietMXF3illJcZ+I6E7eZ4joT15m4zRR314trStxmirvrxTUlrilxTYlbT3Hr KW49xXUmrjNxdYnbUXGdietMXGfiOhO3reK2Vdy2imtPXHvi2hNXnLjixBUn rjhxxYkXlFKSyqmCaqiWPqRGylATtdBcmk9LaAWtonW0mbbTTtpNe+kAHaTP 6AidoFP0BX1FV+g63aDv6Bb9RD9TrjMJ2yqhOAnFSdhWCdsqYVslVCihQgl7 K+Gul7CtEiqUUKGEbZVQoYRtldCjhB4lrKyEMiVsq4RFlVCmhDIl9ChhWyWU KaFMCXsroVEJjUrYWwm3voRGJWyrhDIlbKuEbZWwrRIalXD1S9hRCY1KaFTC jkqoVUKtEhZVQrcSupXQrURBSNMpohRV0gxKUz010EyaRVmaTfNoAS2l5bSS VtNaWk9baBvtoF20hz6lw3SUjtPndIbO0gW6SJfpG7pJ39OP9BfK7a3pLobT FXG6Dk53MZxuZU23sm7/neZ0N91D99H99AA9SA/TI9SG2lI76khP03P0AnWl bvQK9aI+1J8G0GAaSsNoJI2mIhpPAcWohEqpjBJUThVURbVUR42UoWaaTwtp Ga2iNbSBttJ22k176QAdpCN0jE7TOTpPl+g63aBb9AP9TLkKJX2TlNSjpPYk tSepPUntSWpPUnuSbn1JCyipQkkVSmpP0hZKqlBShZIqlFShpAolXfOS2pPU nqS7XlJxkoqTVJyk4iR1JqkzSasoaRUltSepPUmrKKk9Se1J2kdJFUqqUFKF kiqUtJmSNlNSmZLKlNSjpB4l9SipR0k9SqpQUoWSBXFKUSVVU5rqqYFm0izK 0mxaQItoKS2n1bSWPqYttI120R7aR/vpEB2l4/Q5naEv6SJdpmv0LX1PP9Jf KNeZSGcidYnUJbK3Insrsrcieyty14vc9SLtieytSHEieyvSnkh7InsrUqFI hSLXvMjeiuytyDUv0qNIjyLLK1KmSJkiGyxSpshdL9KoyPKK7K1ImSIrK7Ky Iisr0qjIXS9Sq8i2itQqUqvIyop0K9KtyMqKdCvSrUi3IrWK1CqysiLdinQr srciBYsULLK3InsrUrDIXS+ytyJ7K1K1SNUiyyty14tssEjpIqWLrLFI6SK3 vsjyipQuUrrIBotssMgGi9QvUr/ILovsssj9L7LGIh2MdDCyyyIdLNfBchus XP3K3f/K1a9c/crd/8rd/8rVr9zeKle6cqUr17dyfSu3rcrd+srtqPKC9tSB nqFO1Jm6Uw/qTX2pHw2kQTSEhtMIGksTaBJNoakUUpymUyVV0wyqpwaaRVma Q4toMa2ktbSeNtEW2kH7aD8dpuN0ks7SBbpKN+lHyrUipRApF7mULqR0IWWJ pCyRlEKkFCLlNpfSipRNklKIlEKkFCKlECmFSClEykUupRAphUjZKSkXuZQu pHQhpQspXUjpQkoXUrqQ0oWUO1zKdknZLimFSClEyopJaUVKK1JakdKKlFak tCKlFSmtSGlFSitSCpGycVJakdKKlFakCpJURTVUS3X0ITVShpqomebSR7SE VtAqWkcbaCNtpu20k/bSJ3SAPqMjdIJO0Rd0js7TV3SFvqbv6Bb9QD9RbjNV KESFpVThclehFRVaUWEzVdhHFfZRhStdhWpUWEUVWlGhFRVWUYVqVKhGhVVU 4buiCvuowj6qsIoqCtpTB/oTPUOd6HnqQi9Rd+pBPekN+jMNorfpPXqfhtMI GkVjaBxNoEk0mabSNIrTdIqommZQmuqpgWZSlmbTPFpEi2kpLafVtJ4+pk20 hbbRLtpD++lTOkRH6TidpM/pDH1JF+kyXaNv6Xv6C+VWUaXmVbq+VVpFlZpX qXmVmlepebc/ReR0J91H99MD9CA9TI9Qa2pDbelJ6khP03P0AnWlbvQK9aLX qQ/1pwE0mN6hoTSMRtJoKqLxFFCMSqiUEpSkcqqiGqqlOmqkDDVTC82nhbSE ltEa2kAbaSvtpgN0kI7RKTpN5+g8XaLrdINu0Q/0M+U2SZXOVOlMldtclc5U 6UyVdVJlnVRZJ1XaU6U9VdZJlfZUaU+V9lRpT5X2VClOlcVS5dugKne4KsWp KmhPHehP1Imep87UhV6invQq9aa+1I8G0iB6m4bQe/Q+jaIxNJbG0QSaTFNo Kk2jkKZTRCmqpBmUpnpqoJk0i2bTHFpAS2k5raX19DFtoi20jXbRHvqUDtFR Ok6f0xk6SxfoIl2mb+gm/Ui5zlTrTLXOVFtZ1S5y1fZWteJUu8NV21a3Pyfk dCfdS/fR7+kBepAeokfoUWpNbegJakdPUUd6mp6lF+hF6krdqBe9Rm/SW/QO vUtDaRiNpNFUSEU0kWJUTKVURkkqpwqqoVqqow8pQ03UQnNpPi2kJbSMVtA6 2kAbaTNtp520lw7QQfqMjtAJOkWn6Qv6iq7QdbpB39FP9DPlClZjM9UoWI37 Wo3NVKNbNbpVo1s1ulVjKdX4JqlGwWp0q0a3atSqxlKqUasaS6nGUqpxaasp aE8d6BnqTF2oO71Kvakv9aOBNIiG0Hs0nEbQGBpLk2gKTaWQ4hRRiiqpmmZQ muqpgWZRlubQPFpEi2k5raS1tJ420RbaQftoPx2iw3SSztBZukAX6Spdo28p t2Jm6McM/Zhhu8zQjxn6McN2mWG7zNCU2//P53QX3UP30v30e3qAHqKH6VFq TY/RE9SOnqSnqCM9Tc/SC/QidaWXqRe9Rq9TH+pPA2gwvUPv0lD6gEZTIRVR QDEqphIqowSVUwVVUQ3V0YfUSE3UTHNpPn1EK2gVraF1tIE20mbaSttpJ31C n9EROkGn6DR9QefoPF2ir+kGfUc/Ua44tTpTqzO1OlNrM9VaSrU6U+s2V6s4 tfZRre9xav0UQ6321NpMtdpTaynVKk6tpVSrPbXaU2sz1fq+p9Z6qrWeagva 05+oEz1PnakLvUQ9qCf1pjfoz/Q2DaH36H0aTiNoFI2hsTSOJtNUmkZxmk4R paiSqilN9dRAMylLs2kOzaMFtIgW00paTWvpY9pC22gX7aP9dIgO01E6Tp/T WfqSLtNVukbf0E36kXKbKW0zpW2mtNKllS7tSpfWt7S+pe2jtJ9TSKta2lJK q1raPkorWNo+SitY2ipK++4p7UqX1rK0lqUVLK1gafe6tIKldSttFaXd69Jq lVartFql1SqtVmm1SmtU2j5K20dptUprVNqVLq1WabVKa1TaPkprVNo+SmtU WqPSGpUuqKUPqZEy1EwtNJ8W0hJaRWtoA22krbSddtNeOkAH6Qgdo1N0ms7R ebpC1+kW/UC5tVPnXlenPXXaU2ft1Lnc1alQnQrVqVCdtVOnQnUqVGf31KlQ nbVTpzh1ilOnM3XWTp3vhersnjrFqStoTx3oGepEz9NL1J16UE/qTW9QX+pH A2kQvU1D6H0aTiNoFI2jCTSJptA0Cmk6RZSiSqqmGdRAM2kWzaY5tIAW0VJa SatpLa2nTbSFttEO2kOf0lE6TifpDJ2lL+kCXaardI2+odvfBt3+vVt/+PX3 bv22VYdWYaujd/RsVdlq0R2VrXq2unrHpFb/9sv/wl9/I1e/Vg2tzv7yMqlV +pc/h/z60rPV93cM+cW//fX3btXn+f1IH+Z5a8jz1pjnbWaet0yet1l53pry vGXzvDXneZud560lz9ucPG9z87zNy/M2P8/bgjxvC/O8Lcrz9lGet8V53pbk eVua521Znrfled5W5HlbmedtVZ631Xne1uR5W5vnbd1/ebv9b3S9T0n1PiXV uwzU+5RU77Jc7x5Q7/NSvc9L9e4B9a4A9T451fvkVO8eUO8zVL3tX++TU71P TvUFj1Ibeowep7b0BLWjp+hZeo5eoG70MvWi16gPvUlv0WB6l4bSMPqARtJo Gk8TqZhKqYwSlKRyqqAqqqFaaqQMNVEztdBcmk8L6SNaRitoFa2hdbSZttNO 2k176QAdpCN0jE7QF3SevqJL9DXdoFuU+9R1+7/jOf0V/Xf6G/pb+g39lv6O fkd/T/9A/0h/oH+j/01/pH+n/6D/pPbUgZ6hTtSZulMPepX6Uj8aSIPoPRpO I2gMTaBJNJVCilNEKaqmGZSmmTSLsjSH5tEiWkzLaSWtpfW0ibbQDtpF+2g/ HaLDdJxO0hk6SxfoIl2la/Qt3aTc8m7Qjwb9aNCPBv1osLcb3JgbNKVBP25/ Fs3pTrqL7qZ76F56iB6mR6k1PUaPU1t6gp6kjvQ0PUvP0YvUjV6mV6gXvUZ9 6E3qTwPoLRpM79JQGkYf0EgqpPE0kQIqoTJKUJLKqYKqqIZqqY4y1ETNNJfm 00e0hJbRClpD62gDbaSttJN20yf0GR2jE3SKTtM5+oou0RW6Tt/RT5Rb8o3q 0mjTN9r0jTZ9o840uiw3Kk6jujS6JzfqTKMl36gzjTrTaMk3WvKNOtNoyTcq TqPiNNr0jdrTqD2N1n2jK3Kj9jQWPE9d6CXqQT2pN71B/ejPNJDepiH0Pg2n ETSKxtI4mkSTaRqFFKfpFFGKKmkGpameZlGWZtMcmkcLaDEtpeW0klbTevqY ttEO2kV7aB/tp0N0mI7SSfqcvqQLdJEu0zf0Ld2kv1DunjzTUprpijxTy2Zq 2e1PDDndSXfTPXQfPUiPUGtqQ49TW2pHHelpeoG60ivUi16n/jSA3qGhNIxG 0mgqooBiVEoJSlIFVVEt1dGHlKEmaqYWmk8LaQkto1W0gTbSdtpNe+kAHaQj dIpO03m6RFfoBt2inylXg4waZNQgowYZNcioQUYNMmqQUYOMGmTUIGN1ZHQh owsZF96Mbxcz9kdGDTJqkFGDjBpk1CCjBhk1yFgiGV3I6ELGEsnoQkYXMrqQ 0YWMdZJRiIxCZBQioxAZhcgoREYhMrZLRisyWpFRiIwVk9GKjFZkFCLj1pvR ioxWZLQioxUZrchoRUYrMtZORisyWpEpaKCZlKXZNIcW0CJaTEtpOa2k1bSe PqZNtI120B7aR5/SYTpKJ+lzOkNf0gW6SJfpKn1D39L39BfK9WOWfTTLPppl H82yj2ZpyixNmWUfzbKPbnc9pzvpLrqb7qX76QF6lFpTG3qMHqe29AQ9SU9R R3qWXqRu9DL1oteoD71J/WkAvUWD6V0aSh/QaCqk8RSjYiqhMkpQksqpimqo jj6kRmqmFppLC+kjWkLLaAWtoXW0kTbTVtpJu2kvfUIH6CB9RsfoBJ2mL+gc fUVX6Gu6Tt/RD/QT/Uy5NjZpY5M7XJM7XJMiNulgkztckztckzY2KWKTIjZZ RU1+yqbJT3g2WUVN6tekfk2a16R5TQXtqQN1os7UhbrTq9Sb+lI/GkiDaAi9 RyNoDI2lCTSFplJIcYooRdU0g+qpgWZSlmbTHJpHi2gxLaeVtJY20RbaRfto Px2i43SGztIFukhX6RrdpB8p15SsJZLVlKymZDUlqylZ/cj6zibrO5uspmSV JKskWSXJWixZP7mZ1Y+sfmT1I6sfWf3I6kdWP7JWTFZJskqSdVXL2jNZeyar JFklySpJVkmyNk5WU7KaktWPrH5k7Z6skmSVJGv3ZJUkqyRZCyjrlpZVkqyS ZG2hrKZkNSWrKVlNydpHWU3J2kdZTclqSrYgQ03UQnNpPi2kj2gJLaMVtIrW 0DraTFtpJ+2mT+gAHaTP6BidoC/oHJ2nS/Q1Xadb9APlmtJsUTVbVM0WVbOS NCtJs340+5mZZiVptq2alaRZSZptq2aLqllTmjWl2bZqtq2a1aVZXZptq2Z1 abaomgvaUwd6nl6iHtSTetMb1Jf60UAaRG/TEHqfRtFYGkeTaApNpWkU0nRK USXNoDTVUwPNpFk0h+bRAlpEi2kpraTVtJ420RbaRjtoD+2j/fQpHaajdJLO 0Fn6ki7TVbpG39D39CPlujVbt2br1my3tNm6NdsCmq1Ws9XqdutzupPupnvo fnqAHqHW1IYep7bUjp6kjvQcvUBdqRu9Qq9TH+pPA2gwvUPDaCSNpiIaTwHF qIRKKUFJqqAqqqU6aqQMNdFcmk8LaQkto1W0hjbQRtpK22kvHaCDdIRO0Wk6 R+fpCl2nG3SLfqDc/mixOlqsjhb9aNGPFne4FtVoUY0W1WixP1r0o0UrWtzh WlSjRTVaXORafFPTYpO06EeLfrToR4t+tNgpLUrSoiQtBe3pT9SJOlMX6k49 qCf1pjeoL/2ZBtHbNISG0wgaQ+NoAk2mqTSNQopTRJVUTWmqp5k0i7I0jxbQ IlpMS2k5raTVtJY+pm20g/bQPtpPn9IhOkxH6fP/z9adBslR33cc3kJ5mUry InkTkjgKIZRDiIuiCKFSmCIEDJYAIyMLg7kM5sbmMBgEBiOEuQ8B5hCXkJCQ YGdb09O9s9O93bO67xtd6EL3hYSEhC6skP+mMs+L1Lz42U81Lr+gKD76/qWq pS20jXbQF7SXvqKDdIiO0DFqva91WkCdmtKpKZ3e0jptoU516VSXTluov+st DaST6GT6Lp1Gp9OZdBb9B51L59H5dAH9gAbRJfRj+ildQ9fRDXQj/YJuodvo DrqLfkX30G/ot/Q4PUFP0lP0DD1HL9BL9Ad6i96md+l9+oDG0Xj6iCZRhSKq Uo3q1KCCmjSFptEsmkPzaAEtoeW0ktbQBtpIm2k77aTd9CUdoK/pMH1DrVe1 ir5V9K2ibxWrqOJVraJvFVWrqFpFwSre0irWTsWfNaj4020VC6iiZRUFqyhY RbcqulXpuJAuosE0hK6gK+kqupaup5voZrqd7qS76V56gB6kR2kEjaSn6Vl6 kV6m12k0vUNjaCxNoIn0MXVSF02mmBLqoYxK6qPpNJPm0nxaTEtpBa2itbSe NtEO2kX76CAdotae6bJnuuyZLhXqUqEu73BdKtSlQl3a06U9/X9HWzqJTqZT 6Xt0Bp1JZ9M5dC6dR+fTD+hiGkSX0OU0lIbR1XQNXUe/oFvoNrqD7qH76H56 iB6jJ+hJeoqeoRfoJRpFb9Db9C59QOPoI5pEn1CFqlSjlOrUoJyaNIVm0Dxa QItoGS2nlbSa1tFG2kw7aTftpwP0NR2m49TqR+RVLdKPyCqKvKVF9lGkJJGS RJZSpCmRpkSWUqQukbpEllJkH0U6E+lMZDNFihPZTJF9FOlMpDORfRTpTGQf RfZR5M0t8uYW2UKRzkQ6E+lMpDORVRQpTqQ4kc5EXtoiL22RLRTpTKQzkVUU KU6kOJF9FClO5M0tsooi7Ym0J7KPIhWKVCiylCIVilQoUqFIeyLtibQnspQi 7Ynso0iFIhWKLKVIjyI9ivQo0qPIeoospUiFIvso0qNIjyKbKbKZImWKlCmy mSJLKdKoSKMiSymyjyar1WS1mmwfTfbmNlmjJttHkzWq/+9ySyfSQDqZTqHT 6HQ6g86ic+hcOp8uoItpEF1GQ2kYXU3X0A10I91Ct9FddB/dTw/T4/QkPUXP 0Sh6ld6id+l9GkfjaRJ9QhWKqEYp1SmngqbQNJpFc2gBLaJltJxW0xraQFtp O+2mPbSfDtBhOkrHqdWZqp1SVZyq4lTtlKriVBWnqjNVnalqStXv3lS9w1U1 per1raouVXWpqktVXapWTNV2qapLVV2qmlLtuJAuoh/SYLqUfkRX0JV0Ff2M rqWf0810K91Ov6R76df0AD1Cv6MRNJJ+T0/Ts/Q8vUKv0Zs0mt6jMfQhTaCJ 9DF1Uhcl1E091EslTaXpNJvm00JaTEtpBX1Ga2k9fU7b6AvaS/voKzpIR+gY /ZFanYl1JraFYgso1plYZ2JbKFacWHFinYn9mYTY7/fEOhN7h4vto9g+irUn 1p7YUoq9yMUqFNtHsfbE9lGsPbFVFFtFsRe52ItcrEKxLRSrUKxCsX0U61Gs R7F9FHuHiy2lWJliL3KxF7nYUootpVitYrWKLaXYUorVKvYOF1tKsaUUK1is YLHNFCtYbDPFWhZrWaxlsZbFWhZrWaxlsc0Uq1qsarH1FOtbrG+xHRUrXax0 sW0VK13sbS62o2Kli5UutqhiiyrWvFjzYqWLvcjFmhdbVLHSxV7kYs2rKV3N O1xN32r6VrOjavpWs55qqlbzZxJqWlbzIlfTspqW1eyjmne4mpbVrKJax4V0 EQ2mS2kIXUlX0fV0E91Mt9OddDc9QA/SozSCRtLT9Cy9SK/R6/QOjaGxNIEm Uid10WSKqZt6KKOS+mg6zaS5tJiW0ipaS+tpE22hHbSX9tEhOkatfiSqkXg3 S6yTRD8S/Uj0I9GPxAtaohWJViQKkShEYp0kWpFoRaIViVYkXtUS1UjslEQr Eq1ILJZENRLVSGyXRD8S/UismERJEiVJlCRRkkRJEiVJVCOxZxL9SPQjUY3E +1qiH4l+JNZOoiSJkiRKkihJYgEl3twSJUmUJFGSREkS/UhsoURJEiVJlCRR kkRJEiVJOqpUpwbl1KQpNINm0RyaR4toCS2jlbSa1tA62kCbaSftoS9pPx2m o/QNtaqRqkZqH6Xe4VL9SK2iVD9S/Ui9uaX6kepHah+lSpIqSWofpZqSWkWp VZR6c0vVJbWFUiVJLaBUSVK7J7V7Ui9tqbqkdk9q96R2T6ozqc6k6pLaPand k6pL6qUttXtSuydVnNTaSXUmtXFS72up4qSKk1o7qbWTWjup9qTWTqpCqQql 1k6qQqkKpSqUak+qPam1k6pQqkKp3ZPqUapHqQWUWkCpBZQqU+p9LbWAUgso 1ajU7knVKlWr1KtaagulupXqVmoLpRZQqmCpgqUWULeWdXtp61a1blXr1rJu Leu2gPoL39KJ9B0aSKfQqXQanU5n0Fl0Np1PF9DFNIguo8tpKA2ja+gGupFu obvoV3QfPUQP02P0OD1JT9Fz9AKNolfpDXqL3qdxNJ4m0ScUUZVqVKcG5VTQ FJpGs2gOLaBltJxW0xraQBtpK+2mPbSfDtBhOkrHqfXmVleSupe2uk1SV5e6 utStk7rO1HWm7vWt7vWtril1v7dT9/pWV5e6utTVpW6x1C2Wus7UdaZusdQ7 LqSL6Ic0mC6lH9EQuoJ+Qj+ja+l6+jndRLfSnfRLupt+TcPpEXqUfkcjaCQ9 Tc/Ti/QKvUmjaQyNpQ9pAk2kj6mTumgyxZRQN2XUSyVNpek0k2bTXJpPC+lT WkGraC19TptoG+2iL+grOkiH6Agdo1Z7ehSnx+tbj/b02FE92tNjPfV4c+vv eksn0kA6iU6m79KpdBp9j86ks+hsOo9+QIPoErqcfkxDaRhdTdfRDfQLuo3u oF/RPXQ/PUQP02/pMXqCnqEX6CUaRa/SG/QWvU0f0DgaTx/RJ1ShKtUopZwK atIUmkYzaA7No0W0jJbTSlpHG2gjbabttJN20x46QF/TYfqGjlOrYA3dauhW Q60aatWwgBpe0Bq2UMMWamhUw58/aNhCDbVqaFRDoxoa1dCohgXU8PtCjY4L 6SIaTJfSELqCrqSr6Fq6nm6m2+luupceoAfpEXqURtBIepZepJfpNXqdRtM7 NIbG0gSaSJ3URTEl1E0Z9VJJfTSdZtJcmk+LaSmtoFW0njbRFtpBu2gvHaRD 1NoumWpkqpGpRmaxZPqR6UdmsWRe3zKvb5lWZFqRWSyZamRakWlFZrtktkum H5l+ZN7hMn9yILNiMismU5JMSTJ7JtOUTFMyTcm8vmWWTaYpmaZklk2mKZmm ZEqS2TiZN7dMSTIlyZQks3YyayezcTIlyZQk876WqUbmVS2zcTIlyZQkU5JM STK7J9OUTFMyCyjTlExTso46NaigJk2haTSDZtEcmkcLaAktp5W0mtbRBtpM W2k77aQv6QB9TYfpGzpOrc7kllKuOLni5JZSrj25fZRbRbn25NqTe33LtSfX ntxSylUot5Ry7cm9w+UqlNtHud/byf05hdyLXG4f5dqTW0W5CuUqlFtFuR7l epRbSrky5fZRbhXlVlGuR7ktlCtTrky5fZRrVK5RuX2Ue5vLbaFco3KNyq2i XK1ytco1Kvc2l6tVbh/lGpVbRblG5bZQrla5WuVqlXf0UEl9NJVm0myaTwtp MS2lT2kVfUZr6XPaQttoB+2iffQVHaRDdISOUWsV9XqR61W6Xn3r1bde73C9 tlB/4Vv6Dg2kk+kUOpVOpzPobDqHzqeLaRBdRpfTUBpGV9M1dCPdQrfRXXQf 3U8P0cP0GD1OT9ELNIpepTfoXXqfxtF4mkSfUERVSqlODSqoSVNoGs2iObSA FtEyWk1raCNtpe20m/bTATpMR+k4tapR+D2bQj8K1ShUo1CNwltaoRqFahRe 1QqvaoVWFFpRaEVhsRRaUWhFoRWFnVJoRaEVhfe1wmIpLJZCNQrVKFSj0IpC KwqtKLSi8G5W2C6F7VJ4NysUolCIQiEKhSh0odCFwoopvJYVClEoRKELhS4U 3s0KXSh0odCFwooprJhCIQqFKOyZQiEKhSh0odCFoiOjXuqjqTSdZtJsmksL aTEtpU/pM1pLm2gLbaMd9AXto6/oCB2j1top1aC0dko1KNWgtHZKb2SltVNa O6U3slIhSoUoLaBSK0qtKC2g0u4pVaNUjdLuKa2d0topvZuV3s1KG6fUj1I/ ShunVJJSSUprp9SUUlNK72alZVN6LSuVpFSS0sYpNaXUlNLaKTWl9G5Wejcr rZ3S2il1ptSZ0u4pvZuVFlCpPaX2lBZQae2UilPaOKX2lNpTWjulCpUqVKpQ 2ZFTk6bQNJpBc2geLaBFtISW02paQ+toM22l7bST9tCXtJ8O0GE6Sq3d01Sr po3TVKumRjW9qjW9qjXtmaa3tKZl07RsmmrV1KimRjW9qjXVqqlRTa9qTbVq qlXT+1qz40IaTJfSELqCrqSr6Fq6iW6mO+luupceoAfpERpBI+lZepleo9dp NL1DY2gsTaCJ1EldFFNCPZRRL5U0labTTJpL82kxLaUVtIrW0nraRFtoB+2i vbSPDtIhOkb9xen/aVHbbuv/aVH9Px2q/yc/vXfC2AHDBywOvuj/vpww4Pvh P/t/LtTwAb0nDB8wJHwZ/r9/dfiAm8P/sv+v9v8En742P9VnSptvU9t8m9bm 2/Q232a0+TazzbdZbb7NbvNtTptvc9t8m9fm2/w23xa0+bawzbdFbb4tbvNt SZtvS9t8W9bm26dtvi1v821Fm28r23xb1ebb6jbfPmvzbU2bb2vbfFvX5tv6 Nt82/L9v/f9E9/mVU58d3efXUH1+vdTndbjPr5z6/Mqp/1eWLf0tDaST6BT6 Lp1Kp9H36Ew6i86mc+hcOo8uoEF0CV1GP6ahNIx+SlfTdXQj3UJ30T10P/2G HqKH6bf0BD1Jz9Bz9BKNoj/QG/QWvU3v0wc0jsbTJKpQRDVKqUE5FTSNZtAs mkcLaBEtoWW0ktbRBtpIm2kr7aTdtIe+pK/pKH1Dx6m16fv/Pd7SCfQn9Kf0 Z/QX9Jf01/Q39Hf09/QP9I/0T/TP9C/0r/Rv9O/0ffpP+i/6IQ2mH9EQuoJ+ QlfSVfQzup5+TrfSL+luupd+TQ/QgzScHqWR9Ht6mp6nF+kVep3epNH0Dr1H Y+lD+pg6qYsmU0wJdVMPZdRLJU2l6TSTZtNcmk8LaSl9SitoFa2nz2kTbaNd 9AXtpX10kA7REfojtd6Jp+rbVH2bqmVTO/788QEdHSPCPRFuZLgnw/0+3FPh ng73TLhnwz0X7vlwL4R7MdxL4V4ONyrcK+FeDfdauD+Eez3cG+HeDPdWuNHh 3g73Trh3w70X7v1wY8J9EG5suHHhPgw3PtyEcB+FmxhuUriPw30SrjNcJVxX uCjc5HDVcHG4WrgkXBquO1w9XE+4RrgsXB6uN1wRrgzXDNcXbkq4qeGmhZse bka4meFmhZsdbk64ueHmhZsfbkG4heEWhVscbkm4peGWhfs03PJwK8KtDLcq 3Opwn4VbE25tuHXh1ofbEO7zcBvDbQq3OdyWcFvDbQu3PdyOcLvCHf/22293 h//+ItyecHvDfRluX7j94b4KdyDcwXBfhzsU7nC4I+GOhjsW7ptwf+z//wr3 3+G+DRf+Xdzhn4S/ohPpOzSQTqZT6TQ6i86mc+hcOp8upkF0OQ2lYXQ1XUM3 0P+wdzdwVVTpA8cndYt1zVwzIa4v5BqZkRmJkhm6RmRkSmZkRmZoZq6Za+aa uWZm5rpmZv7NXNfMyjVzzVwzM2NNCV/whVBEFMEI5Ip6xTdQkuV/5s6ZH3Mu cwFTy5fb/Rz8znPOnBlomOeeM8PcZ9Hz6AX0InoJvYxeQa+jN9Cb6B30LnoP /RN9iD5Gn6LP0OfoC/Ql+hp9g/6LvkXfoXVoA9qMtqJtKA1loGz0A8pHB9Ah dAQdQ8WoFJnvENZy/K3lHcJa3iGs5X3BWt4XrGWGfy3vC9byvmAt7wvW8r5g Le8G1vJuYC3vBtbybmAt7wbW8m5gLe8G1jKPspZ5lLXMo6zlHcJa3iGsZf5/ Le8V1vIOYS3vENbyDmEt7xDW8g5hLe8L1jLLslbri+LRIDQEDUXD0HA0Eo1C o9FYNAFNRJPRFDQdzUAz0Sw0G81B89BHaD5aiBahJWgpWo5WoJVoFUpAq1ES Wo82ok1oC0pB29EOtAtlob0oBzlRATqIXOgoKkIn0WlkZv5EMn8imT+RkW0i 7wESuUKcyMg2kSsB+nskU41RU3QD+gO6Cd2MbkG3ottQGLoT3YX+iO5F96H7 UXf0MHoEPYoeQ0+gJ1E/9Cf0HPozegG9iP6CXkZ/Ra+i19Eb6G/o7+gt9H/o XfQe+gd6H32APkb/Qp+gf6PP0OfoP+gL9CX6Cn2D/ou+RevQBpSMtqLv0TaU htLRbrQHZaMf0I9oPzqADqHD6Ag6hk6gU+gnZOay78hl35HBvuOawHeMdr8j l33HNYHvuCbwHbnsO3LZd4xsv+NKwHdksO/IW99xJeA7rgR8R976jrz1HXnr O/LWd1oU6oK6oR6oJ+qFeqM+qC/qjwajoWgYGoFGozFoHBqPJqJJaCqajmag WWg2movmowVoMVqKlqEVaCVKQKvRGpSE1qONaBNKQaloB9qJMlEWykG5yIkK kAsVouPInPVPIpMkkT+SuLqcxBxpEvkjiZnRJDKJ/n2bcqDGqCm6Af0B3YRu Rreh29Ed6E50F7obdUT3oHvRfehB9BB6GD2CHkOPoyfQk+gp9DT6E3oOPY/+ jF5AL6K/oL+iV9Br6G/o7+ht9A76P/Queg/9A/0TvY8+QP9Cn6B/o8/Qf9AX 6Ev0FfoafYP+i75Fa9F3aANKRpvR92gbSkcZaDfag35EeSgf7UcH0GF0BB1D J9ApZOaZdWSXdYyU1pFd1nF/1DquPa8ju6xjLnUdo6d1jJ7WkXHWMWZax5hp HWOmdeSedeSedWScddwptY4x0zoyzjrmUtcxPlqnRaEuqCuKQT1QLOqN4lBf FI8GoEFoCBqKhqORaAwai8ah8WgimoQmo2loOpqJZqM5aB6ajxaghWgRWoKW omVoOVqJVqHVaA1KROvRRrQJbUEpKBVtRzvRLpSJslAu2oec6CByoUJ0FBWh k8gcH60nl61nVLSeXLaeO6XWk8HWMzOm/yxMOVBTdAO6Ed2EbkG3oztQO3Q3 6ojuQfei+9EDqDt6CD2KHkdPoKdQP/QMehY9h55HL6AX0UvoFfQqeh29gf6O 3kRvo3fQu+g99E/0PvoQfYw+QZ+iz9EX6Ev0NfoGfYvWou/QOpSMNqOtaBtK QxloN8pGeSgfHUJH0DFUjEqROU7ZQP7YwDhlA/ljA/ljA1ljA1ljA+OUDeSP DeSPDYxYNjBi2UAm2UAm2cCc2wbyxwbyxwbGLhuYh9tAJtlAJtnAKGYDo5gN ZJcNWhSKRt1QDOqFeqM41AfFo/5oIBqMhqChaBgagUahsWgcmoAmoyloKpqG pqMZaBaajeaguegjtBAtQkvQUrQMLUcr0Eq0CiWgNSgRJaFNaAtKQdvRDrQT 7UKZaC/KRfuQEx1ELlSIjqLjqAidRObs20ayy0bGTBvJMxvJMxsZPW0k42wk 42xk9KRnX1ON0R/QjegmdCu6Dd2BwtBdqCP6I7oH3YfuRw+gB1F39Bh6Aj2J +qGn0TPoWfQn9Bz6M/oLehm9gl5Fr6HX0RvoTfQWehv9H/oHeh99gD5EH6NP 0Kfo3+gz9B/0JfoKfYP+i75Fa9F3aB3ajLai71EaSkcZaDfag35AP6I8lI/2 owPoMDqGTqBTqBSZeSuZbJXMuCeZbJXM/Foy455k8lYyeSuZbJVMtkomWyWT rZIZ7SQzv5ZMZkomMyUzv5ZMPkomHyUzsklmZJNMFkom9ySTe5LJOMmMZ5LJ OMmMZ5IZzySTe5LJOMlknGTGM8nMqiUzskkm4yQznklmPJNMxkkm4ySTZ5LJ M8nkmWTyTDLZJZnxTDLjmWTGM8nkmWRm2pLJM8nkmWSySzLZJZmckswoJpmc kkxOSdbWo01oC0pBqWgH2okyURbKQbnIiQqQCxWi46gIlSBzxLKJ/LGJ/LGJ rLGJ6zibmH3bRP7YRP7Qv29TDtQU3YD+gG5EN6Nb0W3oDhSG2qE7UUf0R3QP ug/djx5AD6JH0ePoSfQUeho9g55Ff0LPoxfQS+iv6DX0OvobehO9hd5G76B3 0Xvon+gD9CH6F/o3+gx9jr5AX6Kv0Nfov+hbtBZ9h9ahDSgZbUXfo20oDaWj DLQHZaMf0I9oPzqADqEj6Bg6gYrRT8jMJJvJJJvJJJsZAW0mk2zm/oPNXLPZ zKhoM9llM9llM6OizcylbSa7bGYEtJkZtM2MhTYzFtrMWGgzeWYzs2qbGQFt JuNsJuNsZgS0WYtC0agr6oZiURzqi+JRfzQADUSD0GA0BA1Ho9BoNAaNQ+PR BDQJTUZT0FQ0Dc1Ec9BcNA99hOajBWgRWoyWoOVoJVqFEtBqtAYlofVoI0pB qWg72oF2ol0oC+1FOSgXOVEBOoiOoiJ0EpWg08gcAW1hBLSFvLWFcc8W8tYW 7j/YwghoCxlMz9KmHKgpugHdhG5Bt6N26E50N+qI7kH3ovvRA6g7egQ9gZ5C /dAz6Fn0HHoRvYxeQa+i19Eb6O/oTfQ2ege9i95D76MP0cfoE/Qp+gx9jr5A X6Kv0TfoW7QWrUMbUDL6Hm1DaSgD7UbZ6AeUh/LRAXQIHUHHUDE6hUqRmVO2 Mqu2lUyyldHJVjLJVjLJVsYpW8kpW8kkW8kkWxmxbGXEspXsspXsspURy1ay y1ayy1ayy1ayy1ayy1ayy1bGM1uZc9tKxtlKdtmqRaEuKBp1RTGoJ+qD4lF/ NAANRIPQYDQEjUCj0Gg0Fk1AE9EkNBlNRdPQdDQDzUJz0Fz0EZqPFqLFaAla ipahFWgVSkCr0RqUiNajjWgTSkXb0Q60C2WiLLQX5aB9qAAdRC5UiI6jk6gE nUZmTknh6k0KmSSFsVAKOSWFnJLCqCiF7JLCqCiFnJLCrFoK2SWFsVAKI6AU RkApjIBSGAGlMAJKIc+kML+WQsZJIc+kkGdSGAGlkHFSGPekcEUnhfsPUhj3 pJBxUsg4KYyAUsg9KeSeFEZAKYyAUphLS2EElMIIKIV8lEI+SiELpTAWSiEf pZCPUhgVpZCPUphVS2FWLYWxUApjoRQyUwqZKYVRUQo5KoUclcJIKYUclcL8 WgqjohRyVAo5KoXxUQo5KoVRUQrZKoVslUK2StE2o+/RNpSG0tFutAdlox/Q jygP5aP96BA6jE6gYnQK/YRKkZnVvueug+/JZd8zPvqeXPY9uex7RkXfk7e+ J299z/za92Sr78lW3zPT9j0zbd+Tj74nH33PaOd7LQp1Qd1QD9QX9UcD0CA0 GA1FI9EYNA5NRJPQFDQdzUCz0Tw0Hy1Ai9BStAytRAloNUpESWgj2oS2oBSU irajHWgnykRZKAflIidyoUJUhEqQeeZP5dyeyrk9lXN7Kuf2VM7tqYwcUjm3 p3JuT+XcnsrsViojh1RGDqmc5VM5y6dylk/lLJ/KWT6Vs3wqZ/lU5rlSOcun cpZP5SyfymgilbN8Kmf5VM7yqZzlUznLp3KWT+Usn8pZPpWzfCpjjVSunaRy vk/lfJ/K+T6V830qc1+pnO9TOd+ncr5P5Xyfyvk+lfN9Kuf7VEYiqZz5Uznz p3LmT+XMn8r5PpXzfSrn+1TO96mc71M536cyOknlzJ/KmT+VM38qZ/5Uximp nPlTOfOncr5P5Xyfqm1F36M0lI4y0G60B2WjH1Eeykf70SF0GB1BJ1AxOoV+ QqXIPPNv48y/jTP/Ns782xjPbCMHbCMHbGM8s41RzDaywTaywTZGMduYGdvG iGUbI5ZtjFi2MWLZxohlGxliGxliGyOWbcyRbWPssk2LQl1QNIpBPVEfFI/6 owFoIBqMhqBhaAQahUajsWg8moAmokloMpqKpqEZaCaaheaguegjNB8tQAvR YrQELUPL0Qq0Cq1Ga1AiSkLr0Sa0BaWgHWgn2oUyURbai3JQLtqHCtBBVIiO ouPoJCpBp5E5ntnOeGY745ntZLrtZLrt5Lft5Dc9N5tyoKboBnQjugndgm5F t6N26E50N+qI7kH3ovvRA6g7egg9gp5AT6F+6Bn0LHoOPY9eQC+il9Gr6HX0 Bvo7ehO9jd5F76H30cfoE/Qp+gx9gb5EX6Nv0LdoLVqHNqDNaCv6HqWjDLQb ZaMfUB7KRwfQEXQMFaNTqBSZmSSNmbE0ZsbSyCRpZJI0MkkamSSNTJLGuCKN ObI0sksamSSN+bA0xhppjDXSGGukMdZII8+kkWfSyDNp5Jk0ckoaOSWNkUga 2SWNTJLGLFgaY5I0xiRpXHdJ47pLGuOUNPJMGnkmjTyTRp5JY+ySRp5JY+yS xnWXNPJMGnkmjVFMGnkmjTyTRnZJI7ukMbJJI8+kkWfSyC5pZJc0sksa2SWN 7JJGdkkju6SRXdIYAaWRZ9LIM2lklzSySxqjojRGRWlklzSySxo5JY1RURrZ JY3skkZ2SdNS0U60C2WivSgH5aJ9yIkK0EF0FB1HRegkKkGnkZlddnAFZgdX YHYwotpBntlBntnBiGoHeWYHs2V6fjV1A/oDuhndhu5AYagduhPdjTqiP6J7 0APoQfQwehQ9jp5ET6Gn0bPoT+h59Gf0AnoRvYT+il5Dr6M30N/Qm+gt9A56 F72H/oH+iT5AH6J/oU/Rv9Hn6Av0JfoK/Rd9i9ai79AGlIw2o63oe7QNpaMM tBvtQdnoB/Qjykf70SF0BB1DJ1Ax+gmZeSuduwTSuUsgnbFQOhksnbyVTt5K J1ulk63SyUzpZKZ0MlM6mSmdzJROZkpnPiydzJTOuCedcU86mSmdzJROFkon C6UzsknnHrR07kFLZ7STTj5KJwulk4XSyT3pjHbSyT3pjHbSGe2kM5eWzlxa OlkonSyUzhgnnYyTTsZJZ1YtnZFNOhknnfm1dObX0skz6eSZdLJLOtklnZm2 dEYx6WSXdLJLOmOXdHJKOiOWdHJKOjklnUySTiZJ17ajHWgn2oUyURbKQbnI iQqQCxWi46gIlSAzk+zkzrOdjE52kj92kjV2kjV2Mk7ZSf7YSf7QvzNTN6A/ oBvRTegWdCu6Hd2BwtBdqCP6I7oHPYAeRN3RI+gx9AR6EvVDz6A/oefQn9EL 6C/oFfQqeg29jt5Af0NvorfQ2+j/0D/QP9EH6EP0MfoEfYr+jT5D/0Ffoq/Q 1+i/6Fv0HVqHNqBktBl9j7ahNJSOdqM9KBv9gH5EeSgf7UcH0GF0DJ1AxegU MkdFGeSUDHJKBqOiDLJLBqOiDHJKBmOhDLJLBtklg7FQBmOhDPJMBvNrGcyv ZTDaySC7ZJBdMsguGWSXDEZAGeSZDPJMBiOgDEZAGWScDGbVMhj3ZJB7Msg9 GYyFMshCGYyFMhj3ZJBxMhj3ZJB7Msg9GYyAMshCGWShDGbaMshCGYyAMhgB ZTACyiALZTDuySAfZZCPMshHGeSjDMZCGYyFMhgLZTDuySAfZTDaySAzZZCZ MhgBZZCZMphfy2AElMEIKIMclcEIKINslUG2ymAElEG2yiBbZZCtMshMGWSm DEZAGWSmDMY9GWSmDEY7GeSoDHJUBiOgDLJVBtkqgxFQBqOdXYx2djHa2UXe 2sVoZxc5ahc5Ss+0phyoKboR3YRuQbei29EdqB26E92NOqJ70L3oftQdPYQe RY+jJ9BT6Fn0HHoevYBeRC+hV9Cr6HX0Bvo7ehu9g95F76F/ovfRh+hj9An6 FH2GPkdfoK/RN2gtWoc2oM1oK9qG0lA62o32oGz0A8pD+egAOoSOoGOoGJ1C 5uhkN7Nqu8kku8kkuxmd7CZ/7CZ/7CZ/7CZr7Ob6zG6uz+wmf+wmf+xmxLKb EctuRiy7GbHsJrvsJrvsZi5tNzllNzllN/ljtxaFuqAY1APFol6oN4pDfdEg NAQNRcPRCDQKjUFj0Tg0Hk1Ek9BkNA1NRzPRHDQXzUPz0QK0CC1BS9EytByt QgkoESWh9Wgj2oJSUCrajnagnWgXykJ7UQ7KRfuQEx1ELlSIjqIidBKZY5xM rrtkMsbJJGtkkjUyGe1kMsbJJH9kkj8yGeNkkj8yuesgkzFOJvkjk9myTGbL MskfmYxnMskfmeSPTMY4mWSSTDJJJvkjk3sNMskamcyWZTLGyWSMk0kmySST ZDLayWRkk0kmySSTZDLGySSnZJJTMhntZHJVJpN5s0zyTCbjnkzGOJmMcTLJ Lplkl0zGOJnkmUzyTCZ5JpM8k8m4J5PZskxGNplkl0yySyZjnEzGOJnkmUzy TCZjnExGNplknEwyTiYjm0wyTiYjm0xyTya5J5Pck6lloD0oG/2AfkT5aD86 gA6hw+gIOoZOoFPInDfbw/0Cexjj7CEz7WFks4fZsj1kpj3koz2MZ/aQj/aQ j/Ywg7aHLLSHLLSHLLSHLLSH8cwexjN7yD17GMXs0aJQF9QD9US9UG/UBw1G Q9EwNAKNRKPRGDQOjUcT0SQ0BU1F09EMNAvNRnPRPDQfLUCL0VK0DK1AK1EC Wo0SURLaiDahFJSKdqCdaBfKRHtRDspFTlSAXKgQHUclyJwPy2KEkUXWyCJX ZJErspgZyyJrZJEh9NxnyoEao6boBnQTuhndgm5Ft6HbURhqh+5Ed6E/onvR feh+9DB6BD2KHkOPoyfQk+hP6Dn0Z/QC+gt6Cb2M/opeRa+jN9Df0Vvo/9C7 6B/offQB+hB9jD5B/0afoc/Rf9AX6Cv0X/QtWou+Q+tQMtqMtqLv0TaUjjLQ bvQD+hHlof3oADqEDqMj6Bg6gX5Cpcgcz2STP7IZ2WSTSbIZ2WQzsslmjiyb nJJN/shmZJNN/shmZiyb8Uw2+SObmbFsMkk2o5hsRjHZjGKyySnZ5JRs5sOy Gc9kk1OymRnLJrtkk12yGc9kk2eyGcVkM4rJZhSTzSgmm4yTTcbJZjyTTcbJ ZjyTTe7JJvdkM7LJZhYsm7FLNhknm4yTTcbJJuNkM57JJvdkk3uyGeNkk3uy mQXLZhYsm5FNNiObbHJPNuOZbLJQNlkom9yTzdxXNlkom5FNNrknm5FNNlko myyUzcgmm3yUTT7KJh9lk4+yyUfZ5KNs8lE2I5tsMlM2mSmbMU42OSqbHJXN GCebMU42OSrbPR+mf0JXb/kJXeNrzhFfh9bcVWN8zS41a9QcULNHzZM1eoh/ XTUGiPhY9ydy5YqvEaK2R039M70ixL+5Yi39U5P22nyS0g82sRyb2I82sVyb WJ5NbJ9NLN8m5rSJ7beJFdjEDtjEDtrEDtnEXDaxwzaxQpvYEZvYUZvYMZvY cZvYCZtYkU2s2CZ20iZ2yiZWYhP7ySZ22iZWahP7n02szCOmH9F7Gavv5f3X Xsbqe5nX3cu7Lv03z5QDNUU3oBvRLehWdAdqh+5Ed6N70P3oAfQQegQ9ih5H T6Cn0LPoefQCehG9hF5Gr6DX0RvoTfQ2ege9i95D/0Qfoo/Rp+gz9Dn6An2J vkbforVoA9qMtqJtKA1loN1oD8pGP6I8lI8OoEPoCDqGilEpMt/L6GdHUzXQ lagOqosCUCBqhJqgINQMNUctUQhqhUJRG9QWhaP2KAJ1RpEoGnVFMagnikW9 UG/UB8WjgWgIGoqGoxFoJBqFRqMxaCwajyaiyWgKmoZmolloNpqD5qGP0Hy0 EC1Ci9FStBytQKvQarQGJaKNaBPaglLQdrQD7US7UCbKQrloH3KiAnQQuVAh OoqOo5PoNDKv8uWQDXLIBjmMxnMYg+eQF3LICzmMwXPICzmMvHPICznM1+Yw 3s4hQ+SQIXIYb+cw3s7RwlA7dBfqiP6I7kUPoAdRd/QwegQ9ih5DT6J+6Bn0 HPozehH9Bb2EXkZ/Ra+i19Df0N/RW+ht9A56F72H/oHeRx+gj9G/0Cfo3+g/ 6Av0JfoKfYP+i75Fa9F3KBltRlvR92gbSkPpaDfag7JRHspH+9EBdAgdRsfQ CXQK/YTMbPUj2epHrRaqjeqgeqghaoSaoGaoOWqBWqJWqDVqg9qiDqgTikJd UTfUA/VEvVBv1Bf1RwPQYDQMjUAj0Wg0Bo1Dk9BUNB3NQLPQbDQXzUcL0CK0 GC1DK9BKlIBWo0SUhDaiTSgFpaIdaCfKRFloL8pF+5ATFSAXKkTHUREyZ2lz yQu55IVc8kIus7S5ZIhc5mZzuY6XS17IJS/kMnLIJUPkkiFyGUPkMkubS9bI JUPkkiFyGVfkkityyRW5jCtyyRW55IpcZmRzyRC5ZIhcxhq55IpcMkQuGSKX UUcuY41c7onPZW42l7FGLhkilwyRS4bIJUPkkiFyGX/kkityyRW55IpcckUu uSKXXJHLLG0uGSKXDJHLmCSXXJFLrsglQ+SSIXIZp+QyTsklV+SSK3LJELmM U3LJFbnkilzyQq62Dm1AyWgz+h5tQ2koHWWg3WgPykY/oB9RPtqPDqBD6DA6 gk6gYnQKmfkjj6yRxxgnjzFOHvO1eWSSPK735XEnSh6jnTzyRx5jnDzyRx7z tXlkkjzyRx75I48xTh6ZJI+RTR7jmTzGM3nMzeaRSfLIJHmMZ/LIKXmMZ/LI JHnM0uYxiskjp+SRU/KYuc1jFJNHTskjp+Qxiskjp+Qxdslj7JLH2CWPsUse Y5c8xi55ZJw8Mk4e45k8Mk4eo5g8RjF55J48ck8eo5g85mbzGLvkMXbJI/fk MXbJIwvlkYXyyD15zM3mkYXyGLvkkYXyyEJ5jGLyyEJ5jF3yyEJ5ZKE8LQft Q05UgA6iQnQUFaGTyByx7CMf7SMf7WPWah/5aB93k+h7YqopugHdiG5Ct6Lb 0R3oTnQ36ojuQfejB1B39BB6BD2OnkD90DPoWfQCehG9hF5Gr6BX0evoDfQm ege9i/6J3kcfoo/RJ+hT9Dn6En2NvkHfonVoA9qKtqE0lIF2o2z0A/oR5aF8 tB8dQIfQEXQMFaNTqBSZI4J8zu35nNvzGRvkc5bP5yyfz7k9n3N7PnNa+Zzb 8zm35zNKyOcsn89ZPp+zfD4zWfmc5fM5y+dzls9n1iqf8UI+44V8Zq3ymbXK 5yyfz1k+n7N8PiOHfM7t+cxV5XOWz+csn8+sVT7jhXzO8vmc5fM5y+dzls9n DJHP+T6f830+o4l8rsrlc77P53yfz/k+n/N9Puf7fM73+Zzv8znf5zPWyGfW Kp/zfT7n+3xGHfmc+fM58+cz6sjnzJ/PmT+fM38+s1b5nPnzOfPnc+bP58yf z5k/nzN/Pmf+fEYi+eSAfHJAPmOSfHJAPjkgX8tF+1ABOohc6Cg6jorQSVSC zPkrJ9nAyejESV5wkhecjE6cjE6czF85GZ04yRBOxiROcoWTXOFkTOJkJsvJ 6MRJ/nCSP5yMTpzMXzkZiTiZtXKSP5zkDyejEyeZxEkmcTI6cZI/nMxaORmT OBmTOMkpTnKKk/krJ9nFyejESU5xMiZxklOcjEScZBcn2cXJmMTJmMTJmMTJ mMTJmMTJmMRJxnEyEnGSe5zkHiejEye5x8n8lZPRiZPRiZMxiZN85CQfORmT OJm1cjI6cZKjnOQoJ6MTJ6MTJ6MTJ9nKyZjESbZyMhJxkrec5C0nectJ3nKS rZxkKyfZyslIxEm2cjIScZKtnIw/nOQtJ3lrP3lrP9lqP9lqPyOR/cxk7Wcm az8zWfvJTPvJTPvJR/uZv9rP+GM/mWk/+Wg/81f7yUz7yUz7GX/s16JQF9QV dUM9UE/UB/VFA9AgNBQNQyPQSDQajUHj0Hg0EU1CU9F0NAPNQnPRPDQfLUKL 0TK0Aq1ECWg1SkRJaCPahFJQKtqBdqJMlIVyUC7ah5zoIHKhQnQcFaESZI4m ChhNFJA/CsgfBeSPAma3CrjqUUD+KCB/FDDPVUD+KCB/FJA/CsgaBWSNAkYd BeSPAnJFATNZBYw/Chh/FDDqKGAmq4CsUUDWKCBXFJArChh/FJArCsgVBeSK AnJFATNZBVw/LyBrFDASKWAkUkDWKCBrFDAmKSBrFJA1CpjJKiBXFJArChid FDA6KSBrFJA1CsgVBeSKAnJFAbmigAxRQIYoYNaqgBFLAbmigFxRQIYoYOxS QK4oIFcUkBcKyAsFjGcKGM8UkCEKyBAFjGwKyBAFZIgCMkQBGaKADFGg5aND 6DA6go6hE6gY/YRKkZkhDjCeOUCGOECGOMB45gBXPQ5wjf4AI5sDjGwOMH91 gJHNAfLHAfLHAUY2B8gkB8gkBxjjHCCnHCB/HGD+6gDzVwcYzxzQolAXFI26 om4oBvVEsagP6oviUX80EA1GQ9BQNByNQmPQWDQOjUcT0EQ0CU1B09BMNBvN RfPQR2gBWoQWoyVoOVqBVqHVaA1KREloI9qEtqDtaCfahTJRFtqLclAu2oec yIUK0VFUhE6iEnQameOZg2Smg2Smg+Sjg4xnDnI9/iAzXnpmNNUU3YBuRDeh W9CtqB26E3VE96L70QOoO3oEPYqeQE+hfuhZ9Bx6Hr2AXkIvo1fQq+h19Ab6 O3oTvY3eQe+i99A/0fvoQ/Qx+gR9ij5Dn6Mv0JfoG/QtWovWoQ1oM9qKtqE0 lIF2o2z0A8pD+Wg/OoyOoGOoGJ1CpcjMGocYVxwifxwifxwiaxxihHGI/HGI /HGIObJD5I9D5I9DzJEdIpMcImscImscImscImscImscImscImscYvxxiPmw Q+SPQ1oU6oKiUTcUg2JRLxSH4lF/NAgNRkPQMDQSjUZj0Tg0AU1Ek9FUNB3N QLPQHDQPfYTmo4VoCVqKlqHlaAVKQKvRGpSI1qNNaAtKQaloB9qFMlEW2oty UC7ah5yoABWio+g4OolK0GlkZggXGcLFiMVFXnAxYnExYnEx9+VixOJixOJi 7stF1nCRK1zkChdjFxdZw0XWcDF2cTF2cZE/XMx4uZjxcjF2cTF2cZFTXOQU F6MYF6MYFznFxVV4F1dRXGQXF9nFxXjGxSjGRZ5xkWdcjGdczH25GLu4yDMu 8oyLUYyLjOMi47gYz7jIPS5yj4sxjotZMBejGBcZx0XGcTGycZFxXIxnXOQe F7nHRcZxMfflIve4GNm4GM+4yD0uco+L8YyLLOQiC7kY47jIQi7mvlyMZ1xk IRdZyMXIxkU+cpGPXIxsXOQjF/nIpR1Ah9ERdAydQMXoFPoJmTnqMDnqMOOZ w+Sjw+Sjw8x9HWbu6zBzX4fJQocZuxwm9xwm9xwm4xxm7uswc1+HyTiHmfE6 zIzXYS0KdUFdUQ/UC/VGfVF/NAANQoPRUDQCjUHj0Hg0EU1CU9B0NAPNRnPR fLQALUJL0TK0EiWg1SgRJaGNKAWlop0oE2WhHJSLnKgAHUQudBQdR0WoBJnZ oJAcUMjYoJAcUEgOKGSUUEg2KCQbFDKTVUg2KCQbFDJ/VUgOKCQHFJIDCjnz F3LVo5CrHoWc+QuZtSokBxSSAwoZVxSSDQrJBoVkg0KyQSEzWYXkgEJyQCFz WoWc+QuZySpkrFFINigkGxSSDQrJBoXMbhWSDQrJBoXkgEJyQCFn/kLO/IWc +Qs58xcy6ihk1FFIDigkBxSSAwrJAYWc+Qs58xcyp1XImb+QM38hZ/5CZrIK GXUUkgMKyQGFnPkLOfMXcuYv5MxfyJm/kDN/ISORQnJAITmgkBxQSA4oJAcU kgMKyQGFjE4KyQGF5IBC7RA6hk6gYnQK/YTMccoRzvxHGJ0cYUxyhDP/EUYi RxiJHGFO6wgjkSNkgyNkgyPMaR1hTHKEvHCEvHCEMckR8sIRrtYfIRscYSbr CGOSI4xJjmhRKBp1Qz1RL9QbxaE+aAAaiAahIWgYGo5Go7FoHBqPJqCJaBKa jKaiaWgmmoXmoHloPlqAFqLFaAlaipah5WgVSkBrUCJKQuvRJrQFpaLtaAfa hTJRFtqLctE+VIAOIhc6jorQSXQamWOSo+Sjo8xaHSUzHSUzHSUfHSUfHWX+ Ss+CphyoKboB3YhuQregW9Ht6A50N+qI7kH3ovvRA6g7egQ9ih5HT6Bn0LPo OfQ8egG9jF5Fr6M30N/Rm+ht9B76J3offYg+Rp+gT9Fn6HP0BfoSfY2+QWvR OrQBbUbbUBrKQLtRNvoB5aF8dAAdQofRMXQCFaNTqBSZI4JjZINjzFUdY2xw jLHBMTLEMTLEMUYJx8gVx8gVx5i/OkbWOMas1TFGDsfIFcfIC8cYORwjQxwj QxxjDHGMDHGMDHGMMcQxcsUxLQp1QV1RDIpFcagPGoAGokFoMBqKhqHhaBQa i8ahCWgimoQmoyloKpqGZqJZaDaaiz5CC9EitBgtQcvRCrQSrUIJaA1KRElo PdqINqEtaDvagXaiXSgTZaG9KAftQ05UgA4iFypER1EROolKkJlJjpM/jjO7 dZzxzHGyxnFGMccZxRxndkvPX6aaohvQH9CN6FZ0G7oDhaG7UUf0R3QPug89 iB5Cj6BH0ePoCfQkeho9g55Ff0J/Ri+il9Ar6DX0OnoD/Q29id5C76B30T/Q B+hD9DH6FP0bfYY+R1+ir9DX6L/oW/Qd2oCS0Va0DaWhdJSB9qAf0I8oH+1H h9BhdASdQMXoFPoJlSIz95wg45wg45wg45wg45wgz5wgz5xgXuoEeeYEI5ET jEROkGdOkFNOkFNOkElOcE3kBOOPE+SUE+SUE1oU6oK6oR6oJ+qFeqM+qC/q jwagQWgwGoqGoRFoJBqDxqOJaBKagqai6WgGmoVmo3loPlqEFqOlaAVaiVaj RJSENqJNKAWloh1oJ8pEWSgH5SInKkAuVIiOouPoJCpB5miiiDN/EWf+IsYQ RYwhihhDFJENisgGRYwmisgLReSFIma3isgGRWSDInJAETmgiDFEETmgiCvk RcxuFZENisgGRWSDIsYVRYwrihhNFDGTVcRMVhFn/iKuZhRxNaOIbFBEDigi BxQxwihihFHECKOI6xpFzGQVkQ2KyAZFZIMiskERo44i8kIReaGI8UcRVzOK GIkUMRIpIkMUkSGKmMkqIkMUkSGKyBBFzGQVkSGKyBBFZIgiMkQRGaKIMUkR Y5IickURuaKI0UkRM1lF5IoickURuaKIcUoR45QickUR45QiskYRWaOIEUsR WaOIrFGkHUOn0E+oFJm5ophxSjG5opj5q2LGJMVkiGJGIsXkimJyRTHzV8WM SYrJGsVkjWLGJMVkjWJGIsVkjWKupBdzXaOY0UkxmaSYTFLM6KSY+atiRiLF ZJJiMkkxmaSYTFJM/ijmmnoxmaSYcUox+aOYmaxixiTF5I9i8kcxc1rFjE6K GZ0Ukz+KGZMUkz+KGYkUk0mKySTFjE6Kmb8qZkxSzJikmPmrYkYnxWSXYrJL MaOTYuavihmnFJNxisk4xYxTihmnFDNOKWZMUkzGKWYkUkzuKSb3FDM6KSYL FZOFihmdFDMSKSb3FDMSKSb3FDP+KCYLFZOFislCxWShYnJPMbmnmPHHSWay TpJ7TpJ7TpJ7TpJ7TpJxTpJx9DxnyoGaohvQjegWdDu6A7VDd6K7UUd0D7oX PYAeQo+gR9Hj6CnUDz2DnkPPoxfRS+hl9Cp6Hb2B/o7eRG+jd9C76H30MfoE fYo+Q5+jL9CX6Gv0DfoWrUXr0Aa0GW1F21AaykC70Q8oD+WjA+gQOoKOoRPo FPoJlSIzQ5ziCscpMsQpMsQpxhWnGFecYlxxiqxxiqxxiqxxivmrU4wwTpE1 TjF/dYorHKfIEKcYYZwiQ5wiQ5xirHGKXHGKDHGKDHFKi0JdUQzqgWJRHOqL 4lF/NAANRkPQUDQcjUCj0Fg0Hk1Ek9BkNAVNQ9PRDDQTzUFz0Xy0AC1ES9BS tAwtR6tQAlqNElES2oi2oBSUirajnWgXykQ5KBftQ050ELlQITqKjqMidBKd RmaGKGF0UkJeKGGGqoSRSAl5oYS8UMJIRM9BphyoMWqKbkI3oztQGGqH7kR3 obvRH9G96D70IOqOHkaPoEfRE+hJ9BTqh55Gf0LPoz+jF9Bf0EvoZfQKeg39 Db2J3kJvo3fQ/6H30D/RB+hf6BP0Kfoc/Qd9gb5EX6Nv0H/RdygZbUZb0fdo G0pD6Wg32oN+RPloPzqADqHD6Bg6gYrRT6gUmRnnJzLOT8xk/USe+Yk88xN5 5ifyzE9kl58Yk/zEmOQn8sxPXD//iUzyE6OOn8gkP5FJfmKs8ZMWhbqgbqgn 6oX6oL6oPxqABqGhaBgaiUajMWgcmogmoSloKpqOZqBZaDaah+ajBWgRWoqW oRVoJUpAq1EiSkKbUApKRTtQJspCOSgXOVEBcqFCdBwVoZOoBJln+dOMA04z L3Wa8/1pzvenGRGcZkRwmhxwmhxwmjO/nlFMOVBjdBO6GYWhduhOdBe6G3VE 96H70YOoO3oYPYIeQ0+gJ1E/9DR6Bj2L/oxeQH9BL6G/olfRG+jv6C30NnoH /R96F/0DfYg+Rv9Cn6B/o8/Rf9AX6Cv0Dfov+hatRetQMtqMtqLv0TaUhtLR HpSNfkB5aD86gA6hw+gIOoGK0SlknttLmW8qZQxRyhm9lPmmUs7tpYwcSjm3 l3JuL2UMUcpZvpSzfCljiFLGEKWc70s535cyhijlzF/Kmb+UMUQp5/tS5pZK GTmUMnIoZeRQysihlLmlUsYQpeSFUvJCKaOJUvJCKfNNpeSFUvJCKWOIUsYQ pYwhSskVpeSKUsYVpcw8lTKGKCVXlJIrShlNlJIrShlDlJI1Sskapcw3lZI1 ShlDlDLLVMpoopT8UUr+KGU0UUomKSWTlDLCKCWTlDLfVMp8UynjilLGFaXk lFJySinjilLGFaXklFJmmUoZQ5SSU0rJKaWMJkrJKaWMIUrJLqVkl1KySynZ pZTs8j+yy//ILv9jvul/5JT/kVP+xxhC78OUAzVFN6Jb0B2oHboT3Y06ovvR A+gh9Ch6HD2BnkLPoGfR8+gF9CJ6Gb2CXkdvorfRO+hd9B76J/oQfYw+RZ+h z9EX6Ev0NfoWrUUb0Ga0FW1DaSgDZaMfUD46gA6hI+gYKkan0E/IfGdexvvx Mt6PlzEXVMbZu4yzdxln7zLO3mWcvcs4e5dx9i7j7F3GDFAZVwvKuFpQxgxQ GWfvMs7eZZy9yzh7l3H2LuMdfBln7zLO3mWcvcs4e5fxDr6Ms3cZZ+8yztll nLPLOGeXcc4u4119GTNAZZyzyzhnl3HOLuOcXcY5u4xzdhlzQWWcs8s4Z5dx zi7jnF3GO/0yztllnLPLmAEq451+GWfvMs7eZbzTL+PsXcbZu4wzdRln6jLO 1GWcqcs4U5dxpi7j3X8Z5+wyztlljAPKOHuXcfYu4+xdxtm7jLFBGbNCZZzH yziPlzFKKOOMXsYZvYwzehln9DLGC2Wc0cs4o5dxRi/jjF7GGb1M09/Nl4qR bJl4Xef+nA39s2Jyn9Y/K2ZpjbiaPWom1RhaM6jmKuG4mrtqdHF/EkxEzQHu T5FpIzygZkPxtUvNCHe8Tc2lNVqKr2NrRNSoL37+7USPnbTy/+aK39crxPYa i8xQc5B4q66JxUHi9cgj+h8q/ca9wsor/IS0Ls8PeqptbbH8W796mnZlPe3g dZuv2pAoWFPTflejdXmvV4jdfeMqrWfyVVrcNX5a/4f9tMHv+mnDd/tpo5v+ Vhvf77fa5H/9VqSlGqJpHfG1v9h8DbHi791f64k3fqc/OZL6YHxMxyfdbVq6 47e4v45zR8aKNuZ/N9aoJb6Wibf5NbRvazUQ1n90r7lbj3d//UBr5m5xhfsl Wj/yyCNahf8eEW1ri2FDHX3hiuU1Goll0bZGXaP6CvOr/lEohsvkv9e4Y1fY xGrYxGraxGrZxH5jE7vSJnaVTczPJvZbm1htm9jvbGJ1bGJX28Tq2sSusYnV s4n93iZW3yZ2rU2sgU3sOptYQ5uYv00swCZ2vU0s0CbmsIk1sok1tok1sYk1 9YglaFe6DyuH73VZv8rcR4J+1mkslnzl8i3GkVDDfSQYMd/Xy/OrcSTU9J0T LvtiHAm15Dmh/Cjx6XKTcST8Rp4THO6Yw+fL0MaRcKXlnKAeLb6ly2XJOBKu 8r1PuOyLcST4+cYOl/1X40j4reWcYM0fvtjlEzOOhNoe7xPMl8MXvWyixpHw O9/Y4bK3cSTU8XJO8H4k+WoutRrjSLjaY+xgPV48i6/u0qwzjoS6lrGD0dL8 10HcV3tp1xpHwjW++YTLvhhHQr1K3ieYL4evxSXdwjgSfu8bO1z2No6E+tU4 J1Tv6PK1ulhbGUfCtb45xss+ZhwJDTyuOzgsNpcb2371tbxUWhpHwnVexg52 x4+34mt7cbc1joSG1XyfYL4cvtaXXGvjSPD3jR0uextHQoDvPsbLXsaRcH0l c4wOL/HKim+di28d40gIvAzuWbpC/wNEUWqKUkuU34hypShXieInym9FqS3K 70SpI8rVotQV5RpR6onye1Hqi3KtKA1EuU6UhqL4ixIgyvWiBIriEKWRKI1F aSJKU1GCRLlBlGai/EGU5qLcKEqwKDeJ0kKUm0VpKcotooSIcqsorUS5TZTW otwuSqgod4jSRpQwUdqK0k6UcFHuFKW9KHeJ0kGUu0WJEKWjKJ1E+aMonUW5 R5RIUe4VJUqU+0TpIsr9okSL8oAoXUV5UJRuonQXJUaUh0TpIcrDovQU5RFR YkV5VJReojwmSm9RHhclTpQnROkjypOi9BXlKVHiReknSn9RnhZlgCjPiDJQ lGdF+ZMopWVlZYPFv8+JMkSU50UZKsqfRRkmyguiDBflRVFGiPIXUUaK8pIo o0R5WZTRovxVlDGivCLK2Fqa1+PC99X4apwJHL5r0Zd9nXEkNDrDsaP15fCt eUmsaRwJjS1jR/OYsR47dra29a178a9rHAlNzuKc0Fj251v74l7bOBKa+u5P uexLmfuROqvv0R+pU/usXvqzOYLEEeX5vI4bbGLNbGJ/sIk1t4ndaBMLtond ZBNrYRO72SbW0iZ2i00sxCZ2q02slU3sNptYa5vY7TaxUJvYHTaxNjaxMJtY W5tYO5tYuE3sTptYe5vYXTaxDjaxu21iETaxjh4x/YwWpNnPgTgqRMyYXdzX w8Xcg5HbbtCqzm2OSuqqW3x9XLh9GEdCM029VuLQyo+axpoDWV3exlrr6+Vi 7cU4Ev6g+a6fXu42joTm2tmNga0vx1n3YL58PVXvdW56Mo6EG6vxPsHzODrb 4uvrwurLOBKCvYwdGlvWqfjV4SVe2Vdfbxdqb8aRcJPlnGB3vPhil37MOBJa nMP3CebLcdY9eL58PZ6bl32PxpFws8fYwaGpx051bV3fs42vzwu7T+NIaHke zgn6y3HWPdi9fL2ej16NI+EWL2MHh03MW/G1vbjbGkdCiGXsYNQ01sp7s371 1V6qtcaRcGs15xPK+6p+2zMtvr5/nb6NI6HVeXqfYL4cZ91DZS9f795eZ9K7 cSTc5rvucNnbOBJae5wTHL6ly27JOBJu980xXvYx40gIreS6g/nVUWmtWV9V G99WLtStGEfCHZWMHeyOoaqKb52Lbx3jSGhznscO1pfjrHuo7su3pTN5GUdC mG/scNnbOBLaetzHaMphEzOX1Ji1xlrrsIl5k29rv+bWjCOhncf7BOvx4ll8 dZdmnXEkhFdj7NDY0kflXx3VaFPdr74t/lJbNI6EO8/wuoO1VHb8na/i2+a5 L8aR0P4XHDtYX46z7uHnvHxbtXsZR8JdlrGDeRxaj0c7W9v61r341zWOhA6/ 0jlBfznOuoef+/Jt2foyjoS7z+J9gufx9UsX37bPTTGOhAiPsYPDYnO5se1X X8tLpaVxJHQ8y3OCr1z85dw+B6STOKI8n9fwR5tYZ5vYPTaxSJvYvTaxKJvY fTaxLjax+21i0TaxB2xiXW1iD9rEutnEutvEYmxiD9nEetjEHraJ9bSJPWIT i7WJPWoT62UTe8wm1tsm9rhNLM4m9oRNrI9N7EmPmH5G66TZz5WXnw/tah02 Mc86z1qHTawq+fbgl9gDI7f9UbO/fuawuPE5tLXvqtr79uGX2QfjSOis/Xpj YOvLcdY9nIvX5bkXxpFwj1b1+11HJXXVLb4+Ltw+jCMhUqve9TPzq6PaLc22 Z9Letye/xp4YR8K9lnOC+WpsKQ4b2x2LlcXs+qhsm759+WX3xTgSoi6Q9wnm y3HWPZzL1+WxN8aRcJ+XsYPPl4+NI6HLBXZO0F+Os+7hXL8u7T0yjoT7qzF2 qG5xVFL3axXfPlVdjCMh2jJ2MPbQ/NdB3Fd7adcaR8ID1TwnOCqpO9Pi6+vC 6ss4Erp6vE9wKP+aS2bMoSxZ5dnSs96+D8/t2NV5Lvn27FzvmXEkPFjJ2MGh 2cfPta3bq+66vn07d/tmHAndLsCxg/XlOOsezufr0tg740jo7jHH2Nij+GKX fsw4EmLO8LqD7+ul99U4Eh46h/MJZrE79i604tvH8mIcCT0u8PcJ5stx1j38 Eq+Lcy+NI+Fhj7GDQ1OPxeraur5nG1+fF3afxpHQs5L7GE05Kq1tLHusvBeH TUyVwyZ2pvLtqarq7alxJDxyHt4nGHt57vs8X+Vy31fjSIg9i7GDo9otPb86 vMTP51ff3nr7ahwJj3o5J5zJsedre3G3NY6EXhfJ2MH6cpx1D7/068LeY+NI eMwydjCPEetxZWdrW9+6F/+6xpHQ28u1yMaynX2dQ2vspc5RoRfPWMU6tV9r nbo3Ffu0W/Lt9ZnutXEkPH6GYwdHJXVnW3x9/zp9G0dC3Fled3B4iVfvq6Pa Lc/9V9+em1+NI+GJ8zSfUL7V89f3+S6Xy74bR0Kfaswxlh+JVbVz2MQqymET qyiHTeznyrf3ags1ZhwJT/r+3uGy97l9DkhfcUR5Pq/hKZtYvE2sn02sv03s aZvYAJvYMzaxgTaxZ21ig2xif7KJDbaJPWcTG2ITe94mNtQm9meb2DCb2As2 seE2sRdtYiNsYn+xiY20ib1kExtlE3vZJjbaJvZXm9gYm9grHjH9jNZXu/jm xTxfjrPu4dd+/brfgZHbntLU97vW855n8dVdmnXGkRCv2Y+BHRUiZswu7uvh Yu7BOBL6Wc4JdseML3bpx4wjof8l8D7BfDnOuocL5fXLfifGkfC0VvUY2KHZ x39pW/fl5/Zj7cv3vRg2joQBl9A5QX85zrqHC+n1y3w3xpHwjMfYwVocXuKV Fd86F986xpEw0DJ2KG9nXbNxBatt7GsbW746lFprn5Wv66ik1lGhTcXtWuNq e/vt2m29Ytzzu7j4vyPjSHi2knPCuS6OSuou1nIpfE/GkTDoEnufYL4cZ93D hfg6P9+VcST8qRpjB58vbRtHwuBL9Jygvxxn3cOF+jq335lxJDznZY7RYROz a2cuV6fdmcbstuNtXW/HvF3M972p+2EcCUO8XHf4OV8dXuJn/tVxjvo5l18d 56y3C+27M46E533XIi/7OuNIGHoJv08wX46z7uFCf53dd2gcCX+u5tjBoVXd 5tewdf/Otk9rf7/G9+LN1v072z6t/ZnLxpEwzHJOcFRDDpuYdzlsYt7lqGY7 616cyRrV1+X1XRpHwgtnMcfoqKTufBXfNs99MY6E4ZWMHRxe4madt1pfbxdX b8aR8OIveN3BWn6N37Nfq1zo36txJIzwGDs4bJYcmvc6097ryrdZeS9qK7uW 6hbtWqr7W1lL70uX33drHAl/sYwdzGPXegzb2drWt+7Fv65xJIz0Mp/g8EUv m6hxJLz0K71P0IujkrpLtVyI37NxJIw6h9cdzK+Oc9qb2d+57vNcf714v2vj SHj5LM8Jv+Yx7tv2uSnGkTD6DOcYfbr0ZBwJf/W47mD3nrM6tq7v2cbX54Xd p3EkjLkMrkVW9nKcdQ8X88v47o0j4ZVfcezgKxdGObfPARkrjijP5zW8ahMb ZxN7zSY23ib2uk1sgk3sDZvYRJvY32xik2xif7eJTbaJvWkTm2ITe8smNtUm 9rZNbJpN7B2b2HSb2P/ZxGbYxN61ic20ib1nE5tlE/uHTWy2TeyfNrE5NrH3 PWL6GW2sdu7HwPpXh5f42X11nIc+z9dXx3np+Xz8BIzc9qrm/W/+Pd9XeWtn jXl7v3WuY3bbq2pdu++vqnXt1qtqXbv9PNPtVidmt72q1rX7/owjYZx2eb/f NV+Os+7h4n0ZR8Jrmv29d1Ud3z/XnsdlZfbtwy+zD8aRMN7jnODwsuTQvNeV Lzk073XlSw5lyVtLRxW9WP+tqqX6fVTVZ+VLl95PwjgSXtcujDGwo5K6y638 0j8L40iYYBk7mMde+Z5Yv/pqL9Va40h4oxrnBEclddUtvj4u3D6MI2Gib+xQ 4eU46x4urpdxJPzNy9jBmx1a1W0uRDu0qtv8XFu38Ut8L+fK5ss4Eib5zgm2 L8dZ93DxvIwj4e8ec4zWY6eyY6mx5r1dZe3t+ve2rm9ffpl9MY6EyefpuoP5 1XHeejb7Pp/9n8+vF85PxjgS3rxA5hPMYnfc+opRztfPxjgSpnh5n2C2qxi1 /ltxyWEj63LFPhtrDtuot7h9P/bbtd9P++/L2z54i146Px3jSHjrDMcOPl96 No6EqZZzguMM5TjjNUw5bGLVk8MmVj05bGLnWxfHT8g4Et6+wN4n6MVRSZ2v GOVc/oyMI2Gax9jBYbG53Nj266Xb8tVamjZOlNdEGS/K66JMEOUNUSaK8jdR Jonyd1Emi/KmKFNEeUuUqaK8Lco0Ud4RZboo/yfKDFHeFWWmKO+JMkuUf4gy W5R/ijJHlPdFmSvKB6LME+VDUT4S5WNR5ovyL1EWiPKJKAtF+VSURaL8W5TF onwmyhJRPhdlqSj/EWWZKF+IslyUL0VZIcpXoqwU5WtRVonyjSgJovxXlNWi fCvKGlHWipIoyneiJImyTpT1omwQZaMoyaJsEmWzKFtE2SpKiijfi5IqyjZR touSJsoOUdJF2SlKhii7RNktSqYoe0TJEiVblL2i/CBKjig/ipIrSp4o+0TJ F8Upyn5RCkQ5KEppWVnZIfGvS5TDohSKckSUo6IcE+W4KCdEKRKlWJSTopwS pUSUn0Q5rfchyv9EKRNF+411VuXyOPaNM8E75zAnXIjnct8+VV2MI2G6b465 2i/HWfdwYb6MI+H/LGNH81i1HrN2trb1rXvxr2scCTN854QzejnOuocL72Uc Ce9W832Co5K6My2+vi6svowjYWY1rjs5Kq0166tq49vKhboV40h4z+OcYJdL POvs4pUdtw4vrqzPM62rbBue7Sr7PrzFqrMvla1/JvvhuV5l32t1t1dZP8aR MOss5pgby75+7rrm0s9b19rDz+nFcRbrnq0cNrHqy2ETq74cFWLGkfCPSq47 eR6358vW7VV3Xd++nbt9M46E2b6xw89+Oc66hwvjZRwJ/7wArztZi6OSOl+p vFT3Z2ccCXPO8z1r1q+OX2Qr5nZ+qW39Ul/P30/POBLer+Rv5X2xyyN2bp8D M1ccUZ7P6/jAJjbPJvahTewjm9jHNrH5NrF/2cQW2MQ+sYkttIl9ahNbZBP7 t01ssU3sM5vYEpvY5zaxpTax/9jEltnEvrCJLbeJfWkTW2ET+8omttIm9rVN bJVN7BubWIJN7L8eMf2MNler3t93l59hq9vS8yxa9XqOarf0bFv1euoeVbWe +p1Wf73qLF14P0Ejt32g+e69vNxtHAnzNN8Y+Fy8HGfdw6/3Mo6ED7VzPwZ2 VFJ3oRTfPpYX40j4SLN/5kO5rbXlrexqGyu1jkprK1/XGvestWtzZj1X3EPv 6zpsa60/n6q2e+H/JI0j4ePzcE44H8VRSZ2vnFnx/FkaR8J83/uEc/pynHUP v/zLOBL+5TF2cGjqMVNdW9f3bHN59dnkItnPchtHwoJKzgkOX81lUWMcCZ9Y 3idYjxW7Y6mqdpXF7I7Hs+nv58bs9ulM+3PYxM60P7s+z7Q/u+/p5/RnHAkL LWOHyr46vMTVr45qtKnuV98Wf6ktGkfCp+dp7GB3/F2o5XLfV+NIWOQbO5y3 l+Ose/hlXsaR8O+zuO7g0M6s/cVqh1Z1m3Nt67bP97aMI2Gx5Zxg1ptfG8t1 PF3exlrr6+Vi7cU4Ej7z8j7BYRPzVnxtL+62xpGwpJpjh3P91VHtlufyq+M8 938hfa3+T9g4Ej6/SK47WMuZHPe+UnUxjoSlvrHDL/JynHUP5+9lHAn/sYwd zN816++cna1tfete/OsaR8Iy3znhF3s5zrqH8/MyjoQvPN4neDvW7Jbt6uza VLWet/rqbO9M6irblrf1Kvu+vK3n8OLK1qusjzPZp6rWs6s3joTlv9LYobFl n375r45fabu/5leH11rjSPjyDMcOlR1zZ1t8ff86fRtHwgqPOcazkeOc9GL8 ey56sfZz9v05bGK/thw2sTOXcSR8dZZ/7+CZey4XO7Qza38ubd3+uejTOBJW ehk7OGxtjVrr7eIO2yVvPdjVeEYcVfTgbQ3PSGU9eNtvNVZ5D95+evZtvUV/ uZ+6cSR8fZ7nGB2V1F3o5XLZd+NIWOUxdnBYbC43tv3qa3mptDSOhG+qcR+j Z11l7aoT84yfbX/nKma3bz+3P4dN7Of2Z9fvz+3P7ns2joQE3xzjr/pynHUP Z/8yjoT/+v5W+rL3uX0OyGpxRHk+r+Fbm9gam9ham1iiTew7m1iSTWydTWy9 TWyDTWyjTSzZJrbJJrbZJrbFJrbVJpZiE/veJpZqE9tmE9tuE0uzie2wiaXb xHbaxDJsYrtsYrttYpk2sT02sSybWLZHTD+jrdZ8ue3XfjnOuoezexm57Vvt 4rvPxrM4KqnzlaqLcSSs0ez/5r/8q12twxK3X7dirV2f1V23Yq3Da611335O z2qto9Ja+3UdXmutP4Xq7pVdD55bqf53ZNencSSs9TgnWH+insVXd2nWGUdC ou99wgXzcpx1Dz/vZRwJ32n2Y2CHxXbH1M+1te+q2vv24ZfZB+NISPKdEy6o l+Osezjzl3EkrLO8T7AeN77Y5RMzjoT1lrHDr/nV4SX+y351XAD78Mt/NY6E DZfAfIJZ7I55X6m6GEfCRo/3CY4zWHIoS2fSi0PzXlf5kkPzXlf5krr+mfSi 7vGZ9OL4meudzZK6/eqsZxwJyV7GDlY7NPv4L23rvvzcfqx9+b4Xw8aRsMly TnCcIzlsYmcnxznuz9rruerZcU56Ob9y2MTMc8LmS+h9gl4cldT5in0xjoQt Zzh2cFS7pdn2TNr79uTX2BPjSNhayTnh5/x++da5+NYxjoQUL3OMDttlz6hn W2u997YVa+zaOqrcmnWp8rb263i2td8Lu0jVe2b/M/Gst/8pV9av9+jP/z9k HAnfW8YO1pf5HdvZro21rrL2Z7KuZ9yuH2/retsHb31527fq7LNnP2eyrrd9 tr6qEz+b7RpHQqrvusNF8XKcdQ/eX8aRsO0XHDs4Kqm7WMul8D0ZR8L2C+S6 g/nVccHsibkvF9L+nJ+vxpGQdonNJ5jlUjz/nK9iHAk7zsMco/n1XPZnyGET O3s5zkkvnnLYxC5MGUdCejWuO/h8ads4EnaexbVIa+xM1zP989Yzv4+ft55d D2fai/pdnGkv6s/u5/by85bUfdBfxpGQcYm+T9CLo5I6XykvxpGw6wIbO+hf HV7iv95XR7VbXoxfjSNht5f7GB02Mbt25nJ12p1pzG473ta123dv6/q+N3U/ jCMhs5I5RofHvxVrKi5XbGvGvdWY69jVO7wu2fdmfpf2L++13nv2vleVbcf7 T6Gi7Jcr++l7X6fqde22axwJe87h2MGhVd3G5/LlC2V/jCMhy3fd4aJ+Oc66 B/OckO37u8jLvu7cPgdkrziiPJ/X8INNLMcm9qNNLNcmlmcT22cTy7eJOW1i +21iBTaxAzaxgzaxQzYxl03ssE2s0CZ2xCZ21CZ2zCZ23CZ2wiZWZBMrtomd tImdsomV2MR+somdtomV2sT+ZxMr84jpZ7S9mve/+W+sfPXVXqq1Rm77Qbt0 58XM4qikzlfM97s5mu/97qXwcpzFusaR8KNWvTGwQ6u6za9h6/6dbZ/W/n6N 78Wbrft3tn1a+zOXjSMh13dOuGRejp+5nnEk5FneJ1iPFW8xz2PqTNatKubt eL7QY3b7f6624Rk/l9swX8aRsM8ydmistC3/WrHW0xVbWiPqWhVbVr9Pdb+q amlur/JI5VuvbB+q2rq5NbuWFffBe5/2/xccXmrt+rT/Xsxa40jIP4uxg6OS uvNVfNs898U4Epy+9wmX3Mtxhu2NI2F/JWMHh2YfP9e2bq+66/r27dztm3Ek FFjOCY7zIMc57k+V47z1bO37/GzDYRP7dWQcCQd+pTlGRyV1l1q50L9X40g4 6DF2uNC+OrzEL4yvjmq3vJC/GkfCIY9zgt3xa5ePvLXxVuet/kz69MxvP3df zrausv2qbp+V/Uyq26ddmzPtU38ZR4LLN3a4pF+OarQxjoTDlrGD3bFmZ8/j 2bfuxb2ucSQU+s4Jl/zLUUW9cSQc8TJ2cNjEvBVf24u7rXEkHL3Axw6+r+f/ q3EkHPsV71k6k+P3UikX4vdsHAnHPeYYHVr58aL/a8rq8jbWWl8vF2svxpFw opr3LJ2JHdqZtffZ3g6t6jbnwsaRUFTJ2MHhxZ5L1ri3Gus6nm3s1zH3tvLe KrawW8fhtaaqeu/9V96b9+/Jfrmy3rz/tL0tVef/QvnLOBKKz/J9gqOSuvNd fNs+N8U4Ek5eJGMHR7Vb/ppfHee5//Pz1TgSTp3hfYy+2KUXM46EEt8c42X5 clhsHAk/eYwdHJp67FTX1vU92/j6vLD7NI6E017OCQ4vUbu4t7Z2Nd7bVqyr rK1nbeVt1fqq2npbz1sP9nvkrQf779VbD/Y/RW892P//qaoH40govQz+LrKy 4qik7nIpxpHwv2r8rbSj0lojUllt5eta+/+561a/1lFprX3L87FXjkprq9ez o9Laij1469k4Esou83OCr5zL54BE1KivLdf0/zpp5f/N1WppV2i1xbau0Wp+ 5n74xRXaZ+J1+PBh7UrtN1o7EVl5hZ+Q1uX5QU/dUVss/9avnqZdWU87eN3m qzYkCtbUtN/VaF3e6xWaFvX5b7VlIbW1KfNra1Ob/k6bN+N3WsN6dbSUCXW0 kdrVWsFLV4uvNUTTOuJrf7H5GmLF37u/1tP8tNOfHEl9MD6m45PuNi3d8Vvc X8e5I2NFG/O/G2vUEl/LtFdFzbe1GghfJ8pr7tbj3V8f1B4QzQdqQ7Ugsa2n tRe0P2mDxL/DxfId4hWqtRZ6QUSGac+667UKbcS3VeuGTpnac1fVzB571RX6 Nyn+6y/+vUorK6vhXhY/CPG/a5g2QrtHe14bIv7Vexyunf1/Zu9XyOL5X+fX nn7DJmz7Xw/RUVf9R9a/Ql/6N+Px3yaqLrr/YpYaP5grNu1aWXVr33+X3X/i uDi7k0LFNiFaV/Gr3097ShusdRengMHaSyJ2fk4Kvv98//n+Ozf/nUl6+0Br JtrrqV9/1RDpv2KbK7RHRE1t7a/iDY6+uLxGQ7Es3ozUqGs2kF/1p2YZVp+k dYVNrIZNrKZNrJZN7Dc2sSttYlfZxPxsYr+1idW2if3OJlbHJna1TayuTewa m1g9m9jvbWL1bWLX2sQa2MSus4k1tIn528QCbGLX28QCbWIOm1gjm1hjm1gT m1hTj9gVNfSj4Aqxj4Zqot+gq9Bv0e/Q1ega9Ht0LboO+SMHaoyaoj+gG9FN 6GZ0C7oV3YbuQGHoTnQXuhv9Ed2D7kX3ofvRg6g7egg9jB5Fj6En0VOoH3oa PYOeRX9Cz6Hn0Z/RX9Er6FX0GnoD/Q39Hb2D/g+9i/6B/ok+QB+ij9G/0Kfo 3+hz9B/0BfoG/Rd9i9ai79A69D3ahvagbPQD+hHloXy0Hx1Ch9ERdAr9hMqk 9PO9qRqoFroS+aHaqA6qi+qh+qgBaih+Cw0FEAtEjVATFISaoeb0EkysBWqJ QlAr1mhNLBS1obYtsXDUHnVAEagT6kwvkcSiUBcUjbqibqwbQ6wHsZ7EYlEv ansTiyPWh1hfYvHE+qMBaCAahAajIWgo/Q0jNpzYCDQSjUKjWWMMsbHExhEb T2wCmogmocloCutORdOonY5moJloFprNunOIzUXzqP2I2HxiC4gtRIuoXUxs CVqKlqHlaAXrrkSrqE1Aq9EalIiS0Hq0kf42oS0ohXapxLYT20FsJ9qFMmmX RWwvsRyUi/YhJ2sUEDuIXKgQHUXHWbcInaS2hNhpYv8TShBnMv29rft9gVjS 3+nq70P8ZblKtvite7m2XKrjrrtaLl3jrqsnl+q7666VS9e56xrKJaPP6+WS w73cSC41cdc1lUs3uOuayaXm7rob5dJN7roWcqmlu+4WuXSru66VXGrtrrtd Lt0hlvzFec5YauuuayeX7nSv114udXDX3S2XOrrrOsmlzu66e+TSve66KLnU xV13v1x6wF3XVS51c9d1l0sPuet6yKWe7rpH5NKj7v3sJZd6u+sel0tPuNfr I5f6uuuekkv93HX95dIAd90zculZd90guTTYXfecXHreXTdULg1z170gl150 78sIuTTSvfSSXHrZvd5ouTTGvd4rculVd904uTTeXfe6XHrDXTdRLk1y1/1d Lr3prpsil6a6696WS++466bLpRnuunfl0nvuullyabZ7P/8pl953182VS/Pc 630olz52182XSwvcdZ/IpU/dvSySS4vddZ/Jpc/d6y2VS8vcdV/IpS/ddSvk 0kp33ddy6Rt3XYJcWu2u+1YurdWuEEPFGqLUFKWWKL8R5UpRrhLFT5TfilJb lN+JUkeUq0WpK8o1otQT5fei1BflWlEaiHKdKA1F8RclQJTrRQkUxSFKI1Ea i9JElKaiBIlygyjNRPmDKM1FuVGUYFFuEqWFKDeL0lKUW0QJEeVWUVqJcpso rUW5XZRQUe4QpY0oYaK0FaWdKOGi3ClKe1HuEqWDKHeLEiFKR1E6ifJHUTqL co8okaLcK0qUKPeJ0kWU+0WJFuUBUbqK8qAo3UTpLkqMKA+J0kOUh0XpKcoj osSK8qgovUR5TJTeojwuSpwoT4jSR5QnRekrylOixIvST5T+ojwtygBRnhFl oCjPijJIlD+J8pwopWVlZUPEv8+LMlSUP4syTJQXRBkuyouijBDlL6KMFOUl UUaJ8rIoo0X5qyhjRHlFlLG/0dzHRqI8GpLcx8Y6ubTBXbdRLm1yH5mb5dJW d12KXEp1122TS2nuuh1yaae7LkMu7XbXZcqlLPf2suXSD+66HLmU667Lk0v5 7jqnXCpw1x2QS4fcdS65VOiuOyKXjrnrjsulInddsVw65d6zErl02l1X6s5T NcT7dCN31eR9ek2tBqpF7ZXE/FBtVAfVRfVQfdQANUQBKBA1YrtNUBC1zVBz FIxaoJYoBLVCrVEoasPW2hILR+2p7YAiqO2EOqNIFIW6sG40sa6oG4qhXQ9i PVEs6kW73iiO2j7E+hKLR/3RADQQDUKD0RA0FA1jG8OJjSA2Eo2idjSxMcTG EhtHbDyagCbSbhKaTO0UNBVNQ9NZYwaaSe0sNJvaOcTmonnoI9rNJ7YALUSL aLeY2BK0lNplaDm1K9BKtAolsMZqYmtQIkqi3XpiG9EmarcQSyGWirajHbTb SWwXsUxiWcT2ohyUi/YhJypAB5GLngvRUWqPoyJ0knYl6DS1xvv0uu65Zf28 qJ8p9Z9qgIj8xr2slqtl62uI1ZeRBpZ2RuR6lhvJSBPa3CAjf6BNsIy0YD9u kZFbadNaRkLpJ0xG2tGmvYx0oE1HGfkjbSJlJIo298vIA7TpJiMx7n3RYw/L yCNy2XgfrUd6088TMvIk/cTLSH/aPCMjz9JmsIwMoc2fZeQFtjVCRkZq5s/n ZRn5q1z2F+cQIzKOfl6XkTdoM0lGJtPmLRl5mzbTZWQGbd6TkX+wz3NkZC77 86GMfMw+L5CRhfTzbxn5jH6Wysgyzfw5fykjX9FmlYwk0M+3MrKWNkkysp42 yTKyme8rRUZS5bK/eA9jRNLpZ5eMZNJPtoz8wPeVKyP7aLNfRg7Qj0tGCvm+ jsnICfbnpIyUaObP0HhfUov5w9/wvuQ3vC/5jVYLXYn8UG1UB9VD9VFDFIAa oSaoGWqOWqCWqBVqjdqgtqg96oA6oc5I/+001IVYV9QN9UA9US/UG/VBfVF/ NAANQoPRUDQMjUAj0Wg0hr0fR2w8mogm0W4KsaloOrUziM1Cs9FcNA/NRwvQ IrQYLUXL2NoKYitRAlqNElES2og2oRR6TkU70E7aZaIslINykRMVIBcqpOfj xIpQCdLHAgniN+JKsp9R9O81SESv4je+YrlWrnmdEg+U0Ub8Ruv/3iCjf1Da tpDRlkq/t8no7UrbtjIaTp/617tltKPSNlJGozRrvw/I6INK2x4y2lPZ38dk 9HHN+v33ldF4pd9nZPRZzdrvEBkdaon5ay/K6F8s2zJmefToGEssQHtNRl9X 2k6S0fLspZe3ZfQd2umvmTI6S2n7vox+YNmWMUujRxcobf8to59pZr7Q48tk dLnS9msZ/cby/fqL96JGNNHS1l+MuI1ostI2RUbLs5Nely6jGZZt+YvfDiO6 17K+MYrWo/lK24My6lLaHpPRE0pbfZRcV0RP067M/btyFXnoKvLQVeShq8Qa /lJ+xGqjOqguqsca9Yk1QA1RAApEjVATFISaoeYoGLVguy1RCLWtiLUmFora oLYonDXaE+uAIlAn1BlFoijUhf6iiXUl1o1YDOpBbU8US20v1BvFoT6oL4pH /dEAeh5IbBCxwcSGoKHUDiM2HI1AI9EoNJp1x6Cx1I5D46mdQGwisUnEJqMp aCqahqajGfQyE82idjaag+bSbh76iNr5xBaghdQuQovREtotRcuoXY5WoJVo FUpAq+llDUpESbRbjzaiTWgLSmHdVLQd7aDdTmK7iGWiLGr3Esshlov2UetE BeggcrFGIbGj6Di1RcROohJqTyPzOpafch3LT/O8jqXHfmuJXS3Xsl6/8tOs 16/8lOtXfnK96+WS9fqVn3L9yk+5fuWnXL/yU65f+SnXr/yU61d+yvUrP/fd NOb1Kz/l+pWfcv3KT7l+5adcv/JTrl/5Kdev/JTrV37K9Ss/5fqVn3L9ys99 TvOX16/83HfamNev/JTrV37K9Ss/5fqVn3L9yk+5fuWnXL/yU65f+SnXr/yU 61d+4t2MXjdCLo10170kl1527/VouWS9fuWnXL/yc5/D/OX1Kz/l+pWfcv3K T7l+5adcv/JTrl/5uc9e/vL6lZ9y/crPPbcXIK9f+SnXr/yU61d+yvUrP+X6 lZ/7zh7z+pWfcv3KT/vcvfWlcsl6/cpPuX7lp1y/8lOuX/m5z1f+8vqVnxjn 60uJcsl6/cJPuX7h557LC5DXL/yU6xd+yvULP+X6hZ/7PBUgr1/4Kdcv/JTr F35yHiBHLlmvX/gp1y/8lOsXfsr1Cz/l+oWfeDem93lcLlmvX/i57y8yr1/4 Kdcv/Lh+8Vven/2W92e/5f3Zb7UrkR+qzbp1iNVF9VB91AA1RIGoEWqCglBz FIxaoJaoFWqNQlEbFI7a8310IBaBOlMbSSwKdUFdUTcUg3qgWNQL9UZxqC+K R/3ZlwHEBqHB1A4hNhQNRyPQSDQKjUFj0Th6Ho8mUjsJTUZTaDeN2HQ0g9qZ xGajOWgumofmowVoIVqElqClbG0ZseVoJVqFEtBq1k1ESWg97TaiLSgFpbLG dmI70S6UibJQDuvmEtuHnOggcqFCdBQVoZOoBOkz+wnid7K2x4yGUfzdP5vW ovZ3Feq8l6ayxxss/ZTXt5S1IR5xo4TJ2na2fXeStZ0r7Kf+ekDWPlhhm3qJ lbW9bPo18r5e28+jT8ODZW35fLu1/EXWvlRhm/prnKwd79GnUd6UtW9VWFcv M2WtOSNhbWPMn+u1H3vEjX8Xy9olNv0GaF/J2q8r7K/+SpS1SR7rGX1vlbXf V9imXnbJ2kxN7dOoz5O1+cSs6xbK2qMVtqmXn0RtHVFbKqPGTMPvyGS/I3/9 jvz1O/LX77TaSL9nzFBdYvVQfdQQBaBGqAlqhprTcwtiLVEr1Bq1QW1Re9QB dUKdURTqgrqibqgH6ol6od6oD+qL+qMBfG+D0GBqh6JhaAQaiUajMWgc/Y1H E6mdhKagqWg6moFmodn0N5fYPDQfLUCLWGMxsaVoGVqBVqIEtBol0l8SsY1o E0pBqWgH2okyURbKQbnIyXYLiLlQITqOilijhJiRH5q4/1bH7jyi/x7q33e4 aHG18rvs+bttv+6NsvebvLYJlS3a2K6vvzrKFn/0us2uskU3y3pqm8dki8e9 7v8A2WIg2/Vs84Js8aLt96G/xsoW4zz6KG/zpmzxluX7U9vMki1m29QZ5V+y xSde+1gmW1hnpNV238oWa4l59rNFtkix2Qej3W7ZYk+F7Zsvp2xRYNOHUU64 f6fqiLFNxe/VOP9fzfn/akYyV5MJriYTXE0muJpMcDWZ4GoywdVkgqvJBFcz krmanKD/vZOpQNQINUFBqDkKRi3Yg5bEQlArFIraoLYoHLVHHVAn1BlFoij2 oAuxaNSN2hhiPVBPFIt6oTjUB/VF8ag/2xhAbBCxwWgItUPRMDQcjUSj0Gg0 Bo2l53FoArUT0SRqJxObgqai6WgGmolm0ctsNIfaeegjNB8tYI2FxBYRW0Js KVqGlqMVaCVKoJfVxNagRJREu/VoE7VbUApKRdvRDrQLZdJfFtpLbQ7KpdaJ CtBB2rmIFRI7iorQSVTCGqeJmTO5dZnJ1eN13TO5RvxKd9yYza2rec7m6rFr LLFr5VrmLK7R2/X0Zp3BrcsMrtHqBlqZs7dGXD93GHHrzG1dZm6NVq1pZc7a GvF29Gqdsa3LjK3RqiOtzNlaIx5Fr9aZ2rrM1BqtutHKnKU14o/Q66PueC+5 ZM7QGq2eoJU5O2vE+9OrdWa2rvaspmeJQbLVYFqZs7JG/AV6tc7I1mVG1mj1 Mq3M2VgjPo5erX9JUJeZWKPVJFqZs7BG/G16tc7A1uUvCIxW79HKnH014nPp 1TrzWpeZV6PVAlqZs65G/DN6tf7FQF1mXI1WX9LKnG014gn0av1LgbryjqpE 2SqJVhvc/y82yvhmerXOsNZ1z5QEaNtkqzRa7XTHM2Q8k16tM6t1uTPcaJVL K2N06ZTxA/RqnVGty4yq0eoYrczZVCNeQq/WmdS63HF1De8/ruH9xzW8/7iG 9x/X8P7jGq02qoPqIvNK9zW8/7iG9x/X8P5DP7eYCkSNUBMUhJqh5igYtWC7 LYmFoFaoNe1CibVBbVE4ao86sG4EsU7EOhOLRFHUdiEWjbqibrSLIdYD9USx qBfqjeJQH9QXxaP+bG0AGkjtIGKD0RBqh6JhaDgagUaiUWg0GkPPY4mNIzae 2AQ0kdpJaDK1U9BUaqcRm05sBrGZaBaajeawxlw0j9qP0Hy0gHYL0SJqF6Ml aClahpajFfSyEq2iNoHYarSG2kSURO16tBFtQltYIwWlou1oB9qJdtFLJsqi di/KQbm024ecqIB2B4m5iBWio+g4KkInUQm9nCZmvD8Kdj91w3yPY5SKoz39 p91F05/GYT9irbie93a3y63eUWlfeuksW0ZW0q+x/LBs+YjXfTL/7S9bDrCp U/99Ubb8i9c+zTJBtpxo05e63ruy5XtKX3ZtF8iWCz3qK37/X8mWX3vdtvna KFtustme2na3bLmnwnb9PXxQtlTvNbPbDyPv1iPv/p68+3uy7e/Jtr8nx/6e HPt7cuzvybG/J8f+nhz7e3Ks/vwSU41QE9QMNUctUEvUCrVGbVBb1B51QJ1Q Z/Y5ilgXYl2JdUM9UE/UC/VGfVBf1B8NYBuDiA1GQ9EwNAKNRKPRGDQOjUcT 2dokYlOITSU2Hc2gdhax2WgumofmowVoEVqMlqJlaAVayXYTiK1GiSgJbWSN TcRSUCragXaiTJSFcugvl5gTFVDrIlaIjqMiVIKMed+WWn2v875q0X8GMaL1 tR6/tVUXb2cw434ifQ/utK33PFNEy9Zdq7XdJ2TrJ+nH2xlK/3eobD3Mpq+K +/aabP16hb7svo8ZsvVMm7qK630iW3/q9Xuzbm+VbJ1giXn+3Mr/3Spbl1/X q2x/cmTrXJs6a99GMeZx64tRVcW+jHncazmfX8s46lrO59cyerqWM/u1nNmv 5cx+LbO317rvnjPUgFhDFIACUSPWaEIsCDVHwagFaolaodYoFLVB4ag96oAi UGcUiaLY0y7EuqJuKAb1QLGoF+qN4lBfthFPrD+xAcQGocFoCBrKGsOJjUAj 0Sg0Bo1F49B4NBFNYhuT0RRqp6Hp1M4gNhPNRnPQXDSPdeejBdQuRIvQErQU LWPd5cRWolXUJhBbjRKpTSK2Hm1EW1AKSkXb0U60C2WiLLaWg3LRPto5iR0k 5iJWiI5SW4ROohJkZJ7a7qfv6WeJK+SScQdtLXerBtpVtLI+DaaB5Wkw+vP7 POdf9Zj172+ul2tZ514bKHOvDZh7baDcOdtAuXO2gTL/2kCZf23g/sscI26d f23gvmvWiFvnXxsod8w2UO6YbaDMwTbQoujBnIM14g+wReudsg2UO2UbKE96 acA8rNHD4/Rg3iVrxPuyResdsg2UedgGyh2yDbhD1uhhKD2Yd8ca8RfZ4kh3 /CW5ZH2ySwPlztgG3Blr9PA6PVjnYhswF9tAuSO2gXJHbANlPraBMh/bwH3l xohb52MbuO+GNeL62cFfzsc2kHfkzJdL1jthGyhzsg2Yk23AnKwRX8YWv3TH V8gl6x2wDZQ7YBswL2v0kEgP5t2vRnwDW7Te+dpAmZdtwLyssWTe+Wr0kEEP 5l2vRjyLLVrveG2g3PHaQLnjtQF3vBo9uOjBOjfbgLnZBsqdrg2UO10bKPOz DRgnXsf7iut4X3EdI8breIdxHe8wrtNqI/P68HW8w7iOdxjXMXa8TmuAGrJG ALFA1Ag1QUGoGWqOglEL1JJthBBrRaw1sVDUBoWj9qgDikCdUGcUiaLYWhcU TW03FIN6oJ4oFvVCvVEc6oP6srX+xAYQG0hsELHBxIagodQOIzYcjUCj0Gg0 Bo1F49B4ep5AbCKxSWgytVPRNGqnE5uBZqJZtJtNbA6ai+bRbj5aQO1CtAgt RkvQUrSMXpajFdSuQgnUrkZrqE0kloTWU7sRbUJbUCrajnagnWgXykRZbG0v ykG5tHOiAnSQdi5USO1RYseJFaGTqAQZc6eh7icHe46UvBd/98+2r/sMU7Gu en3YraOOCO+Re3Zvtfo163vLteI86uzWL4/9Wa71gtf9sSsT5VqTPNr7a5X1 8b5c64NK982zv+VyrRU2bbxva7Nca2slbSr2kyvX2ufRt53Li3FXbEOR94xl YzTtT9bzJ9f5k+v8yXD+jKH9yWv+5DV/8po/I2dju4YCiTVCTVAz1By1QC1R K9QatUFtUXvUAXVCnVEU6oK6om6oB+qJeqHeqA/qi8xxsD/jYH/Gwf5c9fNn dtSfTOPPs578Gf36k1/8yS/+ZBV/xrz+jHn9mR31Z6Trz5U7fzKIPxnEn9lR f/KGP9nCn9lRf2ZH/ckW/uQIf3KEP39n4c/sqD/X3PwZ1erv6EytpjaRWBLa iDahFJTKujuI7USZKAvloFzWdRIrQC5USLvjxIpQCTLGqPo7wvLZ0ZoyUv4U JD8ZqU2bq90/iwBlXFr+u23UXa9V/B2/Qfbk+fSjAJ5+FCCffhRQ4elHAe6n Hxl9hslIO9q0lxHPpx8FVHj6UYAWxb7eLyOeTz8KcD/9yIg9LCPl19R6yYj5 9CN/+fSjgApPPwqo8PSjgApPPwqo8PSjAPn0I/01QkZG0uZlGfkr/YyVEc+n HwWI8aP5/2CSjJjPj/CXTz/Sx41mm+ky4vn0owD59CP9NUdG5tLmQxn5mP1Z ICOeTz8KkE8/0l9LZWQZ+/OljHg+/Ug/Qs0238pI+d28STLi+fSjAPn0I72k yIj5fIkA+fSjgApPPwqo8PSjAHlvjv7KlZF97M9+GfF8+lFAhacfBVieN3FS RsynH5ljvQDGete7fx8N1SBWC12J/FBtVAfVRfVQfdQANUQBbDeQWCPUBAWh Zqg5CkYtUEsUglqh1iiUPWhDrC0KR+1p1wFFUNsZRaIo1AVFo66oG4pBPVBP FIt6sQdxxPoQ60ssHvVHA2g3kNggYoOJDUFD0TA0gjVGolHUjkZj0Fg0Do1H E9BENAlNRlPZ2jRi04nNQDOpnYVmozm0m4vmUfsRmo8WokVoMVqCltLfMrSc 2hVoJbWriCUQW00sESWh9Wgj2oS2oBT6S0Xbqd2BdqJdKAvtRTn0kov2Uesk VoAOUusiVoiOUnscnUQl6DQyxn+1tUBljjuQOW5j6Up33VVyyTrPHWiZ59aX rE+NCLQ8NUL/LBnP+W495tDK32M0lWtZnxIRqMx1Bypz3YHKXHeg8pSIQOUp EYHKUyICladEBCpz3oHKnHegMucdqDwlIlB5SkSgcu9xoPKUiEBl7jtQmfsO VOa+A5V7kAPd70/85VMiApWnRAQqT4kIVObAA5U58EBlDjxQeUpEoPKUiEDl KRGBylPOA5W58EBlLjxQmQsPVJ4SEajcmxyoPCUiUHlKRKD2pnt7U+SSdU48 UD4fa7pcsj7lPFB5SkSg8pSIQDHW1tebK5es9yoHKk+JCFTmxgOVp0QEKk+J CFTuWQ6UT3/8Qi596a5bIZdWuuu+lkvWOfJA5d7lQO5dNpaS3HXr5JL1KRGB ylx5oDJXHqjMlQcqT4kIVJ4SEag8JSJQuZc5UHnKdaAyZx7I/czGkvUpEYHK Pc2BylMiApWnXAe658795dx5oDJ3HqjMnQfyfsrBLIKD91MO3k85eBfl0Gqj OqguqofqowaoIQpAgZq/VCPUhNog1Aw1p10wsRaoJQpBrVAoakMvbYmFo/ao A+qEOrNuJLEo1AVFo24oBvWgl57EYlEvFEe7PsT6Eosn1h8NQIPQYDQEDaWX YWg4tSPRKDQajWGNscTGoQloIpqEJqMp9DKV2HRiM4jNRLPQbNrNITYPfYTm owVoIVpEL0uILUXLqF1ObAVaSW0CsdXE1hBLJJZEbD3ahLagFJSKtqMd9LeL WCbKQntRDspFTnopIHaQmItYITqKimh3klgJOo2M9z8R7k+w08875pjPe/Gs 93f/dEeKHhpXul51+vPXKvZf+bqPyL1/tMo+7OL6a5jsYbhNXfX2+y3Zw9sV tuGveba172eR7GGxTVtrH9772SB7SLbdnvVl9/3pr32ih7aiB6eX7VmX1f6N ee7GZKjGjO4bk40ak40ak4Mak4Mak3n0Y8hUIGqEmqAg1Aw1Ry1QS9QKtUZt UHvUAXVGUagL6oq6oR6oF+qN+qL+aAAahAajoWgEGonGoHFoPJqIJqEpaDqa gWajuWgemo8WIPPs3JhzcmPmoBsz89xYS6DdamKJKAltRCkoFe2kl0xiWSgH 5SIncqFCVIRKkDGj3FlrUu0zon3Rv+exopemla5vV2f321vZtrz9lhrP19O/ kyeq7MPaj2d/o2Qvo71ss3r79J7s5R8V1rVbtr6s8RWyl5Ve1rXbdsW+02Uv Gbbr2+2LXf9FopeGopeTFeqNM2JTzohNec/elPfsTXnyblPevTflfNmU82VT 3r035W8lmnLmbMq796bc76J/XqsZC0SNUBPaBaFm1DZHwagFaolCUCvUGoWi NmyjLbFw1J7aDsQiUCfUmXaRxKJQFxSNuqJuKAb1oL+exGKJ9UK9qY1DfVBf 2sUT609sALGBaBAaTLshxIYSG0ZsOBqBRqJRrDGa2BhiY4mNQ+PRBDSRNSYR m4ymUDuV2DQ0Hc2g3Uw0C81Gc1hjLpqHPkLz0QK0EC2iv8VoCVpKu2VoOVpB u5VoFbUJaDW1a4gloiS0Hm1kjU3EtqAUlIq2ox2suxPtojaTWBaxvSiH2lxi +5CT2gJ0kFoXKqT2KLHjqIjak8RK0Glq9TFFuvg9jXpZ0wbXGF9T+82CWtpv ZtYcULOZ8Nxa9WqtrDGg5qwafWsFifhI4UE16tXqUmt2rd7CU2suqTW3Vt9a nWuk1OhcQ/+E7CBxHvX81OwbbGLNbGJ/sIk1t4ndaBMLtondZBNrYRO72SbW 0iZ2i00sxCZ2q02slU3sNptYa5vY7TaxUJvYHTaxNjaxMJtYW5tYO5tYuE3s TptYe5vYXTaxDjaxu21iETaxjh4xfU4uSLNeGwhSrg0EcW1AP/aD3NcGjLj1 ukCQcl0gSHmadJBmfZp0kGa8izCuDwRpDq38XUVTGSt/mqN5XSBIuS4QpFwX CFKuCwQp1wWClPvgg3gOSZD8S6/2csl6TSBIuSYQpFwTCFKuCQQp98IHcS98 kHI9IEh7yL2tHnLJvB5grKNnYiNufWJ0kHItIEi5FhCkXAsIUq4FBHEtwOh9 ML1brwMEKdcBgng2ibHOS3wX1msAQfIzMF6RS9ZrAEHKNYAg5RpAENcAjN7f pHfr/H+Qck98EE+JNtYx74kPUub+g5QnRAcpc/9Bytx/kDL3H6TcFx/kzq5G 3DrvH6Q8HTqIeX9jna9ZxzrnH6TM+Qcpc/5Bypx/EM8sMZbMOX+j9638jKzz /UHKfH+Q8tySIJ5bEqTM9Qcpc/1Bylx/kHJ/fJAy1x/EXL/ReyG9W+f5g5R7 5IOY5zfW0Z+dacic479BM++ZuIHxwg2MF25gVuUGxgs3aLVRHVQX1UP1UQPU EAWgQNQINUFBqBl72pxYMGqBWtIuhFgr1BqFojaoLQpH7emvA4qgthPqjCJR FOqColFX1A3FoB5sLZZYL2K9URy1fVBfFE+7/sQGoIFoEBrMGkPQUGqHoeFo JO1GERtNbAwaS+04NB5NQBPRJDQZTUFT0TQ0na3NQLPQbNrNQXPRPPQRms+6 C9BCahehxdQuIbaU2DK0nNoVaBVKQKvRGpSIktB6tJFtbCK2BaVQm4q2U7sD 7US7aJdFbC/KQbloH3KiAnQQuei5EB2l9jgqQidRCWvo7/71e8Kaadb7MPW6 Zu77MPUzYDP33woad2PWEUvm3Zh15JrqJ1PqLcrvmND/XzTTyj+X0iz+8v9T M49P6DLKLbIf807M2+SWQmkRJluEy0h7uafWJ681k09e09f0vBezmRZFX/fL 1ub7nGby+dfd5DbMOzJ7yDXVT6PUW5jPPH1Crm/cjdlX9huvmT9jz3symyn3 ZBqth2j+speh7po/y228IFu+KNccSV8vyxZjZGSsXN+4K/M12e/r7MUbbHOS jEymr7dka/Mpa80s72D0bRjvYIznautrqp9Oqbf4QEY+lOtbn6zWTD5ZTV/T 8x7NZso9mkZr82/4msnnrH4pt2Heqfm1XDOBvr6VLRJlJEmub9yluUH2m6yZ x4XnvZrNlHs1jdbp/CyMecddchvmHZtZcs0f6CtXtjA/FWy/XN+4W/Og7NfF z6JQrucv79lsptyzabQ2n6LWTH5SWKmMm59HoY+YA6RqoStRbVQH1UP1UUMU gBqhJigINUPNUTBqgVqiVqg1aoPaovaoA+qEOqMo1AV1Rd1QD9STn1ovYr1R H9QX9UcD0CA0GA1Fw9AINBKNRmPQODQeTUST0BQ0FU1HM/jeZhGbjeaieWg+ WsC6i4gtRkupXYZWULsSJaDVKBEloY1oE0pBqWxjB7GdKBNl0S6HWC5yogLk Yo1CYsdRESqhnZEnu7nnoCpeWQjwEqu8Xv85zRQ93ljlup59/Jz21Vm3vO45 +d0+X+3+qtqnabLH6TbtPde124512Xh9KXv8SlnX/vvxvt/Wot9XFi16zPJS b7d/dv0bceNq0o2cl29kdHgjZ+gbOUPfyOjwRvc7LEN1UF1q6xGrT6wBaogC UCBqhJqgINQMNWcbwagFtS1RCGpFu9bEQlEbatsSC0ftUQcUgTqhzigSRaEu bCOaWFdi3YjFoB7U9iQWS6wXsd4oDvVF8ag/GkAvA4kNIjaY2BA0FA2j3XBi I9BINIp2o4mNQWPRONpNIDaR2CRik9EUNBVNQ9NZdwaxmWgWmk27OcTmonnU fkRsPrEFxBahxWgJWsoay9BytIJ2K9EqlIBWs8YaYonEktB6ajeiTWgL7VKJ bUc7qN1JbBfKpDYL7aU2h1gusX3IiQrQQeRChfRylNhxdBKV0O40Mu43q+2+ tqKf266QS9Y59WDlfvtg7rfXewjWrqYH65x6sDKnHqzMqQdrxnn1erlkfcZM MM+Y0efWgzXrJyXdKGPWT8S4Ra5lnVMPVubUg5V77YOVe+2DlXvtg5VRZjDP 9w5W5tSDlTn1YOU++2DlPvtgZV49WLnPPli5zz5YecZMMM+YCZZ3ivSRS9Z5 9WDm1Y119DOTEbfeXx+s3F8frMyrB7vPSP5yXj1YeeZ3sHJ/fbAytx6sPPc7 mOd+Byvz6sHKvHqwMq8ezLx6sDKvHqzMqwcr99UHK/fVBytz68HK3Hqw8syZ YGWkGuz+7A8jbr2nPli5pz5YeeZMMOPVYOV++mDlmTPBytx6sDK3HqzMrQcr c+vByv30wcrcerB7ZsqIW+fWg8UYVv8Od8ilne66DLnObr5D69x6sPLsmWBl bj1YmVsPVubWg5X76IOV++iDmV83tlzM3lrvoQ9W7qEPZmR7E++gbuId1E28 b7qJ9003abVRHVQP1UcNUEMUiBqhJigINUPNUTBqwT63JBaCWqHWKBS1QeGo PeqAIlBnFImiUBfUFXVj/2KI9UCxqBftehOLQ31RPOqPBrDuIGKD0RA0FA1H I9BIehlFbAwai8bRbjyxiWgSmoymoGloOpqBZqLZaA6ay3bnofnULiC2kNgi YkuILUXLqF1ObCVahRLQapSIktB6tBFtQSlsLZXYdrQT7UKZKAvl0EsusX3I iQ4iFypER1ER/Z1EJdQad3jGuu/bMPO6Ufw9XNnYza74u3+uC0TPN9vUnWlf 3seHVfVZ2b6Xx1+SP4WXbfvz1kdl34f5mid7/simvV2/3rbjuT/G38brPW+2 qav+92C3Lf2abaDouchjPeNljMFvJoPczMj7ZrLFzWSLm8kWN5MtbiZH6MeG qUaoCWqGmqNg1AKZ11ZvJjPcTGa4mcxwM/ngZsbMN5MPbiYf3Mz4+Gbywc1a FOqCuqEeqCfqhfqgvqg/GoAGocFoKBqGRqLRaAw/g3HEJqJJaAqaiqajGWgW mo3msY35aAG1i9BStAytQCtRAlqNElES2oRSUCp7sINYJspCOSgXOVEBcqFC VMQ2SogZ58ze7nvYqv7draqu4u+//lNZInq/xaau6t9dz2Xr725l7f01+zZ2 7SrWvyJ/Iq9Wui/e9tu6fevLrFsoe1/k0bay/fTWf8X2+vNDeone0yvtw9s2 Pfc9QPnXOFfewrnyFt5t3yLOmv5SVxLzQ3VQXVQP1WfdBsQaogAUiBqhJigI NUPNUTBqgVqy3RBirVBrFIraoLYoHLVHHVAE6oQ6o0gUxb50IRaNulEbQ6wH 6oliUS/W6E0sDvVBfVF/1hhAbCAahAbTbgixoWgYGo5GoFFoNL2MITYWjaN2 PLEJaCKaRLvJxKaiaWg6moFmolloNppDz3PRPDSfdguILSS2iNhiYkuILSW2 DC1HK9AqlMC6q4mtQYkoiXbriW0ktgltoTYVbUc7aLeT2C6USW0Wsb0oB+XS zkmsAB1ELlSIjqLj9FKETlJbQsycfQxh9lGPh/BJgiHK3bwhmn79xIhb7+YN YebRaFWfVtZPFAzRrqdX64xjiPJU6xDtBlqVP+lDvwfcc9ZRj92qlZ+Nb5dr We/gDeEO3hBlpjFEmWkMYaYxRHmKdYgWxXdinWUMUT5JMIRPEgxRPkkwhE8S DFGe4hGifJJgCJ8kGKJ8kmAInyQYotyxG6LcsRvCHbshyicJhvBJgiHKrGKI 8kmCIXySYIgyoxjCjGKIMqMYojy9OoSnV4conyQYwj0uIcpsYojy5OoQPkkw RHlydQifJBiizCKGKLOIIXySYIhyd24IT60OUe7ODVE+STCETxIMUT5JMERL oFfr7GGI8kmCIXySYAgzh0Z8M71an8IRonySYIh75tCI73THM2Q8k7h11jBE +STBED5JMIQZQyN+gG1bZwtDlKdVh/C06hDlkwRDuAcmRLkHJoQ7cW/lvcut vHe5lRHfrbx3uZX3Lrdq5rXWW3kXcyvvYm7lXcytvIu5lXcxt/IuRr+qYCoQ NUJNWDeIWDPUHAWjFqglCqGXVqg1taGoDWqLwlF71AFFoE6oM4pEUWy3C4qm tivqRm0MsR6oJ4pFvVBvFIf60F9fFE9tf2IDiA1Eg9Bg2g0hNhQNRyPQSDSK dUcTG4PGonG0G09sAppI7SQ0GU2h3VQ0DU1HM9BMNAvNpr85xOYR+4jYfGIL 0EK0iHaLiS0htpTYMmLL0Qq0Eq1ijQS0mto1KBEl0W492kjtJpSCUtF2tIN1 dxLbhTKpzSK2F+WgXNrtI+YkVkDsIHKhQtodJXYcFaGTtCtB/9P08128+y/G 1BFdVaNHb3V29f7u/yurxVZuq3Jdzz7sRpqeI0vPujPdd+s63uv/Ln9Sb1ba v93+eb4qW3el3MoqL20999VuvyvbhlGn3y/aWmzlgE2d/T6bo/fbyIC3kfdu I+/dptVGdVA9VB81RAGoEWqCmqHmqAVqiUKQmbtuI3fdRu66jdx1G7nrNjLW bWSs28hTt5GnbtOiUBe20ZVYN9QD9US9UG/UB/Wlv/7EBqBBaDAayhrDiI1A I9FoNAaNQ+PRRDSJnqcQm4qmoxloFpqN5qJ5aD49L0CL0GLaLUXL0Aq0EiWg 1SgRJaGNaBNKQaloB9rJXmUSy0I5KBc5UQFyoUJ0HBWhErZm3AVa3/2Xudbf 29/I6FWa9fe1jozWVX53r5XR65S2gTLaSOlX/xsJ/S8/7f5Gwiy3yTa3W7bh We6WvXdU4pEyWv5Uav31gIw+qLTtIaM9lX4fk9HHWV//t6+Mxlva+rvHhXr0 WWU/h8joUKXfF2X0L8o+jJbRMUrb12RU/azASTI6WWn7toy+o/Q7U0ZnKfv7 voyqn3YwX0YXWGLGXzDo0c+UfpfJ6HJlH76W0W8s2/IX74CMaKLSdoOMJmvW n1mKjKYqbdNlVH02SpaM7mVf9ZIno/m0018HZdSl9HtMRk8obfU7NuqK6GnN /CkY+ed2/hbydkZgt5N/bmfcdTuZ6HYy0e1kotu1+qgBaogCUSPUBAWh5igY tWD/WhILQa1Qa9qFEmuD2qJw1B51QBGoM4pEUWyjC7GuqBuKQT1YI5ZYL9Qb xaG+KB71RwPQIDQYDUFD0XA0gn0ZSWwUGkPtWGLj0Hg0kXaTiE1GU9A0NB3N QDPRbDQHzUXz0Hy2uwAtRItotwQtRcvQcrQSrUIJaDU9J6IkatejjdRuIZZC LBVtp3Yn2oUyURbKQbloH3Kig2zDhQqpPYqK0ElUwhpGpqztfjaFfta4Qi5Z 7xcNVe4XDVWezxzKzK3eX6h75taIW+8XDVXuFw3VjLPT9XLJOnsbarlfVF+y Pqs5VHlWc6hmfSZDqOWZDPqTNso/G8KYydVjd1hi7eRa1lncUOU5DKHKcxhC lXtGQ5V7RkOV2dxQ5Z7RUOWe0VBlRjeUGd1QZUY3VHkWQ6jyLIZQ5Z7RUOVZ DKHKzG6oct9oqHLfaKhy32io8vmEoXw+Yahyz2iocs9oqPJM5lDleQyhzPIa /elnDiNufR5zqPIZhaHKfaOhykxvqHLfaKhy32ioct9oqHLfaKjyTIZQPqvQ 2CtzxjdUuW80VLlvNFSZ9Q1VnskQqn3p7m+F7O9rfmrW+0ZD3WcUfznzGyo/ lyJRLlnvGw1V7hsNVZ7DHKrMAIcq946GKs9lCFVmgUO5dzRUmQUOVZ7LEKrc Oxqq3Dsa6r531F9+bmEon1sYqtw3Gqo8lyFUeS5DqHLvaKgyIxzKjPAdjIfv EO9H/KVqEbsS+aHaqC6qx7r1iTVADVEA7QKJNUJNUBBqhpqjYNQCtaTnEGKt UGsUitqwRlti4ag96oAiUCfUmV4iiUWhLtRGE+tKrBuxGNQD9USxqBeKQ31Q XxSP+rO1AWggtYOIDUZDqB2KhqERaCQahUajMWgsGofGs7UJxCYSm0RsMpqK pqHpaAbrziQ2C82mdg6xuWgetR8Rm09sIbFFxBYTW4KWomVoOVrBuiuJrUIJ aDXtElEStevRRrQJbWGNFGKpaDu1O4jtRLtQFu32EsshlktsH3KiAtodRC5U SLuj6Dg6iUrQadY1rnAPcT+jyzqyrH7x9/jX0xXb6/9fdoothnntq7I+PON2 269Of9bv9Uz6rLzNP+VP832v7ez2ydt2vO2jNZ4qtthHbHG7TT9V7X9l+1S+ bIyww8hoYeSxMPJYGNkrjHF1GOPqMLJXGDlL/79vqhFqgpqh5qgFaolaodYo FLVBbVE4ao86oE6oM4pCXVBXZF51DCPHhJFjwrhjKoxRchiZJYzMEsbYOIyx cRhj4zDGxmHkjjByRxi5I4zcEUbGCCNjhHGVMIxxcBgzvGFkhzBGv2FkhzD+ +jKM0W8YmSCM0W8Y5/8wxrxh3NcUxn2wYYx0wzjrh3GuD+NcH8YMbxhn+DDO 62HM8IYxwxvGFbwwzuZhnM3DOIeHcQ4P48wdxpk7jLFsGGPZMMayYZyvwzhL hzHDG8YMbxhX4cI4I4cxgg3jjBzG5xK2VZ6HY0TUzyWsIyK/k5GrZQvrk3D0 /tqK94jG+9q2fOas0bL8iTiNZL317qK28u4ivaXnJxa29fjEwgARsY5KzRIm 69ppFc8kHWVPnk/Faat5PhWnLU/FaWt5Ko7eMoaWD8t643MKY+V6vfhee9Py CflzMz+t8CnZwnwujr98Lk5byyzxYBkZQi9/lhHziTjGXUN6vy/JyMuyhfWT Co29Mu8Yamu5Y0hvqT4TR683Zo7flOu9pZn/P8o/LWC63OoMueZM2UJ9Jo4e mcu+fygjH/P9LZAR9Xk4er9LZGSpbLGMFl/KvfpKM//ffO3ub5VsqT4PR6+3 3hnUVt4ZpLdcT8tkuVXziThbZYvyWeY0GUnn+9slI+aTcPy1bBnxfBZOW/kJ PAHykwvbKp9caOyV+TS+tu7PgzafhdPW4/ML9foS9/JPcj39c3sNmaO+dsxC t2MWuh3Zsh1jvXZky3Zky3aM+tqRN9uRN9uRN9tpASgQNWK7TVAQtc1RMGqB WqIQ1Aq1RqGoDWrL1sKJtUcdUATqxBqdiUWiKNQFRaNuKAb1QD1RLOrF1uKI 9UF9UTzqjwagQWgwGoKGso1hxIajkdSOIjYajUFj0TjWmEBsIpqEJqMpaCqa Ti8z0ExqZ6HZaA6ahz5C89ECtBAtQkvQUra7DC2ndgVaiRJot5rYGpRIbRJa T+0mtAWl0C4Vbad2B9qFMlEW2otyUC5y0nMBsYPIRW0hOoqKaHcSlaDTyBil 1XY/+Vg/A10hl6yz2uHuWW1/Oasdrsxqhyv3I4cr9yOHa9fSu3VWO1wzzn7X yyXrrHa4Mqsdrsxqhyuz2uHKrHa48qThcM36VIRwrfypCPoznj1nt/WY8ZRh I3a3XMs6qx2uzGqHK7Pa4cqsdrgyqx2uzGqHK09CCFeehBCuzGyHK/cqh3Ov crgyqx2uzGqHK7Pa4cqsdrgyqx2uPe/+fofKJetThsOV+5bDlZntcGVmO1yZ 2Q5nZtvY49fZY+vTEMKVme1wZWY7XJnZDueTBo3+9HONEbfOaocrs9rhyqx2 uDKrHa48aThcedJwuDKzHa7MbIdrn7v3Y6lcss5shytPRQhX7mkO18x7msOV e5rDlScihCsz2+HK04bDlScihPO04XBlVjtcmdUOd89q+8tPFwxXPl0wXJnZ DldmtsOVme1w5dMFw5WnIoQr9zmHy09nPiKXjrmXjss9LmaPrTPb4cpTEcJ5 j3Mn8wB38h7nTt7j3MmnlNzJu507tdqoDqqL6qH6rNuAWENiAcQCUSPUBAWx RjNizYkFE2uBWqIQ1Aq1RqGoDWqLwtlGe9SB2gjUCXWmXSSxKNQFRaOuqBuK QT3oryeKpbYX6o3iUB/Ul3XjifVHA6gdSGwQscHEhqCh1A4jNhyNQCPRKDQa jaGXscTGofFoApqIJqHJaAr9TSM2ndgMNJPaWWg2tXOIzUXzqP2I2Hy0AC1E i1hjMbElxJaiZdQuRyvQStqtIpZAbDWxNSgRJaH1rLGJ2BaUglLRdrQD7aSX XcQyURbai3JYIxfto9ZJrIDYQeRChbQ7io6jInSSNUrQaWS83xrl/gQJ4/1G ZTOknsWzbVXtK66v/38rFFu/q9J17erstnem+2tXV1Wf1u16+7fyffhM/sQ/ V9rb9eHp6uxjZfurlwKx9VZi6wdt2tjvvzErfhfZ8C7mwu8i391FvruLLHcX Y/q7GNPfRR67izx2F6P2u8hUd5Gp7iI/3UV+uousdBdZ6S4tHJlZ6S6ehX8X WekustJdjMvv0qJQF9QVdUM9UC/UG/VF/dEANAgNZq+GEhuBRqIxaBwajyai SWgKmo5moNloLpqH5qMFaBFaipahlSgBreZ7SySWhDaiFJSKdqJMlIVyUC7b cBJzoUJUhEqQMf88xv1ZOPa/Md5+k6r6zatu8Xf/vE6KPbi72uv/nN/8quq9 /8bbb9fT3vap8n34Qv70v1T6qOp7qE47z/31tv5RsQdNxB4c99qXcca7mzPe 3bz/v5v3/3fz/v9u3v/fzfnwbp4rezfv/+/mzHg3Z8a7ef9/N+//79YCiAWi RtQ2IRaEmqHmtAsm1gK1RCGoFWqNQlEb+mtLLBy1Rx1oF4E6UdsZRaIo2nUh Fo26om4oBvVg3Z7EYlEv1BvFoT6oL73EE+uPBqCBaBBrDCY2BA2ldhix4WgE GolGodGsOwaNpXYcGo8moIloEutOJjaF2FRi04hNJzYDzaR2NppD7Vw0D32E 5qMFaCFaRH+LiS1BS9Ey2i1HK9BKtIo1EoitJrYGJVKbRGw92kjtJrSF2hSU irajHWgXykRZ9LeXWA6xXGL7kJPaAmIHiblQIbVH0XFURLuTxErQaWTOt0Yo 860RzLfqrSLcf3VjxK1PnI1wn+OMuPWJsxHKHcQRylxrhGacYa+XPTSiB+vV 2Qie/RChzLFGKHOsEcocawRzrEYPt9OD9amzEVr5U2f1z7m7UyvPEnfLmPVv eO6Ra1nnVyOUT2+L4PpthDK3GqHMrUYoc6sRylNmI3jKbAR3DBvxvvx0rPOq Ecq8aoQyrxrBvKrRw1B6sN4pHMGdwhHKfGqEMp8aocynRijzqRHMp0Yoz4KI 4FkQEcpcaoQylxqh3CUcoTwPIoJPbYtwn3385fMgItxzqUbcOo8aocyjRijz qBHKMyEieCZEhPJU2QieKhvBncHGkvWpshHK3cERzKEaPSTSgzl/asQ3sEXr XcERyl3BEcr8aQTzp0YPGfRgzp0a8Sy2aJ03jVDmTSOUedMI5k2NHlz0YH02 RATPhohQ7gaOUOZMI5Q50wjmTDtyXbgj75k68p6pIyPHjrxn6qjVRnVYty6x eqg+aoAaogAUiBrRXxMURG0z1BwFoxaoJQpBrVBrFIraoLZsN5xYe9QBRaBO rNGZWCSKQl1QNOqKutFLDLEeqCeKRb1YozeKo7YP6kttPLH+aAAaiAahwWgI Gkp/w4gNRyOoHYlGUTsajUFj0Tg0Hk1AE9Ekep6MplA7ldg0YtOJzUAzqZ1F bDaaQ+1cNA99hOajBWghWoQWoyVoKVtbhpajFWgla6wilkBsNVqDEmmXRGw9 2og2oS0ohXVT0XZqd6CdaBfKRFmsuxflUJuL9iEn7QrQQWpdxArRUWqPoyJ0 EpWwxmli+vso/ZOdp72kf7LzwFqJtdbUHFAztMaWWsNr1asVWqNGzZY1ZtcK qrWzVssaA2oG1qxXa2ytJbWaCSfU7FtrfK2Dwik1mtU4WKtLLf3TdjuJ86jn J/D+0SbW2SZ2j00s0iZ2r00syiZ2n02si03sfptYtE3sAZtYV5vYgzaxbjax 7jaxGJvYQzaxHjaxh21iPW1ij9jEYm1ij9rEetnEHrOJ9baJPW4Ti7OJPWET 62MTe9Ijpt8T1knzvDuzk8fdmbVFpLZ7+Xfu34FO8vMn9JbXaOacSn0ZaUBv +nuOOiISKJcayRZNaHGDbGHel3mjbKHelalHyu/KbC0jobQx7s7sJN7pV5w7 6ijr/qjEjXK/7OkBYt1kRL0fU488Qptecp+tn1Oot3iSFvGyhXkn5gDZwvr5 hEbEeh+m8ZM1n+HWyXIvhN5ypGbOXr0sI9b7MY3IOHp7XUY878Ts5M57/vJO zE7cidnJ/fw2o+V0GZnBFt+T389s2WKObKHeiam3+Fgu/0u2UO/D1CPlf9W/ VO6D+Y68kzuDGZ9Epbc0PolKf62SEfNOTOMv9fTIWnpLkhH1Hky9V+MezC1y aymav2zpeS9mJ497MfXvZ4/cXrZs8YNmHmG5ssU+ueyULQ7QwiUjhWznmNyH E5r5/7jYXXNStizh+yuVLc332no+MFULXYnqoHqoPmqIAlAj1AQ1Q81RC9QS tUKtURvUFrVHHVAE6oTMOwb+yLvfP2pRqAvqirqhHqgn6oV6oz6oL+qPBqBB aDAaioahEWg0GoPGofFoIpqEpqLpaAY/jVnEZqO5aB6ajxagRWgxWoqWsY0V xBLQapSIklhjI7FNKBXtQDtRJutmEctBuciJCljDRawQHUdFSJ/xShA/2c6a +TdfAZZS1bI1ZldnV/y92FjWf571rugs3qFVZ9ue26/uOp7tq2pXmavbj7d9 rqoPf/edZsPF/6ENlfZhjXvbz+rsb/nLuMZzD+fQe5ivuIez6T2cTe9hvuIe 5ivuYb7iHq0usfrEGhBrSCyAWCBqhJqgINQMNUfBqAVqyTZCiLUi1ppYKGpD bVti4ag96oAiUCfUmV4iiUWhLigadWWNbsRiUA/UE8WiXqg3iqO/PsT6onjU n3YD0EBqBxEbTGwIGoqGoeGsMZLYKDQajUFj0Tg0nl4mEJtIbBKxyWgKmkq7 acSmE5tBbBaajeaguWge635EbD6xBcQWokVoMVqClrLuMmLL0QpqVxFLILYa raE2kVgSsfVoI9qEtqAUlEov24ntQDvRLpTFGnuJ5RDLRfuodRIrIHaQmItY ITqKjqMidBKV0Iv5BJhIzXrtJlK5Vz5SeQJMpHKvfKRyr3ykcg0nkms4+rYi 3ddwjLhxJr1eLlnvlY9U7pWPVO6Vj1Su40Qq13Eiles4kcq98pGWe+X1Jeu1 nEjLtRx9yfpEmEjLE2H02Q/Pazp67F5L7H65lvVe+Ujlek6kcj0nUrmeE6nc Kx+pPAUmUnkKTKRyv3ykcl0nUrmuE6lc14lU7pePVJ7xHcn4MFKMD/XcNkIu jXSv85Jcsl7biVSu7UQqT4GJdJ+T/OWzviOV++UjlfvlI5VrPJHu85G/vMYT qVzjiVSeBBOp3DMfqTz3O5LrPJHKdZ5I5TpPpHKdJ1K5Xz5SuV8+UnkSTKTy /O9I9znIiFuv9URq37i/kwS5ZL1fPlK5Xz5SuV8+UnkSTKRyzSdSueYTqVzz iVTumY/kSTDGkvWe+UjlnvlI5ZngkTwTPFJ5Ekykcr98pHK/fKTyNJhI5Wkw kcr1n0iu/xjbKtX8pcxPEbyX91L38l7qXt433avVRnVQPVQfNUSBqBFqgoJQ cxSMWqCWqBUKRW1QOGqPOqAI1Al1RpEoip9GF2LRqCvqhmJQDxSLeqE41BfF o/5oABqEBqMhaCjSr7eMqVFb6C/ip69pfToZ8ZG0GIXGoLFoHJqIJvFzmExs CpqOZtBuJrHZaA6ah+ajBWghWoSWoKVoGVqOVqIE9mU1sUSUhNajLSgFpaLt aBfKRFkoB+WyB05iB5GL2kJiR1EROolKkPFuYZoWZZnZrXx85TnWqqpUNfay 357+Uw+6Ikq774y2ZZRXf6Np40R5TZTxorwuygRR3hBloih/E2WSKH8XZbIo b4oyRZS3RJkqytuiTBPlHVGmi/J/oswQ5V1RZoryniizRPmHKLNF+acoc0R5 X5S5onwgyjxRPhTlI1E+FmW+KP8SZYEon4iyUJRPRVkkyr9FWSzKZ6IsEeVz UZaK8h9RlonyhSjLRflSlBWifCXKSlG+FmWVKN+IkiDKf0VZLcq3oqwRZa0o iaJ8J0qSKOtEWS/KBlE2ipIsyiZRNouyRZStoqSI8r0oqaJsE2W7KGmi7BAl XZSdomSIskuU3aJkirJHlCxRskXZK8oPouSI8qMouaLkibJPlHxRnKLsF6VA lAOiHBTFJUppWVnZYfFvoShHRDkqyjFRjotyQpQiUYpFOSnKKVFKRPlJlNP6 uqL8T5QyUcQbW4/jydvxWp3jqrJ1q1q/Otv1tp9261bsS3+XECd+c9Msa1S/ v6r2y5wLuY/8fR8zIPcxA3If+fs+8vd95O/7yN/3MdtxnxZArBFqgpqh5qgF aola0V9rYm1QW9QedUCdUGcUiaLouQuKprYr6oZ6oJ6oF+qN+qC+9Nyf2AA0 CA1GQ9EwNAKNRKPRGDQOjUcT2YNJxKagqWg67WYQm4Vmo7loHmvMJ7YALUKL 0VK0DK1AK+kvgdhqYonEktBGtAmloFS0g152okxqs1AOtbnEnMQKiLlQITqO ilijhJjxdwcz3FfO1d9Du9/XyuoqO1d4ngsqW7d8Hf3n3eKKLmIUbNeft21V tY2q2vvbLP+c7Va2z5Xtl+f2Pes848ZLH5XFiP+Lu23rq7u/6rJx/r2f8+/9 jJ/u50x8P2fi+xlT3a/pV+AN1SFWF9Wjtj5qQG1DFEBtILFGqAkKQs1QcxSM WtBfS2IhqBW1rVEotW1QWxSO2rNGB2IRqBPqjCJRFOpCL9HEuqJuKAb1QD1R LOqFeqM41Iet9SUWj/pTO4DYQDQIDabdEGJDiQ0jNhyNQCPRKDQajUFj6W8c Gk/tBDQRTaLdZGJTiE0lNg1NRzNoN5PYLDQbzUFzWWMesY/QfLSAdguJLSK2 mNgStJTaZcSWo5VoFUpgjdVoDbWJKIna9cQ2ok1oC0pBqWg72kF/O9EuajOJ ZRHbi3KozUX7qHWiAmoPEnOhQnQUHWeNImIniZWg09Tqd8zp80rRzF7r8Wg+ cTJa+cTJaPeZzohbZ62jlSe8RLvPc0bc+omT0XziZLQyYx2t/NVBNH91EM1s tRFvQa/Wmepo5S8Oot1nMyNu/eTJaK0dvVpnqKOVT56M1jrSqvzJLvr9c56z 1HrsAUusu1zL+nzyaJ5PHq3MTEcrT3GJ5iku0conTkbziZPRyox0tPKJk9F8 4mS0MhsdzWx0tPLklmjlEyej+cTJaOUTJ6N5fly08omT0cpfGUTzVwbRyidO RvOJk9HK7HO08hcG0XziZLQy8xztPr8YcevMc7TyiZPRPH88Wvnrgmj+uiBa mXGOVmaco/nEyWjl6SzRWgK9Wmebo5XnykXziZPRyidORvOJk9HKLHO08omT 0e5ZZiO+0x3PkPFMerXOLkcrs8vRzC5HK584Gc0nTkYrM8vRyl8VRLufxGLE zVllI15C3PoXBdHc5fSAZv5FwQO8K3qAd0UP8K7oAd4VPaDVZo06xOqieqgB aogCUCBqhJqgINQMNUfBqAX70hKFUNsKtaY2lFgb1BaFo/aoA4pAnVBneo4k FoW6oGjUlTW6EYtBPVBP2sUS64V6ozjUB/VF8ag//Q0gNhANQoNpNwQNpXYY Go5GoJFoFBpNL2PQWGrHEZtAbCKaRO1kNIXaqcSmEZuOZqCZaBaajeagufQ3 j9hHaD61C9AiahejJWgpWoaWoxVoJVqFEtjGamJrUCK1SWg9tRvRJrQFpbLG dmI70E60i3aZKAvtpV0OyqV2HzEnKkAHkQsVoqPoOP2dJFZC7DQy3u3Ud9/n bmZuveifa1ZHRK/SjBHhb93nwq7yubd15Dp1lXX0v6vU75hvaInqn25WV8Qa ETPe03SV72n0Xoz7qc2RZwtZr5+VjHVDWPc2uYXbLWuEyV7ClX3Rr68HiWj5 9fWKI+cHZJsHK9SVl8dk748rbfrK/ehnafmM3FvrfdPGdzLE/Z3ovQxV+n5R 1v9FC5DrvkTtaLmFMZY9Hyd7eV3Zx0ny/4x5r7Tx/+0tWf+2XMfuc8+68rln xhbel+t+INt9KHsuv76tr7NAs84U/Fvu5xJL78vkd7Oc2FfyO9WfVWv0Uv4Z aHpZI+uNv1bU101izzbILSRb1tgqe0llP/SSLvfX+By0XfK7yZRtsuQ6ey3b NT8PrSvPqDXKQbmu+XlohbLno+7lY3KdE5p1xqRErlMqezHmTh5k7uRB3hs8 yHuDB7XaqB6qjxqiANQINUHNUHPUApn5/UGy+oPMWD9ILn+QXP4gGfxBMviD 5O0HmcN4UItCXVA06sp2uxGLQT1QT9QL9UZ9UF/UHw1Ag9BgNBQNQyPQSDQa jWGfxxEbjyaiSWgqmo5moFloNpqL5qH5aBFajJaiZWgFWokS0GqUyHeURGwj 2oRSUCpr7CC2E2VRm0MsFzlRAXKhQnQclSBjJnqe+2+pKp6vzWL9natu8bf8 67muXV+V96//nDtd0U2McH/OflRnHbv99Vy3sn7svkdrP1WtX9W6dvtpt47n PpcX/Z6fEPF/+pBtP57bNGeiu3M27c6Yqztn0+6MtLoz0urOSKs7Z9junGG7 M9Lqzrm2O+Or7pxru/N32t0ZX3XnXNudUVV3RlXdmWHuzlm3O2fd7oylunO3 c3dGUN05/3bn/NudEVR3zr/dGTd116JQFxSNuqJubC0G9aC2J4pFvWjXm1gc 6oviUX80AA2il8HEhqChaDgagUaiUWgMGkvP44iNRxOpnURsMpqCpqHpaAaa iWbT3xxic9E8NJ92C4gtRIuoXUJsKbFlxJajlWgVSkCrUSJKor/1xDaiLSiF dqnEtqOdaBfKZI0slENtLtqHnOggcrFuITpKbRE6SW0JMSNT1Hb/Na1+lrhC LtV0nytqySXrHcYxyh3GMcpcbYxyh3GM8pSYGOUpMTGacfa6Xi5Z52xjlLuM Y5S7jGOUu4xjlLuMY5S52xjlLuMY5S7jGOUu4xjlLuMYZQ43RvncyRjN+oTu GOUJ3TGa9QkyMZYndOt/q1w+n+vvPt702EPEzLuMY5S53BjlLuMY5S7jGOUu 4xjlLuMYZU43Rn4OyCC5ZL3LOEb5rMkY5ancMcrcboxyp3GMcqdxjHKncYxy p3GMMscbo73h3peJcsl6p3GMcqdxjPI0mRhlrjdGudM4RrnTOEZ5OneM8nTu GGXON4bPnDSWrHcbx2ifuusWySXr3cYxytxvjPJ07hjl6dwxyh3HMcrTZWKU OeAY5Y7jGOWO4xjljuMY9x3H/vKO4xhlLjhGueM4Rt5LtEMu7XTXZcgl6x3H Me6zj7+cE45RnjYTozxtJka56zhGues4RpkbjlGe0h2j3HUco9x1HKM8dSZG mSOOYY74Id6vPMT7lYfE+clf6kpifqg2qkO7usTqEatPrAFqiAJQIGqEmqAg +mtGrDmxYGItUEtqQ4i1ItaaWChqg9qicNQedaCXCGKdUGcUiaJQF9aNJtYV dUMxqAdr9CQWi3qh3igO9UF9UTzqjwawjYHEBhEbTGwIGoqGoeFoBBpJL6OI jUZjqB1LbByx8WgCtROJTUKTqZ2CpqJpaDqagWaiWWg2moPmonls9yNi84kt ILYQLaJ2MbElxJYSW4aWoxVoJVqFEtBq+ltDLJFYErH1aCO1W1AKtaloO9pB u51oF7WZKIvavcRyiOUS24ecqAAdZA0XsUJiR9FxaouInSRWQuw0MuaSF7qf XaKO++zHgBWLt/FfZW3t1q3etvT/zzFX9NAerrLvquJVbb+q78dbnV3c02f+ fasvz+142we7Piquo2fHBuIIOOWxrjF+f5h8+DCzoQ+T8R5mrP4wY/WHyXMP k930/1+mGqEmqDlqgVqiVqgNaovM+7geZuT9MDnoYXLQw1oU6oK6om4oBvVA PdlGLLFeqDfqg/qi/mgAGoQGo6FoGBqJRqMxaByaiCahKWgqmo5moFloNpqH 5qMF/AwWEVuKlqEVaCVKQKtRIkpCm9hGCrFUtANloiyUg3KRExUgF9soJFaE SpAxYq3rfl6T+TtRU0aM5xfpLz8ZqU2bq93r93SPUPV3mj2137tr6suW6vOL 9Ij6+ZJ1RMR8glGQbPEHfi+DZcTzCUY9PZ5gpPdifhpUmGzRjr1uLyMd6KWj jHh+ymRPLYo297v/P/YUY8yKZ5yHZd0jFerMJxj19HiCkR7pT5tnZMTzGUY9 PT5LUv++XpDbfFG2GMlevCwjns8u6smzi4y/RdV7mSgjk2SLyWznLRlRn1mk /5+03vvTU977o7f0/BTJnu6r68ZP4kMZ+Zg2C2TE8+lFPcXIz/zpLZURz8+R 7MnnSPYU4z29ZpVsmUDLb2VEfXqR/j2vl3u1UbbYzPZSZMR8apG/fGpRT/nU Iv21S/ayR/abLVuonx+pR8ynFhmfIKnvq/EJkgfl92A8L1RvaT69yPwEyZ4e nyCpRzyfW9STvxN9hDt6HmG09gijtUcYrT0ifk/NWG1idVBdVA/VRw1QQxSA AlEjttEEBVHbjFhzFExtC9QShaBWrNGaWChqg9qicNSedTugCGo7oc4oEkWh LigadUXdUAzqgXqy3VhivVBvFIf6oL4oHvWnvwHEBqJBaDAagoaiYWg4GkHP I9EoakejMWgsGsca44lNIDaR2CQ0GU1BU9E0NJ1eZqCZ1M5Cs9EcNJc15qGP qJ1PbAGxhWgRtYuJLUFLqV2GllO7Aq1Eq1ACWo3WoESUhNazjY1oE9pCuxRi qWg7tTvRLmoziWWhvSgH5bLGPmJOYgXEDiIXtYXoKLXHURG1J4mVoNPof5px f2OsMoceqzylI1aZQ49V5tBjlTn0WGUOPVaZQ49V5tBjNeOMbDxpPdY9h27E 9fOcv5w/j1Xmz2PdZzl/OX8eq8yfxyrz57HK/HmsMn8eq8yfxyrz57HK/Hms Mn8eq8yfxyrz57HK/Hms8gmXsZr1qR2xlqd26M/j9JxH12OPauXvdx6Xa1nn z2OV+fNYZf48Vpk/j1We0hGrzJ/HKvPnscr8eawyfx4rn+T4klyyzp/HKvPn scr8eawyfx6rPKkjVpk/j1Xuk47lPulYZe48Vpk7j1XmzmOVufNYZe48Vpk7 j1We1BGrzJ3HKnPnscrceazyyZaxytx5rDJ3HqvMnccqc+exytx5rDJ3Hqs8 nT3W/emWRtz6pI5Ybat7P1LkknH30za5ZH1SR6wybx6rzJvHKvdSxyrz5rHM mxv74WQ/rHPmscqceawyZx6rzJnHus9G/nLOPFaZM49V5sxjeRf2KHMEj4p3 YWasFrErifkRq4PqonqoPmqAGtJLALFA1Ag1oV0zYs2JBRNrgVqiENQKtUah qA39hRNrjzqgCNQJdWbdSGJRqAu10cS6om4oBvVAPVEsvfRCvamNQ31QX9rF E+uPBqCBaBAajIagofQ3DA2ndgQahUajMawxltg4NJ7aCcQmEptEbDKaiqah 6WgGmolmodn0PIfYXDQPzUcL0EK0iF4WE1uCllK7jNhytAKtQgloNVqDElES Pa8ntpHYJmJbiKWi7WgH7XYS20Usk1gWsb0oB+UiJ2sUoIPUulAhtUeJHUdF 1J4kVoKMme3l7qdj+/MKqGbx97Dnsmcbb229taus3t/9/7fnFb20x6pseybb r873X511rdvwjJ/pvnr2aX1Vta63tnb7ZPxrzGg/RrZ6jPmBx7TaqA6qh+qj hqgRaoKaoxaoJWqFWqM2qD3qgDqjKNQFdUXdUA/UE8WiXqg3ikN9UF/UHw1A g9BgNBSNQCPRGDQOjUcT0SQ0BU1HM9BsNBfNQ/PRArQILUXL0EqUgFajRJSE NiJzxPkY587HGGc+xujyMc6Oj3FOfIxz4mOcEx/j/PcY89OPMT/9GFfxHpPz 0/Xdz/W3HuX634HoT/u/Siv/rfidbFnxrz/qiuh1lpjed2/3E/WNNRpZ1vCX z9PvrTxPv7ZYLh/d6eu0VLZym2xj/AVIqOyhjaxvK9cJV9a5W+5HR81f7qM6 L62vEaWsYfxlSG/tQUvMszwm26h/GaKWZ2TvzyrxIXIvzL8G8ZefftXb/ZRE Y42/0Fp/jZbf5xgZGyt/CsY89GtyHbu/C+ktZ6LflD28Jft8W67j+Xchxn4Y n3Sl7+Nsat+Xa3ygrDFfHh+fWKL/li3L55/1skxGl2vWs+rXcn3r34N8K1sm WtYOcP8diL5HyfxUtsi9TdHMn5r59yBG/+nye86QPeyWPxFjxjlLrlPx70H0 NuWfT6X3UCD7PCjXcVnW8ZdPyu8tn5Sv72Mx+1giI6dZw8gbjzPX/DhzzY8z ynmcUc7jjHIeJ6s8TlZ5nPHO4+SXx8kvjzPe0T/9wVQgPTdCTagNQs1Qc9oF E2tBrCUKobYVao1CURvWaEssHLVHHVAE6oQ600sksSjUBUWjrqzRjVgM6kFt T2KxqBfqTbs41Ifavige9UcD0EA0CA1GQ9BQtjGM2HBiI4iNRKPQaNqNQWOp HYfGowloIpqEJqMp9DeV2DQ0Hc1AM9Es1p2N5lA7D32E5tNuAVpI7SJii4kt QUvRMrScNVYQW0lsFbEEtBqtQYmskURsPdpI7SZiKcRS0Xa0g3Y7ie0ilomy 0F6Uwxq5xPYhJ7UF6CBy0a4QHUXHURFrnCRWQswYIdV2f96Pft67Qi5ZZ5Pj lNnkOGU2OU6ZTY5TZpPjlNnkOGU2OU4zzqrXyyWHe+uN3HsVpzVlr6yzyXHK 3dhxymxynDKbHKfMJscps8lxymxynDKbHKfMJscps8lxymxynPs85i9nk+OU 2eQ4ZTY5TplNjlOeAR2nWZ8BHaeVPwNa/wSmR7XyXPW4jD2hlefgp+Ra1tnk OGU2OU6ZTY5TZpPjlNnkOGU2OU6ZTY5T7saOU2aT4+Rfur4il6yzyXHKbHKc Mpscp8wmx4n3OXovU+SS9W7sOGVGOU65+h7HkzfilNnkOGU2OU6ZTY5TZpPj lNnkOOW5z3HKbHKccid2nDKbHKfMJscps8lxymxynDKbHKfMJscpd2LHKXdi xykzynHKjHKcMqMcp3zeZxyf9xmnzCbHKbPJcfIzh3LkkvUu7DjlLuw4+Z7q gFyyzijHKc9+jmNG2diPIs1fxq2zyXHKbHIcd2A/wfusJ3if9QTvs55gzP4E 77Oe0GqjOqguqkd/9Yk1QA1RAO0CiTUi1gQFUdsMNUfBtGtBrCUKQa1Qa9YI JdYGtUXhqD1rdEAR1HZCnamNJBaFuqBo1BV1QzGoB+qJYlEv1BvFsQd9UF9q 41F/NAANRIPQYHoZQmwoGkbtcGIjiI1Eo6gdjcZQO5bYODQeTUAT0SQ0GU2h v6nEpqHp1M5AM6mdhWajObSbS2we+gjNRwvQQtZdRGwxWoKW0m4ZWk7tCmIr ia1CCWg17dYQS0RJaD3aiDax7hZiKcRS0XZqdxDbSWwXykRZaC/KYd1ctI9a JzqIXLQrREepPY6KqD2JSqg9jYx3YXXdn6ZoZvyaMqJ+SqIesd5lqI9z+8h3 XQHa72ULz7sL+4j3Web7hkYy0oQ2N7jPxH3kfE5z9z71cZ/BjJaedxn2Ee+u zN5ay0gobcLk+u20ANlv+XsqvaXn3YZ9Ktxt2EczZ3X8tftlxPPTE/toMfRj 3HXYRyv/9ESz+Msjso/lrsPy8ozsyfNuwz4edxvqkRdoM0JGRmrmfMXLMqLe b6h/5+Y8j/ETMT7hXG+pfmKiHvG877CPct+hsb5+jjD6nemueU+2/If8Xs37 Dvu47/cxYh/KiHrfoX7MfCr3/t+yhfUzE42I9a5DI/IVbVbJiHm/oflpiX0q fFpiH49PS9S3bd5xuFW28LzfsI/HpyTqkUzaZMufgvVpYn3k08T0lup9h3rk AD8hl4wU0uaYXN/8vMQ+WrG75UnZsoSWpbKlecX7Sa4hPMk7kyd5Z/Ik70ee 5P3Ik8z2POkeGxlqSCwANUJNUDPUHLVALVErem5NrA1qi9qjDqgT6oyiUBfU FXVDPVBP1Av1RnGoD+qL4lF/NAANQoPRUDQMjUAj+WmMJjYGjUPj0UQ0CU1B U9F0NINtzCI2G81F89B8tAAtQovRUrQMrUArUQJ7sJpYIkpCG9EmlIJS0Q60 E2WiLJSDctkDJ7EC5KK2kNhxVIRKkJ4d9U/AXjlS/wTsj2q2rBlYI7HWxFrz xb8DRCmqFVRrS61eNdsI16s1t1ZRrcAaNWrOrllUa2qt2bXq10ipMbDmTuGi Wotr6p9K3Ff8tnp+UvFTNrF4m1g/m1h/m9jTNrEBNrFnbGIDbWLP2sQG2cT+ ZBMbbBN7ziY2xCb2vE1sqE3szzaxYTaxF2xiw21iL9rERtjE/mITG2kTe8km Nsom9rJNbLRN7K82sTE2sVc8YgniN7CvVtnTcazFfFmXA7TK1/Vcx25dz/qq 9qVivX6eibyir/i9qawvb/te1fY8+6vs+67uvnvui7f98LbP3mLWf721876P xrUk/ewTIFUD1UJ+qDYy/7b8Ka0usXrE6hNrSCyAWCBqhJqgINQcBaMWqCU9 hxBrRSyUWBvUFoWj9qgD6oQ6o0gUxTa6oGhqu6EY1AP1RLGoF730JhaH+qC+ tIsn1h8NQAPRINYYTGwIGoqGoeFoJBpFL6OJjUFj0Tg0AU1k3UnEJqMpaCqa zhoziM1Es6idTWwOmkftR8TmE1tAbCFahJagpWgZWo5WoJUogW2sRmuoTSSW RGw92oS2oBSUirajHWgXymQbWWgvtTnEcok5UQE6iFyokHWPoiJqT6ISdJp2 5jWdeM36FwLxyjWdeOVp6PHuazpG3Ho9J165nhPP9RxjHf0cY8SNs9r1csn6 dJ145ek68doNmn5WbCaXrNdz4rmeY/Tekt6t13LilWs58cqT0eOZc4hXruPE K9dx4pXrOPHKXwXEK9dx4rmOY/T+AL1br+HEK9dw4i3XcPSlR911veRS+RN2 9PeZT2jlGeEpGfN8Mqm+lvUaTrxyDSdeuYYTr1zDiecajrH3L7H31us38cpf A8Qr12/iles38cr1m3iu3xi9v0nv1ms38do7mv7/e7pcsl67iZd3q+hx67Wb eOXaTbxy7SZeuXYTr1y7iVeenh7vvnZjxK3XbeKV6zbxXLcx1vma78L6eZ3x yjWbeOWaTbxyzSZeuWYTzzUbo/et9G59ck688hcA8cqT1ON5knq88tSceOXu /3jlek28cr0mXvkLgHiu1xi9F9L7MXfvx+WS9Yk58crndMa7n5NqyLxW04/3 Mf14H9OPeZB+vI/pp9VGdVA9ZM6I9OO6TD/ex/Tj3Us/3r30491LP9699OPd Sz/evfTj3Us/3r3048pLP2ZJ+vHupR/vXvrxnqUf71n6cb2lH9db+vGepR/v WfppUagL6oq6oRjUA8WiXqg3ikN9UF8Uj/qzpwOIDUSD0GDaDSE2FA1HI9BI 1hhFbAwai8ah8WgimoQmoyloGprO1mYQm4lmozloLpqH5qMFaCFahJagpWgZ Wo5WsleriCUQW00sESVRu57YRrQFpaBUtB3tRLvoLxNloRza5RLbR8xJ7CAx Fyqk9igqovYkKkHGvahb3DMjZg4rL3YjI7uRlt2yNW432vJWPNvata+sD3/3 /88OV/TXnq6iXeX7Ud3tV+bKfiaVbce6fCb7aX2dyfbUuDHSfZoM8TTj26fJ EE+TF54mLzzNWPZp5sef1gJQI9QENUPNUQvUErVCrZF5b+PTjFaf5nz/NGPU pxmjPs1V9ae1KGJdUFfUDfVAPVEv1Bv1QX1RPOrPdgeggdQOQoPRUDQMjUAj 0Wg0Bo1D49FENAlNQVPRdDSDPZ1FbDaxucTmofloAVqEFqOlaBlagRLQaraW iJKo3Yg2oRSUinagnfSShXJQLu2cqAC5UCE6jopQCTLOrKnuuWT730brv3ax yn7TvdV5+42vrM+q6tR2+v+h8CsGiJGO5zrnevtV9VdVnd3P0vqqql/P9tb1 PPu366dizDizPsOZ9Rneez/DOfYZzrHP8C78GU2/f8BQXWL1iNVHDahtiAJQ IGrEGk2IBaFmqDlqwRotiYWgVqg17UKJtUFtqQ0n1h51QBGoM4pEUfTShVg0 6oq60S6GWA9iPYnFol6oN4pDfVBfFI/6owFsYyAaRO1gNAQNpd0wYsPRCDQS jUKj0Rg0Fo2j5/HEJqCJaBLtJhObiqah6bSbQWwmmkXt/7f3PgBdX/X+/xtk y5EamQnzmjFnZs4ZQ+ac15ljjpg58jIzrpmhIiEhMkTGGLHPmCMiMkbMMcYl cmSOzBEjIseIuMTIiJgRMUZExsiIy4jMiJn+znm/z/vB+3z4gG73fu/v/n7f +3Fnn8f7+Tr/Pm8+n/M+79c573NK0EqhMqzH0Mqh41AFdBI6BVVCVVA1Odeg 1aKdRquD6rE2oDWhNUMtWM9ArVAb1A6dhTqgTvLrQutG64X6oHPE60cbQDsP DUJDxBuGRrCOQhegMWicFJfQbJ9kHD5JqceZPkmL3gXZ7VOc6Yu0Ujl3ZYwz 2yhLd+7KGGeuoWbRQmLY/kdLv4l62L5HS19GfOc88jjN9xinzRyP03yMcdru i3HsvhiHf9HSwyjH6VuMM32LFkUQw7kDY5zxKXL8tKlHKf0zpPwsMSZWG5Hj yhM+RX/zuyo155Nt+1Uq566LceaMJ4sOkW+aGf9hpT+CbvsQLd1uJeLUjCcZ w7nbYhy7LcZpq4jEsYpInDbnO05bRSRO8xbGaf7BOG1nxTh2VozTfINx7KwY h2/Q0u1ffhy7KsZpuyrGmb90S7d9gpbeRMpm6KecwZ+Tm3MF7ThtN8U40w9o 0WtQD7n1UrJz3lMcuyjGabsoxplzniwaJoY9P9vS/0KtbH+fpY8T3zk3Ow5/ 3z76HPvoc+yjz7GPPsc++hz7DPs3vY8RzH3GHMiPeHPR5qHNhwKgBdBCUixC C4QWQ0uItxRtGdpytBXQSiiIeMFoIdBqrGvQ1kLroPXQBigU2giFkV842iZo MxRBvC1QJNat0DYoCtoO7YB2QtHktxstBoqF4qB4UiSgJUJJUDLxUtBSoTQo HcqAMiEXlEV+h9GyoRwol3h50BGs+VABVAgdhYqgYnIpQSuFyrAeQyuHjkMn iFeBdhI6BVVCVVA1aWugWqynoTqonngNUCPWJrRmqAXrGagVaoPaobNQB9QJ dZFzN1oPWi/Uh/UcWj80gPU8NIh1CG0YbQRtFLoAXYTGSDEOXcJq9WG6zRlY nu/OrnZnF+AhTKW72zzlM12e0+XrKa2/Ib8hQV7xxheumvbtlD9Vfa/1c0+X 51TadPm90zw8x7Xuwr/AFfELXAe/wHXwC4YvZF/9vsAd9xfwdH6BK90XjABo IbQIWgwtgZZBy6GVUBAUQrmr0dZC66ANUCgUBoVDm6EIKBLaCkVB26GdUDQU A8VCcVA8tU+AErEmQclQKpQGZUCZUBZ0GMqBcqEjUD5UCB2FiqESalqGdgw6 Dp2ATkKnoCqoGqqFTkP1UAPlNqE1Q2egVqgdOgt1Ql1QD9QLnaO0frTzaINo w9AIdAG6CI1DshdaL0pKuOZxpanaEU9xPOlXy+da8pyqnp7zl3+3FV4J4l7s WvK6WvlXq+90aaeu4+R3d+1ayvOU1lM9POU58c9qd/fT7u7nTmQ/7e5+7j/2 M660n3uN/dxr7OdeYz/zDfZzh7GfFng/LfB+2t393E3spwXeTwu8nxZ4Py3w fu4h9nMPsZ87h/081bmfWQb7uXPYT1u8n/uF/UYYFA5FQFugSGgbFAVth3ZA 0dBuKAaKheKgeCiB2idCSViToRQoFUqD0qFMyAVlQYehHErLRcuDCqBC4h1F K4JKoFKoDDoGHYdOQBXQSagSqqLcarQaqA6qJ14DWhPUDLVAZ6A26CzUAXVB 3VAP1Audg/qpy3loCOswNAKNQhehMcj2MCRqMxQTtRmKidqqE4naqhOJ2izF RG2WYqK26kSitupEomG1JDeqI+dMxURtpmIiMxVljRONDxkBSneuOpGoeQsT NW9hojZTMVHzHSZqq04kap7ERG22YqI2WzFRm62YqM1WTNRWnUhU+zNsVkfO GYuJ2ozFRG3GYqI2YzHRMWNRHjnXNE7U1jRONJyrUCQ6VqGQT5hMeBv9zW+2 1A6g2TMWE7VVJxK1VScStVmLidqsxURt1mKiNmsxUdsDMFFbdSJR2wMwUZu5 mKh5IBM1D2Sito5xouaPTNRmLyZq3slEbfZiojZ7MVFbeSLRnL3or1aeSNRm MCYyg9H6Zv7AsL+Zp800L6kj56oTidoMxkRtBmOiNoMxUZvBmKitOpGoeS8T tVmMidosxkRtHeNEbeWJRG3liURtJmOi2dL4q5mMiY7VvOSRcyZjorbyRKK2 8kSiNpsxUZvNmKitPpFo9i3tHSUS8XAeoF9xgH7FAe7sDtCvOGD4Qvad3QFG VQ9wj3eAe7wD3OPJ779NC6CF0CLSBqItgZZCy6DlpFiBthItGC0EWg2tId5a tHXQBigU2giFQeHksgktAtoCRUJboW1QFLQD2glFU8ZutBgoFmscWjyUACVC SaRIRkuBUqE0KB3KgDIhF5QFZUM5lJaLlgcdgfKhQugoVAQVQyVQKXSM0srR jqOdQKuATkKVxKtCq4ZqoFroNCnq0RrQGtGa0JrRWqBWqI147Whn0TrQOqFu qAfqJUUf2jm0fug8NEi8IWgYGoFGoYvQGDQOXSJny4M4YD5L6fnOyD243xn5 G9PHnyo/Zz7ueV6tDtdS7uTy5LdgiVeS8eA1l+Ppc7rX953U21Naf7fjt5N2 uriePoMnbeLYupN9kCvOg1xnHuRO9kGuMw9yJ/sgd7IPck2R59ome1zsQe5a H8Rv+CBXkge5fjzIXeuD3LU+yF3rg1w1HuSq8SDXige5VjzIteJBrhUPGmFQ OLQZioAioa1QFJ9jO9pOKBqKgWKheCgBSoSSoGQoBUqF0qAMKBPKgg5DOVAu tT+Clg8VQkehYqgEKoOOQcehE9BJ6BRUBVVDtdBpqJ6aNqA1Qc3QGaiVFGfR OqEuqAfqhc5B/eRyHm0QGoZGoAvQOGTNkJxjPn1u/7JmKMV9BZ1kQ19BRyrv Ic5cs2eYrNbQeb+Zv/VclRXzRsP+HS9Uir6SjlRuJs5Spehr6MwSykqlBKkY zhV0LOUO6rRWKfraOTIXe+2ce1SMifWQ71OK+8o5yYa+co5UPkV9o5Sy3bDP 4meV4r5vX7Lbvn0BQrH2fg/QwoPKdtCD7RGVk/tOfcns1Gfdx0nFfc2c5Elr 5iS77dUnlaPEeUYp+i598hx+U33S51QM9z36ks2Vs6zaf1cp+mo5Mhd7tZwa FcN9rZxkw14rx96bL3nSWjnJ2lo51jdPrpVjfSMn1vyTMd3XzEmetGZOMmvm 2Lv0Jat1/qTWrxT31XKSxR2WHWdYKc7Vcizlr6psa50cWTtrnZy3VK3tp8SS WS3noGFA9j3VQXbpO8i17iB3Vwe56h3kqnfQmAP5kXYu2jxoPhRAvAVoi9AC 0RZDS6ClxFuGthxaAa2EgqBgKIRcVqOtgdZiXQetx7oBCsW6ES0MLRxtE7QZ ioC2QJHQVmgbFEXO26EdWHdC0dBuKIYUsWhxUDyUACVCSVAyuaSgpUJpUDqU AWVCLiiL/A6jZUM5WHPR8qAjWPPRCqBCrEehIqzFUAlUCpVBx6By6Dh0Aqqg jJPQKayVUBXWaqgGay3aabQ6qB5qIF4jWhPUDLVArVAbaduhs1AH8TqhLqgb 6oF6oT7oHPn1ow1A56FB4g2hDaONQKNYL6BdRBtDG0e7BFn3d77m2jaybfRS R06/dorm107Bry1zSBH9ETsHp087RfNpp2izXlNMtnSnPztF82enaCspp2hP 3qdoPu0Uzaedovm0U/BpWyWHULLTn52i+bNTtJmxKcyMTdFWUE7RfNkpmi87 RVtBOUXzZadovuwUzZedos2UTTE+Q22dfuwUzY+dovmxU7TVlFMM55P4KY4n 8eVqRu7+bKkdMib6PA+rVE4/dormx07R/Ngpmh87RXv6PkV7+j7FXD3Z0p0+ 7BTNh52i+bBTNB92iubDTtF82CmaDztFm2GbYu4fYenOffhStJWTU7RZtilm a2TpPzD1WnXkXDU5RfNfp2j+6xTNf52i+a9TzD34bP91ivYEforacULqzhWT UzTfdYr2BH6K6bu2dKffOkXzW6doT+CnaE/gp2h+6xTjP8ySh9WR02+doq2Y nGLuRmHpTp91ijYrNwWf9SH6V4fYf+8QvoRD7ExxiP7VIcMXmgXNgfygudA8 aD75BUALoIXEWwQFQouhJaRYirYMbTm0AutKKAgKhkJIsRptDbQWWgethzZA oeSyEQrDGg5tgjZDEdAWKJJctkLbsEZB27HuQNsJRWPdjRYDxWKNQ4uHEqBE KAlKhlLIJRVKw5oOZUCZxHOhZUGHoWwoB8qF8qAj5JePVgAVQkehIqgYKiGX UrQy6BhUDh0nxQmoAutJtFNolVAVVE28GqgW62m0OrR6qAFqhJqgZqgFOkN+ rVAb1na0s1AH1k6oC2s3Wg/Ui7UP7RzUDw1A50kxiDaENgyNYB1Fu4B2EW0M bRztEmT1ueaa6wT688/aAUuqzh2w/EU7J9vQVGOOeSxX5psljt6r7O9Taaz+ lf1vgSGv5qnaLliBKubNhjP3ZUpd7tDk3leypqmi1ySvPnMErcK6WqVYo6W4 S8X7mGH3H0JVHhvNPGSKMC3FJ5Sq73wVqWr+KfKx9r+SMT/DZ5Tv0UrdreUq +z2BQtX3wXIGf+OQivOQB5vNj6vcn3Bolh9HqnmGM82Tqs7OHa6eVjGLtRK+ oVT3na2sM2U9+yPPYgXW76oUk3e4kvFqqPMPVR7WekAyhXOfK3/x+7TUJmot 33+qat6KYnlrZMyzWsxfq++dvsNVqrbDVaqHHa6k+gfHubJ3tkplZyvr31+U +let1uOqFGf/IZX+w0P0Hx7CF/MQPYSH6CE8RL/gIfoFD+FteYgr/0Nc+R/C n/IQXpSH8KI8xBX9Ia7oDzHa8BDX7Ie4Zj/EyMJDRhgUDm2GIqBIKAraDkVD MVAsFA8lQElQMpQCpUJpUDqUAWVCWdBhKAfKhY5AhdBRqAQqg45Bx6ET/KVP olVB1dBpqB5qgJqgZugM1A6dhbqgHqgXOgf1Q+ehYWiE2l9EG4eskYAF5nqw zuuBHW5Q1ncbAZpuhXnKOt/xe5qwf1BZb9J0m5cr6woP+VpefWm9wy1PK/0G ZQ31mPYTynq/lsZ+36asUW55WnHkfW2QsO6ZVO7U4SGV5uG3kearqhb2ToW6 vUhZiw1PaZ9T1m+Rzpn+lLJWuukW/1BZX/JYryZlbXbL1/r3C2V91aFNpO1W 1h5jcr5Weyytentsv48o66hbnha/Zbb/aaINthRrDPhhWuCHuYN7mDu4h7mD e5g7uIcNX7RZaHMgP2guNA+aT9oAtAXQQmgR8QLRFkNLsC5FWwYth1ZAK0kR hBYMhWBdjbYGWgutg9ZDG0gbCm3EGgaFY92EthmKgLZAkaTYirYNLQptO7QD 2km8aGg31hgoFoqD4qEEKBFKIr9ktBQoFUojXjqUgTUTckFZxDuMlg3lYM1F y4OOYM1HK4AKoaNQEVQMlZBLKVoZdAwqh46T4gRaBXQS6ym0SrQqqBprDVQL nSZeHVo91AA1Qk2kaIZasJ5Ba0VrQ2tHOwt1YO1E60LrRutB60Xrg85B/dAA dJ60g2hD0DDWEWgUukC8i2hjaOPQJeiyYXnl0jWvebrmNU/XvObp2mzwdG02 eLrmOU/XPOfp2mzwdMNqlW9UR07vebrZ6vkr73m65j1PN9s8f7V2RLrpPbd0 p+c8Xe2Ss1IdOWeDp2uzwdM173m65j1P12aDp2uzwdO12eDpmgc9XfOgp2se 9HTNg56uedDTNQ96ujYbPF2bDZ6uedHTzbbNX3nR0zUverrmRU/XvOjp2nq2 6YZzPdt0Y2I9W7lu/yFj4ir6sNIeMSauro+qVE4verrmRU/XvOjp2mzwdG02 eLrmSU/XPOnpmic9XfOkp2ue9HTNk56uedLTtdng6dps8HTNm56uedPTje+Z tip15FzPNl3zqKdrHvV0zaOernnU0zWPerrZUvkrj3o6M8Ktb7u9lkW6Nhs8 XZsNnq551NPN9slfzQZP12aDp2te9XTNq56uedXTNa96uuZVT9e86ulmu+Sv vOrpeNWto4um7W/qyOlZT9fujNO5M36EftkjzFx4hJkLj3C3/Ijol9maL9os aA7kB80lxTy0+VAAtABaSIpAtMXQEqxL0ZZBy6EV0EpSBKEFQyHQamgNtJa0 66D1WDdAodBGKAwKhzZBm6EIct6CFgltxboNLQptO7QD604oGututBgoFoqD 4qEEKBFKgpKhFCgVSoPSqUEGlInVBWVBh6FsKAfKhfKgI1A+VAAVUu5RqAhr MVQClUJl0DHSlqMdh05AFdBJUpyCKrFWoVVDNVhrodNQHVQPNUCNUBPUTM4t 0BmsrWhtaO1oZ6EOrJ1o3VAP1l6oDzoH9UMD0HloEBqChiljBBrFegHtIjSG dRy6hNXyos8xd72xr7EzlHKdOrbnT2YY7vMnM9zmT0plHnH8lXIjxwuVYs+c 9FczJzMc/vSlSllGnFuUcitxgpTiPncyY9LcyQyzhbL6Ch9Tivu+gxmG++zJ DPUUndQilOI+ezLDse9glFK2U9ZnleI+ezLDbfakVNz3IcwwEoljzaLMMCb2 IbSDv/rOZzhmUU7YnlA5uc+ezJg0ezJj0uzJjEmzJzPcZk9KpYyynlOK+/zJ DDzw/mr+ZIbDA1+lFHv+pL3bYMakGZRyzoSdz4+V4j6DMsP8NVt5/0wpPydO u1Jsb3yAmjuZYfxapbLnTmZMmjuZofomMvQrxX3uZMakuZMZzJ30V3MnM4y/ EmdMKePkY/U9Muh7fJHnAr6IJ+iL9C6+SO/ii/Qpvoiv54v0JOQ3w6aF0CJo CbQMWg6thEKg1dBayO4DfJEr/xe58n/RCIPCoQgoEtoKRUE7oWgoBoqF4qEE KAlKhlKhNCgdyoAy+UQutCzoMJQD5UJHoHyoEDoKFUMl0DHoOHQCOglVQdVQ LXQaqocaoCaoGWqF2qGzUCfUA/VC56B+6Dw0CA1DI9BFaJwzbvnxvb0ytWel /B0c4NACPIS3k2aq46nyds/XGW+6cq8WJtdD/vVmirPw6DXnNVXdp6qPp/pe LZ6n+l5rPlersye2guUnf5Q28VHuxx7lfuxR/OSP4id/lBbzUZ7TfdSYg+aH NhdtHjQfCoAWQAuhRVAg+S1GW4K2FG0Z2nJoBdaVaEFowVAItBpaA60l7Tq0 9dAGKBTaCIVB4eSyCW0zWgS0BWsktBXaBkWRYjvaDrSdaNHQbigGiiVFHFo8 WgJaIpQEJUMpUCpp09DSoQwok3gutCzoMJQN5ZAiFy0POgLlQwVQIXQUKoKK oRKoFCqj3GNQOdbjaCfQKqCTWE+hVaJVoVVDNVAtdBqqg+rJpQFqxNqE1ozW Ap2BWonXhtYOnYU6iNcJdWHthnqgXuL1oZ1D60cbgM5jHUQbgoahEWiUFBfQ LqKNQeNYL6HJezS5I+6ZVLkj7lzvaJ84Hz+fud7hM+Z6V/o0zTCum+sdK7hh RpFPtKkXzxjySfExrtswo927ytu4rshnyCd/hreII3cpdYl21H3n0sc8aFke tMc9aIc9aE940LI9aF/yoOV40L7sQcv1oH3Fg5bnQfuqB+2IB+1rHrR8D9qT HrQCD9rXPWiFHrSnPGhHPWhPe9CKPGjPeNCKPWjPetBKPGj/5kEr9aB9w02T /laX4Vz9x2XMMOTV3kcdOcd7XNp4j8u8hvur8R6XNt7j0sZ7XNp4j8uwehE3 qiPneI9Le1rCpY33uLSnJVzaPoUu4xYjQOnOJyVc2niPSxvvcWnjPS5tvMel jfe4tPEelzbe49LGe1zmtdpfjfe4tPEel3ml9lfjPS5tvMeljfe4tPEelzbe 49LGe1zaUxMubbzHpY33uLTxHpc23uPSxntcjvEeeeRcDcjlWA1ItlyPGBO9 wkeV9pgx0Vt8QqVyjve4tPEelzbe49LGe1zaeI9LG+9xaeM9Lm28x6WN97i0 8R6XNt7j0sZ7XNrqPy5tvMelrf7j0sZ7XNp4j0sb73Fp4z0u85rrr8Z7XNp4 j0t7gsKlrQDkUrMZf66OnGM+Lm39cpfxK8Nf6V2m/po6co73uLTxHpc23uPS xntc2niPSxvvcWmr/7i0pyhc2niPSxvvcWnjPS5tvMeFz0VeA23yhq6HZkL2 7JvH8L48xh3EY9xBPMYdxGPcNzzGfcNjzK95jBGdx/DIPIZH5jE8Mo/hkXmM O4PHuDN4jBk0j3E/8Bhemse4H3iM+4HHuAt4jLuAx4wwKJz8NqNFoG1Bi4S2 QVHQDiga2g3FQLFQPJQAJUJJUAqUCqVB6VAGlAm5+BxZ0GGs2VAOlAvlQUeg AqgQOgoVQSWUVopWBh2DjkMV0EmoEqoiv2q0Gug0VAfVQw2kbUJrRmtBOwO1 Qe3QWVJ0oHVB3VAvdA7qhwag89AQNAyNUNoo2hg0jtXyIvl6ZRnuK+4EGP6T /gVcY5jeS3Ht+bnH83d7fztp3fPwlI+/+Xc3xNl4/Kr5X0td3259p8rLU7zp 7Ndarns865/lRXqcVv5xPOuP08o/jp/ocdr2x2nbH6dFl+fRpoXQImgxtIT8 lqEth1ZCQVAItBZaB22AQqEwKByKgCKpwVa0KGg7tBOKhmKgWCgeSoCSoGQo FUqDMqBMyAVlQYepczZaDpQLHYHyoULoKFQMlZBzGdox6DjWE2gnoVNQFVQN 1UL1UAPURM7NaGegVugs1Al1QT1QL/mdQ+uHzkOD0DA0Al2ALkLSByGfIzls 2GPCVrhOqe/iFyX/ySer5gh1DvHea+ZzWNyL2fm8n1+iDAuU6nyuylpDx1eo 1kjwEkPOlD5srsMhj5epNO5PWFnqbYbz1y6frZJeiTsdMe9SMT+GJv9tVDGd z1RtUjH1OfeRSt3q0KxnqmQtP6PiflZ9BmvUN1qlmfxslVT1Z6sSlZqkxbWe sTpsPKTFdQZ/89sm4+jPWDnPh3V3I3P/umYvUmqxFv8bSp14ukr+O64+2cTd i/zc31FpvqvSTKyOI0O1Umu0Or2kznm9Q21UMZu0mD9VMX/m0H6hYp51xLSe q5Lqa4bzHPSqWtrPU51Tn2HibkOm+YOWZkipww5NjuBa32j5XJX1bf8bqcaV csmwz6B1nXnCsGePPcHdxBNccZ7givMEs8ee4L7iCa5CTzBa8QTXoyeYPfYE 9xpPcGWSe2/ZtABaCC2CAqHF5LcEbSm0DOtyaAXWlVAQ1mC0ELTVaGugtdA6 aD20AQqFNpJfGBSOdRO0GYog3ha0SLSt0DasUdB2aAe0E4qGdkMx5BeLFgfF QwnES0RLQktGS4FSsaahpUMZWDPRXFAWdJh42Wg5UC6UBx2B8qECqBA6ChVB xZRWglYKlWE9hlYOHcd6AqrAehI6BVVCVVA1VAPVkt9ptDq0eqgBayPUBDUT rwXtDNQKtUHtpDgLdWDthLqgbqiHFL1ofdA5rP3QANbz0CA0BA1DI9AodAG6 CI1B45R2CbJmlPma3n7ZGlo7Pmabs/ot3fbwWrps8yzdOZs/W9v5Mdts8Szd uQZOtjm3zNKdXt1sbffHbHZ/zNZ2f8xm98dsbQZ/Nh5dK1YQsWxvrqXfQa5O T262tu5NNuveZGs7QmYbYeTqnLGfjQfXihVBLOeukNnmk92W/mlTj1JHtufW ivVZyra9tpYeQ2qnxzYbj60VK4FYzh0is825aJbu9NRm46m1Yj1CrIm1buQY kDVL3wpPKO1LDu0rKpVzh8hsdojM1jy02XhorVjPEMv2zlp6GZ/E6ZnN1ta0 yWbXyGxt18hsdo3M1jyy2dp67NnGD0hte2MtvR7dOfM+G0+sFauZWM5Z99nM us/WPLDZmgc225x1b+ldpv6a0nvI1el9zVarAZ5TsfqJ5dxJMtvcSdLSnV7X bG03yWx2k8zWdpPMZq+HbM3bms26gF/iPvxL9I++RP/oS8zm+BJ+1y8Zvmiz 0OZAc7HOQ5sPBWBdgLYQWgQFQouhJdBSaBn5LUdbAa2EgogXgrYaWgOtJd46 tPXQBiiUeBvRwtDCoU1YN0MRWLdAkVi3QVHQdmgHtBOKhnZDMeQcixYHxUMJ xEuEkrAmQylQKpQGpUMZUCbkgrKgw1A2lEMNctHyoCNQPlQAFUJHyaUIrRgq gUqhMlIcg8qxHodOYK1AOwmdgiqhKqgaqoFqya8OrR6tAWrE2gQ1Y21BOwO1 Ym1Da4fOQh1QJ9QFdUO9UB90jjL6oQGs56FBrENow9AI1lG0C9BFaAwaJ4Xl XZ7vlYOHxN/tPcBxPJXNXfOU1j2PqcK1lH8tdZgq7VR5TC5PfpMuiF/Ul6fM d6o8PH3O6eo7Vf08xbua7q5NV3dPaW3v8pe5qn2ZmYlf5l7/y4YvNAvyI95c tABoIbQIWgwtgZZBy6GV5ByEFgKthtZC66ANUCgUBoVDm6EIKJJyt6JFQduh nVA0FAPFQvFQApQEJUOpUBqUAWVCWdBhKBvKofa5aHnQESgfKoSOQsVQCVQG HaOM42gnoJPQKagKqoZqodPkV4/WADVBzdAZUrSitUNnoU6oC+qBesnlHFo/ dB7rINowNAJdgC5Clhd6gVeu1sZ6+i37e+BrCc5/V4vj/rufSn875bpr15re CvIvPSK+oV+55rymqvt09XSP7+lzX608T3E95XO1utht7FdoY7/CncNXuEv4 Cm3sV2hjv4Lv9CvcJXyFe4OvGF7XG4YAY4YIPiJcJ8L1IrxLhJki3CCCrwjv FmGWCLNFmCPCe0TwE+G9IswV4X0izBPh/SLMF8FfhAARbhRhgQj/JMJCET4g wiIRPihCoAg3ibBYhJtFWCLCh0RYKsKHRVgmwkdEWC7CLSKsEOFWEVaK8FER gkS4TYRgEVaJECLC7SKsFuEOEdaIcKcIa0X4ZxHWiXCXCOtF+JgIG0S4W4RQ Ee4RYaMI94oQJsLHRQgX4T4RNonwCRE2i3C/CBEifFKELSL8iwiRIjwgwlYR PiXCNhE+LUKUCP8qwnYRPiPCDhE+K8JOET4nQrQIu0TYLcIeEWJE2CtCrAif FyFOhH0ixIvwBRESRNgvwgER/nHlypUk8f6gCMkiHBQhRYRDIqSK8JAIaSI8 LEK6CI+IkCHCF0XIFOFREVwiLOCbsJBvxyK0QGgJtBRaBi2HVpJLMFoItAZa C62DQqGNUBgUDkVAW6BIaBsUBe2AoqHdUAwUC8XzORLQEqEkrCloaVA6lAm5 oCzoMJQN5UC5lJGHdgTKhwqgQlIcRSuCSqBS6Bh0HDoBVUAnoUqoitKq0Wqg 01A91AA1Qc1QC9QGtUNnoQ6oG+qhLr1o56B+6Dw0BA1DI9AodBEag8YpTc21 MedZy9baSx0513HJ0+b15mnzevM0z2+eNq83z2yv/dW83jxtXm+eYV0dblRH Tg9wnjavN0+b15unzevN01ZBz8MTLD9bnrmWi6U75/XmafN687R5vXmaNzhP m9ebp1b23KCOnPN687R5vXmaVzhP29UzT1vHJU+b15unzevN07zDedq83jxt Xm+eNq83T5vXm6d5ifPUbi/x6sg5rzdPm9ebp83rzdO8xXmOeb3yyLk6ep62 Onqe4VzXJc+YWNdFzux39xxL7asO7UmVyuk1ztPm9eZp83rztHm9edq83jzN e5ynzevN0+b15mnzevO0eb15mhc5T5vXm6fN683T5vXmafN68wynNzlPm9eb p83rzdPm9eZpO3vmaV7lPG0tlzxtLZc8bW5vnja3N0/zLudpc3vztLm9eZqH Oc98atrSnR7mPG1eb542rzdP29UzT5vXm6d5mvOY1/tVRuK/Sn/xq3iav8rd +VfpQ37V8IVmkXYOmh/aXGge1vloAWgL0BaiLYICocXQEmgptAxaTn4r0Fai BaEFQyHQamgNtBZaRy7r0TaghUIbsYZB4Vg3oW1Gi4C2YI2EtkLboChoO7SD XHaiRUO7oRgolhRxaPFoCWiJUBKUDKWQIhUtDUqHMqBMyAVlQYfJLxstB8qF 8qAjpMhHK4AKoaNQEVQMlZBLKVoZdAxrOdpxtBNoFdBJ6BRUSYoqtGq0GrRa 6DTWOrR6tAaoEWsTWjPUgvUM1Aq1Qe3QWagD6oS6oG7K6EHrRetDO4fWDw1g PY82CA1hHYZGoFHoAnQRGoPGoUvkbI3ELzCfa/N0N36DGe+IuSJuvWi1jpi7 0NhW612uiztLWOx1ca0ZfUfM9mziXl72suTzczc5SpC9qzlC+zCaXCd3nlDc 18kNNlvvI+ZcIWsllwBxdIdWD+v9Y+rzuK+Wa1k/oVJGuFll2KbKiDKP/1XV 5DOG7ofYpeq8h3Sx6pPFOfJKUOcg0aH5m70ceabsvV8eMuRaukeMa19L19/4 qkrztUlp/Kdgqzciy7VXX/m2qt3zWvpT6nM419KtVp92Yn7eD9V5mVhT14r7 Y3X2JnoZ8jw3T6qLv/iNWX+hVx2pJ3LqVil/4+GzvaHKmHj6R9ZkUItjra8r 6zxK+r+qT/Y3R2lvqXPyD3Vs+Y2+Rj/ga1z9v8bV/2uGL9ZZaH7QXGg+FECK hWiLoMXQEmgZtBxaCQVBIdBqaC2lrUPbAIVCYVA4tBmKgCKhrVAUtB3aCUVD MVAsFA8lUNMktGQoFUqDMqBMKAs6DOVAuVAedIRy86ECrIXQUagYKoHKoGPQ cegEdBI6BVVRbjVaLXQaqocaoCaomVzOoLVC7dBZqBPqgnrIpRftHNQPnYcG oWFoBLoAXYTGIcsLMMd8Otr+vc5QivtOrPmG+0pi+eKu3/79zlWKvZKY/Cd/ z/niTt+K808qhr2OmL0Da/6kdcTy3XZglYr7OmL5buuI+QrlDvN4jfnZ8s1f nhVzHXX6mFLupo4bleK+mlj+pNXE8g3namJWGZ8yAlTZnzYtUSrmdmJ+Vinu a4rlT1pTLH/SmmL5bmuKSWViTbFUpaQR5xGluO/Qmu+2Q2uAUJz34PbZ+Zqy Pcknn7A9o3JyX1MsnzXFAtSaYvmT1hTLd9vVQyovGPZfoEop9ppi/mpNsfxJ a4rlG+5riuWLq5td12b1l2gxj3+q/kJyHroV031lsfxJK4vlT9qVNX/SymL5 2q6sVhlyZTGr7POm5Y8qpvv6YvmT9mbNd+z6MaYU9/XF8rknfpJr4ZPcEz/J VfFJropPck/8JPfET3JP/KQxB80PmgvNg+aTIgBagHUh2iIoEOtiaAm0FFpG iuVoK6CVUBAUDIVAq8llDdpatHXQeqwboFBoI/HCoHCsm6DNUAS0BYqEtkLb oChy3g7twLoTisa6Gy0GLRYtDorHmoCWCCVhTUZLgVKxpkHpWDOgTMgFZUGH oWwoB8qF8qAjUD7lFqAVQkehIqiYFCVopVAZdAwqh45DJ6AK6CQ5n0KrhKqw VkM1WGuh01AdVA81QI3k0gQ1Y22BzkCtUBvUTtqzUAfWTrQutG6oB+olXh/a OagfGiDeebRBaAgaJt4INIr1AtpFtDFoHLoEWffEvubaLLJd9FJH9liFjFVg 7h1m6c5dWgvMds/SnWMUBYZz7ZEC9bTbfHVktb83qhwWkoNzhnoBM9QLtLGJ Am1sokCbpV6gzVIvMJ+Bs3TnLPUCs2WzdOe4RIFaF/UudeRcb6RAm6leYISR gz0mYemfoETneESBNh5RoI1HFGg7sxaYz81Zuj0WYenRlOgchyjQxiEKtPVF ChiHsHJIIgd7DMLSD1Fimqk/rI6c4w8F2vhDAeMPVg5PkINzjZECxxojcuUf 9zEIqX3dmOgLPa1SOcceCrRZ6wXm2IOlO8cdCrRxhwJt3KGA9eOtHF4gB+dO rAXsxFqgjTcUaOMNBdp4QwHjDVYOTeRgjzVY+k8p0TnOUKCNMxRo4wwFjDNY ObxGDvYYg6X3UqJzfKFAG18o0NYOKWDtECuHYXJwzmAvYAZ7gTa2UKCNLRRo YwsF9KO+zlyUr9OP+joz/77OLPav04/6uuELzcI6B80PmgvNg+aTIgBtAdpC aBHWQGgxtBRaBi2HVkAroSAoGAqhtNXQGmgt8dahrUfbAIVi3YgWhhYObcK6 GYqAtkCRpNiKtg2KgrZDO6CdUDS57IZisMZCcVA8lAAlQknkkoyWAqVCaVA6 lAFlkosLLQs6DGVDOVAuafPQjkD5UAHxCqGjWIugYqiEeKVoZdAxqBw6Dp2A KqCT5HcKqsRaBVVjrUGrhU5jrUOrhxqwNqI1oTWjtUBnsLaitUHt0FmogxSd aF1o3Wg9UC/WPrRzUD/WAbTzaINoQ9Aw1hG0UbQLaBfRxtDGoUuQ1Xta6VU4 7ZzMAIfm76a5H7vH8RSc/6ZKO10e7jZnmqnqebW0116W/Nb1iN/SU1dNO139 pit/qnzdP8e1xHs7aS3N8q0/xXXwKXwHT3GlewqP+lNc357i+vYUHvWn8KM/ xRXsKe76n+Jq9RRXq6e4Rj3FNeop7uuf4h7+KXzmT3G//pQRBoVDm6EIKBKK grZD0VAMFAvFQwlQEpQKpUGZUBZ0GMqBcqEjUD5UABVyDo5CRViLoRKoDDoG HYdOQCehKqgaOg3VQw1QE9QMnYHaobNQF9QD9ULn+Gz9aOehYWiEeBfRxiHL ix3sddTjkz1X+zV6+tVM9atzT+Me13ns/j5VHp7STpduqrTXEk+3yb9xl/h+ PT1tPE/5TVdXT3lNZ//P5DP157ZauKdp4Z6mp/80HtOn6ek/zXoeT9P+PU37 9zQ9/aeZRfQ0/fun6d8/bQSgLYAWQouIFwgthpZAS0mxDFoOrYBWQkFQMBRC fqvR1kLrsK5H24AWCm3EGgaFQ5ugzVAEtAWKJL+taNugKGg7tAOKJu1utBi0 WCgOazxaAloilIQ1GS0FSoXSoHQoA8okFxdaFnQYyoZySJGLlgcdwZqPVgAV QkeJVwQVYy2BSqEy6BhUDh0nlxNoFdBJrKfQKtGq0KqhGqgWOk2KOrR6tAa0 RqgJaoZaoDOkbUVrg85CHVAn1EXabrQeqBfqg85B/aQdQDuPNog2BA1jHUEb RbuANgaNY72EZvs/izT/Z5E2V7vIbMv81VztIm2udhFztWV+RaYf1NKdPtAi bZ52kWG1pTeqI+c87SL227Tyk22YpTv9oEWaH7RI84MWaesvF2nztIu0edpF 2jztIs0fWqT5Q4vwh1q1CqVWzjnaRdoc7SJt7eUizSdapK3eUcRYb5E2P7tI m59dpM3PLtLmZxdpftEizS9apPlFi7T52UXa/OwizTdahG+0SPONFmm+0SLN N1qkzc0ucszNlkdO/2iRtgZzkeFcg7nIHLux/aRFxsQqZf7mr1tqz6DZc7OL tLnZRZqPtEjzkRZpPtIibW52kTY3u0ibm12kzc0uwldqna2XDPs74fSTFmnz sou0edlF2rzsIuOn5ic8o46c/tIi4xemrV0dOf2lRdq87CL22LRq9Tp/Q+ec 7CLNZ1qk+UyLNJ9pkeYzLcJnWqTNyS7S5mQXaX7TIs1vWqT5TYvwmz7D+PMz 9KaeoTf1DN7SZ+g5PUPP6RnuIZ/hHvIZ7iHlN8WmBdBCSlsELcG6FFoGLYdW QCuhYCgEWgOtpYx10AasoWgb0cKgcGgTFAFtgSKhrdA2KIoydqDthKKhGCgW iocSoEQoCUqGUqB0KAPKhFxQFpQN5UC5UB50BMrnsxWgFUJHoSKomBQlaKVQ GXQMKoeOQyfIpQLtJFQJVRGvGqrBWgvVQw1QI9QENUMtUCvUBp2ltA60Tqgb 6oF6SdGHdg7qh85Dg9AQNEwuI9Ao1ovQGNZxNKs/Msfci8Ju32coxX3WWLFh zxrzV7PGiiftP1lszhqz7+UsRd9/cpZQPqji3KRiuM8aK540a6x40qyx4km7 TxZru0/Kz1ds/v5lO1gs7o1kiR9TMd33oCw23GeNFav+hAwRSnHOGrMUfQ9K Wc52s5zPqPI/y/n9nDpz9qyxYmaN+atZY8XqyS6pJSjFfdZY8aRZY8WTZo0V T5o1VsysMXtnymLHrLFcpeSRjzV7rNiYavaYtD2r6ZbtOZWT+6yx4kmzxood a5VWKcV9J8piNWtM/qtTysSqpT9WivtOlMVq1pgMP1PKz/kc7Upxzhez/lK/ NgLUX/A109KtYrrPGiuetB9lsTmbwirhj0pxny9W7DZfTJZjzRe7qMofM+zf i/ussWKu2s/iA3mWa/Wz+HufNXwhP2guNB8KgBZC9nX5WcYpn+UK/SzX5We5 Lj/L1fhZfBbPcjV+Fk/Fs3gqnuVq/Cw+4GeNMCgc2gxFkCISbSsUBe2EoqEY KBaKhxKgJCgZSoXSoAwoE8qifofRcqBc6AiUDxVCR6EiqBgqgUqhMugYdBw6 AZ2ETkFVUDVUC52G6qEGqAlqhs5ArZyNdrSzUCfUBfVC56B+6Dw0CA1DI9AF aJwaWJ7k9V4lzIee3JZN1tztznd3ns7mTDtdGdPl6SnddHWZLu1U9Zg+P/kd aBXfv3/zmN90PFV5UwVnfPe00+XjP8W753wsT/K/0Yr+m7j38Vfkg3Y9NBPy Jd4saA5WP7S5aPOg+VAA8RagLURbhBYILYaWEG8p2jJoOdYVaCvRgtCCoRBo NbQGWkvadWjr0TaghaJtRAuDwrFuQtuMFoG2BYqEtkLboCjSbkfbAe3EGo22 G4rBGgvFYY1HS4ASsSZByVAKlAqlQelQBpQJuaAsSjsMZWPNQctFy4OOYM1H K4AKoaNQEVQMlZBLKVoZdAwqh46T4gRaBXQSOgVVQlVQNVRDfrXQaax1UD3U QLxGtCa0ZrQW6AzWVrQ2tHa0s1AH1k60Lqgb6oF6SdGHdg6tH20AOo91EBrC OgyNQKPQBVJcRBtDG0e7hGb7nks133Op5nsu1dYJKdV8z6XaOiGl6okhP3Xk 9D+Xav7nUsNqfW9UR07/c6m2Tkiptk5IqeaDLtV80KVmi+evfNClmg+6FB+0 /Nylpg/a0p3+51LN/1yqrRNSqs3HLdXWCSnVfNClmg+6VPNBl2o+6FJtXm6p Ni+3VPNDl2p+6FJxDyk/6U515PRDl2p+6FLND12q+aFLNT90qeaHLtXWCSnV 1gkp1XzRpZovulTzRZdqvuhSzRddqvmiSzVfdKnmiy51+KLlkXPdkFLHuiFy t0t3n7TUvmFMXPGfU6mcvuhSzRddqvmiSzVfdKnmiy7VfNGl5mrT9rzdUm3e bqnmjy7V/NGlmj+6VPNHl2rrhJRq/uhSbf5uqeaPLtX80aXaOiGl2johpZpP ulTzSZdqPulSzSddarZO/moPwFJtrZBSzS9dKu5tZcwL6sjply7V/NKlar+O f6jfqH2H+w380t/AL/0NemTfoEf2DcMXmgX5kXYu2jxoPrSAeAvRFkGB0BJo KbSMtMuhlViD0ILRQqA10FpoHSnWo4VCG6EwKBzaDEVAW6BIct6GFgVth3ZA 0dBuKAaKheKhBCgRSoJSoFQoDUqHMqmpCy0LOgzlQLmkyEM7AhVAhdBRqAgq hkqgUnIug45hLYeOQyeIV4F2EqqEqqBqUtSgnYbqoHqoAWqCmqEW6AzUBrVT 2lmoA2sXWjdaD9QLnYP6oQHoPDQEDUMj0Ch0kXLH0MbRZOsg99xe8bDcc7vI p2PGXO/lM9bPMK4L9GnymesdKY6LZhT5GNfNnBE747jQw30uCr3de653m4/L x8/n+IwQEce4rsRH7oNcJtoV972Rv+lBO+ZBe86DVu5B+5YH7bgH7dsetBMe tOc9aBUetO940E560L7rQTvlQXvBg1bpQfueB63Kg/aiB63ag/Z9D1qNB+0H HrRaD9oPPWinPWgvedDqPGgve9DqPWg/ctPkeiBlxsT4igzXKdXay83WZyl1 juH0XLzP/E2UmX1q6SG2n9KW/xaoFAu13G9S6sS4ivwne86zhLpcHa8wr8Rl pp/A3sutTO3lZofVSl2j5S97yfI39TGHdo+KaY+jWP8+odT7HTHt3dzKzD7w xOf8V5XrDkfMaBVzt0PzV3u4lTnGS2RIVJ8nyTx+UH1ae7zkkErzkFaTDKVm ajV5XKlP8DmknqvUiXESGWRPNVCo+t5uzuBvtuQyzje1+urhuyp3T3u4lWl7 uFk9Tam+7CjD3sWtjF3crLJ+qs6DvYvbz9VZmuhRyjQT4yEy1a+V+ppWl171 9+kjb2sERMb8gxZzSKnDWk3+otS/klqGcVW/f6h4lo9Ots0Binwge47nN+n9 fZPe3zcZ8/gmvb9v0ueTu+nZtBBaBC2GlkDLKG05tBIKIl4ItBpaC62DNkCh UBgUDm2GIqBIaCs1iELbDu2EookXgxYLxUMJUBIpktFSoTQoA8okRRbaYSgH ay7aESgfKoSOQsVQCVQKlZHzMagc63HoBHQSOgVVQdVQLXQaqocaoCaoGToD tULt0FmoE+qCeqBe6BzUD52HBqFhaAS6AF2ExiHZu6o3NnkdMybWinH+UicH Zzs4VfD0z1O+nvLxN96ZbTr9WtK42531ni5fPY38jjSI7+JzHvObri7X+nmd 2nT1m+5zTZ+P1e4+R7v7HPffz/E87XPciT/Hnfhzhi/WWWhzID9oLvHmQfOh AOItgBZCi4gXiLYYWgItJd5yaAW0knhBaMFoIWir0dZAa6F10HpoAxQKbYTC yDkc2oR1MxSBdQtaJNpWtG1QFNbtaDugnVij0XZDMVhj0eKgeCiBeIloSVAy 1hS0VCgNSocySJGJ5oKysB5Gy4ZysOZCeViPQPlQAVQIHYWKoGLyK0Erhcqg Y8Qrh45jPQFVQCehU1AlVEUu1Wg1UC10GqqD6knbgNYINWFthlqwnoFaoTao HToLdZBLJ1oX1A31EK8XrQ86h7UfGsB6HhqEhqBhUoxAo1gvQBehMeKNQ5ew 2iMi5YY9IiL1cmOG4a9052hIuTb+Ua7tkFlO61ZOm1bO7pjl2phHubb2SDlr j5Rru2OW0/8sN9syK4ZzzZFydsYs19YcKWdnzHJtjKNc2xmznJ0xy7X1RsqN MHJ1rjdSbo5tWBRBDOe8+nJzNpxFUcSwxzIs/bOUaY9jWHoM8Z1jGOXajpjl 7IhZru2IWc6OmOWMXVj6w9TnEWLYYxaWnkWOzvGKcsYrrFh2W1NujlVY9CQ5 OscoyrUdMcuNZ4hlry0i76HKDWvuvHX1fU5pE7Pm7PGJcm0nzHLWEynXxibK tZ0wy8158ha9BNXzOZ3jEeXaLpjl7IJZru2CWW6ut2bRL6iBPQZh6b9C7zL1 15TeQ47OsYdyxh6sWP3Ecq5PXs4OmOWMOVi6/esvZ+2Qcm33y3J+7eXmGqQW 2WMM36KP8y36ON+ij/Mt+jjfoo/zLcMX6yy0OZAfNJd486D5UADxFkALoUVQ ILQYWkIuS9GWoS2HVmBdiRYEBUMhxFuNtgZtLbQOWg9tgEKhjVAY+YWjbYI2 QxHE2wJFYt0KbYOiiLcdbQe0E4qGdkMxpI1Fi4PioQTiJaIlQclQCpQKpZE2 HS0DyoRcUBYpDkPZWHOgXKx5aEegfKgAKoSOQkVQMVRCzqVoZdAxqBw6TooT aBXQSegU8SrRqqBqqAaqhU5DdVA9+TWgNUJNUDPxWtDOQK1Y29DaobNYO9A6 0brQuqEerL1ofdA5qJ94A2jnoUFoCBqGRkg7inYBuoh1DG0c7RKa1duJ9Dr+ X3LX7+mO0plmurRTleueh3uca6nzVPGm0qaqw9XymziW38xa8av49jXldfX8 PKd5O2mvVbfv+r/NFfHbeFu/bfhCsyA/aC40HwqAFkKLoCXQMmg5ZF+tvs19 +Le5D/8216Nvcz36Nlehb3MV+rYRBoVDEVAktBWKgnZC0VAMFAvFQwlQEpQM pUEZUCaUBeVAudARKB8qhI5CxVAJVAYdg2TrLf3s3zZbb9n7OKEsFcQ5CZ2C qqBqqBY6DdVDDfz1mtCaoVaoHToLdUI9UC/5nUPrh85Dg9AwNAJdhMahS+Y5 WWSOvU71G3u3ijFbqZ5+k1aMBR7ysOJ/SMX4MOnd/wWrGCEe85fhYyrG3ZNs 9r/NKkaEm20i7r+qGJ9x0ydCrIoRNymtHQ6qGIco1z2OS8WYeOLIPZ7cZWGN iPE1j3Xwn4Kt8G2V9nmPZU8XrHWmZc0m1pl2L6NNxWj3mF6+v65i/AbNvR7n VYxBD/lb//5q/lpOiHsV9/zt0a/nDXsW1PPcoTzPfcnz3Jc8Txv9PG3087TM zzP36Xna6Oe583ieNvp52ujnufN4nvuN57nfeJ52+3na7edpt5/nLuN57i2e 547ieVrw52nBn+eO4nla8Oe5j3jeCIPCoc2UEQFtwRqJtg0tCm072g4oGtoN xUCxUDyUACVCSVAKlEa56WiZkAvKIt5htBwoF8qDjkAFUCG5HEUrgkqgUqgM OgaVQ8ehE+RcAZ3EegqqhKqgaqgGOg3VQfXk3IDWBDVDLdAZqA1qh85CHVAX 1A31QuegfmgAOk/9htCGoRFoFLpIijG0cci68vias3nkr99LHTlnYldovscK bSZ2heaJrGAmtsy9wngfuTtnYVcYVktzozpyeiQrtFnYFczCtvKTLYGlO2dg V2irgFSYOzXaM7ArzLbAX60CUqGtAlKhzcKu0DyUFdos7AptFnaFNgu7QpuF XaF5KivMVsLSnTOwK7QZ2BXaDOwKbQZ2hea1rDBnYFu6c/Z1hTb7ukLzXFZo s68rtNnXFdrs6wpzBMVfzb6u0GZfV2izryu02dcV2uzrCm2V5ApWSa7QZl5X aDOvK7SZ1xXazOsKzatZoe3YWGE4V02u0HZsrDCcq4JUOFYFkXPXJjyc/uav XmrWismW/oJK5fRuVmgzryu0FZMrtJnXFdrM6wrN01mhzbyu0GZeV2gzrytM D4G/8XN1Jm2PZ4U267pCm3Vdoc26rhC9BJlDjzpyej4rtFnXFdqs6wpt1nWF Nuu6Qpt1XaHNuq5gNRCrxn+jxs4Z1xXaSiAVoqdhtVDf4d7vOzwN9x3uAr9D r+M79Dq+Y/gSbxY0B6sf2ly0edB8KABaAC0k7SIoEOtiaAnWpWjLoBXQSuIF QcFYQ9BWo62B1kLroPXQBigU2giFQeGUsQltM1oE2ha0SLSt0DasUWjboR3Q TuJFo+2GYqBY4sWhxaMloCVCSVAy8VKgVKxpUDrWDLRMNBdaFnQYazZaDlou Wh50BMqHCkhRiHYUrQitGCrBWopWBh3DWo52HDoBVRDvJHQKayVUBVVDNVAt dBqqg+qhBspoRGtCa4ZasJ6BWrG2obVDZ6EOqBPqgrqhHvLrhfqwnkPrRxuA zkODxBtCG4ZGsI6iXYAuQmPQOHSJtJYPdKfXSXyg7vdvnjRPdk/ppnufSvOU h3s93Hmquk1X33eSzzsp19+Q39KT4t93Pebnia9F85TWPf5Ux9Pr1j33d7kO fper33e5+n3X8IXsa9538YZ+lyvdd7m+yU9v0yJSLEZbAi3DuhxtJRQEhUCr obXQOmgDFAqFQeHQZiiCGkSibYWioO3QTigaioFioXgoAUqCkqFUKA3KoFaZ aFnQYSgHyoWOQPlQIfkdRSuGSqAy6Bh0HDoBVUAnoVNQJVQFVUO10GmoHmqA mqBm6AzUCrVDZ6FOqAvqgXqhc1A/Z+g82iA0jHUE7QJ0ERonnnWfO8d8ysT+ 9c0wbafM1aVkv/SUuduPtcbULHFkrzE1S6XUV5iSMd6PYqW31pdaoPJdaPir lIsMu/26SSnOdaas2MvIZeJuVpZxq2obPqpS6mtNyRhrlLJWpXfOrTml5tbI lO4rTZ0ynCtNWbHtnXxOqeckIlQZ9npTkSqlvtqUjPEZpXxWpbdWmYpW+e7m XNhrTdk7FJ7Sdii0YidyLpxPUJzSnqCQKdMMu/V8RMXIVIpLpbd8v4+rfJ/g XLivOXVKW3PKim3PqzllWPv1FKoyjqqYRSqlvnuhjPFNpci7zQBx/C1j8vXk u8r2ggfbD1Q+9l6FL6mS9DWnZAz7CYtmVdMWM7efqk9g71N4atI+hacmrTt1 inWnTjnWnZJl2OtO9aqU+qpTMsYf1Gf4o0r/J9M6pPK1Vo6UKfWVp6Ti3KnQ ij1u2H97513iKebMvIBH+gU80i9wnXyBJzNe4C7xBTzSL3Bv+AJXzBe4Yr7A veELXDvlPCebFkALKWMRtBjrEmgptIx4y6EVWFdCQVAwFAKtgdaSyzpoPdYN UCi0EQojRTjaJigC2gJFkmIrtA1rFNp2aAfWnVA0FAPFQnFQPJQAJZJzEpSM NQVKxZqOloGWCbmwZkGHoWwoB8qF8qB8qAAqpIyjUBHWYqgEKoXKoGNQOXSc /E6gVUAnoVPEq0SrgqqhGqiWFKfR6qB6qAFqhJqgZqiF/M6gtUJt0FnidaB1 onWhdUM9UC/UB50jbT/aeWgQGoKGSTECjWK9AF2ExqBxUlj3cr7ms6myzfJS R04veqW2lnal5kWv1LzoldqegpWGcz2TSs2TXmlYreeN6sjpSa9kPW3ryLme SaW2nkml5k2v1NYzqdTWM6nU1tSu1LzplXjT5TmpNO40/JXu9KRXap70Ss2T Xql50iu19UwqtfVMKjVveqXxL2aNI9WR05teqXnTK7X1TCq1dbUrNY96peZR r9Q86pWaR71S86hXGgfMuiSpI+d6JpWaR73S7L34K496peZRr1RPgT6qjpzr mVRq84MrNa96peZVrzS+auZyRB05veqVmle90myr/JVXvVLzqldqXvVKzate qa21XWk41zepdKxvIp/atuYPW+EFpX3PmOj7fF+l+oF5XKuOnF71Ss2rXql5 1Ss1r3ql5lWv1Lzqldp6JpXaeiaVmme9UvOsV2qe9UptPZNKzbNeqXZzPqeO nJ71Ss2zXska29aR07NeqXnWK7V1tiu19UwqNe96pdZvqqTf9D28Ct+j3/Q9 +k3fo9/0PXYt+Z7hi3UWNAfyI95ctHnQfKwB0AKsC6FFWAPRFqMtgZZiXQYt x7oCbSUUBAVDIaRYjbYGbS20Dut6aAMUSryNaGFQOLQJ2gxFQFugSPLbirYN LQptO7QD2glFk2I3WgxaLFocFA8lEC8RLQktGS0FSoXSiJcOZWDNRHOhZUGH oWwoB8qF8qAj5JcPFWAthI5iLUIrhkqwlqKVQcewlqMdh05AFdBJ6BRUSS5V UDXWGqgWOk28OrR6qAFrI1oT1Iy1Be0MWitaG9QOnYU6SNGJ1oXWjdYD9UJ9 0DlS9EMDWM+jDUJDWIehEWgUugBdJO0Y2jh0CbL6ZvFeVXh+nD7XyffeE8GT 3fnPXb9aen9jctzpeCrbVHV9p/k46+Vuny6+53rIb2yZ+Ma/OG19p06v89Xq O11cT/GsY8vP/iJXxBfxrr/INe9Frnkv4it4kSvdi3gIXuRa9iKz117kuvUi V6sX8am/yDXqRa5RL3KX/yKe9Be5Cr3IffyLRhgUDm2GIqBIKAraDkVDMVAs FA8lQElQKpQGZUJZ0GEoB8qFjkCF0FGoBCqDjkHHoRPQSegUVAlVQdX8ZWrQ aqHTUD3UADVBzdAZqB06C3VBPVAvdA7qh85Dw9AIdBEahyzfdqJXtdbCTf8r 1X8dnn5JV8tjql/g1dJ4Suvp2FPdptKvpUx/x/tUaa+97vL7USK+S9+flOZq +V3L556qvp7Sei7DauG+Twv3ffr83+f5wu/jIf0+rd736d9/n1bv+7R636dX /30jAG0B2kK0RVAgtIR4y9CWQyuglVAwFELa1WhroLXQOuKFQhuxhqGFo22C IqAtUCQptqJtg6KgHdBOKJq0u9FioFgonngJaIlQEtZktDQoHcqAMknhQsuC sqEc4uWi5UH5UCF0FCqCiqES8itFOwaVQ8ehE1AFdJJcTqFVQlVQNfFqoFqs p6E6qB5qgBqhJqgZaoFaoTaonXLPonVAnVA31Av1Qeegfug8OQ+iDUHD0Ag0 Co1B49AlyPZU1mieyhrNU1mjzfet0TyVNZqnskbzVNZonsoa4/1mSzRfHVlt 043qyOmprNHm/NZonsoas9XwV57KGs1TWaPN+63RPJU1mqeyRvNU1mjzfmuY 9yvPUI1xl+Gv9I+ZJW9QR05PZY3mqazRPJU1mqeyRvNU1mjzfms0T2WN5qms Yfce68jpqazRPJU1mqeyRvNU1qh16eLVkdNTWaPN/a3RPJU16qmaVHWUZtoe VkdOT2WNNve3RvNU1mieyhrNU1mjeSprtPm/NZqnskbzVNZo839rNE9ljdkC +StPZY3mqazRPJU1mqeyxuGplEfOlZhrjImVmOUakJY3y7rGfl9pP0CzPZU1 mqeyRvNU1mieyhrNU1mjeSprNE9ljbYTYI3mqazRPJU1mqeyRvNU1mieyhpt DnCN5qmsUaO659WR01NZo3kqazRPZY3mqazRPJU1mqeyRvNU1uCp/AEjvD+g 1/IDPJU/4F7tB/RffmD4QrOgOZAfNJec56EFoC1AW4i2CArEuhhagnUp2jK0 5WgroJVQEBRMihC01dAaaC3x1kHroQ1QKCnCoHBoE7QZioC2QJHQVmgbFEVp 26EdWHdC0dBuKAaKJW0cWjxaAloilASlQKmkSIPSsWZAmZALyoIOQ9nkkoOW i5aHdgTKx1qAVoh2FCrCWgyVYC2FyrAeg8qh49AJqAI6CZ2CKqEqqBqqgWqp wWm0OqgeaiBeI1oT1Ay1QGegVqgNaie/s1AH1k6oC+omXg9aL1of2jmoH+sA 2nm0QbQhaBjrCDSK9QJ0ERqDxiGrzzXHXBnYvl+boRT3nQ1rDXvWWYDa2bBW PVMltblKmWfY1yB/peg7G0rFnnMm1+CV9ag155zJdrdW9KZkzKUq5jJKvEUp 7jsc1potlJXb7Uq5gzhrlbLOsO9HP6aUu6mlnHE2Syj2jLNwFcN9Z8NaZprZ OxvWus01k8p2w/78n1XK54izWykxxPm8UpzzzKzaHFDKgyrGQcM+06lKSaM2 jyjFfUfD2kk7GtaKno6dT65SnLPLLOVJ8ilUylHiPKOUZzl/pUopI85zSnHf 4bDWnP1vadYcs1pj8hwzf/VrrjV+OMlm72hYO2lHw9pJOxrWTtrRsFabWWYp v+ZzdCulhzi/VYr7Xoa15l6GlvZHpfyJOMNKGTHs7+VflOKcUWYp7rsY1tLT +CE9jR/Sv/gh/Ysf0qv4Ib2KHzLq+UO8Ij/EFyzn69m0EFoMLYGWQcuhlVAQ FAKthtZC66jLBrRQtDC0cGgzFAFFQluhKGg7tBOKhmIoLRYtHkrAmoSWDKVC aVAGlAllQYehHHLORTsC5UOF0FGoGCqByqBj0HHoBHQSOgVVQdVQDVRLTU+j 1UH1UAPUBDVDZ6BWqB06C3VCXVAPNehFOwf1Q+ehQWgYGiGXC2gXoXGsljd6 gbm+vf3bdIYbDHnXdNp4N5q/8R7zl3raeC/x56k85hNnIi9rTlOAsC6elLu/ +D3Jtb1Pm2utTujSDzBLqKvU8e0q/zvI3fm+wfwsp83fUr2ow2lx/dJjBJjr yc8TFn09eeuq5St066q1TZUTNSm9DLtU3D2mHqNyjNXiWFcrWYdEt/T+4i7d qudDhn3OH3YrwQpZ6tMfVsfZ6hzlOHL0N1fDkGd1YjWMCdvTKv9iD7lb16Ig Yf2WB5unzy3DD1WalzzYpsrjF6oWr3rMs1vV/zceSn1DfeI/aLYhdV7s1eFH VP6jk0qW72+ps22v43ea68hLXEde4o71Ja4oL3FFeYk71pe4trzEUzwvGXPQ /NDmQvOwzocCoAXEWwgtwhqIthhtCbQUWgYtJ8UKtCAoGAqBVpNiDdpatHVo 66ENWEOhjVjD0MKhTVg3o0WgbYEioa3QNigK2g7tgHZC0ZSxGy0GLRaKwxqP loCWiJYEJWNNgVKhNCgdyoAyIReURc6HoWysOWi5UB7WI1A+VAAVQkehInIp hkqwlkJl0DHilaMdRzuBVgGdxHoKrRKqgqqhGqgWOk0udVA91gaoEWoiXjNa C3QGaytaG9QOnYU6oE7SdqF1Qz1QL/H60M6h9aMNQOehQWiIFMPQCNZR6AJ0 ERqDxqFL5GKPIdRpYwh1jCHIWHXms1SWbo8fWLps7SzdOXZQZ7Zz/mrsoE6b 5VxnWO3wjSqHheRgjxtY+k2U6JzdXKeNGdRpYwZ1rBVi5XAbOThXMa4zWzZL d64RUqfNbK7TxgvqtJWM64wwcnCuD1LH81Z12jhBnTZOUKeNE9QxTmDl8Bly sMcILD2aEp3jA3Xa+ECdNpO5jvEBK4ckcrDHBiz9ECWmmfrD6sg5LlCnjQvU aWuC1Jm72Vi6c3XjOrN1snTneECdNh5Qp40H1GmrHNeZ7ZGl27OWLf0b1Nk5 DlCnjQPUaeMAdYwDWDm8QA7ONUHqHGuCyL2afmBM9BleUtrE3jj2GECdNgZQ xxiAVdJPKcnp/6/TZirXaf7/OnGnLUvsVDm8Rg6279/Sezk7Tr9/neb3r9Nm KNfh97dyGCYH2+dv6X+hRKe/v07z99dp/v46ek8vM0vhZXpPL9Nnepk+08uG L2T3mV7Gt/8y/aOX6R+9jEf/ZXpFL+PRfxmP/sv0hV6mL/QyfaGXuUd/mVU8 XqYv9DJ9oZfpC73MPfrL9Htept/zMv75l837CovCoHCsm6EIaAsUCW2DoqDt 0A4omjJ2QzFYY6F4KIF4iWhJaCloqVAalA5lQi4oC8qBcsk5D+0IVAAVQkdJ UYRWApVCZdAx6Dh0AqqATkKVUBVUTbk1aLXQaagOqidFA1oj1AQ1Qy3QGagN aofOQh1QF6V1o/VAvVjPofVDA9B5aAgaJu0I2ig0Bo1Dlkcgy6t+0gxcZ/B3 0/2nePcU3NN60t3z9vfAVwvOf1Plf7V6TlVnT+mmystTuVevu/wOytH3H72t cjzZ3es+XT6e01rz035Ey/8j7pZ/RMv/I9r7H+F//RF3xj/C//ojZqXJT2Zr C6FF0GJoCbQMWg6thIKgEGg1tBZaB22AQqlVGFo42ma0CCgS2gpFQduhnVA0 +cWgxULxWBPQkqBkKBVKgzKgTHLJQjsM5WDNRTuClo9WCB2FiqESqAw6Bh2H TkAnoVNQFVQN1UKnoTqoHmqgzo1oTVAzdAZqhdqhs1An1AX1QL3QOagfOg8N QsPQCHQBugiNQ7LdlTvXJqfKnWuDZsTOmOt90Wd4hnHdXO/L3gXe52ccNneq 3TGjcUaJT4mP1OWutQsEd/kUzNgxY0jED/c5L9LJ3UQbxK/VfYfRH3vQGj1o /+5Ba/Kg/cSD1uxBe8WD1uJB+6kH7YwH7WcetFYP2s89aG0etF940No9aK96 0M560H7pQevwoP3Kg9bpQfu1B63Lg/aaB63bg/a6B63Hg/YbD1qvB+23blq9 ke3VYEys3eL5OuTO7tevqeJe7do21fG1xPWUZqo8PNVzurpdC1+Ldq35+Jst 5mHREvzYg23qOnuq+7XUzVP9rGD1H2TrE6DIG/KB7Gdaf8wzrT82fKFZxJsD +UFziTcPbT5aALQA60JoERQILYaWQEuhZeS3HG0FtBIKIl4wFAKtJt4aaC3W ddB6rBvQQtE2QmFYw6FNWDdDEVi3oEVCW6FtUBS0HdoB7SS/aLTdUAzWWCgO azxaApSINQlKhlKgVCgNSocyyC8TzYWWBR3Gmg3lQLnEy0M7AuVjLUArRDuK VgQVQyVQKVRG2mNo5dBxrCegCqwnoVNQJVQFVUM1UC10GqqD6qEGym1Ea4Ka oRboDNQKtUHt5HcWrQPqhLqgblL0QL1Y+6BzUD/xBtDOow2iDUHD0Ag0SooL aBehMWiceJfQbA98o2F74KXeaHrgLd1ea8TS7Tav0ZhNDOeegY1ma2fpTs97 ozZPv1Hztzfib2/UdgtsZCWzRs3X3qjtGNhIS9ZI+9XIboGNmp+9UVvRrJHd Ahs1H3ujEUa5zvn4jczHt2JFEMu5Y2CjOV5v6Z829Silf0ad9UZ2DGzUdgxs pD1qNNsjK4Zzt8BGdgts1HYLbGS3wEZtZZBG/OpWrEeIZfvULT2LXJ3z7Bs1 n3oj7U0jOwY2Gk+S0ulLb9R86Y3sGNio+dIbzTbF0p2+9EbNl96oec8b8Z43 at7zRm2/wEbTe27pE+t+yPsJdw+61Jx7Z7yiUjn3Cmw01zyzdKfnvFHbL7CR /QIbtVnzjdo8+UZtl8BGdgls1HYJbGSXwEZtfnyj5itvNH3lFv0NGidHp4+8 ER/5v9PT+Xd6Ov9OT+ff6d/8u+ELzYLmEM8Pmot1PloA2gK0hdAiKBBaAi2F lpHLcrQV0EoomHgh0Gqsa6C10DpoAxQKbYTCyC8cbRMUgXULWiS0FdoGRUE7 oJ1QNLQbiqGMWCgeawJaIloSlAylQGlQOpQBZZKfCy0LLRstB8rFmod2BMrH Woh2FCqCiqESqBQ6BpVDx6ETlFGBdhKqhKqgalLUoNVCp6E6qB5qgBrJpQlq xtoCnYFaoTaoHTpLLh1onVA31EO8XrQ+6BzUT7zzaIPQEDQMjZBiFO0iNAaN E+8SmtWTOOLVNOW9taf7vOnuEafS3NO65zHVvd50Nk/5TFX3t5N2qnjueU6X z3TlTmf3N7+3GeLb+ZNrzms6/e2Ub7F1b/0Trjg/4TrzE3zzP+Hu+SdcU36C R/4n3Cn/xAhAWwgtghZDS0ixDG05tBIKgkKgtdA6aAMUCoVB4VAEFAlthaKg 7dBOKBqKgWL5HPFQAtYkKBlKhTKgTCgLOgzlQLlQPlQIHYWKoRKoDDpGTY+j nYBOYj2FVgVVQ7XQaageaoAaoSZybkZrgc5ArVA7dBbqhLqgHqgXOgf1Q+eh QWgYGoEuQBeps/S01xsFXs20nZ7aAfff4Nv9PXpqAzzlMV08T7bpyp6qjOnq MVXaa8nranlOV+fJQX7r0sQ36pVJaa6W33R1nSq+ntZqO1+h7XyF3vortJ2v MKPlFcMXsnvrrzDC+Qrt6Sv4IF+ht/4KffRXaFlfYW7LK/TRX6GP/gp99Fdo Y1+hjX2FuS2v0Ma+wtyWV+ijv0LP/BV8i6/Q7r6Cb/EVxj9foWf+ihEGhUOb oQhSbEGLhLZBUcTbjrYDioZ2QzGkiEWLhxKwJqIlQSlQKvHS0NLRMtFcUBZ0 GMqBcqE86Aj5FaAVQkexFqGVQKVQGfGOoR2HTkAV0EmoEqqCqqEa6DRUB9VT bgNaI9QENROvBe0M1Aq1Qe3QWagD6oK6oR6oFzpHuf1oA9B5aAgahkagUegi NAaNU4Y188XXHJmUrYSXOnKuttGirbbRoq220WK2Cv5qtY0WdtezjpyrbbRo frsWw2qVblRHTi9ei7baRou22kaLNnO2RZs526J581q0XfZatNU2WrTVNlq0 1TZazHWBbc9eizaDtoW1geXZazHu4ew5V9to0bx7LdpqGy3aLNoWbRZtizmL 1l/Nom3RVtto0dYFbtFW22jRVtto0WbTtmizaVu02bQt2mobLdpqGy3aahst mvevRZtV22I8YtY6Qx05Z9W2aKtttGhewBZttY0WbbWNFm12bYs2u7ZF8wi2 aKtttGirbbRo6wK3aKtttGiewRbNM9iizbJt0VbbaDFX2/A3XlBHTl9hi7b7 XouaaVurjpzrBLcYztU3Whyrb8g5AhPPtFp+Q6n91Ji4kv9cpXL6DFu02bYt 2mobLZrfsEVbbaNF8yK2aOsCt2izblu0Wbct2o57LZo3sUVbbaNFW22jRZt9 22L83cxlXB05PYsteBZ/atjPLv2UvspPueP7KWOoP6XX8lPDF5qFdQ7kB82F 5pFiPhQALYAWQougQHJZjLYEWgotI95yaAXWlWhBaMFQCLQaWkOKtdA6rOuh DVAotBEKg8LJZRPaZrQItC1QJNat0DYoinjboR3QTiiaFLvRYqBYrHFo8WgJ aIlQEpQMpZAiFS0NLR0tAy0TcmHNgg5jzUbLQcuF8rAegfKhAqgQOgoVkUsx WglUCpVBx0hRjnYc7QRUgfUkdAprJVoVVA3VQLXQaagOqocayLkRrQlqhlqI dwZqxdoGtUNnideB1gl1Qd1QD9RL2j60c2j9aAPQeWiQeENow9AINApdgC5C Y9A4+V2CLM/nXHM2mPNO7jqlvsuYuE5Ye0BJdY7hvEt8n1Lfr8VdYF5Vzhgf MI+sfzepmDdrMZcpdblWg48q9TaH5i/aJVnvM2arJJ+WPmO2SlYJd6kUH9Ny 36jUMIdmPbcs1YnnluU/q490xtFHmiWOPq1q8K8qzWe0GkUrdbeW/+eVus+h +YvWw8oxSR0nq/JSzBwPqTQPUR/5nqHUTC3/x5X6hFb/XHVO3HdxOqN2cZIp vk7O8l+RUosdWoDoxVjqN42JEq2ei1RPaDX5rlJf0GpdrdQaR1zrWaBAoTpH MvUgd22y4vyMvJyf0OJfq9xf0+y9Su3T0r2h1D9ocYeUaj/zbOX9F6X+VStv XJ3VS6S3/Bs/o8/wM3oKP8O/8TP6Bz/DS/wzfBk/owcgd6eyaSG0CFoMLYGW QcupwUq0ILQQtNXQWmgd8TaghUJhWMPRNkMRUCTxotC2QzuhaCgGioXioQQo CUqG0qAMKBPKgg5DOVAuNT2Clg8VQkehYqgEKoOOQcehE9BJ6BRUBVVDtdBp qB5qgJqgZqgFOsNna0Vrg9qhs1An1AX1QL3QOagfOg8NQsPQCHQBugiNQ5Zf YI45w9hf/ZuhFPcVoVoN9xWhWietCNXKilAyWIr7ilCt6r5fhpuU4tyFULbP rcZHDOv3f4uK4b4SVKvb/oNSuYM4a5VirwQVoFaCap2092CrMXFVuk8pzrWg 5HlqNbYY1qyIVvO35q9WhGoV1yf780cpxX1FqNZJK0K1Ttp5sNVtRSipJJLP g0o5qI7t+/NWbXZOq3l/bsX8IjFdSrFXhgpQK0O1TloZqnXSylCtk1aGap20 MlSr8Sz5lCqljDjPKWVi18ETSqkw7L/Ld5XyAmVVKaWafH6glB8Sp04p9cSx 5vK1anfVdviZsk2sEDURfqVy+jVat1LcV4ZqnbQyVKu5MpSV5x+V4r4yVOuk vQZbJ60M1crKUP7qrriVu+Kfc4X7OXvR/5xr3c+51v2cu+KfG77Em4U2B/KD 5hJvHtp8KABaAC0kxSIoEOtiaAnWpWjL0JajrYBWYg1CC4ZCsK5GWwOtxboO Wo91AxQKbYTCoHDSbkLbDEVAW4gXCW2FthEvCm07tAPrTrRotN1QDBQLxUHx UAKUCCWRczKUgjUVLQ1Kx5oBZUIu4mWhHYayoRzi5aLlQUegfKgAKiTtUagI azFaCVSKtQw6BpVDx6ETUAW5nEQ7BVVCVcSrhmqw1qKdRquD6qEGqBFqIm0z Wgt0BmolXhvUjvUs1AF1Ql1QN9RDLr1ofdA5qB8aIMV5tEFoCBom3gg0ivUC 2kW0MWgcugRZd8W+5jNNsl30UkfOEYs2bcSiTRuxaNPWB2/T1vhoY8RCltVm 3jVbutUu36iOnKMVbdpoRZs2WtGmrQ3epo1WtDFaYZUl2zlLd45UtBmrzBxC 1JFzpKJNm4Pcpo1UtGm7GLZpa4O3aaMVbdpoRZs2WtGmjVa0absYtmlrfrSp O/Eo9Wm282mcIxVt2khFmzZS0aaNVLRpIxVt2khFGzsYWmUdpCznKEWbtnth m7b2R5s2StGmjVK0aaMUbdooRZs2StGmjVK0aaMUbdooRZs2StGmjVK0sSa4 9WnsdUDatBGKNkYoHrveMLJEeFyEwyI8IUK2CF8SIUeEL4uQK8JXRMgT4asi HBHhayLki/CkCAUifF2EQhGeEuGoCE+LUCTCMyIUi/CsCCUi/JsIpSJ8Q4Qy Eb4pwjERnhOhXIRviXBchG+LcEKE50WoEOE7IpwU4bsinBLhBREqRfieCFUi vChCtQjfF6FGhB+IUCvCD0U4LcJLItSJ8LII9SL8SIQGEX4sQqMI/y5Ckwg/ EaFZhFdEaBHhpyKcEeFnIrSKcPnKlSsd4n1IhHZ1fFa8/1KEX4nwBxF+K8Kv RegS4TURukV4XYQeEX4jQq8IvxChT4TfiXBOhN+L0C/CGyIMiHBehBER/ijC n1Q5/6Heh8X7myL8XYS3RBgV4S8iXBDhryJcFOFvIoyJMCjCuAiXVFoZnC/r 2+AcoWrTRqjaHOvByyPnCFWbNkLVpo1QtWkjVG3aCFWbMTFCJY+ca8O0OdaH l0+aWjPcA8zv9M+VZq0Lb+m/VKmcI1Rt2ghVmzZC1aaNULVp68K0aSNUbdoI VZu2HnybNkLVpo1QtWkjVG3aCFUb68NYv057Zb02+uG/oB/+C0anfsEONr9g dOoX9MN/YfhCcyA/aC40D5pPLgFoC6CF0CIoEFoMLSGXZWjLoRXQSuIFoQVD IVhXo62B1kLroPVQKGk3ooVB4dAmaDMUQdotaJFoW9G2oUVBO6CdxItG240W A8VCcVA8lAAlQknklwylYk1DS0fLgDKxutCy0A5D2VhzoFwoD8qHCqBC6ChU RM7FaCVopWhl0DGs5WjHoQroJPFOoVVCVVA1VEOKWrTTaHVo9VAD1Ag1Qc2k bUE7A7VCbcRrh85i7YA6oS7idaP1QL1QH3QO6iftANp5tEG0IWgYGoFGSXEB bQwahy5BVr95gfmMv90+T/yzVr2dJ6wTq95a4b1mO9gu+sTyeJ7Kw7nq7URc 2QeeI6w3oS8xrwDt4m5/Iu5ylYdz/duJfG4369su+rjy6jNf0J1ajeS/DeZ3 oF31avWwSeV+/6T6yX9ytdu5whplOD+99MjNEqrtkdul8tgzKXcZElRs2xOX pPJMduQYYDyk8njYw3my+pryEzwxyRJgrnIrP/fXJqU8qs5NkeGvcneudjsR 8zl11p2r3T6v/jYTu1yfUnlUuuVh5WOtfttuvKTVbnJtnbZfqDSverBNle4N VYs/eIw7omo9iv5X9dn+5sjjLfUX+Yc6tsaAXmWO66tccV/F8/UqV9xXueK+ ipfrVa6pr3JNfZVRnle5fr7K9fNVRnleZWznVa6Gr3I1fBVv06tGGBQORUCR UJThrygaLQaKheKhBCgJSoMyoSwoB8qFjkCF0FGoBDoGHYdOQCehKqgaOg3V Qw1QE9QMnYFaoTaoHToLdUCdUBfUA/VC56B+6Dw0DI1AF6FxyBpFqfA66xhF 0f9N/VuabHfXPNmvZrtank7tWurpKf+p6jFVHa5W5+n4WtJeS55WkN/BaPG9 +eWU6f+z5dtt0y9pm36J9/6X3DX8kruGX/Lc7C9pw35JG/ZL7h9+SWv2S1qz X3L/8EvuH35p1sKiBVgXQougQGgxKZZAS7EuQ1sOrcC6Ei0ILRhaDa2B1kLr oPXQBiiUnDeihUHh0CZoMykioC1YI9G2om1Di4K2QzugnaSIRtuNFgPFQnFQ PCkS0BKhJKzJaCloqWhpaOloGVAmVhdaFtphtGwoB8qF8qAjpM1HK4AKsR5F K4KKoRLilaKVQcewlqMdh05AFdBJUpxCq4SqsFaj1UC10Gni1aHVozWgNUJN UDPUAp0hbStaG9QOnSVeB9SJtQvqhnqgXqgPOgf1QwPQecoYRBuChrGOoI1C F6CLxBtDG4cuQbbPvkN7yqDDmGHIdtJHHdkrglhHTp99h+az79B89h347K0j 51MGHYbV5t6ojpx++w7Nb9+h+e07tKcMOjS/fYf2lEGHtqdnh+a779B89x2a 775D8913aL77Ds1336GtIdJh+u4t3em379D89h2a375De8qgQ/Pbd+C3t462 m0efUUdO332H5rvv0Hz3HZrvvkPz3XdovvsO7SmDDu0pgw7Nf9+h+e87NP99 h9mi+Sv/fYfmv+/Q/Pcdmv++Q/Pfd2j++w7Nf9+h5uIVqiOn/75D8993aHt6 dmhPGXSYrZi/8uF3aE8ZdGg+3A7Nh9uh+XA7jO+ZuVSpI6cPt0Pz4XZoPtwO zYfboflwOzQfboe2x2eH4dzjs8OYWONbruhnPXUQYNbol0qz1va29NdUKqcP t0Pz4XZoPtwOzYfboflwOzQfbofxH2Y5w+rI6cPt0Hy4HZoPt0Nb47tDe8qg Az/ur/Dj/go/7q/okf2KHtmv8OP+yvBFm4U2B/KD5kLzoPlQALQAWkjOi6BA rIuhJdBS4i1DWw6twLoSLQgKhkKItxptDbQW6zpoPdYNUCi0EQojRTi0Cetm KALaQrxItK1o29Ci0LZDO7DuRItG2w3FQLFQHBQPJZBLIloSlIw1BS0VLQ1K x5oBZWJ1QVlYD0PZUA7xctHyoCNQPlQAFZL2KFSEtRgqwVqKVgYdw1qOdhw6 AVVAJ6FTUCVURX7VUA3WWug0VEe8erQGtEa0JqgZawvaGagVaoPaobNQB7l0 Ql1Yu6EeqJd4fWjnoH5oADoPDUJD0DD5jUCjWC9AF6ExaBy6BFl9sznmGqz2 fesMpVxn2O36TKW4z/TsVH0xGeYqxX2mZ6ea6Sn/LVTKIsq6SSk3E2ep2U53 ql0/P2LWs1P0t+zcbqVWQUpxn/HZOWnGZ6fqYcnwMaW4z/jsNMJUDfzVjM/O Sbt/dpqtklW+nOs5SyjbVIwoFcN9pmfnpJmenZP2/uycNNOzE/+yvftnp5rp KUOqUtLI5xFVG3uO56MqhvsMz07VI5IhVynuMzw7zfXXLK1QKe4zPDvV3p8y lCrFfYZn56QZnp1ue39KZWLvzyqluM/w7FQzPOW/OqXoMzyl4r4XaKf5PJGl WTM9O42fE8cO/savlO3Xk2z2DM/OSTM8Oyft/dkpein25xhWivsMz85JMzw7 J83w7KRH8mt6JL9mXuevmdf5a8MXmgX5QXOh+VAAtJCcF0GLsS6BlkHLoZVQ EBQCrYbWQuugDVAoFEYNwqHNWCOgSKxb0aKg7dBOKBqKgWKheCgBSoKSoVQo DcqgLploWdBhKAfKJcURtHyoEDoKFUMlUBm5HEM7Dp2ATkKnoCqoGqqFTkP1 lNGA1gQ1Q2egVqgdOgt1QJ1QF9QN9UC90DmoHzoPDULD0Ah0AboIjUOWb36u uaa4P//sp+u6jHfxa5ZhllLnODT76bouD0/X+Qp1oZnDB8x2ucv4oDFxvZNp PD1n16V8C3aL8FGl3qbFXW3Iu64u8zk7u47rVExPz9d1GRPXNal/QqmTn6+T 6laHJp+rk2ery3yuTrZXXconIEO0SrFbS/F5pe6jbjIkKjXJoVlP1ck8HyJ9 uiovwyxPpvD0bF2X49k6GXKVmqfFfVKpk5+qk2dv4urlr56p6/L4TF2Xx2fq ujw+U9elPVNn3YdL9WXiydCo1CYtrvVsXZfxM0e9nHYZfq3ivObBZoc3VO6e nqnr8vhMXZfjqiTDuPqrXCKuNWbxGtej1xizeI0r02tcmV7jDvk1rlGv8Rz+ a8YcND+0uWjzoPlQALQAWkjaRVAg1sVoS9CWQsuwLodWYF2JFgQFYw2BVkNr iLcWbR20HtoAhUIboTByCYc2Yd2MFoG2BYrEuhXahjUK2g7tgHZC0aTdjRaD FgvFYY1HS0BLhJKgZCgFSoXSoHTyy4AyIRfxsqDDWLPRctBy0fKgI1jz0Qqg QugoVESKYrQSqBQqg46RohztONoJqALrSbRTaJVQFVQN1UC1pD2NVgfVQw3E a0RrQmtGa4HOQK1QG9RO2rNoHVAn1EW8bqgHay/UB50jXj/aAHQe6yDaEDQM jUCj0AXoIjQGjZPzJcgevejWnjjo1p446NaeOOjWRi+6tdGLbm2NpG5t9KJb G73oNqwW+UZ15By96NZGL7rVjKvF6sg5etGtjV50a6MX3droRbc2etGtrZHU rY1edGujF93a6EW3NnrRrT150M2TB/LMdou7bPvMfsKs/2Z15By96NZGL7q1 NZK6tTWSurU1krq10YtubfSi27GfuTyKNY8+r46coxfd2uhFtzZ60a2NXnRr oxfd2hpJ3doaSd3a0wfd2uhFtzZ60a2NXnRroxfdxlfNPI+oI+foRbf29EG3 NnrRrY1edGtrJHVroxfd2hMI3droRbc2etGtjV50a6MX3doM9G5t9KJb3N/L z1CrjpyjF93a6EW32Xb5q9GLbm30olsbvejWRi+6HaMX8si5ZlK3Y80kuWeQ NSM9wCznNaW9jmaPXnRroxfd2uhFtzZ60a2NXnRrM9C7tdGLbm30olsbvejW Ri+6zXbJ9hV04yt4nb7Z64xevE6P7HV6ZK/jK3id3tfr9L5ep/f1Or2v1+lz vc48kdeZJ/I6/avX6V+9jtfgdbwGr+M1eB2vwev0ql6nV/U6ow2vM9rwOn2p 1+lLvc78j9fpQb1uhEHhUATxtqBFQtugKGg7tAOKhmLILxaKx5qAloiWBKVA qVA6lAm5oCzoMJQD5UJ5UAFUCB2lVkVoJWilaGXQMeg4dAKqIO1JtEqoCqqG aqA6qB5qIL8mtGaoBToDtUHt0FmoA+qEuqBuqIdye9H6oHNQPzQAnYeGoGFo BBqFLkJjkPRH1ItfU4/HFXqt8G5DehB6RP/Bssq9xuaL4/e6xfM385onLAsc mvwXaMg7uh7zrsjSZN9goVA+rMWbKPs2VauQSSXY4WNme9Rj3G2mCjX/mj3m bsHuOcqr+lxhi9BKeMBsYXvMXU1sXa7is0Bon9HKsv/FmOesR+1hImsXp+Xo DAdVXGsncJnnQ45yJoJL1cL2kst/2aq+OQ7NmpUtP+HXPJT4tDoXE1dWWbsS t3gTZ/jb6uxPrHagh2r197K9Cf7mbGz5l3WfjS2vh2uE7txrRC9x8rmxba+r tL95W+ms8FdVn79pce3rUo+4Llm/rN8wz/E3eAp+w3XpN4YvNIsUfmhzoflQ ALQQWgQthpZBy6GVUBAUQrmr0dZC66ANUCgpwtDCoc1YI6BIrFuhKGg7tBOK Jm0MFAvFQwmkSIKSoVQoDcqAMqEs6DCUA+VCR6B8qBA6ChVDJVAZdAw6Dp2A TvLZTqFVQdVQLXQaqocaoCaoGToDtULt0FmoE+qCuqEeqJc696Gdg/qh89Ag NAyNQBegi+Q8jmZ5rhu9et3WhZuep28Lrm6fLo273f3fVPl6iuuMPxW7a57i Od+ns18tv6nsV4tzNd3f/L6Gi+/Obz3YPOfhtOtxLA/tb2ltf8tdwG9pd3/L XcBvDXvm0m+5H/gtftnf0gL/1phLvPlQANYF0EKsi9ACoSVYl6ItQ1uOtgJa CQVDIdBq0q5BWwutgzYQLxRtIxSGNRxtExSBdQsUiXUrtA2KgnZAO0kbjbYb LQaKheKJl4CWiJYEJUMpUBqUDmVAmZALyqKMbLQctFwoD+sRKB8qhI5CRVAx VAKVQsegcug45Z6AKrCehCqhKuJVo9VAtdBpqJ4UDWiNUBPUTLwWtFaoDWqH zkIdUCfUBXVDPVAvpfWhnYP6oQHoPDQIDUHD0Ag0Cl2Exih3HLqEVXpA5T7d 0Q/LfbrnehvXDc6I9pnrvXzGXG8/c1/ukBnhM4pnGNfl+FT6DHrnest9vKVe MCN2xnKhl/g0zOjy3qH26e4T7ZT7fsq/86Cd86D93oPW70F7w4M24EH7gwft vAftjx60QQ/anzxoQx60//CgDXvQ3vSgjXjQ/uxBG/Wg/cWDdsGD9lcP2kUP 2t88aGMetL970MY9aG950C550P7hQbvsQbvipsk7tT7Dfg5Bfr/72JW0Dy++ pcurpKU7Pfh92s6kfeY10tLfb8ir8nyl30iuTs99n7ZHaR97lPZpe5T2sUdp n+ax79P2KO0zPfaWbnvrLf0OcnV66vu0fUr7xD28ndr5jEGfEYbufMagT9un tI99Svu0fUr72Ke0T/PO9+Gdt2J9lli2Z97SY8jV6ZXv0/Yr7WO/0j5tv9I+ 9ivt07zxfdqKiH3sV9qn7Vfax36lfZoXvk/br7TPvCpauv38gKU/Sa5O73uf tmdpH3uW9ml7lvaxZ2mf5nXvw+tuxTpBLOfupX3sXtqnedv7tN1L+9i9tA9P u6XXk6vzGYE+vOxWrGZiOXcx7TN+Tq5O73qftotpn/ErYnWZuuVh7zPcPexS s3YhsLQ3VCrnPqZ97GPap3nV+7R9TPtMr7ql2x51Sx/nkzifBejDmy6vRTZ5 Q/azAL/Df/E7ns78neELzcI6B/LDOheaB82HAkixAFoILYICocXQEmgp+S2D lmNdAa2EgogXjBYCrYbWQGuhdaRdj7YBLRRtIxSGNRzahHUzFIF1C1ok2la0 bVAUtB3aQYqdaNFou9Fi0GKhOKzxaAlQItYkKBlrCloqlAalQxlQJuSCssjv MFo2Wg5aLloe2hEoH2sBWiHaUagIazFUApVCZaQ4hlYOHYdOEK8C7SR0Cqok XhVaNVoNWi10GmsdWj1aA1oj1AQ1E68FOoO1FWqD2qGzpOhA64S6oG6oB+qF +sjlHNSPdQA6Dw1CQ9AwNAKNQhegi5QxhjaOdgnNmulwxuucYY9G2MGTx8P5 L8DQ7e58LV6R6fKZqnxP+bnn4ykPT2VNVy9PdbqW46ls7nlOFX+qOlytztax /EVsEN+w30+bdqr6Wmx5ln7PFfH3+JN+zzNxvzd80WZBftB8KIAUC9EWQYuh JdAyaDm0EgqCQqDV0FpKW4e2AQrFGoYWjrYZLQKKhLZCUdB2KBqKgWKheMpI QEtCS0ZLhdKgDCgTyoJyyCUX7QhaPlohdBQqhkqgMugYuRxHOwGdhE5BVaSo RquFTkP1UAPUBDVDZ6BWqB06C3VCXVAP1Av1QeeoaT/aAHQeGoSGoRHoAnQR GodkP7PeaPPq99iyevqVX62l8PQrfjuth3tZntJeLc1U+UxVj6vVyxNPlZen cjyl8ZR+ujpea90DzO/uOvGdeWPaNFOXb7Wsb9CyvsG9xhvcYbyBz/4N2tg3 GCt9g/uKNxgrfYM5PG9wD/EG/vk3aG3f4B7iDVrbN/DPv0G7+wZzpN+g3X2D dvcN7hfeoAV+g7uEN2iB3+Au4Q3uEt7g3uANIwxrONpmKALaAkVC26AoctmO tgOKxrobLQaKheKhBFIkQklQCvFSoTQoHcqEXFAWuRxGy4FyseahHYEKoELo KFQElUCl0DHoOHQCqoBOUoNKtCqoGmsN2mmoDqqHGqAm0jajtUBnoDaoHToL dUBdUDfUQxm9aH3QOaifeANo56FBaAgaJsUI2ih0ERqDxklhjdv6ml5o2Q54 qSN7HrGMNWDu6mXRDZD8vVtxnXOHB5g7bMWaTyyrnblR6QvRnZ7HATyPA9p8 4QHmC1uxlpPa6XkcMJ9JsnTnPOEBzd84oM0MHtBmBg9oPscBI4xybJ+jpX+C cpyzgge0WcEDrGlipbHbgQFzJpEVw54NbOnRlOZcx2RAW8dkQPM5DtAaDJht gBXDngFs6Yf4iz1Muc51Swa0mb8DzPy10jxBGqe/cYDWYMD0N1ox5P28v5rt O6D5Gwc0f+OAuUKkpTv9jQOsMz6g+RsHtFm+A9os3wFtlu8AnkYrv2rK+YGp 1yr9JcpxzucdwNNoxWoitT2X19J/SupW8xP/XOm/QJ+YwyuP7FWlrVivEcu5 GsmAYzUSOSY08Wyv5W2UmvPpqT+pVE5P44DmaRzA0zigzd0d0FaPHmD16AE8 jX/g6v8Hrv5/4A7rD/QD/kA/4A+G7Wn8A/2AP5jPJVrkB80lxTxoPtYAtAVo i9ACocXQEmgptAxaTi4r0FaiBaEFQyHQauKtgdZiXQetx7oBLRRtI1oYWji0 CetmtAi0LVAktBWKIsV2aAfWnVA01t1oMVAs1ji0eLQEKBFKgpJJkQKlQmlQ OpQBZUIuKAs6TBnZaDlouVAe1iNQAVQIHYWKoGJyKUErhcqgY8QrRzuOdgKt AjoJnSJeJVoVVI21BqrFehqqg+qhBlI0ojWhNaO1QGegVuK1obVDZ6EOqBPq grqhHqiXnPvQzkH90AB0nhSDaEPQMDRCvFG0C9BFaAwahy6R1vIldnqdN9xn qdnB+S/A0ONMpXvKY6p8p8rnavm512uqsjzF81SGp/Kmi3e1tFPVxVmnq8W/ 1rp4ji9/HSHi+/THacuZnId1x/tHrnl/5Er3R650fzR8IT/IHjX7I75Eq2yL FqItQluMtgRaBi2HVkJBUAi0GloLrYNCoTAoHNoMRUCR0FYoijrvRIuGYrDG osVDCViT0JKhVCgNyoAyoSzoMJQD5UL5UCF0FCqGSqhVGdox6Dh0EjoFVZG2 Gq0WOg3VQw1QE9QMnYFaoXboLNQJdUE9UC90DuqHBqDz0CCfYwhtGBqBLkAX oXHIumecY840sn9FM5Tivg/noGGvzuSvVmcaVDNV5L+5SnFfnWlQ3Cfav9SF SnFfnWnQbR9OqSwjH2sHq0Hz/lD2egeNj5qWIBUzmNxuV8od5LZWKfbqTP5q daZB9VyJ1DYqJYw49ynFfXWmQWMLtXpAKRPPl8h5KLOEsl0d71Ax3FdnGpy0 D+egYzWLBKW4r840aO5DZWmpSkkjziNK+SJluZTivj7ToNsOnLLGX1XK11QM 9/03ByetzjSo1reQ/0qVUkac55QysT/ACaVMPJHyXaVMrHNRpRT31ZkGJ+2/ OWi4r840OGl1pkFz7NUq62dKmVidqV0pZ8nnV0r5NXG6ldJDHHlHFyAU5x2d v6r/H5VtYpWmifAXlZP76kyDrM5kzxEZ5M7tT4b9xOWfuHP7E9ezP3E9+xN3 bn/izu1PjJL9yZgD+WGdC83DOh8tAG0BtBDrIigQ62JoCbQUWgYth1ZAK6Eg cg6GQqDVxFsDrcO6Hm0DWii0EWsYFA5tgjZDEdAWKJL8tqJtg6Kwbod2QDuJ Fw3thmKgWFLEocWjJaAlQklQMvFS0FLR0qB0rBlomWguKAs6DGVDOVAulEd+ R9Dy0QrQCtGOQkVYi9FK0ErRytCOQeXQceKdQKtAO4l2CqqEqohXDdVgrYVO Y61Dq0drQGuEmqBmqIUUZ9BaoTaonXhnoQ6snWhdaN1QD9QL9UHnoH5oADoP DVLGEDSMdQQahS4Q7yLaGDQOXYKsuzlfcyazbA291JFzDYwhbQ2MIW0NjCFt Bu2Q5sce0tbAGGIWrXVktb43qqN/Mm0L1ZFzDYwhbQXvIc2nPaStgTGkzagd 0tbAGDJbOX+1BsaQtoL3kLYGxpDm6R5SO4rfpY6cnu4hs6XzV2tgDGm7bw5p M2yHtBm2Q8YnOevOnTeHtBW8h7RZtkPaCt5D2hoYQ9oaGEOa53tIm207pK2B MaStgTGkrYExpK2BMWQcMnNJVUdppu1hdeT0hA9pnvAhbQ2MIW327ZC2BsaQ tgbGkLaC95C2BsaQ5hUf0tbAGNLWwBjS1sAY0tbAGNK840Oad3xI844Pad7x IW0NjCFtVu6QtgbGkLaC95DZevmrNTCGNJ/5kDY7d0hbA2NIWwNjSFsDY0hb A2NIm6U7pPnPh/CfW0ddpu01deT0oQ9pK3oPGc41MYYca2LIZx+cOzv9SWnW St6W/meVyrkGxpDmRx/S1sAY0mbtDtEj+w/8Cv9Bj+w/6JH9B/2w/zB8oVnQ HGguZPe5pOff1hZAC7EuQguElmBdirYMWg6tgFZCIaRdjbYGWgutI94GtFC0 jWhhUDi0CYqAtkCR5LINLQraAe0kXjS0G2sMFIs1Hi0BSoSSiJeMloKWhpaO loGWieZCy4KyoRwolxR5aEfQ8tEKoaNQMVRCilK0Y1A5dBw6QYoKtJNolWhV UDVUA9VC9VAD1Ag1Qc2U0YLWCrVB7dBZqIO0nWjdUA/UC/VB56B+aAA6Dw1C Q5Q2DI1gHYUuQBeJN4Y2Dl2CrJ7MOa9hPCr+bu+e2FMcd5unMFVa93Se8nCm u5Zyp6qLex08xbnW+k9Xz2up37XWwd+N305861j+KpaJb8+b15DO8ku/yfXj Te7e3+Ra8SbXijfxS7/Jnfqb+KXfxBv9JteFN7nvfpNrwJtcA96k5X8TH/Sb +KDfpL1/E8/zm3ie3zTCoHBoMxRB/SLRoqDtUDQUA8VC8VAClASlQmmUlomW BR2GcqBc6AhUCB2FSqAy6BilHUc7AZ2EqqBq6DRUDzVATVAzdAZqh85CXVAP 1Audg/qh89AgNAQNQyN8ylG0C9BFaByyfMYDXiNaCzfdL2iqX6bzePIvbPKx p/RX+/VNV/a11N1T3Knq4Ckf/ynep6rndHGnquu1aJ7iXD2N/P4uEd+RP0+b 3p5r+mdauD/TQ/4zz7X9mfn8f6av/GdavT/TQ/4znso/01f+M57KP9Nr/rNZ tkULsC6EFkGLoSWkWIq2DFoOrYBWkiIILRgKwboGWgutI956aAMUSryNaGFQ ONZNaBHQFqyR0Fas29Ci0LZDO6CdUDQpYqBYrHFQPJRAvES0JLRktBQoFWs6 lIE1E82FlgUdhrKhHCgXyoPyoQKokDKOQkVYi6ESrKVoZWjH0I5DJ6AK6CQp TqFVQlVQNVQD1ZK2Dq0easDaiNYENUMt0BlStKK1QWehDqgT6iJtN1oP1Av1 QedI0Y82AJ3HOog2BA1DI8QbhS5gvQiNQePEu4RmexZHNc/iqOZZHNU8i6Oa Z3FU8yyOansDjmqexVHNszhqWK3jjerI+Yz+qOZZHNU8i6OaZ3FU8yyOap7F Uc2zOKqtrjuqzZodNT2L/sqzOGrcaR6tVUfOObSjmmdxVFtdd1TzLI5qnsVR bX/AUW0u7ajmXRzVvIujmndxVFthd1TzLo6abZS/8i6Oaivsjmrzakc17+Ko 5l0c1byLo5p3cVTzLo5q+wOOat7FUW1/wFHNuziqeRdHNe/iqOZdHNW8i6Oa d3FU2x9w1Gyv/JV3cVTzLo5q3sVRzbs4qnkXRzXv4qjmXRzVvIujmndxVPMu jmrexVHNuziqrbA7qnkXR7UVdkc17+Ko5l0c1byLo5p3cdT4hZlLuzpyehdH Ne/iqOZdHNW8i6Oad3FU8y6OaivujhrOFXdHzbGQAOVlHDWsGbsBZo3+rLS/ oNnexVHNuziqeRdH8S7+hfHev9B3+gvexb9wx/gX1gT4i+GLNguaA/lBc6F5 0HxyCUBbAC3EuggKxLoYbQnaUmgZ1uXQCqwroSAoGAqBVpN2DbQWWk+8DVAo tBEKg8KhTeSyGS0CbQtaJNpWaBvWKLTt0A6sO6ForLuhGCiWeHFQPJQAJZIi CS0ZSoFSiZcGpWPNQMuEXFizoMNYs9FyoFwoDzoC5UMFUCH5HYWKsBZDJVAp 8crQjqGVox1HOwFVYD0JnYIqoSpSVEM1WGuh01AdVA81kLYRrQlqhlqgM1Ar 1Aa1k99ZqANrJ9QFdUM9UC/UB52D+sl5AO08NAgNQcPQCDQKXSC/i2hj0Dh0 iXhWr2yOuTKUfd85w7RdMOedyZbygtojSc4+myWO7Nlns1RKfWdAGWNinyQr vbUv4AKVr/Wckky5yLBb6JuU4px/ZsVeRi7LzVrcosq4VcX8qEoZTF63qxhr 1Cdaq9Lb/Ssr34/xyd33B7xgOGegWbE/QS2s3ZQiVBn2PLRIlfJT5BWlYthr HH9WpbdmoUWrfHdzLtznol3Qdgq0YidSiyTT8qAqw56RdkilTKP+j6gYmUpx qfTWbLTHVb5PcC7c9wy8oO0ZaMV+klpMjLzKMuy5aUUqpT4zTcaw9116TqV3 rnl0Qa15JFNWUOZ3lfIC9apSse3nkC6o1ZN/oMqw56i9pFLqM9RkjCalNKv0 LebxT1W+P+Nc/NywfS3tSnHOUrNi/9qwfyOvmZZuVYY9V61XpdT3FZQx7NFS a77aBWPyfDV/4y/Kpu/bZIV/qBrY/Za/0m/5K72Vv9Jb+St9lL/SR/krPZO/ 0jP5K/5tWaZNC8l5EdpiaAm0nHgr0YKgEGg1tJYU69A2QKFQGBQObSZtBFok tBWKgrZDO6FoKAaKheKhBCgJSoZSoTQog/plomWhHUbLgXKhI1A+VAgdhYqh EqiMMo6hHYdOYD2JdgqqgqqJV4t2GqrH2oDWBDVDZ6BWqB06C3VCXVAP1Aud g/qh89AgNAyNQKPQBegin2MMbRyyPOyLzPUQ7auj+29UrtovV0yc7dDfa8iV 5S8a73OLL1eDv2g+h2fn5cxziSrrw0qfXGKw2ZpcdKzWLz0J84Ryp1uOcnb1 AqHfraW342wyP99F8xdklRnhFmOi9H8126uL5s6A8p+8js0Xx5/TcpYh1myt Lpqr9bvbrPv8i477fFnqIQ/lWe8uFd++Tlk567sBWuGrqj5fm/Qpj6qaF6nj YlVqiVu8Cf62Oi/PG/7q/H1HK81OUa3Oeo1bberU30e/5sgy/31SiXZoU9+K V6eIYa3ef9H4DTZPuXjS/c3fqTxvf/OQxhop+BtXjb9xt/s3Rgr+xvXjb4wU /M3wxToLmoPVD20u2jxoPhQALSDFQrRAaDG0BFpKimXQcmgF8VaiBaEFQyFY V6OtgdZC64i3Hm0DFApthMJIEQ5twroZLQLagjUS2gptI14U2nZoJ9ZotN1Q DBRLvDi0eLQEtEQoCWsylII1FUqD0omXgZaJ5oKysB5Gy0bLQctFy4OOYM1H K4AKoaNQEVRC2lK0MugY1nK042gn0Cqgk9ApqBKqIm01Wg1UC52G6qB6qIFc GtGa0JqhFqxn0FrR2qB26CzUAXVCXVA31EPOvVAf1nNo/WgD0Hmsg2hD0DA0 Ao1CF6CL5DIGjWO9BNnjDWPaeMOYuLuVbaGPOnKON4xp4w1j2njDmDbeMKaN N4xpu/mNGVb7eqM6co43jGnjDWPaeMOYNt4wpnoBy9SRc7xhTNz7SttKdeQc bxjTxhvGtJnMY9pM5jFtvGFMG28Y08YbxrTxhjGzTfNX4w1j2njDmNr755Pm 32DMXLvD0p1jDWPaWMOYNtYwJvoXMoed6sg5k3lMm8k8po01jKknt+LVkXOs YUwbaxgz2zJ/NdYwpq0fPKbNZB7TxhrGtLGGMW2sYUwbaxjTxhrGtLGGMW2s YUwbaxjTZjKPaTOZx4xnzNKL1VGJefRv6sg51jBmtmL+6h57TBtrGNPGGsa0 sYYxbaxhTBtrGNPGGsa0sYYxbaxhTBtrGNNmMo9pYw1j2ljDmDbWMKaNNYxp M5nHtLGGMW2sYUwbaxjTxhrGzBbLX401jGljDWPaWMOYNtYw5hhrkEfO1UHG HLv7ydXQJ8Yc/I2/Ke3vaPY9+xj37H9nnsbf2Wn57/S5/k6f6++GLzQL8oPm QvOg+dACaCFlLEILhJZgXYq2DG052kq0ICgYawi0BloLrYPWQ6HQRigMCqeM zWgRaFvQIqFtUBTxtkM7sEZDu6EYKBaKJ20CWiKUBKVAqVAaadPRMtFcaFlo h9FyoFwoDzoCFUCF0FGoCCqhjFK0MugY1uNoJ6AK6CTxKtGqoGqoBjpNijq0 eqgBaoKaoRbSnkFrg9qhs1AH1AV1Qz1QLzmfQ+uHBqDz0BA0DI1Ao9AF6CI0 Bo1T7iU0q68y7jWOn8HTvZ6/2/FUwfnPkzZdHtdSrnv66fJ02jylm67s6dJO l2aqOk1Vz+niTZVmqvRvp84Tx383rxXjxlsO3bo/f4srxFt4dd/iavAWV4O3 uBq8xdXgLa4BMl+bFkKLILvlf4s5eG9xP/0W7f1btO1vccf8Fm37W7Ttb3F3 /BZz694ywtDCoQgoknhb0aKgnVA0FAPFQvFQAvkloSVDaVAGlAllQTlQLnQE yocKoaNQMVQCHYOOQyegk1AVVA3VQqeheqgBaoKaoVaoHToLdUI9UC90DuqH zkOD0DA0Al2ALkJj0Dh0ib+W1RIuMHeC8fSrukFZ3204f0F2mGeekUsef3Mf VClvcuQ3YV9uln/JWGHIvut8QSu1eDLW7SqHOzyWbd05XXI8AzpPHN2rleIv 7pasPO7XPpvN2wzpsbxk9lvk8XZD+pEvmc+vT8TfpfLY4+FT2utWXDLHCq28 HzRbl0vmnim29pDK42GtDvZ7lkpx2KHlqHxziftVlceE59UZilTdix15+4s7 FesTflPl+5zK41taWrvMU+osVrrlXaPOda15/EOVx0ukc4Ym9fdsdss7QK0x eEmtMShzeHVSavmvW1l7PNise4YgYf2Dx9L1Eu3jt9RZ+IeyWW39P/DF/gNf 7D/wxf6DWdv/4L7gH4Yv2iy0OZAfNJd489DmQwHQAmghtAgKJJfF0BJoKfGW oS1HW4G2EgqCgqEQUqyG1kBroXXQemgDuYRCG6EwKJwUm6DNUATxtqBFQlux bkOLQtuOtgPaCUVDu6EY0saixUHxWBOgRCiJeMlQCpQKpZEiHS0DyoRcUBYp DkPZWHPQcqE8rEegfKgAKiTFUbQiqBgqgUpJUQYdg8qJdxw6gbUC7STaKbRK qAqqhmqgWug0VAfVk3MDWiPUhLUZasF6BmrF2obWDp2FOqBOUnShdaP1QL1Y +6BzWPuhAaznoUFoCBomxQjaKHQBugiNQePQJXKxPbWXtd3aLrNb22Vtt7bL Zptn6baH1tLfo/K+zE5tl/HMWvqN5Oj0yl7WvLKXtf3ZLjP/6LLmg72MD9aK FUQs5/5sl9mf7bLme72szUW6bPpeLbLbrctGGDk653df1laOuMzebJe1vdku G59C/7SpR6kj29dqxbL3Zrus7c12mb3ZLms+1svaOsmX2ZvtsrY322Wzn2HR IfJPM8/Ww0p/BN1eHcLSs8jR9qdaut3eXGZPtsvanmyX2ZPtsuZDvaytkXyZ Pdkua2skX2ZPtsvaPO3L2vyky+zJdlnbk+0ye7Jd1nyml7U92S6bPlOLXoLq ydHpJ72s7cd2mf3YLmv7sV1mP7bLmn/0srYf22X2Y7us+UYvazOvL+MNtdL0 U6JzN7bLxp/Iy+kFvaytkXzZ+AuxJtZ2kHs2TvaEXmb/+Cvc517BE3qFO94r +ESvMOv6iuELzcI6B/KD5hJvHtp8KABaAC2EFpE2EG0x2hK0pWjLoOXQCuKt RAuCgrGGoK1GWwOthdZB66ENUCi5bITCoHBoEyk2QxFYt6BFQluxboOisG6H dkA7iReNthuKwRqLFgfFQwnES0RLQkuGUrCmQmlY09EyoEzIBWWR4jBaNloO lAvlEe8IlA8VQIXQUdIWoRVDJVhL0crQjqGVQ8ehE8SrgE5iPQVVQlXEq4Zq sNZCp6E6qJ4UDWiNUBPUTLwWtDNQK9QGtUNnoQ6oE+oi5260HrRetD7oHNRP vAG089AgNAQNQyOkHUW7AF2ExqBx6BJ0WeQid1xebu64HOhjXDfXO3zGXO/R GbN8zvnM9Q6ZUTBD7rC8UnC791zvEp8yn4s+jTN2zOj2Pid0P6GPeV/wNq67 NGO991yj5nrRkIq2YOJVJnecEG3lB0T/aMZXxFfQEIdfEf8KC+XyB9eJLoph nPaaKcgIPxC/6zZf439f/wNe9xvy+ZRDou07YNx29eiTXn7iOjpLvL9HhCvi dbX48tUpvj0h77f4c+LfA6Lt3yLeg6dP5vElyvfyEe/vMq69fPnaqd6d5a+a NoXnl/z8Vxyvq6cwRApDtOXWa6u4Eu0TfdlPi/OfbHxBXLUOiH9fmC659log Pr/8Mc42rv3zi5+g8doMi71EuCzSyUMfxTI/eT5ninCDCPKn+m4R5N9ZljPH sP7efiK8V4S5IrxPhHkq/XxD3mHJnpYh7oVkHQ1xJ2SI/o4h2gdD9HYMcRdk iL6OYdwkwmIRbhZhiQgfEmGpymeZeP+ICMtFuEWEFSLcKsJKET4qQpAI8jsr vzfybxciwu0irFbp14j3O0VYK8I/i7BOhLtEWC/Cxwyr/bpbhFAR7hFhowj3 ihAmwsdFCFf5bBLvnxBhsyF/L4bovRjGJ0XYIsK/iBApwgOG/Fsa4o7IEL0W Q/w9DdFnsdJvF++fEWGHCJ81rO/e50SIFmGXCLtF2CNCjAh7RYgV4fMixKn0 8eJdfiMSRNgvQqIIB0RIEuFBEZJFOKjiHhLvqSI8JEKaCKLBFz0SQ9wLGaI/ YhhfFCFThEdFcIkQGHhvn2G9jvq0mO/ya1QmvhdSn20E3r9rT/KB26w38VXd ZdpdPvbXzevNKuPulJTkfbsPpRh7A7eFfi5i134BdwUuvv8vomVJOHDb4tm+ DxiHdltZNNy27COzfT9szPRZM2NGwPXrAj+fvGv3LiNmV+DehMDgNcZHg1Z/ NDgo6A4jMOlAcuCn9yW6Yg48dDAwaoux3csr+u49e/YePBBoxOxL3rsn5cBa V+A9WyM337Lfe2FomPHR2H0Ju4zDtxmBWw8EBt++era3r9e8PQcSDu1P9Hq3 /917Uval7n3AiNu7N2XlPXsTwhMOLvNauyLQ55aP+K18YG+CsWu27/4PGxEz VngtXXmP9ydm+3onvnt+5IGHZvvOdvnuTUzZKz7/bOO+xJRl+wM/GuidaGQk 7z24L+aQ12O++wPvPxATmHiba9GhvaleM32u25eyyuv6w++b7Wv4vHvmp+P8 9iXsDZzx7vWBt731WMgT703MWuJ9iziFS2aunHHDzOtvSzkw2/fTe5ckxngt vi/WZ/ldgXe6iuL2Gh+feci1a2/yzH0Hkh97+EDyfYkBMXvTXAmu9fcmHJy5 d7Zv6byg2b73GokxgffFzvYN/HcjruXd23YlHPpxbugX5tzykx0NM2d8dt+B xJXhYQcSjdgDCe9adEfDbN+IvWkp93o9Nv9PRlH4M6s+8cyqR5/5xDMb0t7b ULlx337j/j27Erz3bPhh4N0HAyN3bU78vOseY/HelPDr78oOvH7VPd+8d9ee ONfa6IO7Au9LfOUG467Ax68zXHvuOxhxaP+Gz7r2LNtz4OCuld6bwj8SuNUV G/jhDTs/fM9PfT8+M3BdYJDPDcGrbpi3Yea+lB+/nOO7PDDzVt+5Mw6+a377 rC/PuyclMC/ww8aCbN+7dx/8/fu/+NyewLvXlvm7djd8ruxju8d3uT6e7PXe 6NCwgFleZR981Md3w45jNwa+q+C6Xem/OxC855sZN+1/4MHk370n+gMfufwR 13v6/mn0+se8vz3LddDn0Mea5nzz0Picvnd9+MZnZt2bNrYvJbBs3vsDjBt+ v8zf59F7PmtcF2oM+bgCwpfvnh/Y+uFVX72hYcGulV9P+1XQo+X/fOAGn/ce nx892yunLz3wPUvev8T7Jp9G8XNLE1/9aC/rZ5Mmms4WEaK8rfct3oZ2RQgU WriXrnW5xfk//ZopyotT9avU6pL8KZdqCewgomVmWA2E2dLfoJoH632GeVWw rmHWy87Jx7wQyP97yRbMTJ8vLyuivC3CPkvEDFTxN/hcviKvHhtU+fLlUkG+ pO0GVY6dvzySZYufjfGYshlmI/oPxyc17NcS43kVyWvqSNYrUdVWNHmXrXpK Nuun6tl+eaL+Tr3hstd8kb1cGqlJ1KbDKtCs8s/E+wcdF9nQ4t9EScvN4iBH HNcI9jK/QnaNPNbtGl+yMrIweWm3u0Ly5eU1Ux3Ji8HM6bIwzIjy//ff66yM /X+rsr9Vx7P+W7+/nl6yd+BtPLBZsjzFD/hBhRYJ+zqL7Np7iWt3kLgWBpn/ gkVYI3oQd4peRZD656R7JmnOfyGin/FF43rDOldeXrK34e26bNbNz1D185r4 g9r1lix7QR8y3HtsXpDzc7ofX4vu5Vaep3jy5eWowW+N/8Tr8hm7SP0bZ2Xv VVk5VR9ha5zo/X76QPIXdh844PcF0VPwzQvdddDLOy/okaCgoOCgLWtuu/NW wy9oxsx73mXM857rtSQoKGT1Fx+bnfHxhAO7dyV4tfs9kLRrj1dB2K4En4N7 Z8Xck7x3V8rMXbsT3v/BLcl7Y/L37hF9guvvizG+N3Nr8qHZofemJR0QEect 3Lp3f5K46Kfs3bg3eV/qDO+5BaGHDqYc2L/v+nSfjTOCPZ4v5w9opmiJxMeV v395vjeKn5/cjtdP/O6TBX9ChG9ov/+q5mv7/d/j+qcl6QPbNp3O3/+nn/zo Z+8JnGk1tg1WZmGG20tmknbsm51liYkbv/7lqrTrfnnkj9fcHoSLnmS86NS9 k3s/+ZolvuPyKmEXcNUE4iVv/bb4WGyXf/u0KaZ+yfLl/Yn8oNda/odFaFd/ Grv8d3LvJ1+yfHlK5f3RtZYvXSHunz9k2hRTv2aZbczE6+opDOM+Y+LzT//6 v/F6EOx2FXj71wN5X+rldcJ459cD+b5Bxn/cSj9TKHGOVJPTzzLTZ5Ut9Jaa TFVkWL2ny9PEt9qvGbL/EnOD1X/pUt3Dr4vjf55rtS5W+/VkmrTY3xtP7ZeP cW1fwMmva2uvJjqdU7yu/fs6b9rva8B/w7d5i1nj1b6SJXmvW2jY5APNhGZB fob1vTbEtznV29KsXOxPaf3JyuS7lzyfHzACzL+39+PzzO+HzDXIsM6LXb5d L8n29zHwcIa3U5cv+b1+99x0U7e61pNbf/c8ZcyPmL6cw+bfWSotyi7Pw0wv u28/kT5cxZPfCfm+5jpZboC3dd6utVx5I7CEcs37H++J8qVnSf4uD1heCNsJ YfsgbBeE8kCI/r84H/Kr+v+f+78rV2QbkeZtecNSxPENxsR9mqyn/LwxVybu i6Ru3/9EX7nyOWd81wzr7+irSrj6/Z9nPcihy3dbD3TT5bmVfz8/R/1s3U9V 1tZrjYn7thHH/VyZtKn4b//+b0KPcuiVbvFPqPPyfnVsl1d2+coH7XjSW9ri iCf186q1ledG/o1kr0E2hAsMK3/5kvGXGNb1RdplPRKueP4cO654/hybHfpM h77O7e9j/o3U7zLf8R3eIi57gSKsuX5CK1Ic59A2XPd/9nt/QuQ/U5UxIr53 K65M1P920ccNus76fO8ydose32pD1kd+zoVXJv4Ot4l/ScS7U6S71XBdZ33P Zl2ZOK97xRXfPk+XHH/vjxk7jCKVfqZx0HhYhBOqnCHH33u1yLvlejteiCjl TrPeAV5WHWLMnsYucdHbY+ryd3T+8sTvc5WIY5ff5Sg/RtTY1lscerDITeYj fwe1ju95rDgXG3xWmO3aCYd+0Ngn9A2mXuTQ5edzXW99nhyHvt+4WcTfbLWP Dn2XqJEsV56/OIcuP98Gn7Vm/CiHvkecB7v+Wx2f9w5xxrvU+brJPDOrzXzl 8WJ1tuSx3b6dV9+7ketlx0HvOtjXHvfXlil0+zX5/s/9eqO/fIx8Yf1R5Yxw X8Nribjc7DAixQm3/i0XVd4t/vBrxPsqQUFCC/ovuA+/31j82EyzI5ovr6eu G0zOUSwHacoUy4GTLY444YrlAM0yhx4oWeQpB3pmOnhkhsWy6epSLAeJWhws mzqZj3yZp0vodpMoWd48FimWpzffwTkOdjnyTPKQp8wn2hE/ysFbFMsvQbiH tDLPNSqOrNsyR/yZDj3AoRtWPhM9YJGn/IrLS6Zk2emQXQ0ZX56yEw4uE+yj 8ikS/+PvpdKafy/F8u+VpFj+vdY44gQpln8vP4duOgxc1mc3lE49RVnyhlk2 j/Z56/Oy4gTJ+iiWnyXJweFeE/UJUrzYsLpukuUgX59h8H2QPzG3cr1kfRqs OAHynFdaPD9QvOVbfKPMJ0mxjB+nWH6MaAdHqXzk+dxilTXTUdZsWc81Vpw5 5t/U4vfLzx6gWObjZ6V1/h21v6lHXXwWWe7Ma0xr/63tYy+vBh9rCE8uG3DF eMX0IMshvvPme5+xULT2qwxr3O2kIYdKM71vEl3MZcZ270DjsLfUrjNKRMyb zJiyvyrzOaHyKTOsoT95E3hSxPiwSBNoZIkgG/oJutHMZfMt+41PhsnJZyu8 L4v43maMJUa2t5eIIdO/2ygwNcm+IsVMM19D5Svrtly9B3m/2/AXepZ3nyGH hQPt173mOFVg4IeDhXWj6jzIzy/jLZyIt+fAwX0puwLvCjSHkuR41l7rzMl4 sx35JRzca9ZD6jdNmz5weeCtt5nxFk/EE3VxxFgXGBS4NW5voqiejPcRLZ45 vLU3eZ8a3jJTfERFv838HPIbJd9H1MVnTL6bf7XL4v8Z3l8XdrmdU5r3SnFk fes+a4z6rFH1tz+fvxGohjjtEU5rgPMhIzjIGe8WNS57Tfcthkyvj+euUuO5 9vmTr6M+5u+IoWX5fYpT79Eq3geMB/YmiHrJYcWwA4kpK+85kCBHJmP2pokz fochzuRdMt5NhjXces/ehAR1hu8KlMOzgbcEWiOyu8zvqSw/RpVvnj/D+l4F Gsv4vsvvnPM40FhravKbK8+jXEpXtk5S/7C4/QoU4cPGZvG+2eTZ4vu21vtG w07na06gkvE3ekuL9b7F/EVY6ZaYPFt9T+1j+Wv5sLHB26pLkIi7wlv+/qzj 5eJ4ifdMM98dIk6cCDHeHzJivb2N0A3h6vsQZ/6+vORn9CqwvmP3XTFTOHXr +2X/XeT7VN+L/Ubgf+J7IUq/ciXKsF9e0BXHy/14Kl1+ZTYYE68NhnU3H+4d 7n3F42um8d81/vDtKccfwg/EB+6SMxR8+0J3eR/0TrLGHaKD1gQH3So6Pn7m sMPCScMOjfqwQ8uUww4VVxl2WKIPO1zlc056vY3xxy2PScv/jj/+F71kh+J/ hr9ZlvE/a/zRvTxP8eTrf8jv//b/j//+5V/u6uOPMVuv7ff/k69suP7fhwM3 5t746bqCMx86dC3jj6efufv6outzwvOvtP36iff/8j3/2x78Xzr+FPg2x5/+ t/8h2p9V/1f0P571vrb25528/re9+d/+h0N3L89TPPn6H/L7D/m/4vdf/ov/ /f3/F77+a37/9vyj1R7OxrW83sn8o381JuYffc7YZoQad4v3LUak8Uljk3Gv aHe2Tpve+VpgvP3nb/4sGq1EP4tjjH3m8xPv9DXzHZS/T4Qjyh/sfP4oaNpU nl9+6vzLj3Ot5aeI8E/XWfyfbf/lS5b7ztv/cGX9f6P9n4jx/2r7v/r/w+1/ bpXLy+xpexlBy729828wkuZdHz7DyPI2Yvp9fAxfY6GxLfTuLckH4vfm7Em5 Ts503OA9L/56b9+7vH3f5Z3sNW/mddfPvcF7rjlMWmjM8t60ztt3vuGV7DqY EnMgYe967xuNg+JLGyOaKleCsdeYbcQZH/LeacxYvuPj4my5goKDQlaJszXz Az4+9xi+3nO85oqzZaz+4s3BK4NuDjJuvmftjk/fF7HR+OSnH9hx8OGDKYF7 968K3jFjb/BKIyVh982f3HxvoHH3IXESdqXsW3gg0Yg2vB6/95OxsRv37Tl8 7yeNWJexr8PYk3Xv8673fsPl9di9RvDGsDUbg0LuMW69PTTs7ltvC3LdFnpr 6MZ7b3fdu/Xuu133hLiuC865924jeU/cvtQDBwONmL2BSckHPp/st2v/rh3X ++45sN84lLj34I779+0xkg8cPBCbEviAEbdL/OV2fDLMCLvvnntvu23H/a4H Prly4+bNN3/Jz2vGA4G33bYyKPCT3ru9XgncvG938q4VyQ+7thhe7/HufpeR 9b6sGaHFNxrvcvka9/8lRj519fFyY47X9cZfXNWHXNVl8unOBTfMDPabeWyh a5a4Kwr1ui3rYPTdV/0D/5e+PmnsFlebvcYe8ecMNDaLlnC3aH13ifCwFq/O HCr/uHalCjFW/adaqptFLivF0c1muMdYK0r4tHGfuCKKL4agB8SxNVtD/EaN /aK0YFOxvnjyeyfTpwjaLdJ/UtT+XvEZ7jYOCe2AiL9LvO8TlKh9kvVe9icJ FuWEifZ2o1kj8dUxbhdXvjCRw61yZooIoYJChf1ec86JrPnd4p/1CUKUHswn WaV9EvFdE2dVPkuaKupwUNQsRtQ40EgS+gHj8+ZZlnV0jznXMBaFentdt+Jf Qhc8mXZT6MxbQr1u9MpK2Rq3T07LN+S8/C983Ai4bsP1W41U80nVu41080nV Bq8Dtzd4LWh7d3D3u3+x5EMzHvzFkt9ELQ69+SdLvE6FRx2I39Vw993V4cYH 44eMXY0bsq8P9n7pS9d/ckHBt7YsqGp+YMHtH89939HbN3zm3gW3f2LB7cbv Q7ZueeyBBas+sWBV+IJV94u3LQseXBCzddXskF/dMjtk2ewQ8f9HF+z++NZn vVfNXn3L7NXLZq++X7x9bPbi2eW/+MhsP69j9/h5T7To8v/WzIup2n35+von lj/sZfgZdj/Py7yeW2S/vBi8lYNOnv8ZRvKnZBKXMRFEq5jp5RZETpkH1PNG cpbXDSpfu2v6r6rY6NA/3vHav6TcX12UdPjj7b//hZdxg8jOd4lh9PvYdZH1 f5fhlRPIs1Ifud6ySUuSMcHext/V9f69xDCMH4r3x0TIEuFxw5wjaTwhQrYI XzKsbrq8nueqd/nM8lcVf82whuyfFKFABDnAKR/6f0qEoyI8bViDzzJusXh/ VoQSdVwq3r9hWIPU3xThmNLL1fv/vv77XuKUG96+k3tcrxrWy5Pt79PY3us1 te0j09juVrYZvj6TbA8rm49xn/1DdHvtmuFZ3+fjWf/mdZ51kb23vH1Ul1CR 2lvOU1GNodkWyigytbmIhfPgdufBKudByAzrM9MP2pPiNK+WB9fbuchCZ7zp o7vcRSW85RPvoiNzd+Q94fdty7xtAu6/757ITz4gQGQvw2rxv3tXy46DOG/e M6xyRfG+z6vzKM+rPDGy1XhVaXeqM6vfg8i6vM/N/f8ekal8ml7Wxe7f2N0b 2bsRXRrVoxE9qH179ooOjerP3Bt1z72bV94bda/96e9N27M3Qdbsm6p0WTMv w/rj/FRp96m/7QbD+ZI1C3I7S0J7VLSj3h80zNrJLp/d4zM7fFZ3Mnil6PPZ p9ySZBV+qIqRVbC/ZTeor8+/qPcthvMlq7C5fezW8c/8k9/LbxgVxsbeyPeJ fDcZU58cRNEDtDuAdv/P7v7ZvT+r82fX1DqZsqY/9nHW1Kr2H5X2ZfXFjtZq audhPcqvHa0S6WfPErfxE76RO9Tlyf75yfdob+uSJlJ5bTOuGJvlt1F0SXw8 P78rv+z2c8Puv2b7OeIrU7xSVPGueYZ82OTTexNjDKPeuM4+jtuXsPc6H/Or 47rFT/1SJ61j4vzJTrPIhvkr1h6CM3+92mNh5k9Ye1DL/KFqj66Zv2M3Z0qE nzHLx1mPjN/7Gdf5mEX+Zq7C+zbetfiR21avCQsNCwm9dXXw7UG3htwWFnrr 3atCQ28NvjskJOj2sNDgsOCQL4p7xPsPiA+79y71mWf7bjyw59D+vYkpdzlL +ejS8CD1csQwS/Vgcvof3un6L+5/4au9vizCdsW61+chc32Lt/Oa9w7K/4ph 9Ufk6515nSZe0v8if4JyHZRrLf+ICF9Vbcx14uwfEp96v7oLuk/cP8SaX9Op 7ij01zLl/5HTHa+1/GdE6FLcuuthsyspe5ayuev3cfZ7fcTZHfd4L3avuHP5 z9yLhah7sTsddzCRgsLFGdhmZIrvoiflfsH3mH+xB5RieQ/t99WK7hW0UjRP m8W/m4Uif/yHxPlMEHdEoeJdzm3fIzjMPNPyLi5J/Esw1YmzflA7a4u8Jp8H +fT4qv/UebhN1PP2d3gnd79Z32Qz1gHxrZH31J80p5ZLfa+I8UnxCcPMc3av +UzBDvEeZR5tFuVKvleU6ymfe400Mw95xm4zaxlk5v6/9+//s+7fZcw9Zv0P iZrvFceevxcPiBTy77RX5Ovpe3G/iPFJx2/mat+td/KteJd5Jz3xz8eQHbjr vb3MCeu+4v3t37/bLxnfR7Sm1pG32b+4XvUnJ1q0iVdo8buMOW69hnmGpwcy RNvq7R7zyhX5MKz5ku343XNl8QFT9jNkxpFaxqvF6bpy5Z+8p05z5cpv1MyI AFnEh2bIInwdXRWZ6VYPmX7A2xnryhW57IB8mQ8LfMstm9vNbD7lIZuveztj XbkiZw/KV5Gn2qwys/m0h2xu8nbGunIlRl1koz3VJsTMJspDNjd7O2NdufKs unymearNajObaC2bO0W39sqVp7ydsa5ckUOS8hU+kY18ZsPLq937aoMG/zUv 47+pnHfyCnfUTf7Vg7wn7gWmTvVf/0r7P1hewDR5f8O7YfuDN//+/qrCnd/b +FDGcqnJpiTod78JefPV+E+UbPtu5S2ff/fjtl4Q9G2/fce2biqL/kir4f2T Tbb+yqzHfv3u9d+976uf/kB545dHb7f1dTOqf/e3rjc3P/bGh/6l/4/z77X1 NwfTZtz7+AMf/17VicdfyXj5TVuX7/IhXp9PzPjbF3f+evMzi14tL/7huh6n XToyv7mvsCD05qflM7RXv39Td1XmwxSiOZmhjsMOJMuxSW91eF+sTG4bxW2I YVSRVj4HYRgvEnnrAcN4GetV7t+MGT7bQu/+2zl5O/TpfYm3rf5xpsJVwe96 VJrFbeqLVX6Gj4y3+rs3+4lu6pbkAw/LSfC3PbrPz7jex7qJ/3q0n+HrM+Fi qf+RtFm3ze8/5Ge8y0fdN3WIe68bxMm4MsPL+Ny9qbsSDu1K2Rvwmoh9eKYQ r1yxbpN/dU33b7uCe8FVvwVD+gR6Gftj/PyMmWZZV658LvRzqbuSP7d/9jFR UVX+xFMSL/9AVECp95hPSJTtk1kk7p2cReIckcUMFTnywENf/oVIa9x/8POh B9KejpS3ZPsTN+6UZ0pW/aBc8e7Hl0UuPvYn+UKAqKiRvPdgyoE7N4iPqWdv /onui52km/GX+siyrOXwOn/jZ8zW41iGDVHifBvW8ngH+p8wa3Tbh3fK98Tb Nov3OZNyljHjviyrlXhob+qBn82cVLyp/61V5ixxX8qB3y2flJOy9C8SOakT ZD5+0v8J+49O1H2xW0btU+sl1/Xbm7zvQPI/90/8dSYebvml+NP7GPIBlptG /Ix36xlJOeJTdrIJ+UBy/OZJJ8j6297Xb+difwcekH+lD0VMVFt+KQ4u+Kr8 uOqJmZ13TlTXTCS+t09nTDoFKva5dY685AcJDvMz/Pi0qXuTU+6Ljdj7+V2y 9Lgd4vMpm3yu51N+bj+H4E5H1SJ3JX5+b/esiZ8RDwVtP+WWbtWvI+T3MHnv nl0Je8Sv7/jj8kTKx6huahAGg0erliyX3yvr4a21BfJT794lznzyruv+TXzX jQceTF72q0kn04pePmvSn0QWEPGhic8kfiQHv/kp+Xu6Z7vfpDOmSvpymf3z vf13/JJXn5srfzkfT/6daEgO3PHI96ThnrhdySkfK5cNjOW03fc78d2Wg/9y TMTqxc71ln1Q+Yyh7qH4J2/ZC/6Atze91Zu8fcRHv9n7OmPmNV3oxC2/iOdt Xrq+Lkq5wXjK+3pjroe0c7xl2e8zH3fyMtf9dH8p19Cqqb1GIVObbp/atFoz Rezav/euxRNt8+LZvuF7E5LuEd+0vWkp0gcWJKRte5MPiu/QPQf2J4kv5e6E vauC71q86s5VwcHBIhcR4Z77P37X4jtvv/OOO4LvufvO4DvuvnO1M4gYG7eE 3rU45M6Q0LvvXbXq7jArCP3j99y1OGxjWNhtd98ukgXdcUeoDGFrhGm272fC DxxMCbw3LWWv/BoE3pcYe+Czs32p/213PbJqzargjatDgm69J+zOoFtvu+2e sFvX3Buy6tagoLuD7rnzttuCgm6/+4v/vC303n92fmqRs9n+Ju3as1dkqC4/ dwUHrwgMvnNF4B1Ba1YErrrjthWB22f7Oq8zdwWtCOS/e8SpklccT+IqT2KI J/F2T+Jqd9HD9+Nqr8uii3Gdl7fh/pIdkr4nvjH690/G+X3nyZnGLR9+8TU5 tiBnpb9L2TcY1oovcgaQdD/L9XHlY+Vy5FIOu8jxR7nesBxXlOsLlxnW7ZYc AV2k4jieZptSk52iCT+72fMwyzYurNry7A9f8TLZa/CPs19+xWuKgaQpX9N9 fu9f/fxXJSv/ye/rT4vPv+Lvp+TnD/SyPODSLocT5DrK8j5Prpcs+knmOmJy nV9ZZzlPS35uuW6vXFNZjs/K8yHHYeXnvGDo58Me7JKfYeD97zbzMlSent7F NVK0QRvF/dAe0we510gUZb49f+Sad+B//TcRtqibctEgm96LJOVFeLuvue+g /OcM4237mad7vd3y/6tf/5ny5XiR/C4tS75lz0fuSkret3+v+Z3ctfvgsuRb kd5rS7egBZpLAUTuTTA7EAkPb5Hiys/vizXz23MgKfkWM95BQ1yeze+p/I7K jGTbYw6L7fmd2Sdg5u47eHmJX+AMNZ7s/qDSTYbzd2/dCVg//0D6xeYE9tB9 sbFrzJUQTOtKsy+2co1x4c6qB6co9/8vr/8HUEsBAhQAFAAAAAgAZKDiNt8X MG+rygIAAPwNAAwAAAAAAAAAAAAgALaBAAAAAGNvcHJpbWVzLnhsc1BLBQYA AAAAAQABADoAAADVygIAAAA= ------=_Part_104140_14761177.1183426570634-- Maximilian Hasler has pointed out to me that at sequence A022940 "complement" is not defined. I assume that Clark Kimberling intended {c(k)} to be those positive integers (in order) that do not appear in A022940. So {c(k)} begins: 2,4,6,7,8,10,11,12,13,14,16,17,... Thanks, Leroy Quet Hello Seqfans, I ordered 2 sequence numbers. I didn't receive the confirmation email and on the page with numbers there is the following paragraph: Insufficient disk space; try again later Insufficient disk space; try again later returntosender: cannot select queue for oeis Insufficient disk space; try again later returntosender: cannot select queue for postmaster putbody: write error: No space left on device Error writing control file qfl63ErU4Y019338: No space left on device Is OEIS working? Can I use my numbers? Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com From qq-quet at mindspring.com Tue Jul 3 17:09:05 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Tue, 3 Jul 07 09:09:05 -0600 Subject: Another kind of sequence puzzle In-Reply-To: <721e81490707022117o386e3adau95c08683f9d9aa35@mail.gmail.com> References: <721e81490707022117o386e3adau95c08683f9d9aa35@mail.gmail.com> Message-ID: ------=_Part_114770_16554780.1183484165194 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline Yes Joshua: The only exception ocurrs if r | c or if c | r in the case abs(r-c)=prime; in other words if r and c are multiples of p. 2007/7/2, Joshua Zucker : > > Proof: if r and c are not coprime, then they have a common divisor d, > and then d divides r+c and r-c as well. > > The only possible exceptions would be cases like 6 and 3, where 6-3 is > prime even though 6 and 3 are not coprime. That is, where the common > divisor is a prime equal to r-c. > > --Joshua Zucker > > > On 7/2/07, xordan wrote: > > I understand that the attached file and the folloging words that don't > > coincide with the strict discussion line in seqfan, but they contain > some > > graphic curiosities that I wanted to share with the members of the list. > I > > wait some benevolent comments. Again I notice that the translation of > the > > original in Spanish is made with the help of software: > > > > The attached file (coprimes.zip ) contains one book of calculation > sheets > > that has 5 work sheets that give results (to my view) interesting > related > > with the numbers relatively primes. > > The first sheet shows the numbers (1 to 256) relatively primes to each > other > > that added (arithmetic sum) becomes a prime number as result; the > > second sheet shows the numbers relatively primes whose absolute > difference > > becomes a prime number as result; the third are the conjunction of the > > previous two , that is to say the numbers relatively primes whose their > > algebraic sum gives as result a prime number. The fourth is the same > > graph that it appears in the current page > > http://mathworld.wolfram.com/RelativelyPrime.html > > (RelativelyPrime.gif) and that it shows the primes numbers relatively to > > each other. The fifth work sheet is the conjunction of > RelativelyPrime.gif > > and the previous sheet "abs(r+-c)=prime". - With this it is shown > > graphically that all the numbers (r,c) whose algebraic sum is a prime > number > > (p) they are relatively prime to each other. > > IF r+c=p THEN coprime(r,c)=1.- > > -- > > xordan at hotmail.com > > xordan_co at yahoo.com > > xordan.tom at gmail.com > > > -- xordan at hotmail.com xordan_co at yahoo.com xordan.tom at gmail.com ------=_Part_114770_16554780.1183484165194 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline
Yes Joshua:
The only exception ocurrs if r | c or if c | r in the case abs(r-c)=prime; in other words if r and c are multiples of p. 
 
 
2007/7/2, Joshua Zucker <joshua.zucker at gmail.com>:
Proof: if r and c are not coprime, then they have a common divisor d,
and then d divides r+c and r-c as well.

The only possible exceptions would be cases like 6 and 3, where 6-3 is
prime even though 6 and 3 are not coprime.  That is, where the common
divisor is a prime equal to r-c.

--Joshua Zucker


On 7/2/07, xordan <xordan.tom at gmail.com> wrote:
> I understand that the attached file and the folloging words that  don't
> coincide with the strict discussion line in seqfan, but they contain some
> graphic curiosities that I wanted to share with the members of the list. I
> wait some benevolent comments. Again I notice that the translation of the
> original in Spanish is made with the help of software:
>
> The attached file (coprimes.zip ) contains one book of calculation sheets
> that has 5 work sheets that give results (to my view) interesting related
> with the numbers relatively primes.
> The first sheet shows the numbers (1 to 256) relatively primes to each other
>  that added (arithmetic sum)   becomes  a prime number as  result; the
> second sheet shows the numbers relatively primes  whose absolute difference
> becomes a prime number  as  result; the third are the conjunction of the
> previous two , that is to say the numbers relatively primes  whose their
> algebraic sum  gives as  result a prime  number. The fourth is the same
> graph that it appears in the current page
> http://mathworld.wolfram.com/RelativelyPrime.html
> (RelativelyPrime.gif) and that it shows the primes numbers relatively to
> each other. The fifth work sheet is the conjunction of RelativelyPrime.gif
> and the previous sheet "abs(r+-c)=prime". - With this it is shown
> graphically that all the numbers (r,c) whose algebraic sum is a prime number
> (p) they are relatively prime to each other.
> IF  r+c=p  THEN   coprime(r,c)=1.-
> --
> xordan at hotmail.com
> xordan_co at yahoo.com
> xordan.tom at gmail.com
>



--
xordan at hotmail.com
xordan_co at yahoo.com
xordan.tom at gmail.com ------=_Part_114770_16554780.1183484165194-- Are other people also having problems receiving the automated reply when with this.) I guess we will have to wait until Neil gets back from vacation to submit via this method. Thanks, Leroy Quet From qq-quet at mindspring.com Wed Jul 4 18:16:42 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Wed, 4 Jul 07 10:16:42 -0600 Subject: No automatic replies Message-ID: submitting sequences via the on-line form? (I know Tanya has had problems Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=hX1KQN1K+pYO5sPeSwq56UwvZZWeO781Oy82Q9ptNgrVHSKowB/5zNoD0dzqYuE9Ni80KblIr9aCk5jvv3nuEM89KcohU9r/SGqSoGBOiWfwP3M5a/LxZpkdOzW+HgxF83+lVbIf4nc4mX8ysFmgOfiz8OpvTRuR0S5n7qTnYAk= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=GbzmCPy2wTX81kF7SjwZhLJ3sBq/2DmL6uvGhfraDwUx69hSPFkBTaRbjmlH4g5MyFjz2FowCpt8CRuUDL7OFlVbNwpBob4VdsxpUhJPRDOyTjpdXC2JrQs7V0j4Jyg406cjQCtV/1/kBedhxVpmW4Om1iHWyogcf2HQV/W9vkw= Message-ID: <5542af940707041259v435e0f9alf913531e86f7230c at mail.gmail.com> Date: Wed, 4 Jul 2007 12:59:45 -0700 From: "Jonathan Post" To: "Leroy Quet" , "jonathan post" Subject: Re: No automatic replies Cc: seqfan at ext.jussieu.fr In-Reply-To: MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline References: X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Wed, 04 Jul 2007 21:59:47 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3598/Wed Jul 4 10:35:02 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 468BFC32.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.439 -> 1 X-Miltered: at shiva.jussieu.fr with ID 468BFC32.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! I got no autoreply for this: NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 -109, -42, -26, -18, -14, -12, -10, -9, -8, -7, -6, -6, -5, -5, -5, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1 %N A000001 Floor of constants in De Bruijn's approach to weighted Carleman's inequality. %C A000001 Abstract of Gao: "We study finite sections of weighted Carleman's inequality following the approach of De Bruijn. Similar to the unweighted case, we obtain an asymptotic expression for the optimal constant." %D A000001 N. G. De Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, pp. 505-514. %H A000001 Peng Gao, Finite Sections of Weighted Carleman's Inequality, 30 June 2007, p.1. %F A000001 a(n) = floor(e - (2*(pi^2)*e)/((log(n))^2)). %e A000001 a(2) = -109 because e - (2*(pi^2)*e)/((log(2))^2) ~ -108.9611770171388392925257212314455433803548032218666994709. a(3) = -42 because e - (2*(pi^2)*e)/((log(3))^2) ~ -41.7382232411477828847325690963577817095329948893743754723. a(4) = -26 because e - (2*(pi^2)*e)/((log(4))^2) ~ -25.20158288294042589661121470434688897177076548519170518650. a(30) = -2 because e - (2*(pi^2)*e)/((log(30))^2) ~ -1.92003649778404604739381818236913112747520. a(45) = -1 because e - (2*(pi^2)*e)/((log(45))^2) ~ -0.98456269963010489451493724472555817336322761419762175593. %O A000001 2,1 %K A000001 ,easy,sign, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 03 2007 From jvospost3 at gmail.com Wed Jul 4 22:01:04 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Wed, 4 Jul 2007 13:01:04 -0700 Subject: No automatic replies In-Reply-To: <5542af940707041259v435e0f9alf913531e86f7230c@mail.gmail.com> References: <5542af940707041259v435e0f9alf913531e86f7230c@mail.gmail.com> Message-ID: <5542af940707041301s32f82ca9h2f1e3638a33ddecc@mail.gmail.com> Nor did I get an autoreply for this: COMMENT FROM Jonathan Vos Post RE A122505 %I A122505 %S A122505 24, 24, 95, 1, 143, 1, 262, -213, 453, -261, 739, -833, 1169, -1168, 2172, -2505, 3104, -3581, 5255, -6449 %N A122505 Arises from energy spectrum of three dimensional gravity with negative cosmological constant, in analysis by Edward Witten. %C A122505 a(11)-a(20) given by "GH" at Not Even Wrong Blog; not verified as correct; commenter email unknown. %H A122505 "GH", Strings 2007, thread of "Not Even Wrong" Physics blog, edited by Peter Woit, , thread initiated 25 June 2007, comment by "GH" extending sequence dated 1 July 2007. %O A122505 1 %K A122505 ,sign, %A A122505 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 03 2007 From jvospost3 at gmail.com Wed Jul 4 22:05:27 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Wed, 4 Jul 2007 13:05:27 -0700 Subject: No automatic replies In-Reply-To: <5542af940707041301s32f82ca9h2f1e3638a33ddecc@mail.gmail.com> References: <5542af940707041259v435e0f9alf913531e86f7230c@mail.gmail.com> <5542af940707041301s32f82ca9h2f1e3638a33ddecc@mail.gmail.com> Message-ID: <5542af940707041305r34b54aa2w219a86bc732a103a@mail.gmail.com> For that matter (and I'm not saying that ANY of these are good or important, just that they track to OEIS and the Literature): COMMENT FROM Jonathan Vos Post RE A001399 %I A001399 %S A001399 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341 %N A001399 Number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also multigraphs with 3 nodes and n edges. %H A001399 Andrew N. Norris, Higher derivatives and the inverse derivative of a tensor-valued function of a tensor, 1 July 2007, Equation 3.28, p.10 %F A001399 After initial 1 appears identical to integer part of ((n+4)^2 + 4)/12, which is given Norris as the number of points in, and on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0, and I + 2J = n + 1. %O A001399 1 %K A001399 ,nonn, %A A001399 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 03 2007 From martin_n_fuller at btinternet.com Fri Jul 6 21:34:13 2007 From: martin_n_fuller at btinternet.com (Martin Fuller) Date: Fri, 6 Jul 2007 20:34:13 +0100 (BST) Subject: Help correcting A003294 and A096739 Message-ID: <324718.39838.qm@web86601.mail.ird.yahoo.com> SeqFans, A003294 and A096739 have some obvious errors, but they may also be the same sequence. Can anyone help provide terms and/or decide whether they are duplicates? http://www.research.att.com/~njas/sequences/?q=id:A003294|id:A096739 The first error is that there are missing multiples, e.g. 1765 = 353*5. Then there is a typo in A096739 which has 5129 instead of 5729. It looks like the values have been brought together from several sources but not checked carefully enough. Are there any fourth power sums which involve repeated values? If the answer is proved to be no, then these sequences can be combined. Martin Fuller From maximilian.hasler at gmail.com Sat Jul 7 00:33:01 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Fri, 6 Jul 2007 18:33:01 -0400 Subject: Help correcting A003294 and A096739 In-Reply-To: <324718.39838.qm@web86601.mail.ird.yahoo.com> References: <324718.39838.qm@web86601.mail.ird.yahoo.com> Message-ID: <3c3af2330707061533m3328ccb0vec62ccd85c7db644@mail.gmail.com> > http://www.research.att.com/~njas/sequences/?q=id:A003294|id:A096739 > > The first error is that there are missing multiples, e.g. 1765 = 353*5. I think this is an omission in the definition rather than error in the sequence - I believe in general for such "homogeneous" diophantine equations it is somehow tacitly understood that multiples are not listed as solutions (since any multiple of a solution (A,B,C,D,n) is trivially again a solution, one only gives solutions with gcd(A,B,C,D,n) = 1.) but of course this should be somehow said in the definition. M.H. From jvospost3 at gmail.com Sat Jul 7 00:33:48 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 6 Jul 2007 15:33:48 -0700 Subject: Correction to, comment on, A061789, and primes therein Message-ID: <5542af940707061533l7a0654a7u2ef96454c2cae8db@mail.gmail.com> Correction to A061789: a(4) = 2^2 + 3^3 + 5^5 + 7^7 = 826699 rather than, as shown, 826696. Comment: Primes in A061689 a(2) = 2^2 + 3^3 = 31 is prime a(4) = 2^2 + 3^3 + 5^5 + 7^7 = 826699 is prime a(24) = 2^2 + 3^3 + 5^5 + 7^7 + 11^11 + 13^13 + 17^17 + 19^19 + 23^23 + 29^29 + 31^31 + 37^37 + 41^41 + 43^43 + 47^47 + 53^53 + 59^59 + 61^61 + 67^67 + 71^71 + 73^73 + 79^79 + 83^83 + 89^89 = 313119 843606 266222 723931 946804 611259 287100 533754 507329 247768 328563 715123 287679 948437 264517 293404 303260 795541 448480 275059 086587 161357 892405 477908 284669 463639 709544 036228 659629 is prime A061789 Sum_{k=1..n} p(k)^p(k), p(k) = k-th prime (A000040). 4, 31, 3156, 826696, 285312497310, 303160419089563, 827240565046755853740, 1979246896225360344977719, 20880469979094808259715377888286, 2567686153182091604540923022990731504371755 From djr at nk.ca Sat Jul 7 04:46:18 2007 From: djr at nk.ca (Don Reble) Date: Fri, 06 Jul 2007 20:46:18 -0600 Subject: Help correcting A003294 and A096739 In-Reply-To: <324718.39838.qm@web86601.mail.ird.yahoo.com> References: <324718.39838.qm@web86601.mail.ird.yahoo.com> Message-ID: <468EFE7A.1040400@nk.ca> Seqfans: A003294 goes 353 651 706 1059 1302 1412 1765 1953 2118 2471 2487 2501 2604 2824 2829 3177 3255 3530 3723 3883 3906 3973 4236 4267 4333 4449 4557 4589 4942 4949 4974 5002 5208 5281 5295 5463 5491 5543 5648 5658 5729 5859 6001 6167 6354 6510 6609 6707 6801 7060 7101 7161 7209 7339 7413 7446 7461 7503 7703 7766 7812 7946 8119 8373 8433 8463 8472 8487 8493 8517 8534 8577 8637 8666 8825 8898 9114 9137 9178 9243 9431 9519 9531 9639 9765 9797 9877 9884 9898 9948 and all of these are in A096739. So they still might be the same. One might make a sequence of the primitive terms, where the fourth roots have no common factor. Ah! that's the intent of A039664. Dr. Sloane, do you have the original author? I'll send A003294 and A039664 edits to Dr. Sloane. -- Don Reble djr at nk.ca -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean. From jvospost3 at gmail.com Mon Jul 9 00:31:49 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 8 Jul 2007 15:31:49 -0700 Subject: Correction to, comment on, A061789, and primes therein In-Reply-To: <5542af940707061533l7a0654a7u2ef96454c2cae8db@mail.gmail.com> References: <5542af940707061533l7a0654a7u2ef96454c2cae8db@mail.gmail.com> Message-ID: <5542af940707081531o25ddaca4g5019982b3f02d3d@mail.gmail.com> I've verified, using Alpertron, and double-checking with the WIMS server at U.Nice, that there are no more primes in A061789 through a(78): 2^2 + 3^3 + 5^5 + 7^7 + ... + 397^397 which has 1032 digits. hence, if there is a 4th prime in A061789 it must be a Titanic prime, to use the term coined by Samuel Yates in the 1980s, denoting a prime number of at least 1000 decimal digits. From jvospost3 at gmail.com Tue Jul 10 02:03:30 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Mon, 9 Jul 2007 17:03:30 -0700 Subject: Prime Fermat number-twins (Boris V. Tarasov, arXiv) Message-ID: <5542af940707091703r69cc1411h385ccd4a7919158e@mail.gmail.com> Is it worth submitting this sequence? Prime Fermat number-twins. 5, 7, 13, 19, 65539 Prime numbers of the form (2^(2^n)) - 3 or (2^(2^n)) + 3 The concrete theory of numbers : Problem of simplicity of Fermat number-twins http://arxiv.org/PS_cache/arxiv/pdf/0707/0707.0907v1.pdf Authors: Boris V. Tarasov Comments: 6 pages Subjects: General Mathematics (math.GM) The problem of simplicity of Fermat number-twins f_n^{plus or minus) = 2^(2^n){plus or minus 3} is studied. The question for what n numbers f_n^{plus or minus) are composite is investigated. The factor-identities for numbers of a kind x^2 {plus or minus} k $ are found. a(n) are (sorted) from Tarasov, p.5 If this is worth submitting, what is the next value a(5) asserted by Tarasov to be equal or greater than (2^(2^17)) - 3? From jvospost3 at gmail.com Tue Jul 10 02:10:47 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Mon, 9 Jul 2007 17:10:47 -0700 Subject: Marek Wolf, arXiv: Analog of the Skewes number for twin primes Message-ID: <5542af940707091710o27abe8ft727a16b924a95413@mail.gmail.com> Dear Marek Wolf, I certainly hope that you submit sequence(s) to the Online Encyclopedia of IUnteger Sequences from your fine paper: arXiv:0707.0980 Title: Analog of the Skewes number for twin primes Authors: Marek Wolf Subjects: Number Theory (math.NT) 6 July 2007 Sincerely, Prof. Jonathan Vos Post From zakseidov at yahoo.com Tue Jul 10 15:57:55 2007 From: zakseidov at yahoo.com (zak seidov) Date: Tue, 10 Jul 2007 06:57:55 -0700 (PDT) Subject: Concise Search Result In-Reply-To: <5542af940707041305r34b54aa2w219a86bc732a103a@mail.gmail.com> Message-ID: <93596.85791.qm@web38208.mail.mud.yahoo.com> Dear seqfans, I think that Concise Search Result of the following form would be nice, right? Zak Search: 18, 96, 600, 4320 Result: A001563, A052633, A052655, A094258, A094304, A109074 ____________________________________________________________________________________ Need a vacation? Get great deals to amazing places on Yahoo! Travel. http://travel.yahoo.com/ From ogerard at ext.jussieu.fr Tue Jul 10 18:42:39 2007 From: ogerard at ext.jussieu.fr (=?ISO-8859-1?Q?Olivier_G=E9rard?=) Date: Tue, 10 Jul 2007 18:42:39 +0200 Subject: [seqfan] INTERRUPTION DE SERVICE - MAILING LIST HIATUS Message-ID: <4693B6FF.3010103@ext.jussieu.fr> Dear list members, The machine hosting the seqfan list server will be shut down from Thursday July 12 6pm GMT+2 until Friday July 13 9am GMT+2 (that's the end of tuesday morning till 1 or 2am friday US East time) Please do not send any message during this period as you will not be able to check whether it has been received or not by the mailing list robot. Anyway, they would be distributed only after the servers are rebooted. I will send a mail to the list so that everyone knows operations are back to normal. Thanks in advance for your patience and your discipline in that matter. with my best regards, Olivier GERARD PS: As usual, any inquiries about this matter should be directed to me (olivier.gerard at gmail.com or olivier.gerard at paris7.jussieu.fr) and not to the list. =============================== =============================== Chers abonn?s de la liste seqfan Arr?t temporaire du serveur h?bergeant la liste JEUDI 12 Juillet 18h, heure de Paris, pour les fran?ais, jusqu'au VENDREDI 13 Juillet au matin (probablement 9h) S'il vous plait, n'envoyez pas de message pendant cette p?riode, vous ne pourriez pas savoir si il a ?t? bien re?u, et vous risqueriez de provoquer une confusion ou des doublons. J'enverrai un courier ? la liste quand la situation sera revenue ? la normale. Merci d'avance pour votre patience et votre discipline. Cordialement, Olivier GERARD PS: Comme d'habitude, si vous avez des questions ? ce sujet, ?crivez moi directement (olivier.gerard at gmail.com ou olivier.gerard at paris7.jussieu.fr ) et pas ? la liste. From diana.mecum at gmail.com Wed Jul 11 15:22:53 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Wed, 11 Jul 2007 08:22:53 -0500 Subject: Question related to sequence A071267 Message-ID: Sequence Fans, I am looking at sequence A071267. %I A071267 %S A071267 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, %T A071267 154,165,176,187,198,111,222,666,888,1110 %N A071267 Numbers which can be expressed as the sum of all distinct digit permutations of some number k. %C A071267 222 can be expressed so in two different ways i.e. 222= 200 +020 + 002 as well as 222= 101 +110 +011. Question: find a number which can be so expressed in n different ways. %e A071267 1110 is a member as a sum of all distinct permutations of 104. i.e. 104,140,410, 401,014,041. %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence A072427 A050420 A096922 %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence A071268 A071269 A071270 %K A071267 base,more,nonn %O A071267 1,1 %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 When I try to follow the rule for generating the sequence numbers, I get the following list; 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 121, 132, 143, 154, 165, 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 Can someone explain why my list differs from the original? I am not understanding the hypothesis to generate the original list. Diana M. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From joshua.zucker at gmail.com Wed Jul 11 17:12:36 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Wed, 11 Jul 2007 08:12:36 -0700 Subject: Question related to sequence A071267 In-Reply-To: References: Message-ID: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Hi Diana and all, Murthy's sequences often have errors. Here, among other problems, the definition is "numbers which ..." but then shouldn't they be SORTED? I don't quite agree with your list, either, though. Here's what I think, based purely on brute-force with a computer, using as "seeds" all the numbers up to 100000: 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 29997 which leaves me wondering, for instance, why I got 29997 but not 2997 in there. But now I see it's a nice little bit of combinatorics: 108 goes to 1998 (six permutations, so effectively each spot is (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we get 27000 + 2700 + 270 + 27). So I think my above list of terms are correct. Differences from your list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 and 2775 and 3333 which are missing from your list. (2331 for example comes from 399 -> 399 + 939 + 993, and any list of identical digits maps to itself, so 333 -> 333.) Diana, would you verify that you agree with my list of terms and then if you do please submit the corrected terms for this sequence? Thanks, --Joshua Zucker On 7/11/07, Diana Mecum wrote: > Sequence Fans, > > I am looking at sequence A071267. > > %I A071267 > %S A071267 > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > %T A071267 154,165,176,187,198,111,222,666,888,1110 > %N A071267 Numbers which can be expressed as the sum of all distinct digit > permutations of > some number k. > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 +020 > + 002 as well as > 222= 101 +110 +011. Question: find a number which can be so > expressed > in n different ways. > %e A071267 1110 is a member as a sum of all distinct permutations of 104. > i.e. 104,140,410, > 401,014,041. > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > A072427 A050420 A096922 > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence A071268 > A071269 A071270 > %K A071267 base,more,nonn > %O A071267 1,1 > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > When I try to follow the rule for generating the sequence numbers, I get the > following list; > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > 121, 132, 143, 154, 165, > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, > 1665, 1776, 1887, > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > Can someone explain why my list differs from the original? I am not > understanding the hypothesis to generate the original list. > > Diana M. > > -- > "God made the integers, all else is the work of man." > L. Kronecker, Jahresber. DMV 2, S. 19. From g.resta at iit.cnr.it Wed Jul 11 17:11:28 2007 From: g.resta at iit.cnr.it (Giovanni Resta) Date: Wed, 11 Jul 2007 17:11:28 +0200 Subject: Question related to sequence A071267 In-Reply-To: References: Message-ID: <4694F320.3010100@iit.cnr.it> Diana Mecum wrote: > %I A071267 > %S A071267 > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > %T A071267 154,165,176,187,198,111,222,666,888,1110 > %N A071267 Numbers which can be expressed as the sum of all distinct > digit permutations of > some number k. > When I try to follow the rule for generating the sequence numbers, I > get the following list; > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, > 111, 121, 132, 143, 154, 165, > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, 1665, 1776, 1887, > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > Can someone explain why my list differs from the original? I am not > understanding the hypothesis to generate the original list. First of all, you must bear in mind that a consistent fraction of the sequences submitted by Amarnath Murthy are erroneous. In any case it seems to me that also your list is not consistent with the definition. In particular, considering elements less or equal to 3996, you list lacks the following terms: 333, 1111, 2222, 2331, 2553, 2775, 3333 It is clear that all the repdigits (like 333, 1111, 2222, 3333, and so on) belong to the sequence since, for example, the set of all the distinct permutations of 333 is just 333. (moreover 333 is also produced by the permutations of 300: 300+030+003 = 333). The other missing values are produced as : 2331 = 399 + 993 + 939 2553 = 599+995+959 2775 = 799+997+979 So I think that the correct list, up to 10000, is 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 121, 132, 143, 154, 165, 176, 187, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1111, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2222, 2331, 2442, 2553, 2664, 2775, 2886, 3108, 3330, 3333, 3552, 3774, 3996, 4218, 4440, 4444, 4662, 4884, 5106, 5328, 5555, 6666, 7777, 8888, 9999 while, if we let drop the 'distinct' clause (so for example 11 produces not 11 but 11+11=22), the elements up to 10000 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 222, 444, 666, 888, 1110, 1332, 1554, 1776, 1998, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996, 4218, 4440, 4662, 4884, 5106, 5328, 5550, 5772, 5994, 6666 g. From diana.mecum at gmail.com Wed Jul 11 18:40:30 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Wed, 11 Jul 2007 09:40:30 -0700 Subject: Question related to sequence A071267 In-Reply-To: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: Joshua and Giovanni, Thanks. I hadn't done a comprehensive initial list, having only looked at 200 terms. My question was more directed to why 1, 3, 5, 7 and 9 were not on the list. I will assume that my algorithm is correct, which agrees with your findings. Thank you, Diana M. On 7/11/07, Joshua Zucker wrote: > > Hi Diana and all, > Murthy's sequences often have errors. Here, among other problems, the > definition is "numbers which ..." but then shouldn't they be SORTED? > > I don't quite agree with your list, either, though. Here's what I > think, based purely on brute-force with a computer, using as "seeds" > all the numbers up to 100000: > > 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 > 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 > 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 > 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 > 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 > 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 > 29997 > > which leaves me wondering, for instance, why I got 29997 but not 2997 > in there. But now I see it's a nice little bit of combinatorics: 108 > goes to 1998 (six permutations, so effectively each spot is > (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 > (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we > get 27000 + 2700 + 270 + 27). > > So I think my above list of terms are correct. Differences from your > list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 > and 2775 and 3333 which are missing from your list. (2331 for example > comes from 399 -> 399 + 939 + 993, and any list of identical digits > maps to itself, so 333 -> 333.) > > Diana, would you verify that you agree with my list of terms and then > if you do please submit the corrected terms for this sequence? > > Thanks, > --Joshua Zucker > > > On 7/11/07, Diana Mecum wrote: > > Sequence Fans, > > > > I am looking at sequence A071267. > > > > %I A071267 > > %S A071267 > > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > > %T A071267 154,165,176,187,198,111,222,666,888,1110 > > %N A071267 Numbers which can be expressed as the sum of all distinct > digit > > permutations of > > some number k. > > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 > +020 > > + 002 as well as > > 222= 101 +110 +011. Question: find a number which can be > so > > expressed > > in n different ways. > > %e A071267 1110 is a member as a sum of all distinct permutations of > 104. > > i.e. 104,140,410, > > 401,014,041. > > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > > A072427 A050420 A096922 > > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence > A071268 > > A071269 A071270 > > %K A071267 base,more,nonn > > %O A071267 1,1 > > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > > > When I try to follow the rule for generating the sequence numbers, I get > the > > following list; > > > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > > 121, 132, 143, 154, 165, > > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, > > 1665, 1776, 1887, > > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > > > Can someone explain why my list differs from the original? I am not > > understanding the hypothesis to generate the original list. > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From diana.mecum at gmail.com Wed Jul 11 19:29:42 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Wed, 11 Jul 2007 10:29:42 -0700 Subject: Question related to sequence A071267 In-Reply-To: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: Joshua, Yes, I will double check that your and my terms agree. I will submit the corrected list, as that was my purpose in studying the list in the first place. Thanks for your time. Diana M. On 7/11/07, Joshua Zucker wrote: > > Hi Diana and all, > Murthy's sequences often have errors. Here, among other problems, the > definition is "numbers which ..." but then shouldn't they be SORTED? > > I don't quite agree with your list, either, though. Here's what I > think, based purely on brute-force with a computer, using as "seeds" > all the numbers up to 100000: > > 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 > 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 > 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 > 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 > 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 > 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 > 29997 > > which leaves me wondering, for instance, why I got 29997 but not 2997 > in there. But now I see it's a nice little bit of combinatorics: 108 > goes to 1998 (six permutations, so effectively each spot is > (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 > (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we > get 27000 + 2700 + 270 + 27). > > So I think my above list of terms are correct. Differences from your > list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 > and 2775 and 3333 which are missing from your list. (2331 for example > comes from 399 -> 399 + 939 + 993, and any list of identical digits > maps to itself, so 333 -> 333.) > > Diana, would you verify that you agree with my list of terms and then > if you do please submit the corrected terms for this sequence? > > Thanks, > --Joshua Zucker > > > On 7/11/07, Diana Mecum wrote: > > Sequence Fans, > > > > I am looking at sequence A071267. > > > > %I A071267 > > %S A071267 > > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > > %T A071267 154,165,176,187,198,111,222,666,888,1110 > > %N A071267 Numbers which can be expressed as the sum of all distinct > digit > > permutations of > > some number k. > > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 > +020 > > + 002 as well as > > 222= 101 +110 +011. Question: find a number which can be > so > > expressed > > in n different ways. > > %e A071267 1110 is a member as a sum of all distinct permutations of > 104. > > i.e. 104,140,410, > > 401,014,041. > > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > > A072427 A050420 A096922 > > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence > A071268 > > A071269 A071270 > > %K A071267 base,more,nonn > > %O A071267 1,1 > > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > > > When I try to follow the rule for generating the sequence numbers, I get > the > > following list; > > > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > > 121, 132, 143, 154, 165, > > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, > > 1665, 1776, 1887, > > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > > > Can someone explain why my list differs from the original? I am not > > understanding the hypothesis to generate the original list. > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From davidwwilson at comcast.net Thu Jul 12 07:41:32 2007 From: davidwwilson at comcast.net (David Wilson) Date: Thu, 12 Jul 2007 01:41:32 -0400 Subject: Question related to sequence A071267 References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: <000f01c7c447$4deb5920$6501a8c0@yourxhtr8hvc4p> Let f(n) be the sum of all permutes of n. Let s(n) = sum of digits of n. d(n) = number of digits of n. c_n(k) = number of occurences of digit k in n. p(n) = PROD(k = 0..9; c_n(k)!). r(n) = n-digit rep-1 number = (10^n-1)/n. t(n) = ((s(n)(d(n)-1)!)/p(n)). Then f(n) = t(n) r(d(n)). For example, if n = 314159, we get s(n) = 23 d(n) = 6 c_n = (0, 2, 0, 1, 1, 1, 0, 0, 0, 1) p(n) = PROD(k = 0..9; c_n(k)!) = 2 r(d(n)) = r(6) = 111111 t(n) = (23*120)/2 = 1380 and f(314159) = 1380*11111 = 153333180 A combinatorial argument shows that when we add the permutes of n, the same number of each digit will appear in each column of the sum. This means that f(n) = (sum of each column) * (d(n)-digit rep-1 number) = (sum of each column) * r(d(n)) from which we conclude t(n) = sum of each column implying that t(n) is integer and r(d(n)) | f(n). Using this knowledge, we can explore why f(n) = 29997 is insoluble while f(n) = 2997 is not. Let n have d(n) digits. Then n <= 9 r(d(n)) and has at most d(n)! permutes. This means that [1] f(n) <= 9 r(d(n)) d(n)! Suppose f(n) = 29997. We know that r(d(n)) | f(n), and the only rep-1 numbers that divide 29997 are r(1) = 1, r(2) = 11 and r(4) = 1111, implying d(n) = 1, 2 or 4. From [1], d(n) = 1 => f(n) <= 9 d(n) = 2 => f(n) <= 198 d(n) = 4 => f(n) <= 239976 Given f(n) = 29997, we must have d(n) = 4 and r(d(n)) = 1111. This means that t(n) = f(n)/r(d(n)) = 29997/1111 = 27. so that ((s(n)(d(n)-1)!)/p(n)) = 27. Since d(n) = 4, we have 6 s(n)/p(n) = 27 => s(n) = 9(p(n)/2). Since p(n) and s(n) are both integer, p(n) must be even to make the right side integer. This means 9 | s(n) <= 9 d(n) = 36. This means that s(n) = 9, 18, 27 or 36. Suppose s(n) = 9. Then p(n) = 2. By the definition of p(n), p(n) = 2 iff exactly one digit appears twice in n and all others once (or not at all). So we are looking for a 4-digit n with a single repeated digit and digit sum 9. Many such numbers exist, 1008 being the smallest, and indeed f(1008) = 29997. But now look at f(n) = 2997. Following similar logic to the above, we find that d(n) = 3 and t(n) = 27 giving ((s(n)(d(n)-1)!)/p(n)) = 27 => 2 s(n)/p(n) = 27 => s(n) = 27(p(n)/2). Again, p(n) must be even, so 27 | s(n). But s(n) <= 9 d(n) = 27, so s(n) = 27 forcing n = 999 and f(n) = 999. Hence f(n) = 2997 is insoluble. -------------- next part -------------- An HTML attachment was scrubbed... URL: From njas at research.att.com Thu Jul 12 10:45:29 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Thu, 12 Jul 2007 04:45:29 -0400 (EDT) Subject: 3 seqs that should be the same but are not In-Reply-To: <200707120845.l6C8jTGh29153108@fry.research.att.com> References: <200707120845.l6C8jTGh29153108@fry.research.att.com> Message-ID: <200707120845.l6C8jTGh29153108@fry.research.att.com> Why should "surface area" (A074457) equal "volume" (A087300)? From DWCantrell at sigmaxi.net Thu Jul 12 15:01:07 2007 From: DWCantrell at sigmaxi.net (David W. Cantrell) Date: Thu, 12 Jul 2007 14:01:07 +0100 Subject: 3 seqs that should be the same but are not References: <200707120845.l6C8jTGh29153108@fry.research.att.com> <5542af940707120512v585336e2vb67179da5f641008@mail.gmail.com> Message-ID: <001501c7c484$b79a7a30$25933e44@Dell> ----- Original Message ----- From: "Jonathan Post" To: Cc: ; ; ; "jonathan post" Sent: Thursday, July 12, 2007 13:12 Subject: Re: 3 seqs that should be the same but are not > Why should "surface area" (A074457) equal "volume" (A087300)? They're not the same constant, but the constant given in A074457 is simply 2 more than the constant given in A087300. Both entries should mention that, I think. There are also two errors in the title of A087300. It should read: Decimal expansion of value of d for which volume of d-dimensional unit ball is maximized. [Note that it is necessary to specify that it's a _unit_ ball.] David From DWCantrell at sigmaxi.net Thu Jul 12 16:05:33 2007 From: DWCantrell at sigmaxi.net (David W. Cantrell) Date: Thu, 12 Jul 2007 15:05:33 +0100 Subject: 3 seqs that should be the same but are not References: <181140.23791.qm@web86606.mail.ukl.yahoo.com> Message-ID: <001001c7c48d$b81894c0$25933e44@Dell> Martin, Concerning your question "Can someone explain why the dimension with maximum surface area is exactly 2 more than the dimension with maximum volume?": On a "mechanical" level, explaining why is trivial. If we let invdig denote the appropriate inverse of the digamma function, then we can solve the required transcendental equations to obtain 2 invdig(log(pi)) and 2 invdig(log(pi)) + 2. But you were probably wanting something deeper, and I'm not sure what that is. David ----- Original Message ----- From: "Martin Fuller" To: "David W. Cantrell" ; "Jonathan Post" ; Cc: ; ; ; "jonathan post" Sent: Thursday, July 12, 2007 14:53 Subject: Re: 3 seqs that should be the same but are not > A074455 and A087300 should be the same: A074455 has the right > description and > came first, A087300 has the right values. > > I get a different value to OEIS for A074457 as well as for A074455. > > See below for the current values and my calculations in PARI. The > PARI code > gives the same value as A087300 and is consistent when increasing > the > precision, so I think it's right. > > Martin Fuller > > PS Can someone explain why the dimension with maximum surface area > is exactly 2 > more than the dimension with maximum volume? > > PPS All these constants are based on geometers dimension which is > one more than > topologists dimension (see the comments at MathWorld and compare > with the > formulae at PlanetMath > http://planetmath.org/encyclopedia/VolumeOfTheNSphere.html) > > OEIS > A087300 > 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926 > A074455 > 5.25694640486057678013283838869076923661901723718321485750987966544135040807732427416016036408330066793834 > A074457 > 7.25694640486057678013283838869076923661901723718321485750987966581295771725141939748631782716397233020121 > A074454 > 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 > A074456 > 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 > > PARI/GP > A074455 > 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 > A074457 > 7.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 > A074454 > 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 > A074456 > 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 > > /* PARI/GP code */ > hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2) > hyperspherevolume(d)=hyperspheresurface(d)/d > > FindMax(fn_x,lo,hi)= > { > local(oldprecision, x, y, z); > oldprecision = default(realprecision); > default(realprecision, oldprecision+10); > > while (hi-lo > 10^-oldprecision, > while (1, > z = vector(2, i, lo*(3-i)/3 + hi*i/3); > y = vector(2, i, eval(Str("x = z[" i "]; " fn_x))); > if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break); > default(realprecision, default(realprecision)+10); > ); > if (y[1] < y[2], lo = z[1], hi = z[2]); > ); > > default(realprecision, oldprecision); > (lo + hi) / 2. > } > > default(realprecision, 105); > A074455=FindMax("hyperspherevolume(x)", 1, 9) > A074457=FindMax("hyperspheresurface(x)", 1, 9) > A074454=hyperspherevolume(A074455) > A074456=hyperspheresurface(A074457) > /* PARI/GP code ends */ > > --- "David W. Cantrell" wrote: > >> ----- Original Message ----- >> From: "Jonathan Post" >> To: >> Cc: ; ; ; >> "jonathan post" >> Sent: Thursday, July 12, 2007 13:12 >> Subject: Re: 3 seqs that should be the same but are not >> >> >> > Why should "surface area" (A074457) equal "volume" (A087300)? >> >> They're not the same constant, but the constant given in A074457 is >> simply 2 more than the constant given in A087300. Both entries >> should >> mention that, I think. >> >> There are also two errors in the title of A087300. It should read: >> Decimal expansion of value of d for which volume of d-dimensional >> unit >> ball is maximized. >> [Note that it is necessary to specify that it's a _unit_ ball.] >> >> David >> >> From diana.mecum at gmail.com Thu Jul 12 16:36:00 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Thu, 12 Jul 2007 09:36:00 -0500 Subject: Question related to sequence A071267 In-Reply-To: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: Joshua, Performing permutations on numbers up to 100,000 gave me the following numbers to add to sequence A071267. I will add these to the sequence. Diana M. 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 121, 132, 143, 154, 165, 176, 187, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1111, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2222, 2331, 2442, 2553, 2664, 2775, 2886, 3108, 3330, 3333, 3552, 3774, 3996, 4218, 4440, 4444, 4662, 4884, 5106, 5328, 5555, 6666, 7777, 8888, 9999, 11110, 11111, 12221, 13332, 14443, 15554, 16665, 17776, 18887, 19998, 21109, 22220, 22222, 23331, 24442, 25553, 26664, 27775, 28886, 29997, 31108, 32219, 33330, 33333, 34441, 35552, 36663, 37774, 38885, 39996, 43329, 44444, 46662, 49995, 53328, 55555, 56661, 59994, 63327, 66660, 66666, 69993, 73326, 76659, 77777, 79992, 83325, 86658, 88888, 89991, 93324, 96657, 99990, 99999, 103323, 106656, 109989, 111110, 111111, 113322, 119988, 122221, 126654, 133320, 133332, 139986, 144443, 146652, 153318, 155554, 159984, 166650, 166665, 173316, 177776, 179982, 186648, 188887, 193314, 199980, 199998, 211109, 222220, 233331, 244442, 255553, 266664, 277775, 288886, 299997, 311108, 322219, 333330, 344441, 355552, 366663, 377774, 388885, 399996, 411107, 422218, 433329, 444440, 455551, 466662, 477773, 488884, 511106, 533328, 555550, 577772, 599994, 622216, 644438, 666660, 688882, 711104, 733326, 755548, 777770, 799992, 822214, 844436, 866658, 888880, 911102, 933324, 955546, 977768, 999990, 1022212, 1066656, 1111100, 1133322, 1155544, 1199988, 1244432, 1266654, 1288876, 1333320, 1377764, 1399986, 1422208, 1466652, 1511096, 1533318, 1555540, 1599984, 1644428, 1666650, 1688872, 1733316, 1777760, 1799982, 1822204, 1866648, 1933314, 1999980, 2066646, 2133312, 2199978, 2266644, 2333310, 2399976, 2466642, 2533308, 2599974, 2666640, 2733306, 2799972, 2933304, 3066636, 3199968, 3333300, 3466632, 3599964, 3733296, 3866628, 3999960, 4133292, 4266624, 4399956, 4533288, 4666620, 4799952, 4933284, 5066616, 5199948, 5333280, 5599944, 5866608, 6133272, 6399936, 6666600, 6933264, 7199928, 7466592, 7733256, 7999920, 8266584, 8533248, 8799912, 9066576, 9333240 On 7/11/07, Joshua Zucker wrote: > > Hi Diana and all, > Murthy's sequences often have errors. Here, among other problems, the > definition is "numbers which ..." but then shouldn't they be SORTED? > > I don't quite agree with your list, either, though. Here's what I > think, based purely on brute-force with a computer, using as "seeds" > all the numbers up to 100000: > > 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 > 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 > 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 > 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 > 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 > 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 > 29997 > > which leaves me wondering, for instance, why I got 29997 but not 2997 > in there. But now I see it's a nice little bit of combinatorics: 108 > goes to 1998 (six permutations, so effectively each spot is > (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 > (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we > get 27000 + 2700 + 270 + 27). > > So I think my above list of terms are correct. Differences from your > list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 > and 2775 and 3333 which are missing from your list. (2331 for example > comes from 399 -> 399 + 939 + 993, and any list of identical digits > maps to itself, so 333 -> 333.) > > Diana, would you verify that you agree with my list of terms and then > if you do please submit the corrected terms for this sequence? > > Thanks, > --Joshua Zucker > > > On 7/11/07, Diana Mecum wrote: > > Sequence Fans, > > > > I am looking at sequence A071267. > > > > %I A071267 > > %S A071267 > > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > > %T A071267 154,165,176,187,198,111,222,666,888,1110 > > %N A071267 Numbers which can be expressed as the sum of all distinct > digit > > permutations of > > some number k. > > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 > +020 > > + 002 as well as > > 222= 101 +110 +011. Question: find a number which can be > so > > expressed > > in n different ways. > > %e A071267 1110 is a member as a sum of all distinct permutations of > 104. > > i.e. 104,140,410, > > 401,014,041. > > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > > A072427 A050420 A096922 > > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence > A071268 > > A071269 A071270 > > %K A071267 base,more,nonn > > %O A071267 1,1 > > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > > > When I try to follow the rule for generating the sequence numbers, I get > the > > following list; > > > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > > 121, 132, 143, 154, 165, > > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, > > 1665, 1776, 1887, > > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > > > Can someone explain why my list differs from the original? I am not > > understanding the hypothesis to generate the original list. > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From martin_n_fuller at btinternet.com Thu Jul 12 15:53:02 2007 From: martin_n_fuller at btinternet.com (Martin Fuller) Date: Thu, 12 Jul 2007 14:53:02 +0100 (BST) Subject: 3 seqs that should be the same but are not In-Reply-To: <001501c7c484$b79a7a30$25933e44@Dell> Message-ID: <181140.23791.qm@web86606.mail.ukl.yahoo.com> A074455 and A087300 should be the same: A074455 has the right description and came first, A087300 has the right values. I get a different value to OEIS for A074457 as well as for A074455. See below for the current values and my calculations in PARI. The PARI code gives the same value as A087300 and is consistent when increasing the precision, so I think it's right. Martin Fuller PS Can someone explain why the dimension with maximum surface area is exactly 2 more than the dimension with maximum volume? PPS All these constants are based on geometers dimension which is one more than topologists dimension (see the comments at MathWorld and compare with the formulae at PlanetMath http://planetmath.org/encyclopedia/VolumeOfTheNSphere.html) OEIS A087300 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926 A074455 5.25694640486057678013283838869076923661901723718321485750987966544135040807732427416016036408330066793834 A074457 7.25694640486057678013283838869076923661901723718321485750987966581295771725141939748631782716397233020121 A074454 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 A074456 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 PARI/GP A074455 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 A074457 7.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 A074454 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 A074456 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 /* PARI/GP code */ hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2) hyperspherevolume(d)=hyperspheresurface(d)/d FindMax(fn_x,lo,hi)= { local(oldprecision, x, y, z); oldprecision = default(realprecision); default(realprecision, oldprecision+10); while (hi-lo > 10^-oldprecision, while (1, z = vector(2, i, lo*(3-i)/3 + hi*i/3); y = vector(2, i, eval(Str("x = z[" i "]; " fn_x))); if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break); default(realprecision, default(realprecision)+10); ); if (y[1] < y[2], lo = z[1], hi = z[2]); ); default(realprecision, oldprecision); (lo + hi) / 2. } default(realprecision, 105); A074455=FindMax("hyperspherevolume(x)", 1, 9) A074457=FindMax("hyperspheresurface(x)", 1, 9) A074454=hyperspherevolume(A074455) A074456=hyperspheresurface(A074457) /* PARI/GP code ends */ --- "David W. Cantrell" wrote: > ----- Original Message ----- > From: "Jonathan Post" > To: > Cc: ; ; ; > "jonathan post" > Sent: Thursday, July 12, 2007 13:12 > Subject: Re: 3 seqs that should be the same but are not > > > > Why should "surface area" (A074457) equal "volume" (A087300)? > > They're not the same constant, but the constant given in A074457 is > simply 2 more than the constant given in A087300. Both entries should > mention that, I think. > > There are also two errors in the title of A087300. It should read: > Decimal expansion of value of d for which volume of d-dimensional unit > ball is maximized. > [Note that it is necessary to specify that it's a _unit_ ball.] > > David > > From maximilian.hasler at gmail.com Fri Jul 13 04:16:00 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Thu, 12 Jul 2007 22:16:00 -0400 Subject: link to 3n+1 ? Message-ID: <3c3af2330707121916p1f22271bxb9b1a6eac4a04415@mail.gmail.com> %I A001281 %S A001281 2,1,8,2,14,3,20,4,26,5,32,6,38,7,44,8,50,9,56,10,62,11,68,12,74,13,80, %N A001281 Image of n under n->n/2 if n even, n->3n-1 if n odd. %Y A001281 Cf. A037082. I may be wrong but at first glance, the xref given in this record refers to something completely unrelated(?) (Primes of the form n!!! + 1), shouldn't it rather refer to A006370 Image of n under the `3x+1' map. or the like? (I could not spot an obvious typo comparing with id's at http://www.research.att.com/~njas/sequences/Sindx_3.html#3x1 On that token, %S A008908 1,2,8,3,6,9,17,4,20,7,15,10,10,18,18 %N A008908 Number of halving and tripling steps to reach 1 in `3x+1' problem. %Y A008908 a(n) = A006577(n) + 1. seems inconsistent with %S A006577 0,1,7,2,5,8,16,3,19,6,14,9,9,17,17,4,12, %N A006577 Number of halving and tripling steps to reach 1 in `3x+1' problem. (the %N should not be identical if values differ) M.H. I've now added all the sequences that were submitted to this point in time, including those that were "lost". [The "lost" ones have numbers in the range A130707 - A130742. There may be some duplicates there - let me know if you notice any. I checked, but not very thoroughly. Getting the "lost" ones out of the log files was a lot of work.] The next project is to process "Comments". There are about 500, In the meantime, please remember that the OEIS is on vacation. Neil From njas at research.att.com Fri Jul 13 16:12:16 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Fri, 13 Jul 2007 10:12:16 -0400 (EDT) Subject: OEIS status report Message-ID: <200707131412.l6DECGEp29694119@fry.research.att.com> so this will take a while. Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:sender:to:subject:mime-version:content-type:content-transfer-encoding:content-disposition:x-google-sender-auth; b=qdPYuyUuQhKVUStrOYnlXixl4Ap3QXBtuGKnnG6fbogZ8DVHNqRQpB/alK2ADjQ5D5YCsRL5t5uIw84xyNf/ZlWcmjrhbJ5BR1tAlvAOZF2u4e3vUV0IPGL86V9aB/WAGfsmFvcxQbKaaSVD393q43jHCt2oVzqJLnvFE+BI18I= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:sender:to:subject:mime-version:content-type:content-transfer-encoding:content-disposition:x-google-sender-auth; b=l09LSianrNizqw5RAw//cKLCTVBLDow10kBCr4QlYM6RskHB9mxNkR7BPpSp2w7jBMGMFgTWzqg3IW5r7YbDVQvHuYpMMzccpg/E5/VcmOeQzOcKrOAvwfhyHzVbpjyW2wwtr2yeW/M0QUUYb6LzTgf9yGgQzWYNiit+sgGdagg= Message-ID: <335cf8920707131046v25a23917s3adf511e259b60c at mail.gmail.com> Date: Fri, 13 Jul 2007 19:46:07 +0200 From: "Olivier Gerard" Sender: olivier.gerard at gmail.com To: seqfan at ext.jussieu.fr Subject: [seqfan] Online again MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Disposition: inline X-Google-Sender-Auth: f5ec4764b636ff85 X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Fri, 13 Jul 2007 19:46:09 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3661/Fri Jul 13 19:18:05 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 4697BA61.000 on shiva.jussieu.fr : j-chkmail score : XX : 0/50 2 0.319 -> 2 X-Miltered: at shiva.jussieu.fr with ID 4697BA61.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Content-Transfer-Encoding: 8bit X-MIME-Autoconverted: from base64 to 8bit by idf.ext.jussieu.fr id l6DHk9bN055271 Dear Members, As the last few messages have proven, the mailing listserver for SeqFan is up again and in good condition. Have a pleasant day. Olivier GERARD ==================================== Chers abonn??s de la liste seqfan, Comme les quelques messages r??cents l'ont montr??,le syst??me informatique de notre liste de discussionest de nouveau op??rationnel. A tous une bonne journ??e, Olivier GERARD From nholmes at leven.comp.utas.edu.au Sat Jul 14 13:38:18 2007 From: nholmes at leven.comp.utas.edu.au (Neville Holmes) Date: Sat, 14 Jul 2007 21:38:18 +1000 (EST) Subject: A008776 and A025192 Duplicates ? Message-ID: <20070714113818.9533E106B5@leven.comp.utas.edu.au> A008776 and A025192 look the same to me. Am I missing something ? ------------------------------------------------------------------------- Neville Holmes E-mail: Neville.Holmes at utas.edu.au School of Computing Phone : +61 363 243 393 or (03) 63 243 393 University of Tasmania Fax : +61 363 243 368 or (03) 63 243 368 Locked Bag 1-359 Launceston 7250 --------------------------------------- Neville, They are not quite the same - one has an initial 1. The relation between them is explicitly mentioned in the entries. Neil From njas at research.att.com Sat Jul 14 15:28:12 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sat, 14 Jul 2007 09:28:12 -0400 (EDT) Subject: A008776 and A025192 Duplicates ? Message-ID: <200707141328.l6EDSCSj27853097@fry.research.att.com> A124502 is essentially the same as A108458? http://www.research.att.com/~njas/sequences/A108458 http://www.research.att.com/~njas/sequences/A124502 V. -------------- next part -------------- An HTML attachment was scrubbed... URL: From aomunagi at gmail.com Mon Jul 16 17:52:58 2007 From: aomunagi at gmail.com (Augustine Munagi) Date: Mon, 16 Jul 2007 17:52:58 +0200 Subject: Possible duplicate In-Reply-To: <102c01c7c6d4$a4b992a0$3701f0d5@speedy> References: <102c01c7c6d4$a4b992a0$3701f0d5@speedy> Message-ID: Hi Seqfans, They should not be the same unless the definition of A108458 is modified. A108458 needs improvement. They are not transposes, even though A108458(n,k)=A124502(n+k,k+1) for fixed k. By definition A108458 is infinite both downwards and to the right while A124502 is finite to the right. On 7/15/07, Vladeta Jovovic wrote: > > > > A124502 is essentially the same as A108458? > > http://www.research.att.com/~njas/sequences/A108458 > > http://www.research.att.com/~njas/sequences/A124502 > > V. From maxale at gmail.com Tue Jul 17 06:20:25 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 16 Jul 2007 21:20:25 -0700 Subject: A091902 is duplicate of A067698 Message-ID: SeqFan A091902 is a duplicate of A067698. They differ only with an extra first term 1 in A091902, which actually should not be there since log(log(n)) in not defined for n=1. A067698 is much developed than A091902, missing only a link to Robin's Theorem. So, I suggest to add a link to Robin's Theorem to A067698 and remove A091902 from OEIS. Max I have recently submitted these sequences, which have already appeared in the database. >%I A131789 >%S A131789 1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,3,1 >%N A131789 a(n) = the length of the nth run of similar consecutive values >in the sequence A000005. (A000005(n) = the number of positive divisors of n.) >%e A131789 Runs of sequence A000005: (1), (2,2), (3), (2), (4), (2), (4), >(3), (4), (2), (6), (2), (4,4), (5), (2), (6), (2), (6), (4,4), (2), (8), >(3),... >%Y A131789 A000005,A131790 >%O A131789 1 >%K A131789 ,more,nonn, >%I A131790 >%S A131790 1,1,10,1,5,1,3,1,5,1 >%N A131790 a(n) = the length of the nth run of similar consecutive values >in the sequence A131789. >%e A131790 Runs of sequence A131789: (1), (2), (1,1,1,1,1,1,1,1,1,1), (2), >(1,1,1,1,1), (2), (1,1,1), (2), (1,1,1,1,1,), (3),... >%Y A131790 A000005,A131789 >%O A131790 1 >%K A131790 ,more,nonn, It seems VERY likely to me that there is no infinite string of 1's, or of anything else, in sequence A131789 (ie. the terms of A131790 are all finite). Can it be PROVED that all terms of A131790 are finite, possibly using Hardy and Wright or some other such reference? A harder question to answer: We can define sequence S(m) = {s(m,n)}, where s(m,n) = the length of the nth run of similar consecutive values in the sequence S(m-1), where S(0) = sequence A000005. (And S(1) = A131789, S(2) = A131790, of course.) Is every term of S(m) finite for every m = positive integer? It seems intuitive obvious that, yes, all terms are finite. But a proof would be harder to produce. Thanks, Leroy Quet From qq-quet at mindspring.com Tue Jul 17 16:45:59 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Tue, 17 Jul 07 08:45:59 -0600 Subject: Lengths Of Runs In The #-Of-Divisors Sequence Message-ID: Just for fun (?): http://www.cetteadressecomportecinquantesignes.com/WordsPosition.htm Best, ?. From joshua.zucker at gmail.com Tue Jul 17 21:44:10 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Tue, 17 Jul 2007 12:44:10 -0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: References: Message-ID: <721e81490707171244r38763dedj89e40b5e5d7bee5b@mail.gmail.com> On 7/17/07, Leroy Quet wrote: > I have recently submitted these sequences, which have already appeared in > the database. Should be easy to extend -- is it easier to post here first, asking someone with a computer to extend them for you, and then submit enough terms to begin with? > It seems VERY likely to me that there is no infinite string of 1's, or of > anything else, in sequence A131789 (ie. the terms of A131790 are all > finite). > > Can it be PROVED that all terms of A131790 are finite, possibly using > Hardy and Wright or some other such reference? No need for Hardy and Wright, just Euclid -- there are infinitely many primes. Plus there are not any consecutive primes after 2. Hence the primes (2s) partition the list into finite chunks. --Joshua Zucker From joshua.zucker at gmail.com Tue Jul 17 21:45:14 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Tue, 17 Jul 2007 12:45:14 -0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: <721e81490707171244r38763dedj89e40b5e5d7bee5b@mail.gmail.com> References: <721e81490707171244r38763dedj89e40b5e5d7bee5b@mail.gmail.com> Message-ID: <721e81490707171245r7865a036ude11b441e53b8ae7@mail.gmail.com> On 7/17/07, Joshua Zucker wrote: > On 7/17/07, Leroy Quet wrote: > > It seems VERY likely to me that there is no infinite string of 1's, or of > > anything else, in sequence A131789 (ie. the terms of A131790 are all > > finite). > > > > Can it be PROVED that all terms of A131790 are finite, possibly using > > Hardy and Wright or some other such reference? > > No need for Hardy and Wright, just Euclid -- there are infinitely many > primes. Plus there are not any consecutive primes after 2. Hence the > primes (2s) partition the list into finite chunks. Wups, I think that's a proof for A131789, not for A131790. --Joshua Hello all, I was looking at A069803 - Smaller of two consecutive palindromic primes: 2, 3, 5, 7, 181, 787, 919 Conjectured to be complete. I am interested in seeing a proof that 919 is actually the largest palindromic prime such that the next prime is palindromic. I checked up to 10^8 with Mathematica coding. Also, it is obvious that the distance from a palindrome n to the next one is more than Sqrt(n/10). It is clear that prime gaps grow slower than that. Looking at the prime gaps sequence A053303, it is easy to prove that 919 is the last number like that up to 10^16. Is there a bound for prime gaps that proves that the gaps are less than Sqrt(n/10) starting from some n? Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com From tanyakh at TanyaKhovanova.com Wed Jul 18 00:12:20 2007 From: tanyakh at TanyaKhovanova.com (Tanya Khovanova) Date: Tue, 17 Jul 2007 15:12:20 -0700 Subject: 919 conjecture In-Reply-To: References: Message-ID: <200707171512.AA1076494578@TanyaKhovanova.com> On 7/17/07, Leroy Quet wrote: > Can it be PROVED that all terms of A131790 are finite, possibly using > Hardy and Wright or some other such reference? It would follow from the statement: There exist infinitely many positive integers k such that both 2k+1 and 3k+1 are prime. I do not have a proof that this statement is true (it may be as hard as twin prime conjecture) but heuristic arguments ala Hardy--Wright suggest that it is ture. Now, if for some k>1 both 2k+1 and 3k+1 are prime then 3(2k+1)=6k+3 and 2(3k+1)=6k+2 both have exactly 4 divisors, implying that A000005(6k+3)=A000005(6k+2)=4 belong to the same run in A000005 and the length of this run is greater than 1. In other words, in A131789 elements greater than 1 appear infinitely often. It is also clear that for each prime p >= 5, A000005(p)=2 forms its own run of length 1 in A000005, implying that in A131789 elements equal 1 appear infinitely often. Therefore, all runs in A131789 are finite and so are elements of A131790. P.S. btw, the sequence of k such that both 2k+1 and 3k+1 are prime seems to be missing in OEIS. It starts with: 2, 6, 14, 20, 26, 36, 50, 54, 74, 90, 116, 140, 146, 174, 200, 204, 210, 224, 230, 270, 284, 306, 330, 336, 350, 354, 384, 404, 410, 426, 440, 476, 510, 516, 554, 564, 596, 600, 624, 644, 650, 704, 714, 726, 740, 746, 834, 846, 894, 930, 944, 950 Regards, Max From franktaw at netscape.net Wed Jul 18 05:21:12 2007 From: franktaw at netscape.net (franktaw at netscape.net) Date: Tue, 17 Jul 2007 23:21:12 -0400 Subject: 919 conjecture In-Reply-To: <200707171512.AA1076494578@TanyaKhovanova.com> References: <200707171512.AA1076494578@TanyaKhovanova.com> Message-ID: <8C99701D3845E00-E70-2A8D@FWM-D43.sysops.aol.com> No. It is an open problem of long standing to show that there is always a prime between n^2 and (n+1)^2. This means that we can't prove that prime gaps are always less than sqrt(n) for n sufficiently large. Franklin T. Adams-Watters -----Original Message----- From: Tanya Khovanova Hello all, I was looking at A069803 - Smaller of two consecutive palindromic primes: 2, 3, 5, 7, 181, 787, 919 Conjectured to be complete. I am interested in seeing a proof that 919 is actually the largest palindromic prime such that the next prime is palindromic. I checked up to 10^8 with Mathematica coding. Also, it is obvious that the distance from a palindrome n to the next one is more than Sqrt(n/10). It is clear that prime gaps grow slower than that. Looking at the prime gaps sequence A053303, it is easy to prove that 919 is the last number like that up to 10^16. Is there a bound for prime gaps that proves that the gaps are less than Sqrt(n/10) starting from some n? Tanya ________________________________________________________________________ Check Out the new free AIM(R) Mail -- Unlimited storage and industry-leading spam and email virus protection. From aomunagi at gmail.com Wed Jul 18 17:16:54 2007 From: aomunagi at gmail.com (Augustine Munagi) Date: Wed, 18 Jul 2007 17:16:54 +0200 Subject: Possible duplicate In-Reply-To: References: <102c01c7c6d4$a4b992a0$3701f0d5@speedy> Message-ID: Hi Seqfan, Additionally, the relation A108458(n,k)=A124502(n+k,k+1) shows that the sequences are related like "multichoose" to "choose". I suggest a merging of the sequences by inserting the definition of A108458 as a comment in A124502 with the above relation. Else A108458 as presently displayed is inaccurate, and indeed leaves us with a duplicate. On 7/16/07, Augustine Munagi wrote: > Hi Seqfans, > > They should not be the same unless the definition of A108458 is > modified. A108458 needs improvement. > They are not transposes, even though A108458(n,k)=A124502(n+k,k+1) for > fixed k. By definition A108458 is infinite both downwards and to the > right while A124502 is finite to the right. > > > > On 7/15/07, Vladeta Jovovic wrote: > > > > > > > > A124502 is essentially the same as A108458? > > > > http://www.research.att.com/~njas/sequences/A108458 > > > > http://www.research.att.com/~njas/sequences/A124502 > > > > V. > From joshua.zucker at gmail.com Wed Jul 18 23:19:32 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Wed, 18 Jul 2007 14:19:32 -0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: References: Message-ID: <721e81490707181419y19dc932fy51af3d71b8b0cf0@mail.gmail.com> On 7/17/07, Leroy Quet wrote: > A harder question to answer: > We can define sequence S(m) = {s(m,n)}, where s(m,n) = the length of the > nth run of similar consecutive values in the sequence S(m-1), where S(0) > = sequence A000005. > (And S(1) = A131789, S(2) = A131790, of course.) > > Is every term of S(m) finite for every m = positive integer? > > It seems intuitive obvious that, yes, all terms are finite. But a proof > would be harder to produce. There seems to be a strongly alternating pattern: Divisor sequence: 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 10 3 6 4 6 2 8 4 8 4 4 2 12 2 4 6 7 4 8 2 6 4 8 2 12 2 4 6 6 4 8 2 10 5 4 2 12 4 4 4 8 2 12 4 6 4 4 4 12 2 6 6 9 Run lengths in divisor sequence: 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 3 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 Run lengths in that: 1 1 10 1 5 1 3 1 5 1 2 1 4 1 11 1 16 1 8 1 5 1 2 1 4 1 10 2 2 1 9 2 4 1 1 2 9 1 11 1 4 1 10 1 10 1 1 1 6 1 1 1 10 1 9 1 7 1 30 1 9 2 1 1 22 1 4 2 8 1 28 1 4 1 4 1 4 1 33 1 3 1 9 1 5 1 26 1 18 1 4 1 5 1 10 1 9 1 3 1 Run lengths in that: 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 And then: 1 25 1 4 1 10 1 1 1 10 1 55 1 15 1 4 1 63 1 3 1 12 1 33 1 5 1 32 1 9 1 7 1 3 1 13 1 56 1 61 1 5 1 103 1 47 1 17 1 13 1 25 1 5 1 5 1 47 1 3 1 21 1 7 1 11 1 1 1 17 1 3 1 1 1 8 1 1 1 5 1 7 1 9 1 2 1 15 1 36 1 5 1 11 1 7 1 1 1 15 And then: 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 And then: 6 1 57 1 3 1 1 1 17 1 63 1 7 1 9 1 101 1 17 1 43 1 13 1 27 1 129 1 37 1 17 1 9 1 39 1 15 1 15 1 45 1 27 1 11 1 3 1 19 1 41 1 5 1 51 1 9 1 47 1 33 1 15 1 35 1 7 1 7 1 15 1 13 1 29 1 53 1 25 1 9 1 23 1 69 1 9 1 5 1 35 1 13 1 9 1 9 1 37 1 And then: 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 And then: 5 1 105 1 3 1 49 1 29 1 5 1 31 1 15 1 9 1 15 1 17 1 5 1 61 1 9 1 1 1 1 1 1 1 13 1 11 1 11 1 41 1 51 1 19 1 73 1 5 1 55 1 31 1 41 1 67 1 133 1 5 1 5 1 85 1 9 1 7 1 61 1 11 1 5 1 1 1 15 1 29 1 And so on, where alternately you get (long strings of 1s with the occasional other number) and (alternately 1s and other numbers, with occasionally 2 or 3 1s in a row). By the way, using the first million terms of A000005, I get only the first 82 terms of S(8), so it'll take some work to explore this any further numerically. I don't think it's at all obvious that this thing won't eventually yield a sequence of all 1s, even if it is intuitively obvious to Leroy Quet, it's sure not obvious to me! --Joshua Zucker PS: I also submitted extensions of A131789 and A131790 as part of this work. Joshua Zucker wrote: >I don't think it's at all obvious that this thing won't eventually >yield a sequence of all 1s, even if it is intuitively obvious to Leroy >Quet, it's sure not obvious to me! I think my use of the phrase "intuitively obvious" is quite an exaggeration. It just seems *likely* to me that the terms of each S(m) are finite. Nothing is really obvious. :) Thanks, Leroy Quet From qq-quet at mindspring.com Wed Jul 18 23:44:20 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Wed, 18 Jul 07 15:44:20 -0600 Subject: Lengths Of Runs In The #-Of-Divisors Sequence Message-ID: This is a multi-part message in MIME format. ------_=_NextPart_001_01C7CA44.3128B80C Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Hello SeqFans, could someone check and compute a hundred terms or so of the seq below? =20 4,6,9,21,22,25,33,39,46,49,51,54,... =20 Integers n whose "ordered concatenation" of all divisors (except 1 and n) i= s a prime. =20 n div. prime 4 -> 1,2,4 -> 2 6 -> 1,2,3,6 -> 23 9 -> 1,3,9 -> 3 21 -> 1,3,7,21 -> 37 22 -> 1,2,11,22 -> 211 25 -> 1,5,25 -> 5 33 -> 1,3,11,33 -> 311 39 -> 1,3,13,39 -> 313 ... 26 is not a member : =20 26 -> 1,2,13,26 -> 213 -> 1,3,71,213 -> 371 -> 1,7,53,371 -> 753 -> 1,3,251= ,753 -> 3251 is prime =20 but 753 will be a member. =20 =20 I like 54: =20 54 -> 1,2,3,6,9,18,27,54 -> 23691827 prime =20 Best, =C9. =20 ----- =20 (I've used Magma to compute the factorization, plus Edwin Clarkk's advice: =20 > [Math-Fun] > > (...) > Use for example the command Divisors(12345678); at this site > > http://magma.maths.usyd.edu.au/calc/ > > and click on evaluate. You will get > > [ 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846, 14593, 29186, 43779, > 87558, 131337, 262674, 685871, 1371742, 2057613, 4115226, 6172839, > 12345678 ] > > Total time: 0.350 seconds, Total memory usage: 6.46MB =20 =20 =20 Please do not send any message during this period as you will not be able to check whether it has been received or not by the mailing list robot. Anyway, they would be distributed only after the servers are rebooted. I will send a mail to the list so that everyone knows operations are back to normal. Thanks in advance for your patience and your discipline in that matter. with my best regards, Olivier GERARD PS: As usual, any inquiries about this matter should be directed to me (olivier.gerard at gmail.com or olivier.gerard at paris7.jussieu.fr) and not to the list. =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D Chers abonn=E9s de la liste seqfan Arr=EAt temporaire du serveur h=E9bergeant la liste JEUDI 12 Juillet 18h, heure de Paris, pour les fran=E7ais, jusqu'au VENDREDI 13 Juillet au matin (probablement 9h) S'il vous plait, n'envoyez pas de message pendant cette p=E9riode, vous ne pourriez pas savoir si il a =E9t=E9 bien re=E7u, et vous risqueriez de provoquer une confusion ou des doublons. J'enverrai un courier =E0 la liste quand la situation sera revenue =E0 la normale. Merci d'avance pour votre patience et votre discipline. Cordialement, Olivier GERARD PS: Comme d'habitude, si vous avez des questions =E0 ce sujet, =E9crivez moi directement (olivier.gerard at gmail.com ou olivier.gerard at paris7.jussieu.fr ) et pas =E0 la liste. ------_=_NextPart_001_01C7CA44.3128B80C Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable [seqfan] INTERRUPTION DE SERVICE - MAILING LIST HIATUS
Hello=20 SeqFans,
could someone check and = compute a=20 hundred terms or so of the seq below?
 
4,6,9,21,22,25,33,39,46,49,51,54,...
 
Integers n whose "o= rdered=20 concatenation" of all divisors (except 1 and n) is a prime.
 
 n   = ; =20 div.         prime
 4 ->=20 1,2,4     ->    2
 6 -> 1,2,3,6&nb= sp; =20 ->   23
 9 -> 1,3,9 = ; =20   ->    3
21 -> 1,3,7,21 = =20 ->   37
22 -> 1,2,11,22 ->=  =20 211
25 -> 1,5,25 &nb= sp; =20 ->    5
33 -> 1,3,11,33 ->=  =20 311
39 -> 1,3,13,39 ->=  =20 313
...
26 is not a member :
 
26 -> 1,2,13,26 ->= 213 ->=20 1,3,71,213 -> 371 -> 1,7,53,371 -> 753 -> 1,3,251,753 -> 325= 1 is=20 prime
 
but 753 will be a=20 member.
 
 
I like 54:
 
54 -> 1,2,3,6,9,18,27= ,54 ->=20 23691827 prime
 
Best,
=C9.
 
-----
 
(I've used Magma to comp= ute the=20 factorization, plus Edwin Clarkk's advice:
 
> [Math-Fun]
>
> (...)
> Use for example the= command=20 Divisors(12345678); at this site
>
>   http://magma.maths.usyd.edu.au/calc/
>
> an= d click=20 on evaluate. You will get
>
> [ 1, 2, 3, 6, 9, 18, 47, 94, 141,= 282,=20 423, 846, 14593, 29186, 43779,
> 87558, 131337, 262674, 685871, 13717= 42,=20 2057613, 4115226, 6172839,
> 12345678 ]
>
> Total time: 0= .350=20 seconds, Total memory usage: 6.46MB

 
 
 
Please do not send= any=20 message during this period as you will
not be able to check whether it h= as=20 been received or not by
the mailing list robot.  Anyway, they would= be=20 distributed
only after the servers are rebooted.

I will send a ma= il to=20 the list so that everyone knows operations
are back to normal.  Tha= nks=20 in advance for your patience and
your discipline in that matter.

= with=20 my best regards,

Olivier GERARD

PS: As usual, any inquiries a= bout=20 this matter should be directed
to me (olivier.gerard at gmail.com or=20 olivier.gerard at paris7.jussieu.fr)
and not to the=20 list.

=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D

Chers=20 abonn=E9s de la liste seqfan

Arr=EAt temporaire du serveur h=E9berge= ant la=20 liste

JEUDI 12 Juillet 18h, heure de Paris, pour les=20 fran=E7ais,

jusqu'au

VENDREDI 13 Juillet au matin (probableme= nt=20 9h)


S'il vous plait, n'envoyez pas de message pendant cette=20 p=E9riode,
vous ne pourriez pas savoir si il a =E9t=E9 bien re=E7u, et v= ous=20 risqueriez
de provoquer une confusion ou des doublons.
J'enverrai un= =20 courier =E0 la liste quand la situation sera revenue
=E0 la normale.
=
Merci=20 d'avance pour votre patience et votre=20 discipline.


Cordialement,

Olivier GERARD


PS: C= omme=20 d'habitude, si vous avez des questions =E0 ce sujet, =E9crivez
moi direc= tement=20 (olivier.gerard at gmail.com ou
olivier.gerard at paris7.jussieu.fr ) et pas = =E0 la=20 liste.



------_=_NextPart_001_01C7CA44.3128B80C-- From Eric.Angelini at kntv.be Thu Jul 19 22:38:44 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Thu, 19 Jul 2007 22:38:44 +0200 Subject: Divisors concatenated shape a prime Message-ID: Sorry for the bad header -- and the old "tail"... I'm not working on my "normal" computer and quite confused :-/ Best, ?. ________________________________ Hello SeqFans, could someone check and compute a hundred terms or so of the seq below? 4,6,9,21,22,25,33,39,46,49,51,54,... Integers n whose "ordered concatenation" of all divisors (except 1 and n) is a prime. n div. prime 4 -> 1,2,4 -> 2 6 -> 1,2,3,6 -> 23 9 -> 1,3,9 -> 3 21 -> 1,3,7,21 -> 37 22 -> 1,2,11,22 -> 211 25 -> 1,5,25 -> 5 33 -> 1,3,11,33 -> 311 39 -> 1,3,13,39 -> 313 ... 26 is not a member : 26 -> 1,2,13,26 -> 213 -> 1,3,71,213 -> 371 -> 1,7,53,371 -> 753 -> 1,3,251,753 -> 3251 is prime but 753 will be a member. I like 54: 54 -> 1,2,3,6,9,18,27,54 -> 23691827 prime Best, ?. ----- (I've used Magma to compute the factorization, plus Edwin Clarkk's advice: > [Math-Fun] > > (...) > Use for example the command Divisors(12345678); at this site > > http://magma.maths.usyd.edu.au/calc/ > > and click on evaluate. You will get > > [ 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846, 14593, 29186, 43779, > 87558, 131337, 262674, 685871, 1371742, 2057613, 4115226, 6172839, > 12345678 ] > > Total time: 0.350 seconds, Total memory usage: 6.46MB -------------- next part -------------- An HTML attachment was scrubbed... URL: From simon.plouffe at gmail.com Thu Jul 19 22:54:57 2007 From: simon.plouffe at gmail.com (Simon Plouffe) Date: Thu, 19 Jul 2007 16:54:57 -0400 Subject: Divisors concatenated shape a prime In-Reply-To: References: Message-ID: <33a322bc0707191354h70440f5amb6693976ff15c9a5@mail.gmail.com> hello I made this simple maple routine : ############################### with(numtheory): for k from 5 to 1e99 do: v0:=divisors(k): nn:=nops(v0): if nn > 3 then v1:=[seq(v0[j],j=2..nn-1)]: v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))): v3:=parse(v2): if isprime(v3) = true then lprint(k,v3) fi: fi: od: ################################# and here is some output from it (see the attachement) ################################# Simon plouffe -------------- next part -------------- 6, 23 21, 37 22, 211 33, 311 39, 313 46, 223 51, 317 54, 23691827 58, 229 78, 236132639 82, 241 93, 331 99, 391133 111, 337 115, 523 133, 719 141, 347 142, 271 147, 372149 153, 391751 154, 2711142277 159, 353 162, 236918275481 166, 283 174, 236295887 177, 359 186, 236316293 187, 1117 189, 379212763 201, 367 205, 541 219, 373 226, 2113 235, 547 237, 379 247, 1319 249, 383 253, 1123 262, 2131 267, 389 274, 2137 286, 211132226143 291, 397 294, 23671421424998147 301, 743 318, 23653106159 319, 1129 327, 3109 333, 3937111 355, 571 358, 2179 366, 23661122183 387, 3943129 391, 1723 402, 23667134201 411, 3137 427, 761 459, 39172751153 478, 2239 489, 3163 501, 3167 502, 2251 505, 5101 511, 773 531, 3959177 535, 5107 538, 2269 543, 3181 562, 2281 565, 5113 573, 3191 583, 1153 586, 2293 589, 1931 598, 213232646299 606, 236101202303 622, 2311 639, 3971213 654, 236109218327 657, 3973219 658, 27144794329 679, 797 687, 3229 694, 2347 697, 1741 711, 3979237 721, 7103 726, 23611223366121242363 747, 3983249 753, 3251 759, 311233369253 763, 7109 766, 2383 771, 3257 778, 2389 781, 1171 793, 1361 799, 1747 801, 3989267 813, 3271 822, 236137274411 835, 5167 871, 1367 889, 7127 895, 5179 901, 1753 921, 3307 931, 71949133 934, 2467 939, 3313 943, 2341 949, 1373 957, 311293387319 985, 5197 993, 3331 994, 271471142497 1003, 1759 1006, 2503 1017, 39113339 1041, 3347 1042, 2521 1057, 7151 1077, 3359 1078, 27111422497798154539 1081, 2347 1083, 31957361 1114, 2557 1119, 3373 1135, 5227 1143, 39127381 1147, 3137 1165, 5233 1167, 3389 1186, 2593 1234, 2617 1243, 11113 1254, 23611192233385766114209418627 1294, 2647 1299, 3433 1318, 2659 1339, 13103 1341, 39149447 1347, 3449 1351, 7193 1354, 2677 1362, 236227454681 1366, 2683 1371, 3457 1383, 3461 1387, 1973 1389, 3463 1401, 3467 1405, 5281 1411, 1783 1417, 13109 1426, 223314662713 1435, 573541205287 1438, 2719 1441, 11131 1467, 39163489 1473, 3491 1474, 2112267134737 1477, 7211 1497, 3499 1501, 1979 1513, 1789 1518, 23611222333466669138253506759 1537, 2953 1551, 3113347141517 1581, 317315193527 1594, 2797 1603, 7229 1611, 39179537 1615, 517198595323 1623, 3541 1629, 39181543 1633, 2371 1639, 11149 1641, 3547 1645, 573547235329 1651, 13127 1666, 271417344998119238833 1671, 3557 1686, 236281562843 1713, 3571 1714, 2857 1719, 39191573 1735, 5347 1749, 3113353159583 1774, 2887 1779, 3593 1798, 229315862899 1819, 17107 1821, 3607 1839, 3613 1843, 1997 1851, 3617 1855, 573553265371 1893, 3631 1899, 39211633 1902, 236317634951 1903, 11173 1906, 2953 1909, 2383 1929, 3643 1942, 2971 1963, 13151 1977, 3659 1981, 7283 2001, 323296987667 2013, 3113361183671 2019, 3673 2026, 21013 2031, 3677 2034, 2369181132263396781017 2038, 21019 2043, 39227681 2047, 2389 2059, 2971 2062, 21031 2073, 3691 2077, 3167 2094, 2363496981047 2095, 5419 2103, 3701 2119, 13163 2122, 21061 2127, 3709 2149, 7307 2155, 5431 2157, 3719 2167, 11197 2169, 39241723 2173, 4153 2181, 3727 2199, 3733 2214, 236918274154821232463697381107 2215, 5443 2217, 3739 2245, 5449 2257, 3761 2259, 39251753 2283, 3761 2307, 3769 2317, 7331 2326, 21163 2329, 17137 2343, 3113371213781 2374, 21187 2386, 21193 2391, 3797 2395, 5479 2419, 4159 2421, 39269807 2442, 2361122333766741112224078141221 2443, 7349 2463, 3821 2469, 3823 2479, 3767 2514, 2364198381257 2515, 5503 2527, 719133361 2529, 39281843 2554, 21277 2559, 3853 2566, 21283 2586, 2364318621293 2589, 3863 2605, 5521 2629, 11239 2631, 3877 2637, 39293879 2638, 21319 2641, 19139 2643, 3881 2679, 3194757141893 2721, 3907 2733, 3911 2742, 2364579141371 2757, 3919 2761, 11251 2763, 39307921 2773, 4759 2785, 5557 2787, 3929 2815, 5563 2827, 11257 2839, 17167 2841, 3947 2845, 5569 2866, 21433 2883, 33193961 2901, 3967 2914, 2314762941457 2922, 2364879741461 2923, 3779 2929, 29101 2962, 21481 2967, 3234369129989 2974, 21487 2977, 13229 2983, 19157 2986, 21493 2994, 2364999981497 2998, 21499 3013, 23131 3031, 7433 3039, 31013 3046, 21523 3057, 31019 3097, 19163 3099, 31033 3115, 573589445623 3117, 31039 3118, 21559 3123, 393471041 3133, 13241 3139, 4373 3141, 393491047 3153, 31051 3154, 21938831661577 3178, 27142274541589 3189, 31063 3199, 7457 3202, 21601 3205, 5641 3207, 31069 3226, 21613 3235, 5647 3246, 23654110821623 3247, 17191 3265, 5653 3273, 31091 3286, 23153621061643 3295, 5659 3322, 211221513021661 3333, 311331013031111 3346, 27142394781673 3357, 393731119 3369, 31123 3409, 7487 3415, 5683 3417, 31751672011139 3421, 11311 3439, 19181 3451, 71729119203493 3453, 31151 3459, 31153 3487, 11317 3493, 7499 3505, 5701 3526, 2414382861763 3543, 31181 3573, 393971191 3574, 21787 3579, 31193 3589, 3797 3597, 311331093271199 3609, 394011203 3657, 32353691591219 3661, 7523 3669, 31223 3693, 31231 3711, 31237 3715, 5743 3742, 21871 3747, 31249 3777, 31259 3786, 23663112621893 3787, 7541 3789, 394211263 3799, 29131 3829, 7547 3831, 31277 3841, 23167 3883, 11353 3901, 4783 3921, 31307 3957, 31319 3963, 31321 3973, 29137 3979, 23173 3981, 31327 3987, 394431329 3994, 21997 4006, 22003 4009, 19211 4011, 37211915731337 4039, 7577 4047, 31957712131349 4054, 22027 4063, 17239 4069, 13313 4071, 32359691771357 4074, 23671421429719429158267913582037 4078, 22039 4105, 5821 4126, 22063 4135, 5827 4147, 111329143319377 4165, 5717354985119245595833 4171, 4397 4183, 4789 4195, 5839 4213, 11383 4222, 22111 4249, 7607 4258, 22129 4285, 5857 4303, 13331 4306, 22153 4309, 31139 4342, 213261673342171 4354, 27143116222177 4369, 17257 4381, 13337 4398, 23673314662199 4405, 5881 4429, 43103 4443, 31481 4453, 6173 4458, 23674314862229 4467, 31489 4494, 236714214210721432164274914982247 4501, 7643 4531, 23197 4533, 31511 4546, 22273 4585, 5735131655917 4593, 31531 4623, 32367692011541 4629, 31543 4633, 41113 4653, 39113347991414235171551 4681, 31151 4701, 31567 4711, 7673 4722, 23678715742361 4726, 217341392782363 4749, 31583 4753, 74997679 4762, 22381 4765, 5953 4771, 13367 4803, 31601 4821, 31607 4837, 7691 4843, 29167 4858, 27143476942429 4873, 11443 4881, 31627 4882, 22441 4894, 22447 4923, 395471641 4929, 33153931591643 4941, 392761811835491647 4971, 31657 4981, 17293 4989, 31663 5001, 31667 5002, 24161821222501 5017, 29173 5034, 23683916782517 5062, 22531 5086, 22543 5089, 7727 5097, 31699 5098, 22549 5103, 379212763811892435677291701 5133, 32959871771711 5137, 11467 5143, 37139 5146, 23162831662573 5155, 51031 5161, 13397 5163, 31721 5169, 31723 5191, 29179 5193, 395771731 5206, 219381372742603 5221, 23227 5223, 31741 5242, 22621 5293, 6779 5299, 7757 5305, 51061 5353, 53101 5358, 236193847579411414128289317862679 5371, 41131 5389, 17317 5398, 22699 5401, 11491 5473, 13421 5482, 22741 5511, 311331675011837 5514, 23691918382757 5518, 23162891782759 5533, 11503 5539, 29191 5541, 31847 5542, 217341633262771 5545, 51109 5554, 22777 5593, 71747119329799 5607, 3792163892676238011869 5611, 31181 5619, 31873 5721, 31907 5722, 22861 5746, 2131726341692213384422873 5751, 392771812136391917 5754, 236714214213727441182295919182877 5755, 51151 5761, 7823 5773, 23251 5803, 7829 5823, 396471941 5898, 23698319662949 5917, 6197 5919, 31973 5926, 22963 5941, 13457 5965, 51193 5971, 7853 5983, 31193 5989, 53113 6009, 32003 6019, 13463 6022, 23011 6058, 213262334663029 6081, 32027 6082, 23041 6085, 51217 6087, 32029 6099, 319571073212033 6102, 2369182754113226339678101720343051 6103, 17359 6109, 41149 6139, 7877 6145, 51229 6181, 7883 6187, 23269 6189, 32063 6201, 391339531171594776892067 6207, 32069 6223, 749127889 6226, 211222835663113 6249, 32083 6267, 32089 6286, 27144498983143 6297, 32099 6306, 236105121023153 6309, 397012103 6313, 59107 6331, 13487 6334, 23167 6349, 7907 6354, 236918353706105921183177 6391, 7117783581913 6394, 223461392783197 6406, 23203 6415, 51283 6418, 23209 6423, 32141 6429, 32143 6433, 7919 6439, 47137 6457, 11587 6487, 13499 6493, 43151 6502, 23251 6511, 17383 6522, 236108721743261 6523, 11593 6535, 51307 6538, 27144679343269 6543, 397272181 6558, 236109321863279 6559, 7937 6565, 513651015051313 6601, 72341161287943 6609, 32203 6613, 17389 6639, 32213 6667, 59113 6697, 37181 6706, 27144799583353 6711, 32237 6721, 111347143517611 6727, 731217961 6739, 23293 6742, 23371 6753, 32251 6774, 236112922583387 6787, 11617 6799, 13523 6805, 51361 6811, 749139973 6817, 17401 6862, 24773941463431 6891, 32297 6895, 57351979851379 6901, 67103 6903, 391339591171775317672301 6913, 31223 6921, 397692307 6927, 32309 6978, 236116323263489 7003, 47149 7006, 231621132263503 7023, 32341 7078, 23539 7087, 19373 7089, 317511394172363 7113, 32371 7114, 23557 7123, 17419 7131, 32377 7135, 51427 7143, 32381 7153, 23311 7162, 23581 7186, 23593 7195, 51439 7201, 19379 7233, 32411 7246, 23623 7269, 32423 7273, 71039 7279, 29251 7323, 32441 7327, 17431 7339, 41179 7342, 23671 7354, 23677 7363, 37199 7387, 8389 7401, 32467 7405, 51481 7413, 372135310592471 7435, 51487 7438, 23719 7447, 11677 7467, 319571313932489 7483, 71069 7501, 13577 7509, 32503 7522, 23761 7531, 17443 7534, 23767 7542, 236918419838125725143771 7555, 51511 7593, 32531 7614, 2369182747548194141162282423846126925383807 7633, 17449 7666, 23833 7693, 7491571099 7711, 11701 7713, 398572571 7731, 398592577 7737, 32579 7777, 711771017071111 7801, 29269 7822, 23911 7827, 32609 7834, 23917 7858, 23929 7863, 32621 7881, 337711112132627 7893, 398772631 7897, 53149 7899, 32633 7903, 71129 7909, 11719 7929, 398812643 7939, 17467 7941, 32647 7947, 398832649 7969, 13613 7974, 236918443886132926583987 7986, 23611223366121242363726133126623993 7999, 19421 8002, 24001 8014, 24007 8035, 51607 8038, 24019 8047, 13619 8061, 32687 8065, 51613 8071, 71153 8074, 211223677344037 8079, 32693 8086, 213263116224043 8091, 39293187932612798992697 8098, 24049 8121, 32707 8137, 79103 8139, 32713 8157, 32719 8173, 11743 8182, 24091 8185, 51637 8197, 71171 8227, 19433 8247, 32749 8251, 37223 8266, 24133 8323, 729412032871189 8347, 17491 8365, 573523911951673 8367, 32789 8383, 83101 8391, 32797 8401, 31271 8403, 32801 8409, 32803 8421, 372140112032807 8458, 24229 8494, 231621372744247 8499, 32833 8502, 23613263978109218327654141728344251 8514, 23691118223343668699129198258387473774946141928384257 8529, 32843 8587, 31277 8605, 51721 8634, 236143928784317 8653, 17509 8659, 71237 8661, 32887 8674, 24337 8683, 19457 8727, 32909 8743, 71249 8746, 24373 8751, 32917 8754, 236145929184377 8782, 24391 8791, 59149 8797, 19463 8815, 541432052151763 8817, 32939 8826, 236147129424413 8842, 24421 8847, 399832949 8871, 32957 8874, 236917182934515887102153174261306493522986147929584437 8907, 32969 8913, 32971 8935, 51787 8962, 24481 8983, 13691 8989, 89101 8997, 32999 9019, 29311 9031, 11821 9034, 24517 9061, 131741221533697 9069, 33023 9082, 219382394784541 9094, 24547 9097, 11827 9111, 33037 9117, 3910133039 9147, 33049 9169, 53173 9211, 61151 9217, 13709 9229, 11839 9238, 231621492984619 9246, 23623466769134138201402154130824623 9249, 33083 9271, 73127 9289, 71327 9303, 372144313293101 9306, 236911182233476694991411982824235178461034155131024653 9307, 41227 9313, 67139 9322, 259791181584661 9339, 311332838493113 9355, 51871 9357, 33119 9382, 24691 9393, 331931013033131 9426, 236157131424713 9466, 24733 9493, 11863 9499, 723591614131357 9517, 31307 9523, 89107 9535, 51907 9543, 33181 9549, 3910613183 9553, 41233 9565, 51913 9573, 33191 9586, 24793 9589, 43223 9598, 24799 9609, 33203 9633, 3131939571692475077413211 9658, 211224398784829 9673, 17569 9693, 392735910773231 9745, 51949 9754, 24877 9757, 11887 9763, 13751 9778, 24889 9793, 71399 9798, 23623466971138142213426163332664899 9819, 3910913273 9838, 24919 9841, 13757 9853, 59167 9865, 51973 9886, 24943 9903, 33301 9913, 23431 9934, 24967 9987, 33329 9991, 97103 9993, 33331 10003, 71429 10029, 33343 10041, 33347 10057, 89113 10063, 29347 10077, 33359 10087, 711771319171441 10135, 52027 10171, 71453 10173, 33391 10174, 25087 10179, 39132729398711726135137778311313393 10183, 17599 10203, 319571795373401 10209, 341831232493403 10239, 33413 10249, 37277 10279, 19541 10294, 25147 10297, 71471 10306, 25153 10311, 372149114733437 10326, 236172134425163 10342, 25171 10345, 52069 10351, 11941 10354, 231621673345177 10359, 3911513453 10371, 33457 10378, 25189 10381, 71483 10383, 33461 10405, 52081 10407, 33469 10422, 23691827541933865791158173734745211 10441, 53197 10447, 31337 10461, 311333179513487 10467, 3911633489 10474, 25237 10483, 11953 10519, 67157 10522, 25261 10537, 41257 10539, 3911713513 10587, 33529 10599, 33533 10606, 25303 10615, 511551939652123 10618, 25309 10641, 33547 10681, 11971 10722, 236178735745361 10726, 231621733465363 10743, 33581 10765, 52153 10777, 13829 10783, 41263 10797, 359611771833599 10807, 101107 10809, 3912013603 10827, 392740112033609 10839, 33613 10843, 71549 10849, 19571 10851, 33617 10869, 33623 10902, 23623466979138158237474181736345451 10906, 27141938418213326628757477915585453 10911, 33637 10914, 236173451102107214321642181936385457 10917, 3912133639 10923, 311333319933641 10927, 7492231561 10942, 25471 10947, 341891232673649 10963, 19577 10971, 3923536915920747712193657 10981, 79139 11007, 3912233669 11029, 41269 11061, 3912293687 11107, 29383 11133, 3912373711 11134, 219382935865567 11163, 3611833721 11166, 236186137225583 11167, 13859 11169, 3917517315321965712413723 11179, 71597 11185, 52237 11203, 17659 11217, 33739 11262, 236187737545631 11278, 25639 11281, 29389 11301, 33767 11307, 33769 11313, 392741912573771 11314, 25657 11326, 271480916185663 11335, 52267 11341, 111031 11358, 2369186311262189337865679 11359, 37307 11371, 83137 11386, 25693 11391, 33797 11401, 13877 11406, 236190138025703 11413, 101113 11434, 25717 11473, 7117714910431639 11479, 13883 11482, 25741 11506, 2112252310465753 11511, 3912793837 11517, 3113334910473839 11521, 41281 11539, 111049 11553, 33851 11581, 37313 11589, 33863 11602, 25801 11611, 17683 11623, 59197 11629, 29401 11637, 392743112933879 11641, 71663 11653, 43271 11667, 33889 11673, 3912973891 11694, 236194938985847 11698, 25849 11707, 23509 11733, 33911 11734, 25867 11749, 31379 11754, 2369186531306195939185877 11769, 33923 11791, 13907 11793, 33931 11797, 47251 11806, 25903 11817, 39133910111730390913133939 11823, 372156316893941 11842, 231621913825921 11851, 71693 11857, 71167 11878, 25939 11893, 71699 11901, 33967 11902, 2112254110825951 11929, 79151 11949, 372156917073983 11962, 25981 11977, 729592034131711 12001, 111091 12057, 34019 12058, 26029 12066, 236201140226033 12106, 26053 12127, 67181 12133, 111103 12169, 43283 12171, 34057 12183, 331931313934061 12187, 71741 12193, 89137 12199, 111109 12226, 26113 12307, 31397 12319, 97127 12327, 372158717614109 12349, 53233 12351, 323691795374117 12381, 34127 12387, 34129 12406, 26203 12418, 271488717746209 12429, 3913814143 12439, 71777 12447, 392746113834149 12453, 372159317794151 12469, 37337 12471, 34157 12477, 34159 12493, 1331403961 12501, 392746313894167 12523, 71789 12526, 26263 12535, 5231091155452507 12559, 19661 12571, 13967 12573, 39113399127381114313974191 12579, 372159917974193 12594, 236209941986297 12633, 34211 12634, 26317 12643, 47269 12651, 34217 12667, 53239 12693, 34231 12715, 52543 12742, 223462775546371 12759, 34253 12777, 34259 12783, 34261 12798, 236918275479811581622374747111422213342666399 12802, 237741733466401 12811, 23557 12819, 34273 12843, 3914274281 12847, 29443 12849, 34283 12861, 3914294287 12871, 61211 12874, 241821573146437 12879, 3927538115924347714314293 12891, 34297 12895, 52579 12898, 26449 12921, 359731772194307 12937, 17761 12949, 23563 12954, 236173451102127254381762215943186477 12961, 13997 12969, 39113399131393117914414323 12981, 34327 13011, 34337 13015, 519951376852603 13027, 71861 13045, 52609 13057, 111187 13066, 247941392786533 13069, 71867 13117, 131009 13149, 392748714614383 13153, 71879 13174, 271494118826587 13179, 323691915734393 13182, 236132639781693385071014219743946591 13213, 73181 13258, 271494718946629 13263, 34421 13278, 236221344266639 13329, 3914814443 13347, 3914834449 13357, 1937361703 13371, 34457 13387, 111217 13402, 26701 13405, 573538319152681 13449, 34483 13459, 43313 13471, 19709 13474, 26737 13497, 3113340912274499 13519, 111229 13531, 71933 13539, 34513 13555, 52711 13557, 34519 13561, 71191 13603, 61223 13618, 2112261912386809 13639, 23593 13647, 34549 13666, 26833 13678, 271497719546839 13686, 236228145626843 13707, 3915234569 13713, 372165319594571 13726, 26863 13747, 59233 13749, 34583 13761, 39113399139417125115294587 13767, 3133935310594589 13771, 47293 13773, 34591 13777, 23599 13779, 3915314593 13782, 236229745946891 13795, 531891554452759 13809, 34603 13813, 19727 13819, 131063 13894, 26947 13906, 217344098186953 13909, 71987 13915, 511235511512125360512652783 13918, 26959 13947, 34649 13951, 71993 13953, 34651 13993, 71999 14019, 34673 14023, 37379 14034, 236233946787017 14037, 34679 14041, 19739 14046, 236234146827023 14059, 17827 14082, 236234746947041 14086, 27043 14101, 59239 14109, 34703 14137, 67211 14155, 519951497452831 14157, 3911133339991171211433634291089128715734719 14163, 34721 14182, 2714101320267091 14185, 52837 14187, 34729 14206, 27103 14218, 27109 14223, 3113343112934741 14233, 43331 14247, 3915834749 14254, 27127 14257, 53269 14263, 17839 14269, 19751 14271, 367712012134757 14277, 34759 14299, 79181 14305, 52861 14311, 111301 14329, 723891616232047 14371, 72053 14395, 52879 14422, 27211 14463, 3916074821 14506, 27253 14515, 52903 14566, 27283 14577, 3431131293394859 14613, 34871 14623, 72089 14631, 34877 14643, 3916274881 14647, 97151 14659, 107137 14671, 17863 14677, 131129 14689, 37397 14722, 217344338667361 14739, 317512898674913 14754, 236245949187377 14757, 34919 14769, 392754716414923 14782, 219383897787391 14785, 52957 14803, 113131 14815, 52963 14874, 236376774111134201222402247949587437 14893, 53281 14899, 47317 14914, 27457 14935, 5291031455152987 14962, 27481 14973, 37212331699316121748365171321394991 14974, 27487 14977, 17881 14995, 52999 15018, 236250350067509 15049, 101149 15051, 329871735195017 15058, 27529 15069, 35023 15082, 27541 15103, 111373 15127, 72161 15133, 37409 15151, 109139 15153, 35051 15166, 27583 15171, 3133938911675057 15177, 35059 15198, 236173451102149298447894253350667599 15213, 3113346113835071 15223, 131171 15229, 97157 15243, 35081 15247, 79193 15258, 236254350867629 15274, 2714109121827637 15279, 3113346313895093 15297, 35099 15321, 35107 15346, 27673 15382, 27691 15417, 392757117135139 15418, 2132659311867709 15445, 53089 15459, 35153 15487, 17911 15499, 111409 15507, 3917235169 15513, 35171 15517, 59263 15547, 72221 15558, 236259351867779 15571, 23677 15586, 27793 15634, 27817 15646, 27823 15681, 35227 15697, 111427 15723, 3917475241 15745, 547672353353149 15757, 72251 15759, 39175110315330992717515253 15766, 27883 15769, 131213 15793, 17929 15802, 27901 15829, 111439 15834, 23671314212629394258788791174182203273377406546609754113112182262263952787917 15837, 35279 15838, 27919 15843, 35281 15849, 392758717615283 15883, 72269 15906, 236112233662414827231446265153027953 15933, 3471131413395311 15942, 236265753147971 15949, 41389 15958, 2791011582027979 15969, 35323 16003, 131231 16006, 2531061513028003 16009, 72287 16093, 711197712113320984714632299 16138, 28069 16143, 35381 16162, 28081 16173, 392759917975391 16174, 28087 16179, 35393 16191, 3792163257771179923135397 16203, 3113349114735401 16207, 19853 16219, 7493312317 16221, 35407 16222, 28111 16237, 131249 16246, 28123 16257, 35419 16299, 3918115433 16302, 236111319222633383957667811414320924728641842949462774185812541482271754348151 16311, 35437 16347, 35449 16357, 111487 16387, 72341 16405, 517851939653281 16423, 111493 16438, 28219 16465, 537891854453293 16495, 53299 16501, 29569 16507, 17971 16521, 35507 16537, 23719 16543, 71233 16563, 35521 16579, 59281 16581, 35527 16591, 47353 16593, 35531 16594, 28297 16609, 17977 16615, 53323 16623, 3918475541 16654, 2112275715148327 16659, 392761718515553 16678, 231622695388339 16681, 72383 16707, 35569 16719, 35573 16762, 2172934582894935789868381 16771, 31541 16773, 35591 16774, 28387 16795, 53359 16837, 113149 16857, 3918735619 16858, 28429 16861, 131297 16866, 2369189371874281156228433 16882, 223463677348441 16894, 28447 16939, 131303 16951, 1123672537371541 16957, 31547 17014, 247941813628507 17022, 236283756748511 17023, 29587 17026, 28513 17035, 53407 17046, 2369189471894284156828523 17071, 43397 17074, 28537 17089, 23743 17098, 2831031662068549 17106, 236285157028553 17127, 39113399173519155719035709 17131, 37463 17146, 28573 17158, 223463737468579 17173, 131321 17182, 211227112114224278115628591 17187, 3175133710115729 17194, 28597 17202, 236476194122141183282366286757348601 17214, 236193857114151302453906286957388607 17217, 3919135739 17254, 28627 17263, 61283 17269, 72467 17313, 329871995975771 17326, 28663 17338, 28669 17371, 29599 17379, 3919315793 17403, 35801 17461, 19919 17473, 101173 17503, 23761 17506, 28753 17511, 3133944913475837 17517, 35839 17521, 72503 17553, 35851 17607, 35869 17614, 28807 17626, 2714125925188813 17635, 53527 17637, 35879 17653, 127139 17674, 28837 17691, 35897 17719, 1329473776111363 17734, 28867 17754, 236112233662695388071614295959188877 17769, 35923 17778, 236296359268889 17779, 23773 17803, 19937 17806, 229583076148903 17833, 171049 17847, 392766119835949 17857, 72551 17866, 28933 17883, 3919875961 17889, 367892012675963 17919, 39113399181543162919915973 17937, 3919935979 17946, 2369189971994299159828973 17953, 131381 17965, 53593 17991, 3919995997 17994, 236299959988997 18007, 111637 18021, 36007 18033, 36011 18066, 236301160229033 18067, 729892036232581 18085, 53617 18091, 79229 18094, 2831091662189047 18111, 36037 18115, 53623 18118, 29059 18157, 67271 18163, 41443 18201, 36067 18219, 36073 18231, 3591031773096077 18247, 71257 18274, 29137 18279, 392767720316093 18283, 47389 18298, 2714130726149149 18319, 72617 18337, 111667 18346, 29173 18366, 236306161229183 18393, 36131 18402, 236306761349201 18415, 5291271456353683 18418, 29209 18442, 29221 18453, 36151 18474, 236307961589237 18529, 72647 18547, 171091 18571, 7493792653 18574, 237742515029287 18589, 29641 18595, 53719 18622, 29311 18631, 31601 18651, 36217 18667, 111697 18673, 71263 18687, 36229 18697, 72671 18709, 53353 18751, 171103 18783, 3920876261 18789, 36263 18807, 36269 18811, 131447 18817, 31607 18822, 236313762749411 18823, 72689 18829, 19991 18831, 36277 18841, 83227 18871, 113167 18874, 29437 18897, 36299 18931, 111721 18943, 19997 18946, 29473 18949, 72707 19021, 23827 19027, 53359 19029, 36343 19033, 72719 19039, 79241 19059, 36353 19063, 111733 19114, 2193850310069557 19119, 36373 19135, 543892154453827 19147, 41467 19161, 3921296387 19167, 36389 19174, 29587 19198, 229583316629599 19218, 236320364069609 19233, 3921376411 19258, 29629 19302, 236321764349651 19329, 3175137911376443 19339, 83233 19353, 36451 19357, 131489 19369, 72767 19377, 3921536459 19398, 2365361106122159183318366323364669699 19399, 191021 19405, 53881 19407, 36469 19413, 392771921576471 19414, 2173457111429707 19419, 36473 19426, 2112288317669713 19519, 131149 19549, 113173 19579, 72797 19585, 53917 19587, 36529 19606, 29803 19615, 53923 19627, 191033 19639, 41479 19651, 43457 19653, 36551 19666, 29833 19689, 36563 19693, 47419 19702, 29851 19711, 23857 19713, 36571 19741, 191039 19771, 171163 19797, 36599 19807, 29683 19821, 36607 19842, 236330766149921 19897, 101197 19899, 391127336799201297603737180922116633 19911, 36637 19918, 223464338669959 19933, 31643 19939, 127157 19959, 36653 19986, 236333166629993 20005, 54001 20041, 7494092863 20059, 131543 20065, 54013 20073, 36691 20074, 210037 20127, 36709 20131, 41491 20178, 236918193857591141181711773423545311062112122423363672610089 20187, 3922436729 20191, 61331 20203, 89227 20221, 73277 20239, 37547 20245, 54049 20257, 47431 20278, 210139 20283, 36761 20317, 111847 20337, 36779 20338, 210169 20343, 36781 20373, 36791 20379, 36793 20386, 210193 20401, 23887 20403, 3922676801 20449, 111312114316915731859 20455, 54091 20494, 210247 20499, 36833 20517, 372197729316839 20554, 2438623947810277 20569, 67307 20571, 36857 20581, 111871 20613, 36871 20665, 54133 20671, 72953 20695, 54139 20697, 36899 20701, 127163 20766, 2363461692210383 20782, 210391 20799, 3923116933 20803, 71293 20829, 3531311593936943 20841, 36947 20889, 39113399211633189923216963 20941, 43487 20953, 23911 20974, 210487 20991, 36997 20994, 2363499699810497 20998, 210499 21039, 37013 21043, 111913 21057, 37019 21079, 107197 21085, 54217 21102, 2363517703410551 21106, 26112217334610553 21115, 5411032055154223 21117, 37039 21127, 37571 21133, 73019 21151, 131627 21159, 3923517053 21171, 37057 21181, 59359 21202, 210601 21217, 7494333031 21229, 1323712999231633 21253, 53401 21259, 73037 21262, 210631 21331, 83257 21337, 191123 21361, 41521 21367, 23929 21418, 210709 21427, 73061 21439, 111949 21457, 43499 21477, 37159 21478, 210739 21502, 21326827165410751 21553, 73079 21607, 1731415276971271 21646, 27913715827410823 21691, 109199 21703, 111973 21706, 210853 21729, 37243 21759, 37253 21771, 39415912317736953124197257 21774, 23619385711419138257311463629725810887 21814, 21326839167810907 21847, 73121 21861, 37921633471041242931237287 21867, 3371111975917289 21921, 37307 21922, 29711319422610961 21927, 37309 21963, 37321 21967, 111997 21969, 3924417323 22017, 3411231795377339 22026, 2363671734211013 22045, 54409 22069, 29761 22098, 2362958871271742543817623683736611049 22102, 2438625751411051 22105, 54421 22107, 37369 22131, 3924597377 22186, 211093 22191, 3133956917077397 22207, 53419 22258, 2316235971811129 22267, 73181 22314, 2363719743811157 22327, 83269 22333, 23971 22345, 5411092055454469 22354, 211177 22357, 79283 22386, 23671314212639414278829112318224627328753354657486110661599172231983731746211193 22414, 27141601320211207 22426, 211213 22459, 37607 22465, 54493 22467, 37489 22471, 23977 22507, 71317 22518, 236918275481139162278417834125125023753750611259 22521, 37507 22537, 31727 22551, 37517 22566, 2363761752211283 22585, 54517 22587, 37529 22611, 37537 22641, 37547 22647, 37549 22683, 37561 22689, 3925217563 22719, 37573 22735, 54547 22738, 211369 22759, 112069 22767, 37589 22773, 37591 22813, 73259 22821, 37607 22839, 323693319937613 22854, 2361326397829358687917583809761811427 22855, 573565332654571 22867, 131759 22885, 5231151999954577 22887, 3925437629 22893, 3133958717617631 22903, 37619 22911, 3721109132737637 22915, 54583 22918, 27141637327411459 22929, 37643 22938, 2363823764611469 22947, 37649 22957, 112087 22971, 3131931395793247403589741120917677657 22999, 109211 23062, 21326887177411531 23073, 37691 23077, 47491 23095, 5311491557454619 23097, 37699 23101, 131777 23106, 2363851770211553 23119, 61379 23122, 211221051210211561 23151, 37717 23161, 19235343710071219 23179, 131783 23194, 211597 23221, 112111 23263, 43541 23281, 31751 23314, 211657 23317, 73331 23362, 211681 23365, 54673 23377, 97241 23383, 67349 23389, 191231 23395, 54679 23403, 329872698077801 23419, 112129 23437, 231019 23491, 131391691807 23493, 3411231915737831 23503, 191237 23511, 3175146113837837 23527, 73361 23553, 3926177851 23554, 211777 23559, 37853 23569, 71337499125948163718133367 23574, 2363929785811787 23578, 211789 23602, 211801 23605, 54721 23637, 37879 23683, 112153 23707, 151157 23713, 231031 23721, 37907 23731, 191249 23734, 211867 23751, 3791321293963879111720326127337760981911311827263933937917 23755, 54751 23791, 37643 23817, 3175146714017939 23839, 31769 23853, 37951 23854, 211927 23866, 211933 23889, 37963 23935, 54787 23938, 211969 23941, 89269 23967, 3926637989 23979, 37993 23986, 26713417935811993 23995, 54799 24018, 2364003800612009 24031, 73433 24033, 38011 24117, 38039 24157, 717294911920349383314213451 24159, 38053 24162, 2364027805412081 24163, 73331 24187, 19673611273 24193, 131861 24201, 3926898067 24207, 38069 24231, 3411231975918077 24234, 23671421425771154173134624039807812117 24237, 3926938079 24259, 171427 24277, 112207 24289, 107227 24313, 41593 24322, 212161 24343, 112213 24382, 27314616733412191 24385, 54877 24393, 3471411735198131 24406, 212203 24454, 212227 24463, 171439 24478, 212239 24487, 47521 24501, 38167 24541, 11239725310672231 24562, 212281 24579, 3927318193 24595, 54919 24607, 112237 24613, 151163 24618, 23611223366373746111922384103820612309 24619, 73517 24637, 71347 24643, 191297 24651, 391127338399249297747913224127398217 24657, 38219 24669, 3927418223 24679, 2329376678511073 24693, 38231 24703, 73529 24711, 38237 24721, 59419 24741, 3927498247 24742, 28913917827812371 24798, 2364133826612399 24811, 43577 24819, 38273 24829, 73547 24861, 38287 24865, 54973 24871, 7111719771191331872093231309146322613553 24874, 212437 24898, 25911821142212449 24949, 61409 24951, 38317 24954, 2364159831812477 24958, 212479 24961, 109229 24987, 38329 24993, 3927778331 24997, 73571 24999, 3133964119238333 25027, 29863 25045, 55009 25047, 3911233369991212072533637591089227727838349 25062, 2364177835412531 25063, 71353 25081, 73583 25105, 55021 25129, 131933 25131, 38377 25149, 3831012493038383 25177, 171481 25249, 73607 25255, 55051 25267, 112297 25291, 73613 25293, 38431 25297, 41617 25341, 38447 25342, 212671 25366, 211221153230612683 25377, 3113376923078459 25383, 38461 25387, 53479 25422, 23619385711422344666913384237847412711 25459, 73637 25482, 2363162931371862744118224247849412741 25489, 71359 25497, 3928338499 25501, 73643 25503, 38501 25507, 231109 25533, 3928378511 25549, 29881 25567, 37691 25582, 212791 25587, 3928438529 25591, 157163 25593, 3195744913478531 25615, 5471092355455123 25629, 38543 25651, 113227 25711, 73673 25729, 112339 25735, 55147 25738, 21734757151412869 25749, 3928618583 25777, 149173 25813, 83311 25827, 38609 25834, 212917 25846, 212923 25855, 55171 25887, 38629 25902, 236918143928784317863412951 25915, 571733553655183 25963, 73709 25974, 23691318262737395474781111172222343333514816667029629991443199828864329865812987 26007, 38669 26011, 19377031369 26031, 38677 26037, 39113399263789236728938679 26077, 89293 26079, 38693 26086, 213043 26089, 73727 26097, 38699 26101, 43607 26121, 38707 26137, 59443 26139, 38713 26154, 236918145329064359871813077 26167, 137191 26178, 2364363872613089 26211, 38737 26241, 38747 26245, 5291451819055249 26266, 22346571114213133 26281, 41641 26329, 113233 26335, 52311522911455267 26349, 38783 26359, 43613 26401, 171553 26409, 38803 26434, 213217 26439, 3721125937778813 26451, 3929398817 26458, 213229 26461, 47563 26463, 38821 26503, 171559 26517, 38839 26527, 41647 26529, 3371112397178843 26554, 2111722347114218737478112071562241413277 26583, 38861 26601, 38867 26623, 79337 26629, 31859 26643, 3831072493218881 26659, 53503 26665, 55333 26674, 213337 26707, 171571 26743, 47569 26755, 55351 26761, 73823 26769, 38923 26794, 213397 26799, 38933 26802, 236918148929784467893413401 26857, 107251 26871, 313395315916950768920678957 26905, 55381 26911, 171583 26913, 38971 26929, 73847 26989, 137197 26991, 3929998997 26995, 55399 27006, 23671421426431286192938584501900213503 27009, 3930019003 27019, 41659 27034, 27141931386213517 27042, 2364507901413521 27046, 213523 27049, 112459 27106, 213553 27123, 39041 27129, 39043 27139, 73877 27153, 37921634311293301738799051 27171, 3930199057 27205, 55441 27226, 213613 27261, 391339117233699209730299087 27294, 2364549909813647 27298, 213649 27309, 39103 27349, 73907 27373, 31883 27399, 39133 27403, 67409 27442, 213721 27451, 97283 27459, 392781113243339101730519153 27463, 29947 27469, 132113 27471, 39157 27477, 39437112921338763930539159 27483, 39161 27493, 191447 27498, 2364583916613749 27501, 3891032673099167 27502, 213751 27505, 55501 27513, 3927101930579171 27543, 39181 27553, 59467 27571, 79349 27597, 39199 27598, 213799 27601, 73943 27607, 191453 27619, 71389 27627, 39209 27661, 139199 27667, 73379 27681, 39227 27699, 3721131939579233 27711, 3930799237 27717, 39239 27718, 213859 27721, 191459 27723, 39241 27727, 71711923316313961 27781, 132137 27801, 3930899267 27802, 213901 27829, 171637 27835, 5199529314655567 27879, 39293 27894, 2364649929813947 27958, 27141997399413979 27969, 39323 27973, 112543 27981, 3931099327 27999, 39172751611531834595491037164731119333 28018, 214009 28023, 39341 28029, 39343 28066, 214033 28102, 214051 28107, 392781347104131239369 28113, 39371 28117, 31907 28129, 231223 28135, 5178533116555627 28147, 74021 28149, 3113385325599383 28153, 47599 28165, 5431312156555633 28174, 214087 28189, 74027 28191, 39397 28195, 55639 28207, 67421 28213, 89317 28221, 3236940912279407 28243, 61463 28257, 39419 28282, 27915817935814141 28317, 39439 28354, 214177 28357, 74051 28381, 101281 28383, 39461 28398, 2364733946614199 28417, 157181 28423, 43661 28486, 214243 28507, 29983 28533, 39511 28555, 55711 28563, 39521 28585, 55717 28615, 559972954855723 28651, 74093 28653, 39551 28693, 74099 28714, 271449982935862051410214357 28735, 573582141055747 28749, 372137111259777136941079583 28783, 107269 28831, 112621 28849, 171697 28857, 39619 28869, 39623 28891, 167173 28893, 39631 28902, 2364817963414451 28923, 331933119339641 28966, 27142069413814483 28993, 79367 29002, 21734853170614501 29011, 67433 29035, 55807 29037, 39679 29038, 214519 29065, 55813 29073, 3113388126439691 29089, 191531 29095, 5112355115253529126526455819 29113, 74159 29122, 214561 29157, 39719 29199, 39733 29202, 2363162931571863144719424867973414601 29206, 21734859171814603 29215, 55843 29227, 112657 29239, 74177 29245, 55849 29247, 39749 29278, 214639 29293, 112663 29307, 39769 29314, 214657 29353, 149197 29371, 231277 29373, 39791 29377, 291013 29407, 74201 29446, 214723 29461, 171733 29479, 41719 29482, 214741 29485, 55897 29487, 39829 29503, 163181 29515, 55903 29517, 39839 29518, 214759 29533, 74219 29542, 214771 29557, 112687 29566, 214783 29571, 39857 29593, 101293 29617, 74231 29635, 55927 29647, 231289 29649, 39883 29661, 39887 29662, 214831 29703, 39901 29707, 61487 29709, 3933019903 29713, 43691 29731, 132287 29734, 214867 29743, 7496074249 29749, 71419 29782, 214891 29787, 39929 29838, 2364973994614919 29878, 214939 29934, 236918166333264989997814967 29935, 55987 29941, 79379 30001, 191579 30007, 37811 30031, 59509 30042, 2369181669333850071001415021 30079, 74297 30151, 112741 30154, 215077 30157, 53569 30199, 132310129913132323 30231, 39335910077 30246, 2367114221342650411008215123 30249, 39336110083 30265, 56053 30273, 310091 30322, 215161 30333, 310111 30354, 23650591011815177 30357, 39337310119 30442, 2316249198215221 30499, 74357 30501, 39338910167 30502, 210115120230215251 30505, 56101 30507, 310169 30511, 132347 30541, 74363 30543, 310181 30546, 2369181697339450911018215273 30565, 56113 30607, 127241 30618, 23679141821274254638112616218924337848656772911341458170121873402437451031020615309 30622, 26112225150215311 30654, 23691318263978117131234262393786117917032358340651091021815327 30655, 56131 30658, 215329 30669, 310223 30678, 23651131022615339 30691, 47653 30718, 215359 30721, 31991 30729, 310243 30733, 73421 30787, 171811 30799, 191621 30819, 310273 30823, 132371 30835, 573588144056167 30886, 215443 30913, 191627 30922, 215461 30939, 310313 30973, 47659 30978, 2369181721344251631032615489 30979, 132383 30985, 56197 30991, 171823 30994, 215497 30999, 310333 31071, 310357 31087, 74441 31165, 52311527113556233 31201, 41761 31273, 112843 31279, 311009 31299, 310433 31315, 56263 31345, 56269 31363, 79397 31377, 310459 31383, 391133993179512853348710461 31389, 310463 31429, 53593 31441, 231367 31447, 1341595337672419 31449, 31133953285910483 31453, 71443 31459, 163193 31474, 215737 31479, 37211499449710493 31483, 191657 31495, 56299 31503, 310501 31534, 215767 31549, 74507 31555, 56311 31561, 37853 31594, 215797 31609, 73433 31621, 103307 31647, 371121337713723141195915072877452110549 31651, 311021 31677, 310559 31681, 132437 31683, 35917717953710561 31686, 23652811056215843 31698, 236918275458711741761352252831056615849 31701, 310567 31711, 191669 31743, 39352710581 31789, 83383 31795, 56359 31798, 213261223244615899 31809, 32369461138310603 31858, 21734937187415929 31881, 310627 31894, 2377443186215947 31897, 167191 31899, 372131499314721734365110291519455710633 31909, 171877 31915, 5136549124556383 31918, 215959 31923, 39354710641 31927, 74561 31954, 213261229245815977 31959, 395367159201477603355110653 31969, 74567 31987, 291103 31989, 310663 31999, 112909 32013, 39355710671 32023, 311033 32037, 35917718154310679 32038, 28316619338616019 32062, 21723344146823916977829431394188616031 32113, 171889 32122, 216061 32133, 310711 32142, 236112233664879741461292253571071416071 32167, 191693 32179, 74597 32182, 216091 32187, 310729 32197, 112927 32199, 310733 32202, 2369181789357853671073416101 32206, 216103 32218, 28917818136216109 32254, 216127 32281, 191699 32287, 83389 32313, 310771 32329, 112939 32334, 236173451102317634951190253891077816167 32343, 310781 32349, 34112326378910783 32365, 56473 32367, 310789 32407, 231409 32434, 216217 32437, 163199 32493, 310831 32554, 2418239779416277 32583, 310861 32601, 310867 32631, 37314921944710877 32638, 216319 32649, 310883 32658, 23654431088616329 32667, 310889 32694, 23654491089816347 32701, 53617 32743, 137239 32842, 216421 32845, 56569 32847, 310949 32863, 59557 32881, 131251 32899, 167197 32901, 31133997299110967 32902, 216451 32935, 573594147056587 32947, 47701 32959, 231433 32961, 310987 32962, 216481 32973, 32987379113710991 32986, 216493 32995, 56599 32997, 31751647194110999 33027, 310110930332711009 33039, 39367111013 33043, 173191 33081, 311027 33103, 74729 33106, 216553 33121, 113011 33127, 157211 33154, 211221211372422741507301416577 33166, 2714234610316120632272114422369473816583 33169, 41809 33193, 191747 33214, 216607 33231, 3111933535715920958362710071749302111077 33243, 37211583474911081 33253, 113023 33283, 83401 33291, 3927811372434111233369911097 33295, 56659 33298, 216649 33313, 74759 33322, 216661 33334, 27142381476216667 33367, 61547 33378, 23655631112616689 33381, 39370911127 33406, 216703 33433, 67499 33451, 113041 33499, 139241 33505, 56701 33519, 311173 33531, 311177 33535, 5199535317656707 33543, 39372711181 33559, 37907 33574, 216787 33591, 311197 33609, 31751659197711203 33651, 39373911217 33655, 5531272656356731 33657, 31339863258911219 33658, 216829 33685, 56737 33711, 31751661198311237 33802, 216901 33817, 74831 33837, 311279 33841, 43787 33865, 5136552126056773 33877, 191783 33895, 56779 33897, 311299 33913, 113083 33921, 39376911307 33979, 113089 33981, 34714124172311327 33987, 311329 34009, 71479 34027, 74861 34054, 217027 34063, 231481 34066, 217033 34117, 109313 34135, 56827 34146, 2367914182142631262715428131626189724393794487856911138217073 34174, 27142441488217087 34179, 311393 34207, 79433 34219, 191801 34234, 217117 34251, 3721491472336991631489311417 34285, 56857 34287, 311331039311711429 34321, 74903 34339, 231493 34341, 311447 34387, 137251 34393, 163211 34411, 132647 34414, 217207 34417, 127271 34435, 571973554856887 34459, 172027 34531, 74933 34554, 236132639784438861329265857591151817277 34555, 56911 34561, 171910732318192033 34609, 53653 34638, 236234669138251502753150657731154617319 34653, 311551 34666, 217333 34701, 34312926980711567 34702, 217351 34774, 217387 34789, 191831 34813, 311123 34837, 113167 34866, 23691318263978117149234298447894134119372682387458111162217433 34869, 35917719759111623 34915, 56983 34921, 47743 34933, 181193 34957, 132689 34978, 217489 35031, 311677 35038, 217519 35041, 67523 35043, 311681 35047, 101347 35058, 23658431168617529 35077, 75011 35133, 3721491472397171673501911711 35146, 217573 35158, 217579 35173, 172069 35179, 127277 35191, 132707 35211, 31133971212913631067320111737 35229, 311743 35293, 291217 35299, 113209 35359, 191861 35362, 217681 35383, 41863 35394, 2361734511023476941041208258991179817697 35409, 3112933378711131940795710731221321911803 35421, 311807 35463, 311821 35481, 311827 35485, 5471512357557097 35494, 217747 35599, 97367 35601, 311867 35611, 149239 35659, 131692112743 35691, 311897 35698, 213261373274617849 35703, 39396711901 35713, 71503 35718, 23659531190617859 35737, 132749 35743, 311153 35773, 83431 35779, 37967 35818, 217909 35857, 231559 35889, 37211709512711963 35901, 39398911967 35943, 311981 35947, 103349 35953, 157229 35962, 217981 35965, 57193 36019, 181199 36021, 312007 36042, 23660071201418021 36049, 1347596117672773 36069, 311331093327912023 36079, 109331 36091, 111718719321233281 36094, 218047 36117, 39401312039 36129, 312043 36133, 231571 36154, 218077 36166, 213261071692143381391278218083 36169, 75167 36181, 97373 36213, 312071 36219, 312073 36259, 101359 36262, 218131 36271, 19238343715771909 36286, 218143 36298, 218149 36303, 312101 36321, 312107 36349, 163223 36367, 41887 36382, 218191 36391, 151241 36403, 59617 36406, 210916721833418203 36415, 57283 36441, 39404912147 36453, 32987419125712151 36463, 75209 36466, 218233 36483, 312161 36562, 210118120236218281 36574, 218287 36579, 38913726741112193 36589, 75227 36591, 312197 36594, 23691819385710711417121432134264296319262033406660991219818297 36597, 311331109332712199 36601, 172153 36609, 312203 36619, 113329 36633, 312211 36649, 67547 36655, 57331 36667, 37991 36679, 43853 36723, 312241 36742, 218371 36745, 57349 36751, 111314325728273341 36753, 312251 36759, 312253 36763, 97379 36769, 83443 36798, 23661331226618399 36802, 218401 36807, 312269 36814, 27915823346618407 36819, 39409112273 36829, 132833 36843, 312281 36867, 312289 36889, 37997 36922, 218461 36949, 113359 36961, 231607 37029, 312343 37042, 218521 37063, 132851 37081, 113371 37099, 231613 37113, 38913926741712371 37129, 107347 37135, 5735106153057427 37141, 132857 37146, 236418212315124630245390661911238218573 37203, 312401 37239, 312413 37261, 75323 37267, 83449 37285, 57457 37293, 33193401120312431 37351, 41911 37353, 312451 37378, 211221699339818689 37393, 61613 37399, 149251 37429, 75347 37434, 2361734511023677341101220262391247818717 37435, 57487 37438, 218719 37459, 47797 37498, 218749 37531, 132887 37551, 312517 37581, 312527 37594, 218797 37621, 172213 37645, 57529 37659, 312553 37678, 218839 37687, 131692232899 37702, 27142693538618851 37734, 236193857114331662993198662891257818867 37749, 312583 37767, 312589 37795, 57559 37803, 312601 37849, 75407 37854, 236918275470114022103420663091261818927 37857, 312619 37866, 23663111262218933 37882, 213263147629440361180612221457291418941 37893, 31751743222912631 37894, 218947 37953, 39421712651 37971, 39421912657 37981, 191999 38002, 219001 38005, 5115569134557601 38017, 75431 38023, 47809 38046, 2361734511023737461119223863411268219023 38049, 311331153345912683 38059, 75437 38062, 219031 38107, 53719 38109, 312703 38131, 172243 38137, 113467 38179, 73523 38187, 39424312729 38191, 181211 38229, 312743 38245, 57649 38271, 312757 38293, 149257 38347, 311237 38353, 75479 38359, 89431 38383, 131293 38389, 132953 38397, 312799 38467, 111314326929593497 38479, 72316123916735497 38482, 27114227154219241 38491, 61631 38509, 97397 38521, 75503 38523, 312841 38545, 5136559329657709 38551, 192029 38553, 37118121354312851 38563, 7497875509 38581, 41941 38601, 39428912867 38602, 219301 38607, 31751757227112869 38623, 132971 38635, 57727 38647, 75521 38659, 67577 38683, 101383 38689, 75527 38697, 312899 38706, 23664511290219353 38823, 312941 38827, 41947 38866, 219433 38878, 27142777555419439 38881, 59659 38899, 75557 38901, 312967 38905, 53115525112557781 38926, 219463 38929, 113539 38937, 312979 38946, 23664911298219473 38965, 57793 39007, 192053 39009, 313003 39027, 313009 39049, 172297 39051, 39433913017 39073, 41953 39111, 313037 39114, 2369184153821061231592463183694777389542173434665191303819557 39127, 113557 39141, 39434913047 39145, 57829 39154, 219577 39223, 61643 39265, 57853 39274, 27314626953819637 39307, 231709 39327, 313109 39357, 39437313119 39369, 311331193357913123 39381, 313127 39427, 89443 39441, 313147 39453, 313151 39454, 219727 39487, 75641 39489, 313163 39505, 57901 39526, 219763 39553, 371069 39571, 75653 39613, 75659 39643, 291367 39649, 311279 39657, 313219 39669, 37211889566713223 39681, 39440913227 39699, 3911339940112033609441113233 39714, 23666191323819857 39723, 313241 39747, 313249 39778, 219889 39781, 75683 39801, 313267 39817, 291373 39823, 75689 39835, 53115525712857967 39853, 113623 39874, 219937 39891, 313297 39931, 73547 39934, 2418248797419967 39958, 219979 39961, 89449 39967, 172351 39973, 71563 39993, 313331 40003, 109367 40021, 311291 40042, 220021 40069, 172357 40074, 23666791335820037 40081, 149269 40126, 220063 40143, 313381 40147, 192113 40197, 313399 40201, 75743 40219, 371087 40246, 220123 40254, 23667091341820127 40267, 67601 40279, 47857 40294, 220147 40303, 41983 40341, 3717215111311933935779119212373576313447 40354, 220177 40393, 311303 40399, 71569 40417, 133109 40431, 313477 40437, 39449313479 40491, 3911339940912273681449913497 40495, 5713356589914454556231157311557858099 40555, 58111 40567, 113359 40573, 133121 40578, 23667631352620289 40651, 1353596897673127 40654, 220327 40659, 313553 40666, 220333 40669, 67607 40701, 313567 40702, 2479443386620351 40714, 220357 40726, 27142909581820363 40735, 58147 40738, 220369 40741, 131311 40747, 75821 40761, 379216364719414529582313587 40762, 28917822945820381 40783, 172399 40791, 313597 40798, 220399 40822, 220411 40839, 313613 40855, 58171 40857, 313619 40909, 113719 40969, 53773 40983, 31957719215713661 40987, 172411 41005, 5591392956958201 41007, 313669 41037, 313679 41053, 61673 41059, 192161 41083, 75869 41086, 220543 41103, 39456713701 41133, 313711 41155, 58231 41163, 313721 41185, 58237 41191, 172423 41197, 133169 41215, 58243 41226, 23668711374220613 41247, 39458313749 41259, 31751809242713753 41289, 313763 41305, 5115575137558261 41311, 109379 41313, 34714129387913771 41319, 39459113773 41326, 220663 41331, 32369599179713777 41361, 31751811243313787 41362, 220681 41371, 113761 41377, 72316125717995911 41407, 47881 41431, 133187 41442, 23669071381420721 41473, 67619 41487, 313829 41494, 220747 41497, 172441 41527, 131317 41533, 411013 41541, 36118322768113847 41542, 220771 41569, 113779 41578, 220789 41614, 220807 41637, 313879 41649, 313883 41683, 73571 41707, 179233 41731, 291439 41733, 39463713911 41746, 220873 41758, 220879 41763, 313921 41767, 113797 41793, 313931 41794, 220897 41799, 313933 41806, 220903 41815, 58363 41845, 58369 41847, 31329373987111377481107311311443321913949 41859, 39465113953 41878, 220939 41929, 231823 41989, 199211 41991, 313997 42006, 23670011400221003 42037, 127331 42039, 3927811732435191557467114013 42058, 217341237247421029 42103, 71593 42118, 221059 42127, 103409 42166, 22958727145421083 42177, 31751827248114059 42202, 221101 42207, 311331279383714069 42219, 39469114073 42271, 411031 42277, 67631 42289, 133253 42319, 101419 42321, 314107 42385, 573549173245865121160558477 42454, 221227 42477, 314159 42519, 314173 42523, 133271 42541, 192239 42547, 157271 42553, 76079 42613, 43991 42634, 221317 42637, 76091 42657, 35917724172314219 42661, 371153 42685, 58537 42715, 58543 42729, 314243 42759, 39475114253 42769, 192251 42802, 221401 42817, 47911 42819, 37212039611714273 42835, 5136565932958567 42865, 58573 42871, 43997 42873, 33193461138314291 42949, 291481 43009, 411049 43017, 313391103330914339 43033, 231871 43047, 39478314349 43074, 2369182393478671791435821537 43083, 39478714361 43141, 76163 43147, 133319 43158, 23671931438621579 43171, 231877 43173, 3913273941811171233513695331053110715993321479714391 43174, 221587 43179, 337111389116714393 43182, 2369182399479871971439421591 43195, 5531632658158639 43203, 314401 43221, 314407 43266, 23672111442221633 43269, 314423 43273, 109397 43279, 113383 43353, 39481714451 43357, 191227 43363, 103421 43417, 113947 43419, 341123353105914473 43426, 221713 43458, 23672431448621729 43465, 58693 43474, 221737 43479, 39483114493 43489, 157277 43495, 58699 43507, 139313 43521, 38916326748914507 43527, 311331319395714509 43546, 221773 43629, 314543 43647, 314549 43699, 89491 43701, 37212081624314567 43705, 58741 43723, 231901 43773, 314591 43774, 24386509101821887 43837, 59743 43879, 113989 43881, 314627 43903, 431021 44011, 114001 44083, 133391 44109, 3913293987117169261377507113115213393490114703 44134, 222067 44143, 114013 44146, 222073 44155, 58831 44157, 341123359107714719 44169, 314723 44218, 222109 44241, 314747 44262, 2369182459491873771475422131 44311, 73607 44313, 314771 44331, 37212111633314777 44337, 314779 44374, 211222017403422187 44386, 222193 44401, 76343 44434, 213261709341822217 44439, 314813 44479, 192341 44481, 314827 44482, 22346967193422241 44494, 222247 44509, 47947 44514, 2369182473494674191483822257 44515, 52914530715358903 44553, 314851 44569, 76367 44593, 192347 44634, 2364386129173258346519103874391487822317 44637, 314879 44653, 76379 44679, 35315928184314893 44682, 2361122336667713542031406274471489422341 44694, 236913182639781171912343825731146171924833438496674491489822347 44698, 222349 44734, 222367 44749, 73613 44758, 2714234613916127832297319463197639422379 44761, 172633 44803, 114073 44815, 58963 44857, 311447 44862, 23674771495422431 44871, 314957 44881, 371213 44911, 97463 44923, 167269 44943, 37121121363314981 44947, 76421 44949, 314983 44986, 28316627154222493 44991, 39499914997 45022, 222511 45039, 315013 45043, 311453 45055, 59011 45067, 111718724126514097 45103, 23375385112191961 45123, 31339891692675071157347115041 45145, 59029 45163, 192377 45169, 172657 45193, 431051 45198, 236918273154628193162186243279486558729837145816742511502275331506622599 45211, 291559 45213, 37212153645915071 45226, 222613 45238, 222619 45246, 23675411508222623 45249, 315083 45271, 172663 45277, 192383 45286, 222643 45297, 379216371921575033647115099 45298, 2112229587114231963878115622059411822649 45333, 392327697320721962165716791971503715111 45349, 101449 45358, 222679 45367, 76481 45421, 53857 45487, 133499 45499, 173263 45537, 343129353105915179 45574, 222787 45579, 315193 45597, 315199 45679, 172687 45709, 431063 45726, 23676211524222863 45727, 114157 45754, 222877 45769, 371237 45807, 315269 45811, 61751 45849, 317293151879349352789914791581269715283 45891, 39509915297 45901, 197233 45909, 39510115303 45919, 47977 45937, 71647 45939, 315313 46014, 23676691533823007 46026, 2369182557511476711534223013 46033, 133541 46038, 23676731534623019 46045, 59209 46047, 315349 46069, 232003 46081, 72920322715896583 46083, 315361 46105, 59221 46119, 315373 46126, 223063 46131, 315377 46174, 223087 46177, 61757 46195, 59239 46198, 223099 46213, 371249 46231, 83557 46249, 76607 46267, 133559 46323, 39514715441 46353, 315451 46369, 89521 46383, 315461 46387, 114217 46389, 3721471413299872209662715463 46401, 315467 46405, 59281 46413, 3927811912435731719515715471 46423, 133571 46461, 31751911273315487 46479, 315493 46483, 23434798910812021 46498, 26713434769423249 46518, 23677531550623259 46519, 114229 46551, 35917726378915517 46579, 133583 46581, 315527 46582, 223291 46597, 172741 46638, 2369182591518277731554623319 46653, 315551 46677, 315559 46678, 223339 46693, 53881 46699, 17416769711392747 46705, 59341 46707, 315569 46711, 76673 46729, 83563 46753, 76679 46849, 114259 46882, 211222131426223441 46885, 59377 46917, 39133911740112033609521315639 46929, 315643 46939, 73643 46951, 291619 47011, 53887 47013, 315671 47023, 59797 47043, 39522715681 47046, 23678411568223523 47071, 103457 47095, 59419 47098, 223549 47131, 76733 47167, 101467 47197, 109433 47203, 133631 47217, 315739 47245, 5115585942959449 47262, 23678771575423631 47266, 223633 47335, 59467 47365, 59473 47371, 127373 47409, 315803 47434, 23774641128223717 47457, 39527315819 47467, 76781 47479, 79601 47485, 59497 47494, 223747 47503, 67709 47506, 223753 47545, 53718525712859509 47617, 172801 47643, 315881 47662, 223831 47673, 39529715891 47686, 211321122642223843 47695, 59539 47721, 315907 47731, 59809 47733, 37212273681915911 47749, 133673 47767, 371291 47778, 23679631592623889 47785, 5199550325159557 47803, 76829 47811, 315937 47821, 17299749316492813 47863, 232081 47941, 191251 47983, 133691 47997, 39533315999 48043, 107449 48061, 133697 48097, 76871 48099, 316033 48102, 23680171603424051 48123, 39534716041 48142, 224071 48145, 59629 48147, 311331459437716049 48151, 179269 48181, 76883 48186, 2369182677535480311606224093 48198, 236295887174277554831166280331606624099 48199, 157307 48201, 316067 48211, 371303 48217, 133709 48219, 316073 48226, 224113 48241, 192539 48261, 316087 48291, 316097 48319, 211229 48322, 23774653130624161 48349, 76907 48361, 137353 48394, 224197 48403, 97499 48417, 316139 48427, 79613 48429, 39538116143 48478, 224239 48502, 224251 48505, 5891094455459701 48529, 133733 48567, 316189 48577, 311567 48579, 316193 48582, 2369182699539880971619424291 48583, 192557 48591, 39539916197 48606, 23681011620224303 48634, 224317 48643, 76949 48669, 316223 48697, 111920923325634427 48715, 59743 48718, 224359 48727, 76961 48771, 39541916257 48802, 213261877375424401 48831, 341123397119116277 48841, 131716922128928733757 48874, 27143491698224437 48877, 371321 48886, 224443 48903, 316301 48913, 411193 48937, 76991 48946, 224473 48955, 59791 48961, 114451 48967, 232129 48997, 133769 49014, 23679141821426312638977811672334272335015446700281691633824507 49017, 316339 49054, 224527 49074, 23681791635824537 49089, 316363 49111, 67733 49129, 73673 49146, 23681911638224573 49165, 59833 49183, 137359 49222, 224611 49234, 210320623947824617 49311, 39547916437 49347, 39548316449 49354, 224677 49359, 316453 49366, 224683 49402, 217341453290624701 49413, 3713213991181273543126723533801705916471 49414, 23162797159424707 49423, 114493 49435, 59887 49441, 74910097063 49479, 316493 49483, 77069 49519, 232153 49522, 211222251450224761 49579, 431153 49594, 213718127436224797 49645, 59929 49701, 316567 49723, 192617 49765, 53718526913459953 49822, 22958859171824911 49849, 79631 49866, 23683111662224933 49867, 471061 49879, 311609 49882, 2714499850910183563712624941 49899, 316633 49909, 291721 49947, 316649 49954, 224977 49969, 107467 49983, 316661 50005, 57313736568510001 50017, 114547 50035, 510007 50041, 163307 50067, 39556316689 50073, 316691 50074, 225037 50089, 133853 50097, 316699 50107, 89563 50109, 316703 50137, 181277 50157, 39557316719 50217, 31957881264316739 50229, 39558116743 50253, 37212393717916751 50262, 23683771675425131 50277, 316759 50298, 2368310116620224930349860683831676625149 50299, 179281 50305, 510061 50317, 67751 50326, 225163 50335, 510067 50395, 510079 50397, 310715732147116799 50401, 133877 50427, 39133911743112933879560316809 50473, 172969 50491, 77213 50607, 39562316869 50614, 225307 50617, 74910337231 50629, 197257 50637, 316879 50659, 77237 50673, 3719215712713338139988924132667723916891 50686, 225343 50689, 173293 50698, 225349 50701, 77243 50709, 316903 50719, 67757 50731, 97523 50746, 225373 50761, 232207 50769, 39564116923 50803, 101503 50811, 316937 50851, 211241 50863, 192677 50874, 2366112213918327836641783484791695825437 50887, 151337 50914, 225457 50917, 59863 50947, 133919 50983, 172999 50991, 32369739221716997 50994, 2369182833566684991699825497 50998, 24386593118625499 51013, 139367 51022, 29719426352625511 51033, 317011 51046, 225523 51049, 71719 51063, 317021 51067, 223229 51073, 114643 51087, 317029 51126, 23685211704225563 51139, 114649 51141, 317047 51162, 23685271705425581 51166, 225583 51202, 225601 51211, 83617 51223, 181283 51231, 317077 51235, 510247 51262, 21938711423617221349269825631 51265, 510253 51274, 23162827165425637 51277, 471091 51289, 71711943130177327 51291, 39411231393694171251569917097 51355, 510271 51369, 317123 51382, 223461117223425691 51391, 173023 51457, 77351 51466, 225733 51469, 114679 51477, 317159 51498, 2369182861572285831716625749 51535, 51155937468510307 51538, 27314635370625769 51567, 317189 51571, 133967 51583, 77369 51601, 114691 51619, 411259 51627, 317209 51655, 510331 51687, 39574317229 51757, 73709 51771, 317257 51778, 225889 51819, 32369751225317273 51831, 39133911744313293987575917277 51838, 225919 51843, 311331571471317281 51862, 225931 51883, 131693073991 51886, 225943 51898, 2711142277154337674235937074718741425949 51919, 77417 51937, 167311 51963, 317321 51969, 317511019305717323 51978, 23686631732625989 51981, 317327 51999, 317333 52047, 39578317349 52053, 317351 52089, 39717929153717363 52126, 26713438977826063 52159, 431213 52171, 72920325717997453 52198, 226099 52231, 192749 52257, 317419 52278, 23687131742626139 52282, 226141 52285, 510457 52293, 317431 52315, 510463 52333, 59887 52339, 77477 52366, 226183 52378, 226189 52414, 27314635971826207 52423, 77489 52446, 23687411748226223 52449, 317483 52458, 2367142142124924983747749487431748626229 52467, 317489 52471, 137383 52473, 317491 52534, 226267 52546, 2132643478694559611111812222021404226273 52555, 523115457228510511 52573, 192767 52615, 51785619309510523 52617, 317539 52645, 510529 52647, 3721236910916132748376322892507752117549 52687, 19475989311212773 52714, 226357 52771, 113467 52789, 114799 52797, 317599 52803, 39586717601 52821, 39586917607 52827, 317609 52842, 23688071761426421 52843, 77549 52891, 227233 52917, 33193569170717639 52939, 167317 52942, 210320625751426471 52945, 510589 52993, 197269 53011, 77573 53029, 192791 53059, 97547 53062, 24386617123426531 53065, 510613 53071, 73727 53137, 77591 53187, 317729 53191, 431237 53203, 83641 53209, 134093 53229, 311331613483917743 53263, 74910877609 53311, 89599 53329, 173137 53338, 226669 53347, 77621 53349, 317783 53367, 317789 53455, 510691 53457, 310317330951917819 53481, 317827 53517, 317839 53539, 371447 53545, 510709 53554, 226777 53566, 226783 53626, 226813 53638, 213262063412626819 53659, 232333 53662, 27143833766626831 53671, 191281 53677, 134129 53686, 217341579315826843 53709, 317903 53737, 172910949318533161 53743, 223241 53761, 371453 53763, 317921 53767, 77681 53769, 317923 53779, 114889 53785, 531155347173510757 53806, 226903 53809, 77687 53814, 23689691793826907 53827, 192833 53829, 39598117943 53871, 317957 53877, 317959 53893, 77699 53913, 317971 53961, 317987 53989, 134153 53997, 341123439131717999 54021, 311331637491118007 54022, 227011 54031, 71761 54061, 77723 54069, 36720126980718023 54157, 311747 54199, 83653 54211, 232357 54231, 318077 54234, 236918234669131138207262393414786117923583013602690391807827117 54235, 510847 54247, 173191 54261, 39602918087 54262, 213262087417427131 54301, 134177 54333, 39603718111 54355, 57351553776510871 54379, 13478961111574183 54381, 318127 54382, 227191 54427, 371471 54433, 291877 54445, 510889 54463, 107509 54535, 51365839419510907 54543, 318181 54553, 173209 54562, 227281 54573, 318191 54589, 79691 54598, 227299 54619, 193283 54633, 318211 54637, 114967 54687, 318229 54694, 2232941465882667943118913341886237827347 54699, 318233 54703, 114973 54715, 531155353176510943 54754, 27143911782227377 54763, 232381 54793, 157349 54811, 59929 54814, 227407 54819, 39609118273 54823, 73751 54846, 23691118223366991982775548311662249330474986609491411828227423 54847, 134219 54849, 347141389116718283 54853, 192887 54861, 318287 54862, 227431 54867, 318289 54903, 318301 54931, 163337 54939, 318313 54942, 23691571831427471 55027, 74911237861 55041, 37212621786318347 55069, 77867 55126, 24386641128227563 55129, 291901 55134, 2369182754102120423063612691891837827567 55146, 23671314212639427891101182202273303546606707131314142121262639394242787891911838227573 55159, 134243 55162, 227581 55183, 139397 55222, 227611 55231, 115021 55258, 27143947789427629 55261, 73757 55285, 511057 55306, 227653 55329, 318443 55371, 318457 55387, 97571 55413, 39471311413934231179615718471 55423, 192917 55435, 511087 55453, 232411 55486, 227743 55495, 511551009504511099 55509, 318503 55531, 77933 55543, 67829 55569, 318523 55591, 232417 55654, 227827 55657, 77951 55687, 233239 55707, 33193599179718569 55735, 57115735578511147 55771, 431297 55773, 39619718591 55786, 227893 55789, 471187 55801, 411361 55846, 27143989797827923 55855, 511171 55885, 511177 55894, 227947 55899, 39621118633 55914, 23693191863827957 55969, 97577 55981, 17378962915133293 55989, 39622118663 56013, 318671 56014, 27144001800228007 56034, 23691118223366991982835668491698254731135094622693391867828017 56037, 318679 56065, 511213 56067, 311331699509718689 56071, 471193 56073, 318691 56089, 115099 56103, 318701 56119, 78017 56139, 318713 56182, 27144013802628091 56185, 51785661330511237 56194, 228097 56215, 511243 56229, 318743 56247, 318749 56251, 134327 56253, 317511103330918751 56305, 511261 56313, 39625718771 56334, 2364182123229246458687137493891877828167 56338, 217341657331428169 56353, 114710951711995123 56362, 228181 56379, 318793 56395, 511279 56407, 134339 56413, 78059 56418, 23694031880628209 56422, 228211 56449, 192971 56461, 131431 56482, 23162911182228241 56557, 232459 56614, 228307 56643, 37923723971718881 56674, 24386659131828337 56679, 37212699809718893 56683, 115153 56707, 78101 56709, 39630118903 56719, 134363 56733, 318911 56743, 179317 56746, 217341669333828373 56751, 318917 56755, 511351 56757, 318919 56758, 2132637597411848176796215342183436628379 56802, 23694671893428401 56818, 228409 56851, 139409 56869, 293753107315371961 56874, 23694791895828437 56899, 173347 56935, 55919329596511387 56937, 318979 56961, 39632918987 56974, 26112246793428487 56977, 227251 57003, 319001 57034, 228517 57093, 319031 57102, 236316293186307614921184295171903428551 57103, 173359 57111, 319037 57118, 228559 57151, 67853 57169, 78167 57178, 211222346113226253506124324862599519828589 57181, 211271 57199, 471217 57207, 319069 57211, 7117774352018173 57229, 151379 57235, 511447 57238, 228619 57253, 78179 57277, 114112745113975207 57289, 59971 57313, 371549 57321, 3911273399193297579173721235211636919107 57333, 32987659197719111 57337, 78191 57379, 74911718197 57391, 291979 57439, 71809 57502, 228751 57549, 319183 57573, 39639719191 57586, 228793 57595, 511519 57607, 115237 57631, 78233 57633, 319211 57682, 215119130238228841 57711, 319237 57718, 228859 57721, 197293 57739, 112918131919915249 57745, 511549 57769, 411409 57777, 319259 57802, 228901 57813, 37212753825919271 57867, 319289 57877, 311867 57895, 511579 57913, 291997 57921, 343129449134719307 57922, 228961 57934, 28316634969828967 58014, 23691118223366991982935868791758263732235274644696691933829007 58029, 3232969876678412001252319343 58054, 229027 58062, 23696771935429031 58069, 115279 58117, 89653 58161, 319387 58165, 511633 58173, 319391 58177, 78311 58183, 83701 58219, 78317 58221, 39646919407 58246, 229123 58255, 56119130595511651 58281, 319427 58291, 71821 58299, 319433 58306, 229153 58323, 319441 58326, 23697211944229163 58333, 115303 58339, 227257 58399, 115309 58407, 319469 58422, 23671314212639427891107182214273321546642749139114982247278241734494834697371947429211 58431, 319477 58449, 319483 58459, 531103 58467, 319489 58473, 397389219267657801649719491 58483, 233251 58531, 111718731334435321 58591, 134507 58609, 294347124713632021 58623, 319541 58626, 2369183257651497711954229313 58627, 232549 58651, 89659 58669, 134513 58714, 23162947189429357 58731, 319577 58738, 24386683136629369 58783, 292027 58798, 229399 58818, 23698031960629409 58819, 131449 58846, 229423 58855, 57914939574511771 58879, 97607 58891, 74717932912538413 58959, 39655119653 58969, 109541 58987, 61967 58998, 23698331966629499 59005, 511801 59007, 31317395189221267663115715133471453919669 59043, 319681 59061, 319687 59097, 319699 59155, 511831 59161, 67883 59173, 471259 59179, 23318371319092573 59181, 319727 59199, 37212819845719733 59254, 21326435386106559689111813782279455829627 59269, 78467 59289, 319763 59335, 511867 59347, 173491 59383, 431381 59389, 115399 59431, 103577 59434, 229717 59457, 319819 59461, 97613 59479, 72920329320518497 59485, 511897 59506, 229753 59518, 229759 59545, 511909 59554, 211222707541429777 59593, 232591 59613, 33193641192319871 59623, 109547 59638, 229819 59649, 359177337101119883 59658, 2366112216318332636648997899431988629829 59665, 511933 59674, 229837 59677, 83719 59683, 134591 59695, 511939 59713, 211283 59757, 319919 59761, 134597 59773, 78539 59781, 319927 59794, 27144271854229897 59803, 79757 59811, 319937 59821, 163367 59919, 319973 59926, 21938831663617221577315429963 59947, 151397 59979, 319993 59989, 239251 60001, 292069 60019, 471277 60031, 173347 60033, 320011 60055, 512011 60079, 73823 60094, 230047 60097, 193163 60115, 511551093546512023 60118, 230059 60157, 431399 60163, 173539 60171, 33193647194120057 60178, 230089 60181, 115471 60189, 320063 60198, 23679127158237254381474762100332006630099 60199, 371627 60241, 107563 60265, 51785709354512053 60274, 230137 60283, 232621 60294, 23613263978773154623194638100492009830147 60301, 471283 60303, 320101 60307, 134639 60321, 320107 60339, 320113 60349, 292081 60361, 78623 60406, 230203 60429, 320143 60439, 193181 60447, 320149 60451, 61991 60454, 216718133436230227 60471, 39671920157 60481, 311951 60498, 23691833616722100832016630249 60499, 101599 60505, 512101 60558, 236100932018630279 60559, 232633 60571, 71711950935638653 60657, 320219 60682, 230341 60685, 553229265114512137 60691, 137443 60738, 236531061591913183825731146101232024630369 60751, 79769 60778, 230389 60807, 320269 60831, 3927817512253675920277 60862, 230431 60898, 230449 60934, 230467 60949, 78707 60991, 78713 61021, 139439 61078, 230539 61126, 213262351470230563 61147, 471301 61159, 78737 61167, 320389 61174, 27314641983830587 61189, 431423 61201, 74912498743 61237, 111920929332235567 61249, 232663 61255, 512251 61267, 197311 61278, 23671421421459291843778754102132042630639 61287, 33193659197720429 61293, 320431 61302, 236173451102601120218033606102172043430651 61345, 512269 61377, 341123499149720459 61431, 320477 61447, 431429 61449, 320483 61453, 78779 61489, 173617 61503, 31319395783247249741107915773237473120501 61531, 371663 61542, 2369131826397811723426352678915782367341947346838102572051430771 61546, 230773 61563, 320521 61582, 24182751150230791 61599, 320533 61621, 78803 61639, 531163 61689, 320563 61719, 37212939881720573 61726, 27144409881830863 61753, 371669 61758, 236918477394141146219282423438657846131434316862102932058630879 61771, 223277 61818, 236103032060630909 61833, 320611 61849, 127487 61858, 215719731439430929 61873, 78839 61881, 320627 61882, 230941 61887, 37214914742112632947884120629 61926, 236103212064230963 61954, 230977 61986, 236103312066230993 62038, 231019 62077, 232699 62079, 320693 62089, 292141 62097, 37212957887120699 62107, 173359 62158, 231079 62203, 173659 62209, 78887 62218, 213262393478631109 62221, 431447 62227, 115657 62251, 78893 62257, 134789 62277, 320759 62287, 199313 62349, 37212969890720783 62353, 232711 62377, 7194967133469931127332838911 62407, 173671 62431, 149419 62446, 231223 62485, 512497 62487, 39531311593934771179694320829 62493, 337111563168920831 62503, 78929 62515, 512503 62542, 231271 62551, 71881 62554, 231277 62574, 236104292085831287 62587, 78941 62599, 591061 62607, 341123509152720869 62611, 172912749321593683 62623, 115693 62646, 236531061591973183945911182104412088231323 62673, 313391607482120891 62686, 213262411482231343 62697, 320899 62707, 73859 62719, 193301 62739, 39697120913 62749, 131479 62758, 231379 62817, 320939 62838, 23691834916982104732094631419 62845, 512569 62857, 239263 62863, 371699 62899, 312029 62905, 523115547273512581 62907, 313391613483920969 62941, 113557 62962, 231481 62977, 71887 63013, 611033 63043, 232741 63051, 321017 63093, 321031 63094, 231547 63109, 223283 63118, 211192238151209302418166128693322573831559 63139, 103613 63151, 115741 63163, 83761 63178, 231621019203831589 63205, 512641 63214, 231607 63226, 210120231362631613 63237, 310719732159121079 63286, 231643 63301, 79043 63319, 232753 63339, 343129491147321113 63355, 512671 63429, 321143 63489, 321163 63507, 321169 63523, 139457 63561, 321187 63565, 512713 63579, 321193 63597, 31729435187129493731124714792193374121199 63598, 231799 63613, 115783 63622, 213262447489431811 63657, 3911339964319295787707321219 63663, 321221 63681, 321227 63685, 547235271135512737 63718, 231859 63721, 79103 63723, 311331931579321241 63741, 321247 63757, 103619 63787, 227281 63817, 134909 63834, 236106392127831917 63871, 232777 63873, 39471411514234531359709721291 63877, 115807 63897, 319575917736110831121336321299 63898, 24386743148631949 63931, 79133 63939, 321313 63957, 321319 63969, 321323 64006, 232003 64021, 73877 64023, 321341 64026, 23691835577114106712134232013 64057, 79151 64069, 79811 64087, 193373 64093, 107599 64101, 32369929278721367 64102, 232051 64105, 512821 64149, 321383 64159, 83773 64161, 39712921387 64165, 541205313156512833 64191, 321397 64197, 3792163101930577133917121399 64234, 232117 64243, 173779 64267, 79181 64309, 79187 64339, 115849 64354, 223461399279832177 64363, 134951 64369, 591091 64378, 232189 64401, 321467 64423, 232801 64459, 73883 64471, 115861 64495, 512899 64507, 251257 64533, 37214914743913173073921921511 64546, 259118547109432273 64573, 312083 64585, 512917 64606, 232303 64647, 3911339965319595877718321549 64669, 115879 64678, 27314644388632339 64686, 236107812156232343 64687, 79241 64707, 321569 64726, 232363 64731, 321577 64741, 101641 64759, 312089 64762, 232381 64774, 213923327846632387 64789, 67967 64795, 512959 64807, 229283 64822, 232411 64833, 321611 64837, 232819 64851, 321617 64878, 23611223366983196629495898108132162632439 64899, 39721121633 64903, 411583 64933, 115903 64941, 321647 64981, 79283 64983, 321661 64987, 134999 65001, 347141461138321667 65002, 27144643928632501 65005, 513001 65017, 79823 65041, 193337 65061, 39722921687 65127, 317511277383121709 65133, 39723721711 65137, 531229 65209, 611069 65214, 23691836237246108692173832607 65227, 193433 65233, 79319 65242, 232621 65253, 321751 65262, 23673146149219298438447894108772175432631 65266, 232633 65271, 321757 65277, 39725321759 65281, 97673 65311, 241271 65359, 79337 65383, 151433 65397, 321799 65439, 3911339966119835949727121813 65443, 79349 65451, 321817 65463, 321821 65467, 173851 65481, 3132339697321929989794916792847503721827 65491, 79829 65515, 513103 65545, 513109 65553, 321851 65602, 232801 65622, 236109372187432811 65665, 523115571285513133 65718, 23691827541217243436517302109532190632859 65722, 217341933386632861 65733, 321911 65743, 292267 65767, 135059 65779, 79397 65785, 559223295111513157 65791, 115981 65797, 193463 65803, 232861 65857, 115987 65883, 321961 65911, 193469 65946, 23629588717437975811372274109912198232973 65953, 101653 65973, 321991 65974, 232987 66001, 135077 66013, 251263 66021, 359177373111922007 66031, 79433 66039, 322013 66043, 211313 66111, 322037 66117, 322039 66133, 411613 66142, 233071 66147, 317511297389122049 66153, 322051 66166, 233083 66201, 322067 66211, 73907 66219, 322073 66226, 233113 66229, 103643 66237, 322079 66243, 37121331193322081 66253, 111920931734876023 66279, 322093 66303, 39531391594174771251736722101 66313, 135101 66322, 233161 66327, 322109 66333, 322111 66454, 214922329844633227 66489, 337111599179722163 66498, 236110832216633249 66513, 322171 66517, 116047 66547, 135119 66561, 311332017605122187 66565, 513313 66573, 39133911756917075121739722191 66579, 322193 66582, 2369182754811371622432744114868221233246636997398110972219433291 66589, 173917 66621, 353159419125722207 66658, 233329 66667, 163409 66687, 322229 66691, 173923 66694, 233347 66699, 39741122233 66706, 233353 66741, 322247 66811, 71941 66813, 322271 66835, 513367 66903, 32987769230722301 66961, 292309 66966, 236111612232233483 66979, 116089 66985, 513397 66991, 312161 67047, 322349 67054, 213262579515833527 67063, 199337 67111, 116101 67117, 411637 67191, 322397 67198, 233599 67207, 79601 67227, 322409 67234, 233617 67237, 71947 67243, 116113 67267, 137491 67269, 317511319395722423 67279, 193541 67282, 233641 67291, 79613 67299, 322433 67371, 317511321396322457 67381, 431567 67414, 23774911182233707 67417, 79631 67422, 236173451102661132219833966112372247433711 67423, 191353 67426, 233713 67441, 116131 67458, 236112432248633729 67462, 28917837975833731 67471, 109619 67503, 322501 67521, 37121331795122507 67561, 135197 67591, 257263 67621, 193559 67633, 471439 67647, 322549 67674, 236112792255833837 67693, 139487 67702, 233851 67705, 511551231615513541 67713, 322571 67717, 135209 67719, 322573 67734, 2369185371106142159213318426477639954127837637526112892257833867 67747, 371831 67762, 217341993398633881 67822, 233911 67839, 322613 67846, 233923 67879, 79697 67882, 233941 67893, 37215361159183371427111312813233969922631 67926, 236113212264233963 67981, 157433 68007, 322669 68022, 23691837797558113372267434011 68049, 39756122683 68119, 174007 68127, 322709 68149, 232963 68155, 543215317158513631 68157, 39757322719 68158, 253106643128634079 68179, 292351 68181, 322727 68197, 471451 68245, 513649 68269, 233293 68271, 37213251975322757 68293, 312203 68307, 322769 68319, 39759122773 68323, 174019 68347, 411667 68349, 322783 68359, 197347 68362, 27141938133257266514179935984883976634181 68383, 79769 68395, 513679 68421, 322807 68422, 234211 68434, 234217 68455, 513691 68466, 236114112282234233 68485, 513697 68518, 234259 68533, 193607 68542, 24386797159434271 68551, 74913999793 68557, 179383 68577, 322859 68587, 107641 68589, 39762122863 68613, 322871 68617, 591163 68631, 322877 68638, 234319 68653, 135281 68662, 211223121624234331 68671, 431597 68677, 79811 68703, 322901 68707, 127541 68719, 79817 68722, 234361 68731, 131722131140435287 68751, 39763922917 68763, 322921 68787, 39764322929 68803, 79829 68827, 116257 68833, 174049 68841, 39764922947 68889, 322963 68901, 37172151119193357579135132814053984322967 68905, 513781 68914, 234457 68937, 311332089626722979 68941, 71971 68959, 116269 68982, 236114972299434491 68998, 234499 69009, 323003 69022, 234511 69049, 292381 69081, 323027 69082, 213262657531434541 69121, 131694095317 69145, 513829 69153, 3721378911125926762377718693293987923051 69159, 323053 69178, 234589 69205, 513841 69226, 234613 69229, 107647 69261, 323087 69301, 371873 69306, 236115512310234653 69307, 79901 69309, 39172751151153453459135925674077770123103 69343, 174079 69346, 234673 69349, 79907 69393, 323131 69397, 292393 69423, 37321931795123141 69442, 234721 69471, 392731839324927974783722412573771923157 69474, 236115792315834737 69511, 135347 69543, 39772723181 69546, 236671341732013464025191038115912318234773 69547, 174091 69562, 234781 69589, 135310168913135353 69603, 323201 69607, 471481 69613, 671039 69619, 116329 69621, 323691009302723207 69658, 229581201240234829 69679, 591181 69694, 234847 69703, 431621 69715, 57319136595513943 69745, 513293765145185377481107318852405536513949 69753, 323251 69769, 79967 69781, 312251 69793, 71983 69798, 236116332326634899 69799, 223313 69811, 79973 69834, 236103113206226309339618678116392327834917 69858, 23691838817762116432328634929 69889, 471487 69909, 37213329998723303 69922, 234961 69934, 27314647995834967 69949, 116359 69954, 23689131178262267393534786116592331834977 69999, 323333 70006, 21729345871142493986120720592414411835003 70017, 323339 70045, 514009 70063, 710009 70069, 411709 70086, 236116812336235043 70089, 361183383114923363 70102, 235051 70107, 323369 70113, 323371 70138, 235069 70174, 213262699539835087 70198, 235099 70219, 23437198916333053 70222, 235111 70234, 235117 70255, 514051 70285, 514057 70314, 236117192343835157 70318, 235159 70339, 312269 70342, 235171 70353, 39781723451 70387, 591193 70405, 514081 70419, 323473 70441, 729203347242910063 70527, 323509 70561, 411721 70579, 163433 70603, 135431 70611, 323537 70647, 323549 70666, 28917839779435333 70669, 174157 70701, 323567 70711, 312281 70723, 197359 70741, 115910964911996431 70743, 323581 70747, 263269 70789, 292441 70797, 323599 70801, 101701 70813, 193727 70831, 193367 70837, 135449 70869, 323623 70885, 514177 70894, 235447 70909, 233083 70918, 259118601120235459 70933, 89797 70954, 213262729545835477 70983, 3911273399239297717215126296453788723661 71002, 213126227154235501 71074, 235537 71103, 313717341151923701 71131, 83857 71133, 313118139354323711 71169, 372133891016723723 71182, 235591 71197, 749145310171 71215, 514243 71221, 671063 71227, 135479 71245, 514249 71251, 431657 71286, 236109218327654118812376235643 71301, 323767 71311, 292459 71322, 236118872377435661 71367, 323789 71401, 116491 71403, 323801 71406, 23691839677934119012380235703 71418, 236119032380635709 71455, 531155461230514291 71457, 323819 71491, 749145910213 71494, 235747 71509, 431663 71511, 311331211973635912167650123837 71545, 541205349174514309 71559, 39795123853 71637, 323879 71641, 312311 71653, 79907 71695, 513651103551514339 71697, 323899 71749, 157457 71754, 236119592391835877 71833, 292477 71857, 181397 71871, 323957 71902, 235951 71911, 710273 71949, 32987827248123983 71989, 193373 72001, 89809 72034, 236017 72042, 236120072401436021 72049, 109661 72067, 193793 72079, 749147110297 72081, 39800924027 72085, 513651109554514417 72097, 174241 72126, 23691840078014120212404236063 72178, 215123930247836089 72187, 371951 72214, 236107 72217, 257281 72247, 710321 72291, 324097 72339, 324113 72349, 711019 72403, 174259 72418, 236209 72453, 324151 72531, 39805924177 72537, 324179 72553, 135581 72558, 2369182958871391742612784175228341251250240318062120932418636279 72586, 236293 72595, 514519 72619, 101719 72621, 39806924207 72622, 211223301660236311 72667, 749148310381 72669, 324223 72678, 236121132422636339 72715, 514543 72717, 324239 72753, 324251 72793, 710399 72799, 431693 72805, 514561 72814, 27144998743148652011040236407 72829, 671087 72858, 236121432428636429 72861, 314916344748924287 72913, 174289 72958, 236479 72966, 236121612432236483 72987, 324329 72991, 471553 73054, 236527 73069, 89821 73087, 753197371137910441 73093, 193847 73099, 135623 73105, 514621 73111, 113647 73126, 236563 73131, 319571283384924377 73147, 193379 73159, 149491 73173, 324391 73195, 514639 73213, 710459 73231, 671093 73257, 324419 73282, 211223331666236641 73306, 236653 73314, 23691840738146122192443836657 73317, 324439 73345, 514669 73357, 109673 73399, 292531 73407, 324469 73411, 135647 73419, 324473 73426, 236713 73446, 236122412448236723 73449, 39816124483 73465, 573520991049514693 73473, 319571289386724491 73498, 236749 73501, 312371 73509, 310722932168724503 73551, 324517 73558, 236779 73573, 294359124717112537 73579, 116689 73591, 710513 73594, 231621187237436797 73639, 211349 73663, 193877 73674, 23691840938186122792455836837 73705, 514741 73717, 710531 73729, 174337 73735, 514747 73749, 31331396193183403793120918912379567324583 73759, 741257287179910537 73777, 111920935338836707 73779, 324593 73806, 236123012460236903 73813, 223331 73837, 471571 73873, 312383 73894, 236947 73909, 116719 73915, 514783 73921, 292549 73927, 759179413125310561 73963, 371999 73981, 167443 73989, 39822124663 73993, 611213 74029, 181409 74038, 237019 74083, 233221 74091, 324697 74097, 39823324699 74113, 135701 74155, 514831 74199, 324733 74221, 723161461322710603 74227, 199373 74262, 236123772475437131 74281, 591259 74289, 324763 74335, 514867 74343, 324781 74359, 235361121914033233 74389, 710627 74397, 324799 74403, 37921631181354382671062924801 74422, 212725429358637211 74427, 324809 74434, 237217 74479, 711049 74499, 319571307392124833 74503, 111314352157316773 74511, 39175115348714614383827924837 74541, 324847 74554, 237277 74563, 173431 74583, 39828724861 74605, 543215347173514921 74626, 237313 74641, 710663 74659, 135743 74667, 324889 74671, 89839 74695, 514939 74701, 116791 74722, 237361 74743, 411823 74758, 237379 74773, 233251 74793, 310723332169924931 74818, 237409 74833, 116803 74853, 39831724951 74859, 324953 74917, 193943 74931, 324977 74937, 324979 74938, 28917842184237469 74947, 149503 74961, 39832924987 74982, 236124972499437491 74983, 167449 75055, 51785883441515011 75067, 271277 75094, 237547 75097, 116827 75142, 237571 75151, 223337 75163, 116833 75214, 237607 75238, 237619 75241, 671123 75301, 257293 75313, 729495320337114211537259710759 75349, 151499 75382, 237691 75406, 237741019203837703 75409, 731033 75417, 323691093327925139 75421, 199379 75433, 241313 75447, 3983101249303747909838325149 75451, 197383 75459, 325153 75466, 29719438977837733 75478, 213262903580637739 75487, 192913755126033973 75489, 325163 75529, 471607 75562, 237781 75567, 325189 75589, 269281 75613, 83911 75618, 23691842018402126032520637809 75637, 431759 75657, 325219 75687, 325229 75745, 515149 75754, 27144998773154654111082237877 75769, 174457 75771, 39841925257 75838, 271454171083437919 75849, 313119339357925283 75859, 710837 75865, 515173 75891, 341123617185125297 75901, 749154910843 75903, 325301 75921, 325307 75922, 27111417222934587711915418720323831937440649363898613092233261834514466542369021084637961 75927, 325309 75934, 237967 75939, 317511489446725313 75955, 511551381690515191 75994, 237997 76021, 116911 76029, 325343 76033, 139547 76047, 325349 76051, 591289 76057, 194003 76063, 135851 76069, 710867 76078, 238039 76093, 471619 76134, 236126892537838067 76135, 515227 76165, 515233 76174, 271454411088238087 76177, 174481 76195, 573549245311155521771088515239 76201, 181421 76233, 325411 76317, 325439 76321, 710903 76327, 127601 76339, 97787 76341, 325447 76359, 325453 76363, 710909 76374, 23691842438486127292545838187 76389, 325463 76393, 79967 76402, 238201 76411, 431777 76429, 233323 76474, 238237 76494, 236111922333857616611412218320936641862767111591254134220132318347740266954127492549838247 76513, 194027 76522, 238261 76549, 116959 76567, 233329 76611, 325537 76623, 325541 76633, 197389 76642, 238321 76662, 23691842598518127772555438331 76687, 131722134745115899 76759, 591301 76762, 271454831096638381 76821, 32987883264925607 76842, 23691827541423284642698538128072561438421 76854, 236128092561838427 76885, 515377 76909, 710987 76929, 325643 76933, 107719 76941, 3983103249309747927854925647 76942, 217313462731465271054124122632482452638471 76959, 39175115350315094527855125653 76981, 233347 77001, 325667 77005, 515401 77019, 325673 77059, 263293 77061, 317511511453325687 77062, 253106727145438531 77067, 39856325689 77074, 28917843386638537 77079, 325693 77083, 194057 77089, 127607 77091, 372136711101325697 77127, 347141547164125709 77179, 113683 77233, 131694575941 77241, 325747 77278, 238639 77307, 373219353105925769 77434, 271455311106238717 77439, 38324931193325813 77443, 431801 77446, 238723 77458, 238729 77473, 117043 77494, 238747 77503, 17479779916494559 77533, 233371 77547, 325849 77629, 149521 77667, 325889 77698, 253106733146638849 77703, 359177439131725901 77767, 194093 77769, 39864125923 77817, 325939 77821, 591319 77829, 325943 77842, 238921 77853, 325951 77857, 135311368914695989 77887, 711097 77911, 174583 77917, 711131 77919, 319571367410125973 77997, 325999 78019, 611279 78046, 239023 78097, 292693 78126, 23629588717444989813472694130212604239063 78153, 310923932771726051 78199, 117109 78211, 711173 78238, 239119 78249, 326083 78262, 210921835971839131 78294, 236130492609839147 78297, 326099 78298, 211223559711839149 78339, 326113 78346, 24386911182239173 78357, 326119 78361, 233407 78397, 117127 78423, 326141 78459, 326153 78466, 239233 78493, 531481 78501, 313719141157326167 78502, 239251 78513, 326171 78529, 115912164913317139 78559, 136043 78567, 326189 78574, 217342311462239287 78594, 236130992619839297 78598, 213263023604639299 78609, 326203 78619, 292711 78685, 515737 78703, 211373 78733, 431831 78753, 326251 78763, 79997 78766, 239383 78805, 515761 78829, 174637 78841, 749160911263 78847, 372131 78865, 515773 78871, 136067 78895, 531155509254515779 78922, 239461 78927, 326309 78973, 151523 78978, 236131632632639489 78991, 114316747318377181 79009, 711287 79015, 515803 79018, 239509 79033, 174649 79042, 239521 79069, 372137 79081, 312551 79093, 711299 79117, 611297 79123, 117193 79207, 103769 79219, 711317 79237, 175979100313434661 79246, 239623 79281, 39236920738311493447880926427 79285, 510115750578515857 79303, 711329 79311, 326437 79339, 131722135946676103 79341, 353159499149726447 79342, 239671 79345, 573522671133515869 79347, 326449 79369, 139571 79374, 236132292645839687 79381, 163487 79387, 711771031721711341 79426, 215126330252639713 79435, 515887 79437, 326479 79441, 174673 79459, 181439 79461, 3927811092433277299812943882926487 79471, 711353 79491, 326497 79497, 3911337399121219363657803108924097227883326499 79521, 313392039611726507 79543, 174679 79558, 239779 79615, 515923 79617, 326539 79683, 326561 79711, 791009 79713, 39175115352115634689885726571 79714, 239857 79729, 136133 79759, 471697 79761, 311332417725126587 79791, 326597 79803, 39886726601 79833, 31323396989267299897115720473471614126611 79837, 292753 79858, 239929 79885, 513651229614515977 79899, 326633 79927, 257311 79951, 174703 79953, 32987919275726651 80011, 29318989925812759 80043, 326681 80059, 711437 80061, 326687 80079, 326693 80095, 58319341596516019 80103, 326701 80119, 136163 80121, 317511571471326707 80211, 326737 80257, 174721 80281, 431867 80302, 240151 80338, 240169 80377, 117307 80382, 236133972679440191 80413, 97829 80419, 137587 80455, 516091 80466, 236134112682240233 80467, 671201 80478, 23691718345110215326330652678915782367447147348942134132682640239 80479, 711497 80487, 3911273399271297813243929817317894326829 80497, 101797 80518, 212725431763440259 80533, 292777 80562, 23629588717446392613892778134272685440281 80566, 240283 80589, 326863 80623, 372179 80635, 516127 80641, 117331 80643, 326881 80667, 39896326889 80709, 326903 80821, 136217 80823, 32987929278726941 80827, 131617 80841, 326947 80851, 233347 80853, 326951 80866, 240433 80887, 471721 80931, 353159509152726977 80965, 516193 80979, 326993 80994, 236134992699840497 81033, 327011 81034, 231621307261440517 81051, 327017 81061, 103787 81099, 39901127033 81115, 516223 81127, 312617 81142, 229581399279840571 81177, 327059 81211, 136247 81217, 241337 81229, 292801 81241, 137593 81247, 113719 81265, 516253 81319, 711617 81339, 319571427428127113 81381, 327127 81385, 541205397198516277 81402, 236135672713440701 81403, 729203401280711629 81427, 107761 81478, 240739 81507, 310126930380727169 81514, 253106769153840757 81526, 240763 81537, 327179 81541, 731117 81583, 174799 81589, 83983 81595, 516319 81598, 211223709741840799 81601, 136277 81633, 327211 81658, 240829 81661, 127643 81682, 240841 81706, 240853 81745, 516349 81751, 292819 81766, 240883 81805, 516361 81811, 233557 81831, 327277 81841, 223367 81858, 236714214219493898584711694136432728640929 81859, 109751 81879, 372149147557167138991169727293 81907, 711701 81951, 359177463138927317 81994, 211223727745440997 81997, 167491 82011, 327337 82023, 319571439431727341 82071, 3911339982924877461911927357 82074, 236136792735841037 82102, 241051 82105, 516421 82111, 157523 82117, 711731 82138, 271458671173441069 82147, 13718992311576319 82165, 516433 82195, 51785967483516439 82221, 327407 82227, 327409 82234, 241117 82249, 233353 82273, 292837 82282, 241141 82326, 236137212744241163 82354, 241177 82359, 39915127453 82366, 241183 82381, 136337 82437, 327479 82459, 136343 82465, 516493 82489, 117499 82497, 310725732177127499 82519, 179461 82543, 197419 82573, 711163 82587, 327529 82626, 23647941412822935868791758137712754241313 82666, 241333 82683, 39918727561 82687, 117517 82693, 136361 82711, 107773 82717, 181457 82734, 236137892757841367 82743, 327581 82749, 327583 82767, 347141587176127589 82819, 117529 82849, 136373 82873, 711839 82887, 372139471184127629 82906, 241453 82909, 174877 82911, 32987953285927637 82927, 136379 82929, 371121337723135910772513394975391184727643 82933, 239347 82941, 327647 82951, 117541 82977, 317511627488127659 82987, 312677 83019, 327673 83026, 241513 83067, 327689 83086, 241543 83095, 516619 83119, 431933 83161, 136397 83191, 233617 83194, 241597 83206, 241603 83211, 327737 83217, 327739 83263, 531571 83271, 341123677203127757 83302, 241651 83323, 97859 83337, 327779 83347, 117577 83365, 516673 83374, 241687 83395, 513651283641516679 83397, 327799 83427, 327809 83461, 711923 83469, 327823 83473, 136421 83481, 327827 83487, 317511637491127829 83491, 292879 83493, 39927727831 83499, 313392141642327833 83509, 376113692257 83511, 39278110313093927927837 83529, 39928127843 83533, 103811 83542, 241771 83553, 327851 83566, 27144794127254329658889177859691193841783 83569, 193433 83599, 412039 83683, 671249 83713, 711959 83722, 241821021204241861 83751, 327917 83806, 241903 83823, 327941 83827, 174931 83851, 711181 83859, 327953 83887, 149563 83901, 327967 83913, 383249337101127971 83934, 23691846639326139892797841967 83949, 327983 83953, 372269 83962, 241981 83971, 131641 84009, 341123683204928003 84031, 174943 84049, 712007 84055, 516811 84073, 117643 84145, 516829 84153, 328051 84166, 242083 84201, 313173951127221381663165121594953647728067 84202, 242101 84217, 753227371158912031 84226, 223461831366242113 84253, 136481 84277, 711187 84327, 328109 84331, 131694996487 84342, 236140572811442171 84355, 516871 84361, 292909 84394, 242197 84403, 117673 84415, 516883 84454, 242227 84471, 337111761228328157 84514, 242257 84597, 316317348951928199 84655, 516931 84663, 39236920740912273681940728221 84717, 39941328239 84733, 117703 84739, 101839 84763, 712109 84831, 328277 84841, 372293 84843, 3911339985725717713942728281 84849, 328283 84895, 516979 84909, 31131338393249341913102325732739771928303 84934, 242467 84939, 323691231369328313 84943, 173491 84982, 242491 84997, 117727 85018, 242509 85029, 372140491214728343 85051, 175003 85066, 242533 85099, 712157 85102, 217342503500642551 85107, 311332579773728369 85111, 136547 85177, 194483 85186, 219122338244642593 85233, 328411 85257, 39947328419 85273, 269317 85287, 328429 85311, 39947928437 85317, 328439 85321, 412081 85323, 371721511192393577171673406350191218928441 85327, 117757 85354, 242677 85377, 314919144757328459 85378, 242689 85414, 271461011220242707 85417, 229373 85458, 236142432848642729 85489, 531613 85507, 372311 85539, 328513 85546, 242773 85557, 319577923736110831501450328519 85558, 211223889777842779 85573, 831031 85594, 242797 85603, 749174712229 85633, 194507 85651, 97883 85663, 175039 85689, 39952128563 85699, 431993 85705, 561281305140517141 85726, 242863 85735, 513651319659517147 85737, 328579 85741, 179479 85759, 191449 85773, 328591 85846, 242923 85854, 236418212324634969810472094143092861842927 85857, 328619 85863, 328621 85882, 223461867373442941 85891, 136607 85897, 749175312271 85915, 517183 85923, 39954728641 85945, 517189 85978, 242989 85993, 113761 86023, 712289 86031, 3911337999121237363711869108926077821955928677 86035, 517207 86041, 139619 86059, 412099 86061, 328687 86101, 292969 86107, 712301 86223, 341123701210328741 86251, 117841 86259, 328753 86347, 791093 86349, 310726932180728783 86365, 523115751375517273 86367, 328789 86377, 175081 86439, 328813 86454, 23691827541601320248039606144092881843227 86511, 328837 86517, 39961328839 86538, 236144232884643269 86647, 117877 86703, 328901 86713, 117883 86758, 271461971239443379 86761, 531637 86763, 328921 86782, 243391 86793, 372141331239928931 86806, 243403 86809, 471847 86833, 711223 86842, 271462031240643421 86863, 712409 86883, 328961 86905, 57133565911914559551337248366851241517381 86926, 27144998887177462091241843463 86953, 89977 86965, 517393 86974, 243487 86983, 136691 87007, 167521 87027, 329009 87031, 712433 87034, 243517 87057, 39175115356917075121967329019 87081, 329027 87085, 517417 87097, 251347 87111, 39967929037 87154, 243577 87163, 101863 87177, 329059 87217, 136709 87222, 236145372907443611 87226, 243613 87229, 194591 87241, 711771031217218471133793112463 87301, 671303 87303, 329101 87307, 117937 87355, 517471 87369, 329123 87373, 111347143169517611185967217943 87478, 219122938245843739 87487, 89983 87489, 39972129163 87501, 329167 87502, 267134653130643751 87529, 136733 87562, 243781 87573, 329191 87574, 243787 87577, 712511 87603, 329201 87621, 329207 87627, 329209 87655, 547235373186517531 87673, 731201 87727, 372371 87729, 329243 87757, 127691 87778, 243889 87783, 329871009302729261 87807, 329269 87891, 329297 87937, 471871 87942, 236146572931443971 87946, 243973 87949, 372377 87985, 517597 87999, 329333 88041, 329347 88042, 244021 88045, 517609 88051, 191461 88161, 329387 88174, 244087 88203, 329401 88207, 712601 88243, 791117 88258, 244129 88279, 432053 88318, 244159 88338, 236147232944644169 88351, 531667 88417, 717119743520112631 88419, 329473 88441, 591499 88461, 39982929487 88489, 107827 88567, 312857 88573, 233851 88603, 251353 88621, 131722140152136817 88626, 236147712954244313 88629, 33193953285929543 88633, 611453 88645, 517729 88659, 39985129553 88674, 236147792955844337 88686, 23691318263978117234379758113722743411492768229854147812956244343 88702, 244351 88705, 511315756578517741 88714, 244357 88735, 517747 88761, 329587 88762, 244381 88782, 236147972959444391 88839, 39987129613 88879, 712697 88887, 329629 88891, 118081 88933, 136841 88953, 314919944759729651 88989, 329663 88999, 611459 89013, 329671 89014, 244507 89023, 118093 89049, 329683 89077, 281317 89143, 97919 89151, 329717 89169, 329723 89173, 712739 89194, 271423461612773225541939387863711274244597 89197, 191467 89263, 233881 89266, 244633 89283, 329761 89301, 317511032893098671751525329767 89335, 517851051525517867 89347, 471901 89359, 193463 89367, 329789 89374, 244687 89389, 711259 89391, 383249359107729797 89409, 329803 89422, 244711 89437, 175261 89461, 137653 89467, 712781 89469, 39994129823 89479, 136883 89497, 312887 89506, 244753 89541, 39994929847 89551, 711771163814112793 89589, 329863 89601, 329867 89617, 118147 89619, 329873 89629, 471907 89647, 157571 89673, 371213421126329891 89686, 244843 89703, 39996729901 89737, 194723 89773, 107839 89814, 236149692993844907 89841, 329947 89851, 194729 89857, 591523 89866, 27144998131262343686917183464191283844933 89878, 244939 89881, 118171 89887, 712841 89905, 517981 89953, 233911 89961, 315719147157329987 90022, 219233846103206437874195723693914473845011 90043, 127709 90046, 211224093818645023 90061, 113797 90078, 236150133002645039 90082, 273146617123445041 90085, 543215419209518017 90091, 233917 90103, 132923937731076931 90109, 251359 90141, 330047 90151, 175303 90159, 341123733219930053 90166, 245083 90174, 236714192138425711311413322626633939967879179815822147237342944746644112882150293005845087 90178, 211224099819845089 90223, 712889 90229, 233923 90235, 518047 90253, 175309 90258, 23671421424998147294307614921184221494298644712894150433008645129 90262, 245131 90283, 137659 90291, 330097 90295, 518059 90309, 330103 90319, 181499 90337, 136949 90361, 109829 90399, 330133 90409, 118219 90417, 330139 90463, 611483 90486, 23691118223366991984579141371274241135027822610054150813016245243 90553, 831091 90609, 330203 90634, 245317 90643, 723161563394112949 90655, 518131 90661, 175333 90714, 236132639781163232634896978151193023845357 90718, 267134677135445359 90721, 257353 90723, 330241 90733, 412213 90757, 471931 90763, 171928132347775339 90769, 712967 90778, 245389 90802, 283166547109445401 90805, 511135565127143635715139716516985825518161 90811, 712973 90813, 330271 90822, 236151373027445411 90883, 136991 90894, 236151493029845447 90919, 235967135715413953 90939, 330313 90943, 199457 90955, 518191 90963, 392781112333691010730321 90985, 531155587293518197 90999, 391011130333 91003, 118273 91039, 134714961119377003 91041, 330347 91057, 233710785124613959 91066, 245533 91123, 293311 91147, 729203449314313021 91165, 518233 91167, 330389 91174, 245587 91177, 731249 91239, 317511789536730413 91267, 118297 91281, 330427 91293, 330431 91321, 294767136319433149 91326, 23631629318649198214732946152213044245663 91329, 372143491304730443 91333, 111923209253361437397148078303 91363, 211433 91383, 383249367110130461 91389, 341123743222930463 91407, 330469 91417, 113809 91438, 213126234969845719 91447, 194813 91462, 27144794139278329658973194665331306645731 91498, 211224159831845749 91501, 372473 91527, 330509 91537, 239383 91555, 518311 91603, 471949 91614, 236152693053845807 91627, 591553 91642, 245821 91657, 151607 91671, 330557 91681, 175393 91687, 277331 91699, 107857 91705, 518341 91726, 245863 91831, 131701 91879, 139661 91891, 432137 91923, 313392357707130641 91929, 330643 91945, 573537711852593554971295248526271313518389 91959, 372129871512034536091057317143791313730653 91978, 245989 91981, 591559 91983, 330661 92001, 371321399127333710112359438170771314330667 92002, 215729331458646001 92007, 391022330669 92029, 713147 92046, 236232946586987138174529667105813341587200131744002153413068246023 92047, 831109 92059, 118369 92067, 330689 92091, 330697 92098, 246049 92101, 312971 92109, 330703 92113, 713159 92146, 246073 92149, 432143 92155, 573526331316518431 92161, 234007 92178, 236918275481162569113817073414512110242153633072646089 92193, 379237389116730731 92197, 713171 92239, 713177 92245, 51995971485518449 92253, 372123691611914835731337401143931317930751 92257, 118387 92266, 246133 92281, 713183 92329, 127727 92338, 213727433767446169 92359, 194861 92374, 246187 92422, 211224201840246211 92454, 236193857114811162224334866154093081846227 92478, 236154133082646239 92514, 236173451102907181427215442154193083846257 92517, 330839 92542, 246271 92559, 330853 92577, 330859 92605, 518521 92653, 118423 92698, 246349 92706, 236154513090246353 92709, 391030130903 92719, 118429 92727, 391030330909 92746, 279158587117446373 92755, 513651427713518551 92785, 571135557724138512051687265184351325518557 92797, 711307 92815, 51995977488518563 92818, 211224219843846409 92869, 713267 92878, 246439 92889, 391032130963 92923, 432161 92935, 518587 92949, 330983 92971, 239389 93022, 246511 93039, 331013 93046, 246523 93087, 391034331029 93091, 127733 93115, 511551693846518623 93129, 337111839251731043 93142, 271466531330646571 93163, 713309 93189, 331063 93193, 412273 93201, 347141661198331067 93217, 31979613007 93223, 137110192313137171 93231, 392781115134531035931077 93243, 331081 93246, 236155413108246623 93286, 246643 93301, 137177 93361, 891049 93391, 611531 93409, 293221 93414, 236155693113846707 93441, 331147 93459, 331153 93477, 331159 93486, 236155813116246743 93538, 246769 93549, 331183 93598, 253106883176646799 93606, 236156013120246803 93622, 246811 93631, 109859 93634, 246817 93661, 229409 93667, 713381 93678, 236132639781201240236037206156133122646839 93693, 331231 93715, 518743 93727, 194933 93747, 331249 93777, 331259 93778, 246889 93781, 191491 93793, 713399 93799, 97967 93823, 175519 93829, 101929 93831, 331277 93834, 236913182639781172344018021203240636095213721810426156393127846917 93838, 246919 93847, 137219 93853, 127739 93859, 471997 93877, 713411 93882, 236156473129446941 93895, 589211445105518779 93919, 713417 93921, 331307 93934, 267134701140246967 93943, 372539 93957, 331319 93973, 118543 93999, 331333 94011, 331337 94015, 518803 94101, 372144811344331367 94107, 313193957127247381741165124134953723931369 94122, 236791418212742546381831261621661892493784985675817471134116214941743224134864482522967231045813446156873137447061 94123, 611543 94147, 313037 94173, 331391 94174, 247087 94267, 107881 94315, 513651451725518863 94318, 271467371347447159 94339, 713477 94341, 313394159123177533767159923012419725731447 94363, 197479 94366, 229581627325447183 94389, 373219431129331463 94429, 891061 94453, 293257 94459, 591601 94467, 331489 94486, 271417341192383977942779555867491349847243 94489, 611549 94491, 391049931497 94509, 391050131503 94533, 331511 94537, 176783113914115561 94546, 241821153230647273 94555, 518911 94558, 247279 94611, 311334761141183517671155120132867860131537 94618, 247309 94629, 331543 94639, 171929332349815567 94641, 331547 94657, 103919 94663, 181523 94678, 247339 94726, 247363 94729, 432203 94741, 175573 94746, 236157913158247373 94762, 247381 94779, 391053131593 94822, 271314269118252110423647677372941354647411 94879, 791201 94917, 329871091327331639 94927, 771191497133713561 94989, 331663 95002, 247501 95031, 391055931677 95049, 395917717953153716111056131683 95074, 271467911358247537 95103, 391056731701 95113, 227419 95155, 519031 95173, 137321 95179, 713597 95182, 247591 95185, 519037 95197, 234139 95199, 313392441732331733 95215, 513713968569519043 95218, 247609 95245, 543215443221519049 95269, 472027 95281, 151631 95307, 331769 95334, 236158893177847667 95359, 118669 95373, 391059731791 95389, 713627 95422, 247711 95434, 247717 95437, 195023 95478, 236159133182647739 95491, 118681 95542, 223314662671347131426154120773082415447771 95559, 353159601180331853 95571, 379213741631111232592873333697778611517233125834551106191365331857 95578, 271468271365447789 95605, 519121 95646, 236193857114839167825175034159413188247823 95649, 331883 95653, 412333 95721, 331907 95767, 713681 95797, 137369 95817, 319415712377916812337504331939 95842, 217327734655447921 95871, 331957 95878, 247939 95899, 412339 95919, 331973 95953, 111361121143671793157373818723 95965, 517851129564519193 95995, 573263365131519199 96027, 332009 96109, 137393 96147, 392781118735611068332049 96166, 271468691373848083 96198, 236160333206648099 96207, 332069 96217, 118747 96219, 391069132073 96238, 248119 96247, 109883 96297, 332099 96333, 316319748959132111 96351, 332117 96358, 248179 96379, 313109 96402, 236160673213448201 96427, 211457 96438, 236160733214648219 96439, 723161599419313777 96463, 195077 96474, 236714214222974594689113782160793215848237 96477, 332159 96486, 236132639781237247437117422160813216248243 96505, 519301 96526, 217341672893345782839567848263 96529, 831163 96531, 323691399419732177 96541, 293329 96549, 332183 96573, 332191 96577, 131719232212472993233914374199508356817429 96591, 311332927878132197 96598, 248299 96609, 332203 96619, 531823 96649, 713807 96742, 248371 96745, 511551759879519349 96753, 332251 96793, 432251 96807, 323616918352914031587420932269 96814, 248407 96817, 713831 96853, 234211 96865, 519373 96871, 731327 96886, 219325138650248443 96894, 236791418214263126769153823074614538369211076613842161493229848447 96909, 332303 96913, 199487 96927, 332309 96946, 248473 96955, 519391 96961, 472063 96991, 234217 97009, 118819 97062, 236714214223114622693313866161773235448531 97066, 248533 97093, 151643 97099, 891091 97111, 713873 97129, 234110394323694223 97135, 519427 97141, 118831 97165, 519433 97186, 248593 97197, 317918153754332399 97198, 223462113422648599 97201, 137477 97219, 191509 97233, 332411 97273, 113723940726298843 97285, 519457 97291, 175997100316495723 97321, 713903 97323, 332441 97333, 131743 97366, 289178547109448683 97401, 332467 97471, 118861 97503, 372146431392932501 97518, 236162533250648759 97558, 248779 97591, 137507 97623, 391084732541 97627, 233419 97642, 248821 97683, 332561 97707, 332569 97719, 332573 97738, 248869 97765, 519553 97791, 337111881264332597 97833, 332611 97837, 227431 97867, 711314177217287341451127123873157889713981 97885, 519577 97891, 531847 97897, 223439 97914, 236163193263848957 97957, 234259 97963, 163601 97981, 137537 98001, 391088932667 98019, 391089132673 98043, 311332971891332681 98053, 313163 98061, 332687 98074, 249037 98083, 432281 98109, 39113399991297389191090132703 98127, 391090332709 98158, 217342887577449079 98167, 891103 98203, 714029 98206, 249103 98233, 234271 98247, 332749 98298, 236918438612712925425838138776277411432286546110922163833276649149 98311, 175783 98331, 373219449134732777 98337, 332779 98341, 432287 98398, 249199 98409, 332803 98422, 249211 98433, 391093732811 98449, 137573 98466, 236164113282249233 98506, 249253 98511, 372146911407332837 98551, 139709 98557, 671471 98578, 223462143428649289 98601, 323691429428732867 98634, 236173451102967193429015802164393287849317 98661, 332887 98677, 101977 98734, 249367 98743, 195197 98749, 714107 98799, 332933 98851, 412411 98862, 236164773295449431 98866, 249433 98881, 611621 98901, 39112733378199111243297333407891999122126732997366389911098932967 98926, 249463 98937, 391099332979 98958, 236164933298649479 98961, 332987 98965, 519793 98977, 293413 98979, 332993 98998, 249499 99001, 714143 99031, 167593 99033, 311333001900333011 99037, 971021 99049, 372677 99069, 333023 99087, 333029 99147, 333049 99157, 229433 99163, 531871 99193, 281353 99213, 333071 99217, 472111 99243, 391102733081 99253, 711771289902314179 99267, 372129871632034896091141342347271418133089 99301, 199499 99307, 137639 99321, 333107 99331, 175843 99445, 519889 99454, 249727 99457, 271367 99481, 531877 99483, 333161 99493, 372689 99507, 341123809242733169 99535, 517851171585519907 99595, 519919 99601, 103967 99613, 236171140316334331 99621, 391106933207 99622, 249811 99639, 391107133213 99681, 314922344766933227 99706, 249853 99742, 249871 99778, 271471271425449889 99799, 753269371188314257 99861, 333287 99862, 271449981019203871331426649931 99886, 249943 99919, 163613 99985, 519997 99993, 333331 100039, 711409 100047, 333349 100087, 137699 100102, 250051 100105, 520021 100159, 372707 100171, 109919 100246, 250123 100249, 175897 100257, 323691453435933419 100281, 333427 100285, 531155647323520057 100294, 250147 100306, 250153 100315, 520063 100339, 195281 100371, 333457 100387, 714341 100399, 137723 100431, 391115933477 100437, 333479 100479, 333493 100509, 333503 100543, 293467 100578, 236167633352650289 100597, 749205314371 100599, 333533 100603, 372719 100615, 520123 100623, 317511973591933541 100645, 520129 100687, 107941 100689, 333563 100698, 236132639781291258238737746167833356650349 100729, 263383 100743, 333581 100753, 531901 100765, 573528791439520153 100767, 333589 100777, 179563 100783, 971039 100831, 591709 100846, 250423 100869, 333623 100882, 250441 100893, 313391691995075972587776133631 100903, 119173 100909, 194711389321475311 100914, 236112233661211392422783634177268341529305845879174168193363850457 100917, 391121333639 100941, 333647 100963, 175939 100974, 236168293365850487 101011, 831217 101037, 333679 101077, 611657 101086, 250543 101139, 333713 101157, 372148171445133719 101163, 333721 101181, 329871163348933727 101206, 271472291445850603 101211, 311333067920133737 101266, 211224603920650633 101271, 333757 101307, 333769 101317, 711427 101353, 714479 101373, 333791 101434, 241821237247450717 101461, 241421 101482, 250741 101485, 520297 101497, 119227 101506, 250753 101521, 714503 101554, 250777 101569, 131696017813 101571, 333857 101586, 236169313386250793 101598, 236714214142598211812317724628735441357482686112391722241924784838725714514169333386650799 101613, 333871 101623, 151673 101722, 218128136256250861 101733, 333911 101734, 250867 101755, 547235433216520351 101769, 333923 101785, 520357 101791, 137743 101799, 391131133933 101815, 573529091454520363 101823, 333941 101838, 236112233661543308646299258169733394650919 101842, 213263917783450921 101845, 520369 101857, 714551 101899, 714557 101902, 250951 101905, 589229445114520381 101931, 361183557167133977 101938, 250969 101941, 714563 101947, 971051 101965, 520393 101967, 341123829248733989 101986, 250993 101989, 791291 101991, 333997 102051, 391723295169871532072613914936671173147920013519443760031133934017 102055, 520411 102073, 103991 102093, 334031 102118, 251059 102133, 109937 102142, 251071 102157, 113725140727619287 102171, 334057 102223, 119293 102261, 389267383114934087 102265, 511318156590520453 102271, 137867 102297, 313394361129183559793167723792623786934099 102313, 1011013 102327, 323691483444934109 102331, 313301 102349, 137873 102358, 261122839167851179 102381, 334127 102394, 251197 102406, 251203 102421, 119311 102439, 891151 102459, 371721414951119123147287357697833861200920912499487960271463734153 102471, 334157 102502, 253106967193451251 102511, 234457 102513, 334171 102514, 251257 102517, 313307 102526, 251263 102549, 334183 102558, 236170933418651279 102561, 317512011603334187 102574, 251287 102597, 311333109932734199 102598, 243861193238651299 102613, 710713774995914659 102619, 111920949154019329 102622, 213263947789451311 102637, 197521 102649, 234463 102691, 103997 102693, 334231 102694, 251347 102721, 139739 102727, 432389 102733, 195407 102741, 323691489446734247 102745, 520549 102783, 334261 102799, 176047 102807, 391142334269 102822, 236171373427451411 102847, 195413 102862, 251431 102874, 251437 102891, 334297 102901, 176053 102946, 251473 102951, 392731418193123279369837110712712511332138131143934317 102954, 236171593431851477 102957, 334319 103009, 239431 103027, 269383 103051, 137927 103057, 257401 103078, 251539 103111, 971063 103129, 137933 103209, 334403 103227, 319571811543334409 103246, 211131922263814320924728636141849472227173971469354347942938651623 103249, 223463 103261, 313331 103263, 334421 103273, 611693 103279, 114122945125199389 103287, 334429 103299, 372149191475734433 103321, 277373 103417, 195443 103422, 236112233661567313447019402172373447451711 103437, 392781127738311149334479 103443, 329418712384111892523356734481 103459, 307337 103461, 334487 103462, 217341792893585783043608651731 103489, 372797 103501, 294383124724073569 103513, 176089 103533, 334511 103539, 334513 103546, 223462251450251773 103579, 714797 103582, 267134773154651791 103585, 520717 103603, 313331 103609, 119419 103627, 173599 103633, 313343 103647, 334549 103666, 217343049609851833 103674, 236377411122246793414012802172793455851837 103711, 372803 103735, 520747 103746, 236172913458251873 103753, 132329934745117981 103762, 229581789357851881 103786, 251893 103789, 714827 103791, 329871193357934597 103795, 520759 103809, 334603 103882, 251941 103897, 107971 103909, 137993 103915, 573529691484520783 103926, 236173213464251963 103942, 251971 103953, 334651 103957, 714851 103978, 271449981061212274271485451989 104001, 334667 104034, 236714214224774954743114862173393467852017 104046, 236173413468252023 104077, 199523 104079, 334693 104083, 714869 104101, 195479 104106, 236173513470252053 104163, 334721 104209, 714887 104226, 236295887174599119817973594173713474252113 104277, 334759 104283, 391158734761 104299, 137111392314698023 104305, 523115907453520861 104326, 252163 104359, 791321 104362, 252181 104407, 131797 104413, 193541 104422, 210921847995852211 104446, 252223 104506, 252253 104517, 379212749637914718923744155371113231659213338714977116131493134839 104529, 334843 104563, 313373 104578, 252289 104581, 234547 104605, 520921 104626, 252313 104629, 714947 104631, 334877 104641, 269389 104689, 138053 104691, 334897 104697, 391163334899 104767, 138059 104782, 252391 104791, 432437 104802, 236174673493452401 104809, 163643 104815, 520963 104821, 372833 104863, 119533 104889, 334963 104893, 293617 104905, 520981 104914, 252457 105013, 195527 105039, 391133991061318395491167135013 105043, 173716762928396179 105061, 119551 105079, 135913776717818083 105082, 252541 105115, 521023 105145, 517851237618521029 105153, 335051 105166, 252583 105201, 391168935067 105217, 715031 105243, 335081 105267, 335089 105274, 213264049809852637 105289, 211499 105313, 138101 105321, 335107 105334, 252667 105339, 313373973111219481949144327012847810335113 105351, 335117 105382, 252691 105406, 271475291505852703 105418, 252709 105447, 335149 105453, 391171735151 105454, 252727 105463, 263401 105474, 236175793515852737 105511, 715073 105513, 335171 105535, 521107 105631, 731447 105634, 252817 105663, 335221 105757, 176221 105763, 729203521364715109 105789, 317919753759135263 105798, 236711142122334266771542292314584626871374160325193206480950387557961815114176333526652899 105831, 391133991069320796211175935277 105838, 252919 105841, 531997 105843, 335281 105874, 252937 105895, 521179 105958, 231621709341852979 105969, 335323 106006, 253003 106009, 227467 106021, 971093 106039, 195581 106098, 236176833536653049 106111, 293659 106143, 335381 106147, 179593 106162, 271475831516653081 106231, 412591 106282, 211224831966253141 106306, 223462311462253153 106327, 138179 106347, 335449 106351, 715193 106407, 379212763189563168939415067118231520135469 106429, 711499 106431, 313392729818735477 106447, 119677 106479, 391183135493 106483, 138191 106503, 313127139381335501 106521, 335507 106557, 311333229968735519 106579, 119689 106581, 335527 106585, 521317 106587, 391339117911273381991184335529 106626, 236132639781367273441018202177713554253313 106633, 293677 106638, 236714214225395078761715234177733554653319 106698, 236177833556653349 106717, 138209 106738, 283166643128653369 106741, 173617 106762, 253381 106773, 335591 106777, 111718757162819707 106803, 391186735601 106813, 715259 106831, 472273 106885, 521377 106933, 611753 106969, 412609 106983, 391188735661 106989, 319571877563135663 107005, 521401 107007, 353159673201935669 107011, 113947 107014, 253507 107023, 715289 107047, 167641 107058, 236714214225495098764715294178433568653529 107083, 176299 107178, 236178633572653589 107187, 335729 107191, 715313 107218, 253609 107241, 335747 107245, 589241445120521449 107266, 253633 107278, 253639 107313, 335771 107329, 293701 107362, 253681 107382, 236112233661627325448819762178973579453691 107389, 176317 107427, 335809 107431, 532027 107434, 253717 107439, 359177607182135813 107454, 236179093581853727 107455, 521491 107469, 391194135823 107479, 234673 107487, 392781132739811194335829 107515, 521503 107521, 195659 107527, 715361 107529, 373219491147335843 107533, 191563 107538, 236179233584653769 107554, 253777 107577, 391195335859 107593, 176329 107611, 715373 107629, 432503 107637, 335879 107638, 253819 107653, 713499116963711832197828115379 107673, 319571889566735891 107691, 335897 107743, 163661 107763, 317512113633935921 107785, 521557 107803, 671609 107829, 391198135943 107899, 111718757763479809 107902, 253951 107917, 311347 107929, 372917 107961, 372153971592913716791113203751411542335987 107974, 253987 107983, 831301 107986, 253993 107997, 335999 108001, 176353 108043, 138311 108073, 715439 108133, 711523 108166, 254083 108181, 251431 108229, 119839 108259, 731483 108297, 379212763811891915675731337171940115157120331547136099 108327, 336109 108361, 119851 108369, 391204136123 108387, 391204336129 108442, 259118919183854221 108453, 336151 108478, 273146743148654239 108493, 711771409986315499 108523, 472309 108531, 393193279389116735011205936177 108583, 234721 108613, 176389 108663, 329871249374736221 108706, 213263774113226481962146929384181836254353 108711, 394714125742377123131207936237 108753, 336251 108754, 254377 108777, 3101303359107736259 108789, 336263 108817, 173717362929416401 108826, 254413 108835, 521767 108847, 891223 108859, 234733 108874, 254437 108895, 529145751375521779 108921, 336307 108955, 571135557728338514151981311399051556521791 108966, 236111322263339667812714325428638142976285813971651279433024191495383829906181613632254483 108973, 591847 108985, 571307355153521797 108999, 391127339929736711013303403799091211136333 109003, 195737 109027, 313517 109057, 138389 109059, 336353 109066, 223462371474254533 109093, 127859 109113, 337111983294936371 109117, 195743 109119, 336373 109153, 119923 109177, 432539 109179, 379216317335199121311559736393 109183, 412663 109198, 271142769153854599 109219, 119929 109243, 293767 109246, 254623 109294, 254647 109347, 372141123127287381861889266752071562136449 109369, 134717961123278413 109393, 139787 109405, 521881 109426, 254713 109449, 391216136483 109501, 715643 109527, 311333319995736509 109546, 254773 109581, 336527 109587, 336529 109614, 236182693653854807 109615, 511551993996521923 109645, 521929 109651, 472333 109653, 336551 109657, 532069 109666, 254833 109689, 336563 109699, 163673 109713, 336571 109714, 211224987997454857 109738, 254869 109753, 715679 109761, 336587 109797, 336599 109842, 236183073661454921 109861, 611801 109866, 236183113662254933 109867, 181607 109869, 353159691207336623 109882, 254941 109909, 131839 109918, 254959 109927, 372971 109929, 336643 109939, 172922349337916467 109951, 432557 109959, 336653 109974, 236183293665854987 109977, 372152371571136659 109978, 211224999999854989 109993, 138461 110013, 336671 110014, 267134821164255007 110029, 195791 110046, 236183413668255023 110049, 336683 110077, 1110007 110089, 715727 110094, 236591181773113546229331866183493669855047 110098, 255049 110173, 715739 110179, 239461 110185, 522037 110191, 1011091 110229, 372129871812035436091267380152491574736743 110254, 255127 110283, 336761 110287, 293803 110299, 749225115757 110301, 336767 110302, 213126242184255151 110334, 236714213742717411114221322225942649751877799414911554262729825254788115762183893677855167 110365, 522073 110377, 234799 110379, 336793 110395, 522079 110434, 255217 110451, 3113333471004136817 110506, 2112250231004655253 110518, 255259 110529, 391228136843 110571, 336857 110578, 213264253850655289 110605, 5115520111005522121 110613, 336871 110626, 255313 110643, 313392837851136881 110658, 236184433688655329 110661, 336887 110671, 1110061 110683, 151733 110697, 336899 110701, 313571 110703, 336901 110719, 715817 110721, 313173951167221501663217128396513851736907 110727, 392781136741011230336909 110742, 236184573691455371 110761, 715823 110782, 271441821932873865741351270279131582655391 110785, 522157 110787, 336929 110839, 271409 110847, 3113333591007736949 110854, 243861289257855427 110857, 176521 110907, 391232336969 110914, 255457 110938, 255469 110974, 255487 110983, 294389124725813827 110991, 336997 111013, 715859 111022, 255511 111039, 337013 111063, 337021 111073, 313583 111079, 113983 111106, 273146761152255553 111117, 337039 111123, 391234737041 111133, 1110103 111139, 715877 111145, 522229 111147, 337049 111162, 236971911942913825735821146185273705455581 111166, 2112231621633263416821793358650531010655583 111178, 255589 111193, 251443 111223, 715889 111234, 236185393707855617 111243, 3113333711011337081 111247, 532099 111258, 236791418214263126883176626495298618179471236215894185433708655629 111289, 1091021 111291, 337097 111295, 522259 111319, 138563 111334, 255667 111361, 193577 111367, 176551 111379, 127877 111381, 313727141181337127 111415, 522283 111433, 715919 111463, 1110133 111466, 255733 111511, 195869 111519, 391239137173 111523, 229487 111526, 255763 111547, 331337 111553, 138581 111567, 337189 111579, 313392861858337193 111583, 241463 111603, 337201 111649, 311359 111651, 337217 111655, 513716368581522331 111669, 337223 111703, 373019 111709, 131696618593 111763, 731531 111787, 138599 111811, 715973 111831, 337277 111837, 3113333891016737279 111841, 971153 111865, 513651721860522373 111879, 393193279401120336091243137293 111901, 317353 111931, 173647 111937, 715991 111939, 337313 111955, 522391 111967, 197183134915775893 111991, 1110181 112003, 313613 112017, 337339 112027, 293863 112039, 181619 112045, 522409 112077, 379212763189593177941515337124531601137359 112083, 337361 112093, 197569 112107, 337369 112146, 236186913738256073 112159, 591901 112173, 313926941780737391 112177, 138629 112183, 176599 112186, 256093 112191, 337397 112231, 716033 112263, 323691627488137421 112333, 138641 112345, 522469 112351, 283397 112357, 749229316051 112383, 391248737461 112393, 711583 112402, 243861307261456201 112411, 138647 112431, 3113334071022137477 112435, 511319956599522487 112441, 716063 112453, 1110223 112467, 337489 112471, 472393 112533, 337511 112546, 271480391607856273 112551, 337517 112557, 317512207662137519 112587, 337529 112591, 173717962930436623 112597, 1091033 112609, 716087 112611, 337537 112629, 3113334131023937543 112669, 307367 112678, 2531061063212656339 112705, 522541 112711, 269419 112717, 1110247 112735, 573532211610522547 112738, 256369 112747, 313637 112753, 472399 112786, 256393 112806, 236918275420894178626712534188013760256403 112813, 373049 112821, 337607 112881, 319119757359137627 112899, 337633 112903, 712788916129 112962, 236671342012814025628431686188273765456481 112963, 831361 112978, 256489 112981, 1110271 112993, 193133615947 113035, 513374765185235481611173924053055869522607 113043, 372149147769230753831614937681 113047, 1143239473262910277 113059, 167677 113073, 337691 113179, 1110289 113185, 522637 113221, 1959101112119195959 113239, 749231116177 113283, 394112330736992127631258737761 113299, 137827 113311, 1110301 113317, 472411 113343, 337781 113361, 329871303390937787 113374, 256687 113379, 372153991619737793 113395, 522679 113413, 234931 113443, 1110313 113451, 313392909872737817 113461, 831367 113473, 532141 113481, 392781243467140142031260937827 113503, 138731 113517, 391261337839 113527, 1071061 113559, 337853 113578, 2109218521104256789 113583, 337861 113587, 971171 113613, 337871 113622, 236295887174653130619593918189373787456811 113626, 256813 113641, 1110331 113653, 891277 113721, 337907 113739, 331931223366937913 113743, 716249 113746, 256873 113851, 257443 113871, 337957 113914, 256957 113935, 522787 113959, 831373 113965, 523115991495522793 114007, 173659 114009, 372161891832674276231281186954291628738003 114055, 522811 114061, 167683 114081, 3113334571037138027 114109, 532153 114115, 529145787393522823 114121, 717491191378339592329671316303 114154, 257077 114189, 317512239671738063 114214, 257107 114241, 234967 114253, 611873 114265, 522853 114271, 229499 114273, 391269738091 114313, 791447 114337, 432659 114342, 23617193438515759102114118177323354646969100311211938200622423009336360186726190573811457171 114355, 522871 114357, 338119 114363, 399713129139387311791270738121 114391, 731567 114409, 191599 114442, 257221 114459, 338153 114477, 3113334691040738159 114501, 338167 114543, 3911133339899911714326742980197911571287293734718811104131272738181 114546, 2361734511021123224633696738190913818257273 114549, 338183 114574, 257287 114591, 338197 114619, 611879 114673, 138821 114693, 338231 114697, 1110427 114711, 338237 114715, 522943 114718, 241821399279857359 114751, 713919716967911831261882716393 114763, 1110433 114801, 317512251675338267 114805, 522961 114817, 196043 114861, 338287 114867, 391276338289 114877, 716411 114918, 2361071792143213585376421074191533830657459 114942, 236191573831457471 114963, 338321 115006, 257503 115045, 571935951331736658651211328760551643523009 115051, 1031117 115069, 235003 115081, 157733 115105, 523021 115129, 716447 115134, 236316293186619123818573714191893837857567 115141, 131722152167738857 115171, 716453 115207, 235009 115219, 138863 115242, 236192073841457621 115243, 176779 115278, 236192133842657639 115281, 391280938427 115293, 338431 115339, 716477 115347, 338449 115378, 257689 115383, 338461 115387, 196073 115398, 236918275421374274641112822192333846657699 115426, 257713 115447, 176791 115458, 236714214227495498824716494192433848657729 115462, 257731 115465, 573532991649523093 115494, 236192493849857747 115519, 331349 115537, 313727 115582, 257791 115587, 392781142742811284338529 115609, 138893 115614, 236918275421414282642312846192693853857807 115617, 317512267680138539 115629, 338543 115647, 372155071652138549 115654, 2711142277154751150252578261105141652257827 115677, 391285338559 115681, 293989 115687, 1113143809889910517 115701, 338567 115743, 341123941282338581 115801, 771233497163116543 115822, 271482731654657911 115827, 338609 115867, 1091063 115894, 257947 115899, 372155191655738633 115909, 313739 115923, 317512273681938641 115939, 269431 115951, 1183127913139710541 115993, 193601 115999, 138923 116007, 338669 116023, 157739 116029, 294001 116062, 258031 116083, 1161173671190310553 116119, 151769 116121, 338707 116122, 258061 116134, 258067 116142, 236132639781489297844678934193573871458071 116173, 235051 116218, 258109 116241, 338747 116245, 567335347173523249 116334, 236918234669138207281414562843168625295058646312926193893877858167 116335, 553265439219523267 116373, 338791 116377, 294013 116407, 591973 116409, 338803 116419, 472477 116422, 258211 116431, 716633 116439, 3371111049314738813 116473, 749237716639 116479, 1110589 116485, 523297 116494, 2714531061573143717421099219883211664258247 116509, 263443 116511, 371213547164138837 116517, 338839 116553, 338851 116569, 176857 116581, 731597 116589, 3113335331059938863 116601, 338867 116614, 219929339858658307 116617, 277421 116631, 391295938877 116653, 315371164322013763 116659, 432713 116665, 523333 116667, 392729871492614477831341402343211296338889 116674, 258337 116698, 219373874831667031406157730713154614258349 116701, 134719161124838977 116749, 313373 116785, 523357 116806, 258403 116851, 716693 116862, 236194773895458431 116877, 338959 116947, 831409 116979, 338993 116998, 271461122137274427854959191883571671458499 117009, 391300139003 117058, 2107214547109458529 117069, 339023 117079, 177197120716496887 117085, 523417 117087, 331931259377739029 117151, 193607 117166, 271483691673858583 117177, 313928141784339059 117181, 1761113103719216893 117186, 236195313906258593 117187, 716741 117217, 251467 117219, 341123953285939073 117226, 258613 117229, 716747 117262, 258631 117277, 235099 117283, 176899 117295, 523459 117297, 391303339099 117309, 339103 117321, 339107 117333, 391303739111 117337, 1110667 117354, 236195593911858677 117417, 339139 117426, 236195713914258713 117445, 583283415141523489 117451, 671753 117463, 1011163 117466, 258733 117478, 215130238977858739 117483, 339161 117505, 571331355165523501 117526, 258763 117574, 258787 117613, 337349 117631, 791489 117697, 373181 117717, 339239 117739, 281419 117799, 1110709 117871, 139067 117898, 2112223462332534665062563512653591071858949 117919, 373187 117927, 391310339309 117934, 258967 117961, 179659 117969, 339323 117982, 258991 117985, 573533711685523597 117987, 367201587176139329 118003, 197599 118006, 271484291685859003 118015, 523603 118018, 259009 118023, 339341 118026, 236918798315816623724947449871174714221494655713114196713934259013 118078, 243861373274659039 118119, 339373 118159, 173683 118183, 139091 118207, 432749 118237, 719491271338899312413622316891 118246, 259123 118306, 214929839779459153 118318, 259159 118327, 1131341347381710757 118345, 523669 118366, 259183 118417, 139109 118438, 259219 118467, 391316339489 118537, 1131049 118597, 233509 118609, 176977 118693, 196247 118705, 523741 118711, 176983 118729, 139133 118774, 259387 118837, 151787 118867, 716981 118887, 323691723516939629 118893, 339631 118906, 259453 118909, 716987 118933, 235171 118938, 236438612925846192213832766198233964659469 118939, 831433 118977, 339659 119005, 523801 119011, 611951 119013, 339671 119023, 412903 119037, 339679 119059, 671777 119077, 717011 119139, 315126345378939713 119149, 196271 119181, 339727 119182, 271485131702659591 119221, 177013 119242, 259621 119247, 339749 119254, 259627 119263, 196277 119283, 339761 119307, 339769 119319, 331931283384939773 119323, 177019 119329, 717047 119397, 339799 119431, 139187 119443, 313853 119446, 259723 119449, 1110859 119463, 339821 119467, 193619 119473, 373229 119479, 163733 119481, 339827 119482, 2112254311086259741 119517, 339839 119521, 472543 119523, 339841 119542, 259771 119562, 236199273985459781 119578, 217343517703459789 119581, 7117715531087117083 119587, 139199 119589, 339863 119593, 592027 119599, 199601 119629, 173122752738597037 119661, 339887 119683, 294127 119731, 177043 119845, 5115521791089523969 119883, 389267449134739961 119989, 971237 119995, 5103233515116523999 120034, 260017 120085, 573547732353293655111645255534311715524017 120093, 340031 120111, 340037 120126, 236200214004260063 120133, 139241 120151, 532267 120178, 260089 120189, 340063 120253, 741287419293317179 120271, 432797 120291, 3101303397119140097 120303, 391336740101 120313, 235231 120327, 319572111633340109 120333, 340111 120337, 717191 120355, 524071 120363, 353159757227140121 120381, 340127 120387, 340129 120403, 196337 120418, 260209 120481, 211571 120499, 412939 120507, 340169 120526, 271486091721860263 120553, 294157 120559, 313889 120565, 524113 120595, 589271445135524119 120597, 361183659197740199 120622, 241821471294260311 120634, 260317 120642, 236201074021460321 120655, 559295409204524131 120703, 1110973 120711, 340237 120733, 157769 120741, 316724150172340247 120742, 273146827165460371 120769, 1110979 120789, 391342140263 120826, 260413 120837, 347141857257140279 120849, 340283 120853, 177109 120903, 319121157363340301 120985, 524197 121015, 524203 121023, 37917215163113119153339357791101710711921237357637119134471728940341 121051, 717293 121054, 260527 121078, 260539 121107, 372173792192375115531533165957671730140369 121111, 281431 121126, 271142853170660563 121159, 177127 121161, 340387 121177, 749247317311 121186, 2132659791181587671027153420544661932260593 121197, 371213569170740399 121201, 196379 121218, 236891782272674545346811362202034040660609 121219, 717317 121279, 235273 121287, 340429 121294, 260647 121339, 711709 121387, 717341 121435, 514916374581524287 121459, 139343 121477, 331367 121522, 260761 121546, 260773 121557, 340519 121573, 611993 121597, 729203599419317371 121615, 513651871935524323 121627, 1111057 121651, 239509 121677, 340559 121707, 391352340569 121731, 340577 121746, 2361031972063093945916181182202914058260873 121749, 340583 121773, 340591 121819, 432833 121861, 313931 121879, 307397 121897, 791543 121933, 717419 121939, 611999 121945, 529145841420524389 121957, 1111087 121981, 223547 122062, 261031 122065, 524413 122079, 340693 122086, 261043 122101, 717443 122107, 235309 122119, 294211 122127, 340709 122137, 373301 122143, 717449 122161, 139397 122194, 2107214571114261097 122319, 391359140773 122335, 543215569284524467 122338, 261169 122361, 340787 122391, 392781151145331359940797 122403, 340801 122437, 717491 122446, 261223 122457, 340819 122538, 236132639781571314247139426204234084661269 122545, 524509 122547, 340849 122587, 177211 122646, 236204414088261323 122671, 612011 122677, 671831 122691, 340897 122695, 553265463231524539 122707, 139439 122709, 340903 122737, 139883 122758, 261379 122773, 717539 122781, 340927 122799, 340933 122817, 340939 122841, 391364940947 122842, 217343613722661421 122851, 432857 122857, 717551 122863, 131697279451 122866, 223462671534261433 122917, 1011217 122926, 261463 122949, 391957171719215764711366140983 122961, 317512411723340987 122965, 524593 122989, 294241 122995, 517851447723524599 123051, 341017 123054, 236205094101861527 123067, 717581 123133, 592087 123142, 223462677535461571 123157, 1071151 123171, 341057 123178, 21122121242509101855991119861589 123223, 149827 123241, 251491 123261, 318122754368141087 123262, 261631 123271, 131941 123274, 261637 123286, 261643 123343, 1111213 123346, 261673 123403, 7176111928942710372023725917629 123415, 524683 123423, 341141 123513, 313393167950141171 123514, 261757 123537, 341179 123561, 391372941187 123597, 393193279443132939871373341199 123609, 341203 123613, 717659 123643, 139511 123649, 532333 123679, 337367 123681, 341227 123691, 373343 123699, 341233 123709, 171932338365117277 123777, 391751153809242772811375341259 123781, 717683 123783, 31131339312134136310231331375139931125341261 123801, 329871423426941267 123807, 341269 123811, 177283 123841, 592099 123843, 341281 123865, 573535391769524773 123867, 391376341289 123978, 236206634132661989 123999, 341333 124009, 269461 124018, 2591181051210262009 124057, 131947 124063, 971279 124071, 341357 124093, 314003 124101, 391378941367 124111, 139547 124113, 3113337611128341371 124129, 1011229 124137, 3913391171061318395491379341379 124179, 3113353711592135837811749234337631128941393 124314, 236207194143862157 124329, 341443 124341, 372131931912175736511337401159211776341447 124357, 373361 124381, 294289 124413, 3113339367110141471 124473, 341491 124519, 239521 124521, 341507 124563, 341521 124573, 347359 124597, 1147241517265111327 124606, 262303 124623, 396118322754968120431384741541 124629, 341543 124639, 1131103 124651, 314021 124702, 262351 124747, 771251497175717821 124791, 341597 124797, 317512447734141599 124807, 137911 124809, 341603 124822, 213927844989862411 124831, 7171191049734317833 124851, 341617 124855, 524971 124861, 1111351 124918, 262459 124923, 341641 124941, 341647 124957, 717851 124977, 341659 125002, 262501 125011, 149839 125026, 2112256831136662513 125035, 517851471735525007 125043, 341681 125047, 139619 125061, 341687 125065, 525013 125077, 192922755143136583 125143, 235441 125154, 2369171834511021533064098181227245436816953736213906208594171862577 125187, 341729 125194, 262597 125227, 971291 125245, 537185677338525049 125254, 262627 125257, 1159193649212311387 125263, 229547 125313, 341771 125314, 271489511790262657 125323, 1111393 125331, 341777 125389, 1111399 125395, 531155809404525079 125401, 891409 125418, 236209034180662709 125434, 2591181063212662717 125439, 341813 125446, 262723 125461, 717923 125473, 271463 125553, 341851 125563, 307409 125589, 341863 125593, 139661 125611, 592129 125613, 391751153821246373891395741871 125635, 525127 125637, 341879 125638, 262819 125653, 1111423 125665, 541205613306525133 125733, 341911 125758, 222727745455462879 125773, 294337 125781, 341927 125794, 262897 125811, 379216319975991139791797341937 125815, 525163 125841, 341947 125859, 341953 125877, 341959 125886, 236209814196262943 125913, 319475714189322092679662741971 125917, 1111447 125923, 717989 125949, 341983 125962, 262981 125983, 1113143881969111453 126061, 139697 126073, 139907 126094, 267134941188263047 126106, 217343709741863053 126109, 235483 126115, 5115522931146525223 126159, 3113338231146942053 126166, 219931739863463083 126183, 342061 126213, 342071 126214, 2112257371147463107 126217, 713197391133247511949138717296643970918031 126219, 342073 126231, 372160111803342077 126235, 525247 126261, 391402942087 126265, 525253 126273, 372149147859257760131803942091 126277, 197641 126283, 293431 126289, 472687 126301, 718043 126303, 342101 126343, 718049 126361, 177433 126367, 1071181 126373, 139721 126379, 1111489 126393, 342131 126399, 371321399127346313893241601997231805742133 126489, 3113338331149942163 126513, 391405742171 126537, 342179 126559, 196661 126561, 342187 126591, 342197 126595, 573536171808525319 126607, 139739 126619, 127997 126649, 413089 126717, 342239 126727, 353359 126771, 342257 126793, 1031231 126843, 342281 126847, 718121 126849, 342283 126865, 525373 126886, 263443 126897, 342299 126919, 131697519763 126937, 235519 126955, 525391 126973, 71117779711918767910671309164974691154318139 127003, 891427 127011, 342337 127042, 263521 127045, 525409 127063, 612083 127066, 263533 127077, 342359 127093, 731741 127113, 372160531815942371 127119, 342373 127137, 342379 127138, 2112257791155863569 127177, 177481 127183, 718169 127195, 525439 127222, 263611 127231, 139787 127237, 1143269473295911567 127257, 313391692515077533263978942419 127269, 397917923753771116111414142423 127279, 177487 127285, 525457 127294, 263647 127303, 1171163781179311573 127339, 294391 127353, 342451 127354, 237741721344263677 127377, 391415342459 127401, 342467 127417, 472711 127459, 197647 127465, 513375365185265481689196124053445980525493 127471, 196709 127474, 263737 127513, 294397 127522, 263761 127606, 263803 127614, 236212694253863807 127651, 1071193 127653, 317512503750942551 127705, 525541 127707, 342569 127726, 263863 127734, 2366112218334936669810472094212894257863867 127786, 218135336270663893 127882, 243861487297463941 127906, 231622063412663953 127915, 525583 127999, 314129 128013, 371213601180342671 128014, 264007 128017, 313409 128026, 264013 128071, 891439 128089, 135916776721719853 128091, 342697 128101, 532417 128131, 373463 128155, 519719535536113491805674525631 128166, 2364182123246521104215633126213614272264083 128182, 264091 128238, 2361122293358666787134174201319402638737957147419141943221138864422582911658213734274664119 128289, 3721411231492874478611043312961091832742763 128323, 139871 128343, 317923953771742781 128371, 3141101127131314141 128382, 236213974279464191 128463, 342821 128479, 139883 128523, 342841 128526, 236316293186691138220734146214214284264263 128533, 791627 128539, 173743 128566, 264283 128581, 711811 128589, 342863 128593, 235591 128602, 264301 128637, 391429342879 128653, 718379 128671, 223577 128697, 342899 128701, 179719 128713, 139901 128787, 342929 128791, 139907 128802, 236214674293464401 128806, 264403 128827, 472741 128838, 2361091972183273945916541182214734294664419 128847, 329871481444342949 128863, 741287449314318409 128893, 612113 128899, 831553 128905, 5729351271452036358891015368344451841525781 128917, 137941 128929, 314159 128967, 342989 128974, 2591181093218664487 128977, 1011277 128989, 718427 128994, 236214994299864497 128997, 3911339913033909117271433342999 129013, 177589 129031, 718433 129057, 343019 129106, 264553 129111, 343037 129133, 263491 129145, 5231151123561525829 129153, 343051 129154, 264577 129163, 227569 129178, 271492271845464589 129199, 718457 129202, 264601 129211, 157823 129261, 3113339171175143087 129271, 257503 129307, 191677 129354, 236215594311864677 129397, 831559 129429, 397319721959165717731438143143 129451, 718493 129511, 671933 129526, 264763 129531, 343177 129565, 525913 129571, 139967 129586, 264793 129622, 264811 129633, 372161731851943211 129642, 23617313441516282931021231862465276971054127113941581209125423162381341827626216074321464821 129691, 532447 129711, 343237 129739, 137947 129741, 359177733219943247 129742, 264871 129777, 318123954371743259 129781, 233557 129783, 343261 129787, 718541 129807, 391442343269 129811, 1111801 129826, 213927846793464913 129838, 264919 129847, 413167 129879, 391443143293 129898, 2107214607121464949 129903, 3194353571291598171007227924513021683743301 129939, 343313 129961, 131697699997 129994, 264997 130006, 265003 130029, 389267487146143343 130129, 373517 130137, 372161971859143379 130138, 231622099419865069 130173, 343391 130177, 349373 130189, 1011289 130233, 343411 130234, 2132650091001865117 130246, 265123 130258, 265129 130263, 372162031860943421 130278, 236217134342665139 130282, 265141 130293, 393193279467140142031447743431 130306, 2112259231184665153 130309, 311419 130311, 391447943437 130357, 612137 130401, 391448943467 130443, 343481 130507, 1310039 130527, 391450343509 130537, 1111867 130549, 196871 130551, 343517 130609, 211619 130614, 2361122336619793958593711874217694353865307 130627, 718661 130629, 343543 130722, 236217874357465361 130734, 236918275481162243269486538807161424214842726314526217894357865367 130737, 343579 130747, 177691 130749, 3411231063318943583 130761, 392729871672615017831503450948431452943587 130762, 265381 130773, 343591 130789, 314219 130803, 359177739221743601 130837, 718691 130846, 265423 130861, 1071223 130867, 1111897 130879, 749267118697 130881, 343627 130903, 791657 130945, 526189 130947, 343649 130971, 314929344787943657 130978, 243861523304665489 130983, 343661 130989, 347141929278743663 131014, 2132650391007865507 131029, 283463 131086, 265543 131107, 433049 131137, 711847 131158, 265579 131167, 294523 131191, 1271033 131209, 1310093 131233, 196907 131245, 526249 131254, 229315862731468991798211722634234452665627 131263, 1111933 131319, 391459143773 131361, 343787 131377, 791663 131389, 831583 131403, 343801 131434, 265717 131458, 265729 131485, 526297 131503, 1071229 131533, 314243 131583, 323691907572143861 131613, 319572309692743871 131622, 236219374387465811 131623, 433061 131662, 265831 131673, 343891 131706, 236918275481162243271486542813162624394878731714634219514390265853 131737, 1031279 131739, 343913 131751, 391463943917 131761, 749268918823 131799, 343933 131809, 891481 131829, 343943 131842, 265921 131853, 343951 131871, 3113339389116743957 131889, 343963 131914, 265957 131935, 526387 131943, 3721611031833094277211281216362831884943981 131983, 592237 131991, 343997 132042, 2365911817735437374611192238220074401466021 132051, 344017 132058, 266029 132063, 344021 132091, 314261 132094, 266047 132115, 526423 132121, 1112011 132159, 344053 132166, 266083 132174, 2367914182142631261049209831476294734394411468618882220294405866087 132178, 266089 132193, 163811 132226, 217343889777866113 132259, 196961 132271, 349379 132274, 266137 132289, 263503 132295, 526459 132333, 344111 132343, 891487 132394, 2531061249249866197 132397, 433079 132433, 718919 132442, 266221 132462, 2369111822273354669919822329744659466913382007245340144906602173591204214718220774415466231 132478, 266239 132505, 526501 132513, 344171 132567, 344189 132586, 266293 132621, 344207 132663, 344221 132718, 266359 132747, 344249 132771, 344257 132789, 344263 132807, 344269 132811, 718973 132819, 344273 132823, 317419 132829, 196991 132865, 526573 132874, 271494911898266437 132877, 891493 132879, 344293 132898, 266449 132913, 1143281473309112083 132973, 1031291 132981, 319572333699944327 132982, 266491 132991, 177823 132997, 179743 133009, 235783 133063, 719009 133113, 344371 133123, 239557 133135, 526627 133165, 526633 133174, 266587 133177, 1112107 133206, 236149298447894222014440266603 133227, 39113131339393101711791480344409 133243, 1112113 133251, 344417 133267, 711877 133291, 413251 133297, 177841 133333, 151883 133339, 472837 133359, 344453 133366, 266683 133369, 197677 133378, 271449981361272295271905466689 133402, 266701 133405, 526681 133449, 344483 133453, 1131181 133477, 1271051 133491, 344497 133539, 372163591907744513 133554, 236222594451866777 133573, 1112143 133585, 526717 133587, 391484344529 133594, 266797 133603, 172927149346077859 133629, 344543 133642, 266821 133663, 731831 133671, 317512621786344557 133681, 373613 133699, 235813 133726, 266863 133729, 173773 133759, 181739 133761, 344587 133789, 337397 133795, 526759 133798, 2714193813326650310063521704295571911466899 133803, 391486744601 133837, 1123253529581912167 133842, 236223074461466921 133863, 344621 133885, 526777 133894, 266947 133927, 199673 133933, 671999 133942, 219334738669466971 133954, 266977 133957, 971381 133966, 271449981367273495691913866983 133989, 359177757227144663 134011, 177883 134029, 741287467326919147 134049, 344683 134073, 391489744691 134091, 394714131742395128531489944697 134098, 267049 134119, 711889 134143, 532531 134155, 573538331916526831 134157, 319722759168144719 134167, 1112197 134202, 236223674473467101 134221, 791699 134259, 344753 134274, 236714212342466913813916127832241748383496697319462919319758386394959119182223794475867137 134278, 267139 134281, 719183 134347, 373631 134374, 267187 134377, 831619 134391, 344797 134413, 139967 134419, 177907 134434, 267217 134454, 236224094481867227 134457, 344819 134509, 314339 134527, 235849 134529, 344843 134542, 267271 134551, 197683 134554, 271449981373274696111922267277 134611, 227593 134614, 267307 134629, 1112239 134659, 719237 134661, 344887 134662, 2112261211224267331 134671, 137983 134679, 344893 134727, 344909 134751, 344917 134755, 526951 134782, 267391 134797, 1310369 134821, 294649 134866, 267433 134869, 719267 134877, 344959 134889, 344963 134959, 1112269 134961, 344987 134962, 267481 134965, 526993 134986, 267493 135022, 267511 135031, 1317471692216117992873794310387 135046, 267523 135061, 1311031 135067, 314357 135103, 167809 135133, 177949 135162, 236918275425035006750915018225274505467581 135169, 295979171122914661 135187, 1310399 135202, 267601 135229, 271499 135259, 413299 135321, 3431291049314745107 135331, 719333 135337, 171932341971237961 135358, 267679 135417, 345139 135478, 271496771935467739 135517, 294673 135526, 267763 135543, 345181 135547, 891523 135553, 1112323 135558, 2369171834511021533064438861329265839877531797415062225934518667779 135595, 547235577288527119 135622, 219384383861668171577163431543569713867811 135658, 267829 135663, 3113341111233345221 135673, 211643 135715, 527143 135739, 149911 135763, 1271069 135777, 345259 135789, 345263 135802, 267901 135823, 711913 135838, 223462953590667919 135895, 527179 135909, 391510145303 135921, 345307 135922, 267961 135931, 181751 135933, 372164731941945311 135943, 672029 135969, 361183743222945323 135987, 345329 135997, 3141107127133174387 136021, 197159 136041, 313733141199345347 136087, 719441 136102, 217344003800668051 136129, 719447 136191, 3113341271238145397 136203, 383249547164145401 136231, 592309 136239, 345413 136306, 217193438211323422646358740097174801868153 136321, 235927 136326, 236227214544268163 136342, 268171 136381, 719483 136387, 294703 136405, 527281 136414, 268207 136446, 236227414548268223 136543, 1112413 136587, 3113341391241745529 136599, 345533 136627, 317431 136663, 178039 136666, 223462971594268333 136683, 391518745561 136714, 217344021804268357 136723, 472909 136741, 1131341401441112431 136797, 345599 136831, 293467 136833, 317512683804945611 136873, 1123253541595112443 136882, 289178769153868441 136933, 197207 136947, 319123957371745649 136953, 391521745651 136959, 371213643192945653 136977, 345659 137002, 268501 137005, 5114753552352655175832491258529151245527401 137014, 268507 137017, 181757 137019, 345673 137023, 263521 137035, 527407 137041, 433187 137062, 268531 137071, 1117187733806312461 137113, 314423 137121, 345707 137166, 236228614572268583 137173, 178069 137179, 719597 137271, 345757 137274, 2361371672743344115018221002228794575868637 137281, 1071283 137317, 353389 137409, 316328148984345803 137451, 345817 137455, 537185743371527491 137458, 268729 137469, 345823 137521, 1131217 137527, 1371149923193710579 137542, 268771 137554, 268777 137559, 345853 137581, 178093 137607, 345869 137617, 197243 137626, 268813 137629, 229601 137638, 268819 137661, 345887 137671, 314441 137677, 376122573721 137689, 157877 137749, 139991 137766, 236229614592268883 137767, 719681 137779, 294751 137794, 268897 137815, 543215641320527563 137817, 391531345939 137818, 268909 137821, 283487 137854, 268927 137859, 345953 137871, 391531945957 137893, 719699 137905, 527581 137935, 573549245563281539411970527587 137937, 345979 137949, 372165691970745983 137958, 236229934598668979 137961, 391532945987 137973, 311333711111333940712211243372941811254345991 137986, 268993 137989, 178117 138019, 719717 138049, 1271087 138057, 317512707812146019 138058, 269029 138066, 236230114602269033 138102, 236230174603469051 138133, 472939 138151, 1310627 138153, 346051 138193, 1117187739812912563 138199, 1131223 138223, 277499 138234, 236230394607869117 138249, 391536146083 138259, 1112569 138262, 273146947189469131 138271, 719753 138273, 346091 138291, 331931487446146097 138399, 346133 138423, 346141 138441, 346147 138442, 269221 138486, 236230814616269243 138505, 527701 138514, 269257 138522, 236230874617469261 138541, 1310657 138553, 349397 138561, 346187 138606, 2361326397817773554533110662231014620269303 138607, 719801 138613, 971429 138634, 269317 138643, 197297 138646, 218136238376669323 138678, 236295887174797159423914782231134622669339 138682, 269341 138691, 719813 138702, 236231174623469351 138706, 222331144662269353 138709, 592351 138721, 1112611 138745, 527749 138751, 891559 138766, 269383 138778, 269389 138783, 346261 138786, 236231314626269393 138823, 294787 138847, 433229 138862, 269431 138897, 3911233361699918320725354967175914032013227742096039126271543346299 138913, 532621 138927, 346309 138946, 269473 138997, 294793 139011, 346337 139015, 527803 139039, 163853 139045, 527809 139047, 346349 139063, 592357 139078, 269539 139101, 319923359769946367 139105, 543215647323527821 139147, 347401 139171, 294799 139183, 1112653 139197, 346399 139219, 236053 139239, 392781191243573729171951571547146413 139246, 269623 139255, 527851 139261, 472963 139266, 236918275425795158773715474232114642269633 139317, 346439 139323, 346441 139341, 346447 139399, 1310723 139471, 211661 139494, 2366713420134740269410412082232494649869747 139495, 5231151213606527899 139522, 269761 139549, 532633 139557, 3113342291268746519 139558, 269779 139567, 233599 139579, 1112689 139582, 2101202691138269791 139611, 317326951980746537 139614, 236232694653869807 139651, 359389 139677, 346559 139705, 527941 139731, 347141991297346577 139767, 346589 139803, 346601 139819, 891571 139863, 323692027608146621 139867, 7132953912033713776891537263948231075919981 139879, 433253 139894, 2113226619123869947 139903, 314513 139906, 2132653811076269953 139915, 527983 139917, 346639 139927, 178231 139942, 2112263611272269971 139945, 5136521531076527989 139947, 346649 140002, 270001 140005, 528001 140011, 197369 140017, 163859 140019, 3113342431272946673 140026, 2531061321264270013 140041, 1129319439482912731 140083, 711973 140101, 1316982910777 140137, 433259 140161, 720023 140166, 23691318263978117234599119817973594539177871078215574233614672270083 140214, 236233694673870107 140229, 391558146743 140233, 1773113124119218249 140242, 270121 140253, 346751 140257, 1310789 140293, 239587 140298, 2366713420134940269810472094233834676670149 140311, 193727 140314, 270157 140326, 270163 140377, 229613 140439, 3133916927750783136011080346813 140446, 270223 140458, 270229 140482, 270241 140485, 528097 140493, 346831 140539, 7171191181826720077 140542, 270271 140554, 231622267453470277 140571, 391561946857 140601, 346867 140623, 720089 140631, 346877 140653, 433271 140674, 237741901380270337 140707, 720101 140758, 270379 140769, 391564146923 140782, 243861637327470391 140799, 346933 140815, 528163 140823, 391564746941 140851, 831697 140857, 791783 140902, 270451 140919, 3107321439131746973 141019, 314549 141031, 1112821 141093, 396118325754977123131567747031 141094, 219384779941588931501178630023713742670547 141097, 111011271111139712827 141109, 731933 141111, 391567947037 141123, 347041 141139, 532663 141153, 347051 141166, 270583 141171, 347057 141177, 347059 141187, 592393 141189, 319572477743147063 141211, 720173 141238, 270619 141247, 1371031 141289, 236143 141331, 791789 141334, 270667 141367, 373379 141387, 347129 141418, 270709 141429, 347143 141445, 528289 141451, 373823 141454, 2107214661132270727 141463, 749288720209 141466, 2132654411088270733 141483, 347161 141487, 151937 141553, 353401 141583, 1310891 141597, 391573347199 141607, 192925755148837453 141654, 236236094721870827 141682, 270841 141726, 23613232639466978791381582372994745988971027179418172054308136345451616210902236214724270863 141753, 347251 141799, 747329431301720257 141805, 579359395179528361 141826, 270913 141847, 831709 141859, 1271117 141861, 347287 141865, 517851669834528373 141874, 270937 141889, 1112899 141891, 347297 141901, 413461 141934, 213265310310620668913391378267854591091870967 141951, 347317 141985, 573365389194528397 141997, 149953 142015, 528403 142021, 1112911 142071, 323296971872136671633200120594899617747357 142126, 217935839779471063 142165, 528433 142179, 383249571171347393 142203, 3107321443132947401 142219, 7117718471292920317 142227, 391580347409 142234, 219381973613947223743748671117 142255, 5231151237618528451 142258, 271129 142267, 1131259 142279, 791801 142321, 314591 142347, 323692063618947449 142351, 1112941 142353, 391581747451 142363, 1347233611302910951 142386, 2361938571141249249837477494237314746271193 142399, 157907 142402, 2132654771095471201 142411, 532687 142413, 3371111283384947471 142419, 329871637491147473 142443, 37917192149515763119133147153171323357399441833931969107111972261249927932907678374978379158272034947481 142447, 181787 142483, 1112953 142489, 891601 142507, 314597 142513, 720359 142522, 271261 142539, 347513 142549, 1112959 142599, 347533 142606, 2113226631126271303 142633, 197507 142651, 294919 142666, 271333 142689, 347563 142693, 314603 142702, 2714101932038671351 142717, 433319 142726, 271363 142741, 349409 142773, 347591 142777, 672131 142795, 528559 142801, 612341 142813, 1112983 142827, 347609 142831, 1310987 142849, 720407 142858, 271429 142887, 347629 142909, 1310993 142942, 271471 142966, 271483 143029, 281509 143071, 173827 143098, 271549 143151, 347717 143155, 528631 143179, 672137 143194, 271597 143206, 27145310619337138674213512702102292045871603 143217, 391591347739 143253, 3911339914474341130231591747751 143322, 236238874777471661 143337, 347779 143349, 371213673201947783 143358, 236238934778671679 143383, 1271129 143386, 271693 143397, 39274711314133942310171269305153111593347799 143473, 1113043 143502, 236239174783471751 143523, 3937111333431129338791594747841 143581, 672143 143598, 23671314212639427891182263273526546789157818413419368255236838102571104620514239334786671799 143599, 178447 143601, 315131745395147867 143611, 1311047 143614, 271807 143631, 391595947877 143662, 2109218659131871831 143673, 383249577173147891 143698, 271849 143707, 1311097 143722, 271861 143734, 271867 143739, 391597147913 143746, 241821753350671873 143757, 391597347919 143758, 271879 143761, 233617 143799, 347933 143851, 971483 143853, 347951 143886, 236239814796271943 143887, 197573 143907, 347969 143929, 163883 143943, 347981 143973, 391751153941282384691599747991 144051, 348017 144097, 1031399 144106, 272053 144118, 2132326462412994825983133554362661108672059 144121, 167863 144133, 1113103 144177, 3111733511872575617712827436984811310748059 144181, 314651 144262, 217344243848672131 144277, 720611 144297, 391603348099 144429, 331931553465948143 144454, 272227 144489, 348163 144493, 1311103 144499, 229631 144517, 178501 144519, 367201719215748173 144523, 433361 144538, 272269 144558, 236918275426775354803116062240934818672279 144574, 272287 144601, 236287 144607, 413527 144631, 612371 144663, 348221 144679, 149971 144682, 272341 144703, 1311131 144706, 272353 144717, 348239 144721, 178513 144741, 348247 144766, 272383 144777, 348259 144783, 391608748261 144799, 197621 144841, 241601 144853, 413533 144858, 2367142142344968981034720694241434828672429 144865, 573541392069528973 144943, 193751 144997, 612377 145039, 433373 145053, 397121322763968120431611748351 145057, 1113187 145059, 348353 145066, 272533 145101, 3113343971319148367 145129, 178537 145131, 372169112073348377 145135, 529027 145147, 173839 145165, 529033 145183, 473089 145186, 222931745863472593 145201, 720743 145221, 348407 145249, 1311173 145269, 391614148423 145279, 1311109 145311, 348437 145357, 1371061 145363, 612383 145389, 348463 145401, 317512851855348467 145411, 720773 145426, 219384386891788171634169133823827765472713 145429, 236323 145438, 272719 145461, 348487 145498, 223463163632672749 145542, 2361271912543813825737621146242574851472771 145567, 236329 145581, 348527 145582, 283166877175472791 145645, 529129 145653, 3471411033309948551 145683, 391618748561 145689, 348563 145699, 367397 145713, 348571 145714, 241821777355472857 145747, 747329443310120821 145761, 3711213377231631189344176941132512082348587 145765, 529153 145774, 223463169633872887 145795, 5136522431121529159 145798, 226927153854272899 145801, 211691 145809, 391751153953285985771620148603 145822, 272911 145837, 413557 145843, 172337339163418579 145891, 373943 145918, 272959 145927, 731999 145983, 348661 145999, 720857 146007, 391622348669 146017, 151967 146043, 392781243601180354091622748681 146049, 389267547164148683 146061, 391622948687 146086, 273043 146089, 1391051 146101, 193757 146107, 1311239 146122, 273061 146131, 295039 146149, 178597 146193, 348731 146209, 720887 146254, 273127 146263, 1311251 146271, 348757 146278, 211226110912221867111991342239866491329873139 146281, 197699 146293, 720899 146311, 1147283517311313301 146331, 397121322963968720611625948777 146337, 348779 146346, 236243914878273173 146353, 178609 146362, 273181 146374, 216332644989873187 146379, 359177827248148793 146398, 2714104572091473199 146413, 314723 146446, 237741979395873223 146482, 2714104632092673241 146517, 372169772093148839 146526, 236244214884273263 146545, 573553792653713955531855276541872093529309 146569, 1031423 146629, 720947 146635, 529327 146649, 348883 146659, 178627 146667, 348889 146671, 723161911637720953 146707, 1113337 146731, 1311287 146778, 2361734511021439287843178634244634892673389 146863, 175316390127718639 146866, 273433 146874, 23671314212639427891182269273538546807161418833497376656496994104911129820982244794895873437 146881, 720983 146911, 1071373 146959, 179821 146967, 348989 146973, 348991 146994, 236244994899873497 147034, 273517 147043, 1311311 147055, 529411 147061, 199739 147079, 197741 147085, 5231151279639529417 147091, 721013 147115, 529423 147129, 349043 147202, 2112266911338273601 147226, 273613 147243, 349081 147286, 273643 147307, 197753 147327, 349109 147349, 295081 147363, 349121 147418, 273709 147421, 197759 147454, 273727 147462, 2367142142351170221053321066245774915473731 147513, 349171 147531, 349177 147577, 178681 147589, 1311353 147597, 349199 147621, 349207 147622, 231622381476273811 147631, 1113421 147633, 349211 147643, 191773 147655, 529531 147681, 396118326954980724211640949227 147691, 1131307 147741, 311333711112136340712211331399344771343149247 147781, 178693 147817, 532789 147838, 219338338676673919 147886, 273943 147894, 236157314471942246494929873947 147895, 5115526891344529579 147961, 1113451 147973, 721139 147979, 1311383 147985, 517851741870529597 147993, 349331 148033, 179827 148107, 349369 148117, 732029 148126, 2112267331346674063 148129, 167887 148141, 721163 148183, 721169 148186, 274093 148203, 3911273399297499149744915489134731646749401 148213, 1316987711401 148219, 192926955151117801 148227, 349409 148231, 227653 148233, 349411 148263, 373219677203149421 148278, 2361326397819013802570311406247134942674139 148281, 372123691613074839212149644770612118349427 148327, 236449 148354, 274177 148369, 131011131313146911413 148402, 274201 148431, 349477 148453, 532801 148474, 2611221217243474237 148497, 349499 148563, 391751153971291387391650749521 148587, 349529 148599, 3911193357799917120923762771186915011881260745037821135091651149533 148615, 529723 148683, 329871709512749561 148686, 236247814956274343 148702, 214929849999874351 148705, 529741 148714, 274357 148722, 2367142142354170821062321246247874957474361 148761, 391652949587 148801, 178753 148803, 319325757977149601 148809, 349603 148849, 473167 148863, 311133339143347429104138174511114511353349621 148882, 274441 148903, 171932346178378759 148906, 274453 148942, 274471 148947, 3131379393113749649 148978, 274489 148981, 721283 148989, 349663 149001, 349667 149041, 1031447 149091, 349697 149095, 529819 149107, 7174911917983312533043877121301 149163, 372171032130949721 149167, 433469 149203, 314813 149218, 274609 149233, 721319 149329, 592531 149353, 233641 149361, 349787 149386, 2113226661132274693 149403, 349801 149437, 295153 149449, 199751 149493, 349831 149527, 741287521364721361 149539, 1311503 149562, 23679141821426312611872374356171228309106831661821366249274985474781 149613, 349871 149635, 529927 149653, 721379 149662, 274831 149686, 274843 149719, 178807 149722, 274861 149739, 3193757711112137031349210926274047788149913 149757, 349919 149779, 721397 149781, 349927 149785, 5291451033516529957 149817, 349939 149901, 329871723516949967 149902, 224131148262274951 149923, 178819 149946, 2366713420137340274611192238249914998274973 149949, 391666149983 149977, 473191 150099, 350033 150121, 2361107140324616527 150127, 178831 150166, 275083 150238, 2112268291365875119 150253, 971549 150261, 350087 150265, 541205733366530053 150279, 350093 150291, 391669950097 150313, 831811 150321, 389267563168950107 150322, 275161 150333, 350111 150334, 275167 150367, 721481 150421, 359419 150438, 236250735014675219 150454, 275227 150463, 379397 150477, 350159 150493, 721499 150529, 1091381 150538, 275269 150541, 473203 150561, 391672950187 Interrupted From simon.plouffe at gmail.com Thu Jul 19 23:10:11 2007 From: simon.plouffe at gmail.com (Simon Plouffe) Date: Thu, 19 Jul 2007 17:10:11 -0400 Subject: Divisors concatenated shape a prime In-Reply-To: References: Message-ID: <33a322bc0707191410x7c82df34qb3b68408bbab7077@mail.gmail.com> Hello, And for the number 339066 the prime generated has 255 digits: here it is : 339066, 2367913141821232627394246546369788191117126138161162182189207234273299322351378414483546567598621702819897966105 311341242144916381794186320932106245726912898372641864347491453826279737180738694125581304114742161461883724219260823767 44843856511113022169533 je continue les calculs. simon plouffe From Eric.Angelini at kntv.be Thu Jul 19 23:19:48 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Thu, 19 Jul 2007 23:19:48 +0200 Subject: =?iso-8859-1?Q?RE=A0=3A_Divisors_concatenated_shape_a_prime?= Message-ID: Geee, Simon ! Simple routine but... great result ! Waow ! Thanks to you and everyone -- this list is a must ;-) Best, ?. ________________________________ De: Simon Plouffe [mailto:simon.plouffe at gmail.com] Date: jeu. 19/07/2007 22:54 ?: Eric Angelini Cc: seqfan at ext.jussieu.fr Objet : Re: Divisors concatenated shape a prime hello I made this simple maple routine : ############################### with(numtheory): for k from 5 to 1e99 do: v0:=divisors(k): nn:=nops(v0): if nn > 3 then v1:=[seq(v0[j],j=2..nn-1)]: v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))): v3:=parse(v2): if isprime(v3) = true then lprint(k,v3) fi: fi: od: ################################# and here is some output from it (see the attachement) ################################# Simon plouffe -------------- next part -------------- An HTML attachment was scrubbed... URL: From njas at research.att.com Fri Jul 20 00:27:53 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Thu, 19 Jul 2007 18:27:53 -0400 (EDT) Subject: Divisors concatenated shape a prime Message-ID: <200707192227.l6JMRr4e351446@fry.research.att.com> sequence A037274, of course? Very similar to yours, Return-Path: X-Ids: 164 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=ojHpFCFCO0JPUDw8u6e0QbCWWB4ELmo8EkO/p69E5/RImJ1GACefhVhqL0l9kBoltrG+z2J5NkD062rXvTxT0n2BCn36T5mrd/J0Nbt9GKnTWygSq+PJA+282yDH99vRdkqTziGV4J+ubgp+1pxcDsIWdmuR3tctJoeQKx4ky9U= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=e8v4Nd18t1fUcgujrOlu60jcqBzALc1bdMcjM5B7ABYRzsOZfvKoKzd5vyB9f/6//78DP4UlqRthk7COCc6bqLtUl2PjQ206cNPDxivaLkVWfjojGMzV31lb7Jz9OGhfSHM/ok2nWKFCszVAKE2r0tl4KePHlwGhmu6WRNczYqI= Message-ID: Date: Thu, 19 Jul 2007 16:13:08 -0700 From: "Max Alekseyev" To: njas at research.att.com Subject: Re: Divisors concatenated shape a prime Cc: seqfan at ext.jussieu.fr, "Eric Angelini" In-Reply-To: <200707192227.l6JMRr4e351446 at fry.research.att.com> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <200707192227.l6JMRr4e351446 at fry.research.att.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.164]); Fri, 20 Jul 2007 01:13:11 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3700/Thu Jul 19 15:13:47 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 469FF006.003 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.387 -> 1 X-Miltered: at shiva.jussieu.fr with ID 469FF006.003 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Neil, It seems that A037274 (and related sequences, e.g., A037275) is missing the "base" keyword. Regards, Max On 7/19/07, N. J. A. Sloane wrote: > Eric, you know about the "home primes" > sequence A037274, of course? Very similar to yours, > and known to be hard! > Neil > From warut822 at gmail.com Fri Jul 20 04:32:50 2007 From: warut822 at gmail.com (Warut Roonguthai) Date: Fri, 20 Jul 2007 09:32:50 +0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: References: Message-ID: <482644420707191932s56b4979p6fc0c36fd3576d31@mail.gmail.com> On 7/17/07, Leroy Quet wrote: > > It seems VERY likely to me that there is no infinite string of 1's, or of > anything else, in sequence A131789 (ie. the terms of A131790 are all > finite). > > Can it be PROVED that all terms of A131790 are finite, possibly using > Hardy and Wright or some other such reference? Since there are infinitely many primes, 1 will appear infinitely often in A131789. But there cannot be an infinite string of 1's in A131789 because there exist infinitely many m such that d(m) = d(m+1) as proved by Roger Heath-Brown in 1984. So all terms of A131790 are finite. Warut Simon Plouffe: > And for the number 339066 the prime generated has 255 digits Looking at just the record values, from here on... {record-index, seed-number, digits-in-target-prime} {41,339066,255} {42,594594,317} {43,902538,328} {44,1750014,341} {45,2254098,346} {46,3174138,352} {47,3467646,354} {48,3818178,446} {49,3913434,447} {50,8795358,501} {51,9489018,502} {52,9522414,503} {53,13891878,511} {54,14139762,514} {55,14167494,515} {56,19803966,522} {57,23978262,529} {58,24478146,594} {59,28289898,673} {60,35837802,1025} I'm adding Eric's two new sequences: they will be A120712 and A120713. I used Simon Plouffe's nice Maple program to generate them, but modified it to give exactly the same terms as Eric had. To get an analogue of the home primes, A037274, I suppose we could iterate the map (k -> concatenation of proper divisors of k) until we reach a prime; then a(n) would be the prime we eventually reach when starting with n, or -1 if we never reach a prime. But what about a(p) where p is prime? I guess we set that to equal p. And we can set a(1) = 1. So the sequence starts 1 2 3 2 5 23 7 ... What is a(8)? I don't know, but I will put it in the OEIS as A120716. Hopefully someone will extend it. Neil Seqfans, for the new sequence A120716 that I mentioned, the analogue of home primes, the big question is, what is a(8)? we have and the divisors of that last number aree 1, 2, 3, 6, 37, 74, 111, 113, 222, 226, 339, 678, 4181, 8362, 12543, 25086, 3192525397, 6385050794, 9577576191, 19155152382, 118123439689, 236246879378, 354370319067, 360755369861, 708740638134, 721510739722, 1082266109583, 2164532219166, 13347948684857, 26695897369714, 40043846054571, 80087692109142, 30132785470246166539693, 60265570940492333079386, 90398356410738499619079, 180796712821476999238158, 1114913062399108161968641, 2229826124798216323937282, 3344739187197324485905923, 3405004758137816818985309, 6689478374394648971811846, 6810009516275633637970618, 10215014274413450456955927, 20430028548826900913911854, 125985176051099222302456433, 251970352102198444604912866, 377955528153297666907369299, 755911056306595333814738598, 96199682896113474519861511083121, 192399365792226949039723022166242, 288599048688340423559584533249363, 577198097376680847119169066498726, 3559388267156198557234875910075477, 7118776534312397114469751820150954, 10678164801468595671704627730226431, 10870564167260822620744350752392673, 21356329602937191343409255460452862, 21741128334521645241488701504785346, 32611692501782467862233052257178019, 65223385003564935724466104514356038, 402210874188650436967540977838528901, 804421748377300873935081955677057802, 1206632622565951310902622933515586703, 2413265245131902621805245867031173406 ] If we throw away the first and last terms and concatenate the rest, is that a prime? Does someone have access to a really good prime tester?! Neil PS I did not check these calculations and it is 05:00 From pxp at rogers.com Fri Jul 20 06:17:12 2007 From: pxp at rogers.com (Hans Havermann) Date: Fri, 20 Jul 2007 00:17:12 -0400 Subject: Divisors concatenated shape a prime In-Reply-To: <33a322bc0707191410x7c82df34qb3b68408bbab7077@mail.gmail.com> References: <33a322bc0707191410x7c82df34qb3b68408bbab7077@mail.gmail.com> Message-ID: On 7/20/07, N. J. A. Sloane wrote: > If we throw away the first and last terms and concatenate the rest, > is that a prime? No, it is not prime. And it is quite a large number that may be hard to factor. I will let the PARI/GP factor() function run overnight... Max From simon.plouffe at gmail.com Fri Jul 20 13:43:16 2007 From: simon.plouffe at gmail.com (Simon Plouffe) Date: Fri, 20 Jul 2007 07:43:16 -0400 Subject: ps Re Divisors concatenated shape a prime In-Reply-To: References: <200707201002.l6KA2ZKE432256@fry.research.att.com> Message-ID: <33a322bc0707200443l833a591gc4abfcff9e172a43@mail.gmail.com> The number is 23637741111132222263396784181836212543250863192525397638\ 5050794957757619119155152382118123439689236246879378\ 3543703190673607553698617087406381347215107397221082\ 2661095832164532219166133479486848572669589736971440\ 0438460545718008769210914230132785470246166539693602\ 6557094049233307938690398356410738499619079180796712\ 8214769992381581114913062399108161968641222982612479\ 8216323937282334473918719732448590592334050047581378\ 1681898530966894783743946489718118466810009516275633\ 6379706181021501427441345045695592720430028548826900\ 9139118541259851760510992223024564332519703521021984\ 4460491286637795552815329766690736929975591105630659\ 5333814738598961996828961134745198615110831211923993\ 6579222694903972302216624228859904868834042355958453\ 3249363577198097376680847119169066498726355938826715\ 6198557234875910075477711877653431239711446975182015\ 0954106781648014685956717046277302264311087056416726\ 0822620744350752392673213563296029371913434092554604\ 5286221741128334521645241488701504785346326116925017\ 8246786223305225717801965223385003564935724466104514\ 3560384022108741886504369675409778385289018044217483\ 7730087393508195567705780212066326225659513109026229\ 33515586703 and divisible by 13 and 47 if I am not mistaking. the rest (%/13/47) is not prime either but I can't determine its factors. simon plouffe From jvospost3 at gmail.com Sat Jul 21 00:35:58 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 20 Jul 2007 15:35:58 -0700 Subject: Concatenated anti-divisors Message-ID: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. There are no anti-divisors of 1 and 2. See A066272 for an equivalent definition and also the number of terms in each row. Now, if we concatenate antidivisors of integers n>2, we have an anti-divisor analogue of A106708. This should be easy for someone to Mathematica-ize and extend, and leads to the same kind of fun questions as its origin does. =========== n a(n) factorization 3 2 prime 4 3 prime 5 23 prime 6 4 2^2 7 235 5 * 47 8 35 5 * 7 9 26 2 * 13 10 347 prime 11 237 3 * 79 12 58 2 * 29 13 2359 7 * 337 14 349 prime 15 2610 2 * 3^2 * 5 * 29 16 311 prime 17 235711 7 * 151 * 223 18 45712 2^4 * 2857 19 2313 3^2 * 257 20 3813 3 * 31 * 41 =========== --- The On-Line Encyclopedia of Integer Sequences wrote: The following is a copy of the email message that was sent to njas Subject: NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813 %N A000001 Replace n by the concatenation of its antidivisors. %C A000001 Number of antidivisors concatened to form a(n) is A066272(n). We may consider prime values of the concatenated antidivisor sequence, and we may iterate it, i.e. n, a(n), a(a(n)), a(a(a(n))) which leads to questions of trajectory, cycles, fixed points. %e A000001 Anti-divisors of 3 through 20: 3: 2, so a(3) = 2. 4: 3, so a(4) = 3. 5: 2, 3, so a(5) = 23. 6: 4, so a(6) = 4. 7: 2, 3, 5, so a(7) = 235. 17: 2, 3, 5, 7, 11, so a(17) = 235711 %Y A000001 Cf. A037278, A066272, A120712, A106708, A130799. %O A000001 3 %K A000001 ,base,easy,more,nonn, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 20 2007 RH RA 192.20.225.32 From maximilian.hasler at gmail.com Sat Jul 21 02:38:38 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Fri, 20 Jul 2007 20:38:38 -0400 Subject: Concatenated anti-divisors In-Reply-To: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> References: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> Message-ID: <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> It appears to me that the definition %C A066272 If an odd number d in the range 1 < d < n divides N where N is any one of 2n-1, 2n or 2n+1 then N/d is called an anti-divisor of n. is not equivalent to your definition: > Non-divisor: a number k which does not divide a given > number x. Anti-divisor: a non-divisor k of x with the > property that k is an odd divisor of 2x-1 or 2x+1, or > an even divisor of 2x. According to the first definition, n=3 cannot have an anti-divisor since there is no odd d, 1 References: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> Message-ID: <3c3af2330707201835n3b6b37c8r1d7594ea8514a132@mail.gmail.com> It first appeared as if "your" definition (the second below) could be found at least on some other web pages. Now I have big doubts. Is there any *serious* reference for this notion ? According to "your" definition, antidiv( 3 ) = { 2, 5, 6, 7 } since none of these numbers divide 3 and they are either even divisors of 6 or odd divisors of 5 or 7. Also, concerning the sequence : A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n. I cannot see any triangular structure (cf. http://www.research.att.com/~njas/sequences/table?a=130799 ) and AFAICS the only way to find out where the anti-divisors of a number n will start is to spot violations of strict increasing monotony (which is of course not failsafe, e.g. if a number >2 would have no antidivisors, or some number would have its largest antidiv. smaller than the least antidiv of its successor....) IMHO all these sequences need much clarification and cleanup of definitions. Insofar more as the "authorative" definition seems to be on an unavailable web page (and the version I can found via the "wayback" machine does not contain a clear definition either - again several "Or, to put it another way..." etc). All in all there is a heavy smell of *very* original research in the air around this. M.H. On 7/20/07, Maximilian Hasler wrote: > It appears to me that the definition > > %C A066272 If an odd number d in the range 1 < d < n divides N where N > is any one of 2n-1, 2n or 2n+1 then N/d is called an anti-divisor of > n. > > is not equivalent to your definition: > > > Non-divisor: a number k which does not divide a given > > number x. Anti-divisor: a non-divisor k of x with the > > property that k is an odd divisor of 2x-1 or 2x+1, or > > an even divisor of 2x. > > According to the first definition, n=3 cannot have an anti-divisor > since there is no odd d, 1 > M.H. > From maxale at gmail.com Sat Jul 21 04:19:05 2007 From: maxale at gmail.com (Max Alekseyev) Date: Fri, 20 Jul 2007 19:19:05 -0700 Subject: Concatenated anti-divisors In-Reply-To: <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> References: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> Message-ID: There are glitches in both Jonathan's definition of anti-divisor and the quoted comment to A066272. Namely, Jonathan forgot to mention that k < x, and in the comment to A066272 it should be "1 < d <= n" not "1 < d < n". After such corrections these two definitions become equivalent and consistent with the numerical values of A066272. Max On 7/20/07, Maximilian Hasler wrote: > It appears to me that the definition > > %C A066272 If an odd number d in the range 1 < d < n divides N where N > is any one of 2n-1, 2n or 2n+1 then N/d is called an anti-divisor of > n. > > is not equivalent to your definition: > > > Non-divisor: a number k which does not divide a given > > number x. Anti-divisor: a non-divisor k of x with the > > property that k is an odd divisor of 2x-1 or 2x+1, or > > an even divisor of 2x. > > According to the first definition, n=3 cannot have an anti-divisor > since there is no odd d, 1 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. But this definition fails for n = 3, as someone mentioned last night. We know from the OEIS that 3 has a single antidivisor, 2. According to this definition 3 has no antidivisors. There is also this program, which I have not checked: %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; Table[ Length[ antid[ n ] ], {n, 1, 100} ] The other definition is: %I A130799 %S A130799 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, %T A130799 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, %U A130799 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 %N A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n. %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. %C A130799 There are no anti-divisors of 1 and 2. %e A130799 Anti-divisors of 3 through 20: %e A130799 3: 2 %e A130799 4: 3 %e A130799 5: 2, 3 %e A130799 6: 4 %e A130799 7: 2, 3, 5 %e A130799 8: 3, 5 %e A130799 9: 2, 6 This definition also fails for n = 3: it gives 5 antidivisors, 2,4,5,6,7. The term anti-divisor seems to be due to Jon Perry. I wish I understood the motivation for the definition! There are links to various webpages of his, but they are all broken and he has not responded to my emails. It seems to me that both of the above definitions are incorrect, and where N is any one of 2n-1, 2n or 2n+1 then d = N/i is called an anti-divisor of n. Equivalently, an anti-divisor of n is a number d in the range [1..n] which does not divide n and is either an odd divisor of 2n-1 or 2n+1, or an even divisor of 2n. Now both definitions seem to work correctly for n=3, giving a single anti-divisor, 2. But I'm not too confident about all this - comments anyone? As I said, I wish I understood the motivation for the definition! Neil From njas at research.att.com Sat Jul 21 13:41:09 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sat, 21 Jul 2007 07:41:09 -0400 (EDT) Subject: definition of anti-divisor Message-ID: <200707211141.l6LBf9dn795643@fry.research.att.com> should be changed to: Definition: If an odd number i in the range 1 < i <= n divides N Return-Path: X-Ids: 168 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:references; b=FVQtQiB9V5EwfrNoVIuMiZRMK92DAedBduoAYxXaXmYMtcDtVUj4dnxD3LIwEpP6hJobwWOtXslZBCZ8nDnh12IxrYMS0RJcKBni8LZFtQ1vIPKoRBth6jOc1z4PERgdcxhGlx+pnc5vviVWIu422lSH4g/0VpigzA5KfDjJl2A= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:references; b=nz4s1msyGFqm3pynX2KwQyUv/Bkw/kVMw9/aVxZ8emEvAiK96nHyi3nLfcSzvjcXSR/GMmjKnJosqHQUfbit6FPWIatVpZxJd40MGa5kdC39xAU628XJLav5ZY8++Wg2wt71cUdGcKFjyJqb1X/bA9GF6KsvhVzK0mYT2A+Aj+0= Message-ID: Date: Sat, 21 Jul 2007 07:31:25 -0500 From: "Diana Mecum" To: njas at research.att.com Subject: Re: definition of anti-divisor Cc: seqfan at ext.jussieu.fr In-Reply-To: <200707211141.l6LBf9dn795643 at fry.research.att.com> MIME-Version: 1.0 Content-Type: multipart/alternative; boundary="----=_Part_148534_11559968.1185021085857" References: <200707211141.l6LBf9dn795643 at fry.research.att.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Sat, 21 Jul 2007 14:31:28 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3714/Sat Jul 21 12:54:24 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46A1FC9F.004 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.311 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46A1FC9F.004 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! ------=_Part_148534_11559968.1185021085857 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline Dr. Sloane, As far as the second definition, and > %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. > This definition also fails for n = 3: it gives 5 antidivisors, 2,4,5,6,7. According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I believe that the second definition is correct as it stands. Diana On 7/21/07, N. J. A. Sloane wrote: > > > Dear seqfans, There are currently two versions > of the definition of anti-divisor in the OEIS: > > %C A066272 If an odd number d in the range 1 < d < n divides N > where N is any one of 2n-1, 2n or 2n+1 > then N/d is called an anti-divisor of n. > > %e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd > divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the > anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. > > But this definition fails for n = 3, as someone mentioned last night. > We know from the OEIS that 3 has a single antidivisor, 2. > According to this definition 3 has no antidivisors. > > There is also this program, which I have not checked: > %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], > OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & > ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; > Table[ Length[ antid[ n ] ], {n, 1, 100} ] > > The other definition is: > > %I A130799 > %S A130799 > 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, > %T A130799 > 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, > %U A130799 > 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 > %N A130799 Triangle read by rows in which row n (n>=3) list the > anti-divisors of n. > %C A130799 Non-divisor: a number k which does not divide a given number x. > Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > %C A130799 There are no anti-divisors of 1 and 2. > %e A130799 Anti-divisors of 3 through 20: > %e A130799 3: 2 > %e A130799 4: 3 > %e A130799 5: 2, 3 > %e A130799 6: 4 > %e A130799 7: 2, 3, 5 > %e A130799 8: 3, 5 > %e A130799 9: 2, 6 > > This definition also fails for n = 3: it gives 5 antidivisors, > 2,4,5,6,7. > > The term anti-divisor seems to be due to Jon Perry. > I wish I understood the motivation for the definition! > > There are links to various webpages of his, but they are all broken > and he has not responded to my emails. > > It seems to me that both of the above definitions are incorrect, and > should be changed to: > > Definition: If an odd number i in the range 1 < i <= n divides N > where N is any one of 2n-1, 2n or 2n+1 > then d = N/i is called an anti-divisor of n. > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > or an even divisor of 2n. > > Now both definitions seem to work correctly for n=3, giving > a single anti-divisor, 2. > > But I'm not too confident about all this - comments anyone? > As I said, I wish I understood the motivation for the definition! > > Neil > > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. ------=_Part_148534_11559968.1185021085857 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Dr. Sloane,

As far as the second definition, and

> %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x.

> This definition also fails for n = 3: it gives 5 antidivisors,
2,4,5,6,7.

According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I believe that the second definition is correct as it stands.

Diana

On 7/21/07, N. J. A. Sloane <njas at research.att.com> wrote:

Dear seqfans, There are currently two versions
of the definition of anti-divisor in the OEIS:

%C A066272 If an odd number d in the range 1 < d < n divides N
where N is any one of 2n-1, 2n or 2n+1
then N/d is called an anti-divisor of n.

%e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4.

But this definition fails for n = 3, as someone mentioned last night.
We know from the OEIS that 3 has a single antidivisor, 2.
According to this definition 3 has no antidivisors.

There is also this program, which I have not checked:
%t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; Table[ Length[ antid[ n ] ], {n, 1, 100} ]

The other definition is:

%I A130799
%S A130799 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11,
%T A130799 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7,
%U A130799 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7
%N A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n.
%C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x.
%C A130799 There are no anti-divisors of 1 and 2.
%e A130799 Anti-divisors of 3 through 20:
%e A130799 3: 2
%e A130799 4: 3
%e A130799 5: 2, 3
%e A130799 6: 4
%e A130799 7: 2, 3, 5
%e A130799 8: 3, 5
%e A130799 9: 2, 6

This definition also fails for n = 3: it gives 5 antidivisors,
2,4,5,6,7.

The term anti-divisor seems to be due to Jon Perry.
I wish I understood the motivation for the definition!

There are links to various webpages of his, but they are all broken
and he has not responded to my emails.

It seems to me that both of the above definitions are incorrect, and
should be changed to:

Definition: If an odd number i in the range 1 < i <= n divides N
where N is any one of 2n-1, 2n or 2n+1
then d = N/i is called an anti-divisor of n.

Equivalently, an anti-divisor of n is a number d in the range [1..n]
which does not divide n and is either an odd divisor of 2n-1 or 2n+1,
or an even divisor of 2n.

Now both definitions seem to work correctly for n=3, giving
a single anti-divisor, 2.

But I'm not too confident about all this - comments anyone?
As I said, I wish I understood the motivation for the definition!

Neil




--
"God made the integers, all else is the work of man."
L. Kronecker, Jahresber. DMV 2, S. 19. ------=_Part_148534_11559968.1185021085857-- From diana.mecum at gmail.com Sat Jul 21 14:38:37 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Sat, 21 Jul 2007 07:38:37 -0500 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: Dr. Sloane, As far as the second definition, and > %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. > This definition also fails for n = 3: it gives 5 antidivisors, 2,4,5,6,7. According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I believe that the second definition is correct as it stands. Diana On 7/21/07, N. J. A. Sloane wrote: > > > Dear seqfans, There are currently two versions > of the definition of anti-divisor in the OEIS: > > %C A066272 If an odd number d in the range 1 < d < n divides N > where N is any one of 2n-1, 2n or 2n+1 > then N/d is called an anti-divisor of n. > > %e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd > divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the > anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. > > But this definition fails for n = 3, as someone mentioned last night. > We know from the OEIS that 3 has a single antidivisor, 2. > According to this definition 3 has no antidivisors. > > There is also this program, which I have not checked: > %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], > OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & > ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; > Table[ Length[ antid[ n ] ], {n, 1, 100} ] > > The other definition is: > > %I A130799 > %S A130799 > 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, > %T A130799 > 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, > %U A130799 > 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 > %N A130799 Triangle read by rows in which row n (n>=3) list the > anti-divisors of n. > %C A130799 Non-divisor: a number k which does not divide a given number x. > Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > %C A130799 There are no anti-divisors of 1 and 2. > %e A130799 Anti-divisors of 3 through 20: > %e A130799 3: 2 > %e A130799 4: 3 > %e A130799 5: 2, 3 > %e A130799 6: 4 > %e A130799 7: 2, 3, 5 > %e A130799 8: 3, 5 > %e A130799 9: 2, 6 > > This definition also fails for n = 3: it gives 5 antidivisors, > 2,4,5,6,7. > > The term anti-divisor seems to be due to Jon Perry. > I wish I understood the motivation for the definition! > > There are links to various webpages of his, but they are all broken > and he has not responded to my emails. > > It seems to me that both of the above definitions are incorrect, and > should be changed to: > > Definition: If an odd number i in the range 1 < i <= n divides N > where N is any one of 2n-1, 2n or 2n+1 > then d = N/i is called an anti-divisor of n. > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > or an even divisor of 2n. > > Now both definitions seem to work correctly for n=3, giving > a single anti-divisor, 2. > > But I'm not too confident about all this - comments anyone? > As I said, I wish I understood the motivation for the definition! > > Neil > > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From maxale at gmail.com Sat Jul 21 17:37:16 2007 From: maxale at gmail.com (Max Alekseyev) Date: Sat, 21 Jul 2007 08:37:16 -0700 Subject: definition of anti-divisor In-Reply-To: <200707211141.l6LBf9dn795643@fry.research.att.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: On 7/21/07, N. J. A. Sloane wrote: > The term anti-divisor seems to be due to Jon Perry. > I wish I understood the motivation for the definition! > > There are links to various webpages of his, but they are all broken > and he has not responded to my emails. Neil, I believe your corrections are correct ;) Jon Perry's page on anti-divisors is available from archive.org: http://web.archive.org/web/20070406031719/www.users.globalnet.co.uk/~perry/maths/antidivisor.htm Max When I posted my version of the correct definition of anti-divisor earlier this morning, I should have given credit to Maximilian Hasler and Max Alekseyev for saying exactly the same thing in earlier postings (which I had not read). Maximilian, Max - my apologies! Neil From njas at research.att.com Sat Jul 21 18:00:32 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sat, 21 Jul 2007 12:00:32 -0400 (EDT) Subject: credit for corrected definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: <200707211600.l6LG0WWW831020@fry.research.att.com> > According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. I was assuming that a non-divisor would be <= n by default. Diana On 7/21/07, Diana Mecum wrote: > > Dr. Sloane, > > As far as the second definition, and > > > %C A130799 Non-divisor: a number k which does not divide a given number > x. Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > > > This definition also fails for n = 3: it gives 5 antidivisors, > 2,4,5,6,7. > > According to the second definition, above, an antidivisor must first be a > non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I > believe that the second definition is correct as it stands. > > Diana > > On 7/21/07, N. J. A. Sloane wrote: > > > > > > Dear seqfans, There are currently two versions > > of the definition of anti-divisor in the OEIS: > > > > %C A066272 If an odd number d in the range 1 < d < n divides N > > where N is any one of 2n-1, 2n or 2n+1 > > then N/d is called an anti-divisor of n. > > > > %e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd > > divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the > > anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. > > > > But this definition fails for n = 3, as someone mentioned last night. > > We know from the OEIS that 3 has a single antidivisor, 2. > > According to this definition 3 has no antidivisors. > > > > There is also this program, which I have not checked: > > %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 > > ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 > > & ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; > > Table[ Length[ antid[ n ] ], {n, 1, 100} ] > > > > The other definition is: > > > > %I A130799 > > %S A130799 > > 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, > > %T A130799 > > 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, > > %U A130799 > > 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 > > %N A130799 Triangle read by rows in which row n (n>=3) list the > > anti-divisors of n. > > %C A130799 Non-divisor: a number k which does not divide a given number > > x. Anti-divisor: a non-divisor k of x with the property that k is an odd > > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > > %C A130799 There are no anti-divisors of 1 and 2. > > %e A130799 Anti-divisors of 3 through 20: > > %e A130799 3: 2 > > %e A130799 4: 3 > > %e A130799 5: 2, 3 > > %e A130799 6: 4 > > %e A130799 7: 2, 3, 5 > > %e A130799 8: 3, 5 > > %e A130799 9: 2, 6 > > > > This definition also fails for n = 3: it gives 5 antidivisors, > > 2,4,5,6,7. > > > > The term anti-divisor seems to be due to Jon Perry. > > I wish I understood the motivation for the definition! > > > > There are links to various webpages of his, but they are all broken > > and he has not responded to my emails. > > > > It seems to me that both of the above definitions are incorrect, and > > should be changed to: > > > > Definition: If an odd number i in the range 1 < i <= n divides N > > where N is any one of 2n-1, 2n or 2n+1 > > then d = N/i is called an anti-divisor of n. > > > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > > or an even divisor of 2n. > > > > Now both definitions seem to work correctly for n=3, giving > > a single anti-divisor, 2. > > > > But I'm not too confident about all this - comments anyone? > > As I said, I wish I understood the motivation for the definition! > > > > Neil > > > > > > > -- > "God made the integers, all else is the work of man." > L. Kronecker, Jahresber. DMV 2, S. 19. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From maxale at gmail.com Sat Jul 21 22:17:53 2007 From: maxale at gmail.com (Max Alekseyev) Date: Sat, 21 Jul 2007 13:17:53 -0700 Subject: definition of anti-divisor In-Reply-To: <200707211141.l6LBf9dn795643@fry.research.att.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: On 7/21/07, N. J. A. Sloane wrote: > Definition: If an odd number i in the range 1 < i <= n divides N > where N is any one of 2n-1, 2n or 2n+1 > then d = N/i is called an anti-divisor of n. > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > or an even divisor of 2n. Yet another definition: k is a non-divisor of n iff: 1 < k < n and | (n mod k) - k/2 | <= 1. Max From maxale at gmail.com Sat Jul 21 22:19:27 2007 From: maxale at gmail.com (Max Alekseyev) Date: Sat, 21 Jul 2007 13:19:27 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: On 7/21/07, Max Alekseyev wrote: > Yet another definition: > > k is a non-divisor of n iff: > 1 < k < n > and > | (n mod k) - k/2 | <= 1. Oops. It should be | (n mod k) - k/2 | < 1. Max From jvospost3 at gmail.com Sun Jul 22 08:54:59 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sat, 21 Jul 2007 23:54:59 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> Thank you Neil, for putting the cached John Perry Page where we can get it. Thank you Max, Diana, et al for corrections and clarifications. To extend, then, eliminating the "more" (though anyone is welcome to submit mathematica or equivalent, and a b-list): COMMENT FROM Jonathan Vos Post RE A130846 %I A130846 %S A130846 2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813, 2614, 345915, 235915, 716, 2371017, 3417, 2561118, 3581119, 2319, 41220, 237921, 35791321, 2561322, 3423, 23101423, 824, 2351525, 3457111525, 2671126, 391627, 23927, 45121728, 2351729, 3829, 26710131830, 3471331, 2351931, 51932, 239111433, 349112033 %N A130846 Replace n by the concatenation of its anti-divisors. %H A130846 Jon Perry, The Anti-Divisor, cached copy. %e A130846 a(21)-a(50) adapted from cached Perry page. %Y A130846 Cf. A037278, A066272, A120712, A106708, A130799. %O A130846 3 %K A130846 ,base,easy,nonn, %A A130846 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 22 2007 Next, the matters of iteration, fixed points, primes in A130846 can commence, subject to Neil's taste as bounded by "less"itude. From jvospost3 at gmail.com Sun Jul 22 09:02:55 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 22 Jul 2007 00:02:55 -0700 Subject: definition of anti-divisor In-Reply-To: <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> Message-ID: <5542af940707220002l4ca17d60i426f4a982d006d0b@mail.gmail.com> Even the number of digits of, for n>2, A130846(n) = 1, 1, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 4, 3, 6, 5, 4, 4, 4, 6, 6, 3... is nontrivial. Raiding the spectre of indices n of record values of number of digits of A130846(n). I wonder if switching to base 2 or other bases is lessitudinal? Or, if tried, are there any interesting things to see? What is the behavior of A130846(n)/n? Since I don't really know what Jon Perry was getting at, I don't know how dumb these questions and derived sequences are, hence I rely on the judgment of seqfans. From davidwwilson at comcast.net Sun Jul 22 09:19:49 2007 From: davidwwilson at comcast.net (David Wilson) Date: Sun, 22 Jul 2007 03:19:49 -0400 Subject: 919 conjecture References: <200707171512.AA1076494578@TanyaKhovanova.com> Message-ID: <004b01c7cc30$b15ae890$6501a8c0@yourxhtr8hvc4p> The graph of A002375 strongly indicates that the number of Goldbach partitions of even n >= 4 remains positive. Similarly, the graph of A014085 strongly indicates that the number of primes between adjacent positive squares remains positive. Though neither conjecture is proved, and a freak departure from the visible pattern is theoretically possible, the trends in the empirical evidence suggest that both conjectures are a very safe bet. Conway suggests calling such conjectures, with ample empirical evidence and little reason to doubt that evidence, "sureties". Thus Goldbach's and Legendre's conjectures are "sure" if not provably true. I suggest that you count and graph the number of primes strictly between adjacent palindromes. I suspect that, except for anomalous adjacent palindrome pairs (10^k-1, 10^k+1) (which cannot be adjacent palindromic primes), the number of intervening primes will exhibit a visually convincing growth pattern that will convince you that (919, 929) is indeed the last pair of consecutive palindromes and consecutive primes. ----- Original Message ----- From: "Tanya Khovanova" To: Sent: Tuesday, July 17, 2007 6:12 PM Subject: 919 conjecture > Hello all, > > I was looking at A069803 - Smaller of two consecutive palindromic primes: > 2, 3, 5, 7, 181, 787, 919 > Conjectured to be complete. > > I am interested in seeing a proof that 919 is actually the largest > palindromic prime such that the next prime is palindromic. > I checked up to 10^8 with Mathematica coding. > > Also, it is obvious that the distance from a palindrome n to the next one > is more than Sqrt(n/10). It is clear that prime gaps grow slower than > that. Looking at the prime gaps sequence A053303, it is easy to prove that > 919 is the last number like that up to 10^16. > > Is there a bound for prime gaps that proves that the gaps are less than > Sqrt(n/10) starting from some n? > > Tanya > > > _________________________________________________________________ > Need personalized email and website? Look no further. It's easy > with Doteasy $0 Web Hosting! Learn more at www.doteasy.com > > > -- > No virus found in this incoming message. > Checked by AVG Free Edition. > Version: 7.5.476 / Virus Database: 269.10.8/906 - Release Date: 7/17/2007 > 6:30 PM > From pauldhanna at juno.com Sun Jul 22 13:21:57 2007 From: pauldhanna at juno.com (Paul D. Hanna) Date: Sun, 22 Jul 2007 07:21:57 -0400 Subject: A006336 - Unexpected Relation to Golden Ratio? Message-ID: <20070722.072158.944.1.pauldhanna@juno.com> Seqfans, Consider the nice sequence A006336: a(n) = a(n-1) + a(n-1 - number of even terms so far). http://www.research.att.com/~njas/sequences/A006336 begins: [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. My COMMENT (NOT submitted to OEIS): ----------------------------------------------------------- It seems that A006336 can be generated by a rule using the golden ratio: a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, i.e., the number of even terms up to position n-1 equals: n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. (PARI): a(n) = if(n==1,1, a(n-1) + a( floor(n/((sqrt(5)+1)/2)) ) ) ----------------------------------------------------------- Would someone verify if these are indeed equivalent definitions, at least empirically? Or, what is the first position in which terms are NOT equal? If these are equivalent, then this is another unexpected appearance of that ubiquitous constant. Thanks, Paul -------------- next part -------------- An HTML attachment was scrubbed... URL: From tanyakh at TanyaKhovanova.com Sun Jul 22 18:16:59 2007 From: tanyakh at TanyaKhovanova.com (Tanya Khovanova) Date: Sun, 22 Jul 2007 09:16:59 -0700 Subject: sequence joke In-Reply-To: <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> Message-ID: <200707220916.AA2126905490@TanyaKhovanova.com> So, extending the table of my 20 July 2007 email: =========== n a(n) factorization 3 2 prime 4 3 prime 5 23 prime 6 4 2^2 7 235 5 * 47 8 35 5 * 7 9 26 2 * 13 10 347 prime 11 237 3 * 79 12 58 2 * 29 13 2359 7 * 337 14 349 prime 15 2610 2 * 3^2 * 5 * 29 16 311 prime 17 235711 7 * 151 * 223 18 45712 2^4 * 2857 19 2313 3^2 * 257 20 3813 3 * 31 * 41 21 2614 2 * 1307 22 345915 3^2 * 5 * 7687 23 235915 5 * 29 * 1627 24 716 2^2 * 179 25 2371017 3 * 11 * 71849 26 3417 3 * 17 * 67 27 2561118 2 * 3 * 7 * 17^2 * 211 28 3581119 37 * 96787 29 2319 3 * 773 30 41220 2^2 * 3^2 * 5 * 229 31 237921 3 * 71 * 1117 32 35791321 37 * 967333 33 2561322 2 * 3 * 17 * 25111 34 3423 3 * 7 * 163 35 23101423 97 * 238159 36 824 2^3 * 103 37 2351525 5^2 * 11 * 17 * 503 38 3457111525 5^2 * 7 * 97 * 203659 39 2671126 2 * 1335563 40 391627 prime 41 23927 71 * 337 42 45121728 2^6 * 3 * 235009 43 2351729 17 * 138337 44 3829 7 * 547 45 26710131830 2 * 5 * 41^2 * 757 * 2099 46 3471331 prime 47 2351931 3 * 523 * 1499 48 51932 2^2 * 12983 49 239111433 3^4 * 11 * 43 * 79^2 50 349112033 12119 * 28807 51 2634 2 * 3 * 439 52 3578152135 5 * 79 * 9058613 53 2357152135 5 * 13 * 36263879 54 41236 2^2 * 13^2 * 61 55 23102237 73 * 316469 56 31637 17 * 1861 57 2562338 2 * 23 * 53 * 1051 58 3459132339 3 * 13 * 1229 * 72169 59 2379131739 3^2 * 877 * 301423 60 7811172440 2^3 * 5 * 195279311 61 231141 3 * 77047 62 3452541 3 * 1150847 ... Dear Seqfans, My old friend Bernardo Recaman Santos just %I A116700 %S A116700 12,21,23,31,32,34,41,42,43 %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... Sequence gives numbers which occur in the string ahead of their natural place. %C A116700 Based on an idea by Argentinian puzzle creator Jaime Poniachik, these numbers were MAA. %e A116700 "12" appears at the start of the string, ahead of its position after "11", so is a %K A116700 nonn,base,more,nice,new %O A116700 1,1 %A A116700 Bernardo Recaman Santos (ignotus(AT)hotmail.com), Jul 22 2007 One needs to be a subscriber to have on-line access to Math Horizons - can anyone get me a copy of the Martin Gardner article? Neil From njas at research.att.com Mon Jul 23 05:41:32 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sun, 22 Jul 2007 23:41:32 -0400 (EDT) Subject: Early Bird numbers Message-ID: <200707230341.l6N3fWM9861587@fry.research.att.com> sent a really nice sequence: introduced by Martin Gardner in the November 2005 issue of Math. Horizons, published by the member. Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=dxL4nFdgSkL1JeLhv7+CbTGvBKIIkTl52rdBuqT7xJQUM1rIZwfrcwNRwROIEH9YUSCzzW8gQQ2WKgpPnCYyVZkK81B39gfd34UyVwtg1mn9+hxbqStgoEajXEk+K5xv4bOgSgM/rH/ZAFm37OFhhJ3p5lRHD8wDoK9wAJ6wZWo= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=rIF/pNzzOy5T+wpqtaj+IMWyQnNQCq6INohW/mxAu5xW3OFt+6ma5Ifm1duCplgqa3Hso2FgyIidtz6eFhCuKuKMqgorDwYmtS8BXTnjJqr/Fo8Ki9y0IXbW+0zpnKnzRaO8knyEshLN0H0YdLiP2YW2F+zg/AocJDimZ5jzFP0= Message-ID: <482644420707230039r7e3eec65u2c9ec1956bf006e at mail.gmail.com> Date: Mon, 23 Jul 2007 14:39:19 +0700 From: "Warut Roonguthai" To: seqfan at ext.jussieu.fr Subject: Re: Early Bird numbers In-Reply-To: <200707230341.l6N3fWM9861587 at fry.research.att.com> MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <200707230341.l6N3fWM9861587 at fry.research.att.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Mon, 23 Jul 2007 09:39:20 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3740/Mon Jul 23 05:50:50 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46A45B28.000 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.536 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46A45B28.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Here are the first 157 terms of the early bird sequence: 12,21,23,31,32,34,41,42,43,45,51,52,53,54,56,61,62,63,64,65, 67,71,72,73,74,75,76,78,81,82,83,84,85,86,87,89,91,92,93,94, 95,96,97,98,99,101,110,111,112,121,122,123,131,132,141,142, 151,152,161,162,171,172,181,182,191,192,201,202,210,211, 212,213,214,215,216,217,218,219,220,221,222,223,231,232, 233,234,241,242,243,251,252,253,261,262,263,271,272,273, 281,282,283,291,292,293,301,302,303,310,311,312,313,314, 315,316,317,318,319,320,321,322,323,324,325,326,327,328, 329,330,331,332,333,334,341,342,343,344,345,351,352,353, 354,361,362,363,364,371,372,373,374,381,382,383,384,391, 392,393,394 Note that the natural place of n begins at dn + 1 - (10^d - 1)/9 where d is the number of decimal digits of n, i.e., d = floor(log10(n)) + 1 Can this be a new sequence too? BTW, I don't have access to Martin Gardner's article. Warut On 7/23/07, N. J. A. Sloane wrote: > > Dear Seqfans, My old friend Bernardo Recaman Santos just > sent a really nice sequence: > > %I A116700 > %S A116700 12,21,23,31,32,34,41,42,43 > %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... > Sequence gives numbers which occur in the string ahead of their natural place. > %C A116700 Based on an idea by Argentinian puzzle creator Jaime Poniachik, these numbers were > introduced by Martin Gardner in the November 2005 issue of Math. Horizons, published by the > MAA. > %e A116700 "12" appears at the start of the string, ahead of its position after "11", so is a > member. > %K A116700 nonn,base,more,nice,new > %O A116700 1,1 > %A A116700 Bernardo Recaman Santos (ignotus(AT)hotmail.com), Jul 22 2007 > > One needs to be a subscriber to have on-line access to > Math Horizons - can anyone get me a copy of the Martin Gardner > article? > > Neil > From jeremy.gardiner at btinternet.com Mon Jul 23 09:45:37 2007 From: jeremy.gardiner at btinternet.com (JEREMY GARDINER) Date: Mon, 23 Jul 2007 08:45:37 +0100 (BST) Subject: Early Bird numbers In-Reply-To: <200707230341.l6N3fWM9861587@fry.research.att.com> Message-ID: <886534.93581.qm@web86607.mail.ukl.yahoo.com> I found some interesting references through Google: http://www.itsoc.org/publications/nltr/it1202.pdf http://www.itsoc.org/publications/nltr/it0303web.pdf http://membership.kcatm.org/pub/summ2-06.pdf Jeremy ---------------------------------------------------------------------------------------- "N. J. A. Sloane" wrote: Dear Seqfans, My old friend Bernardo Recaman Santos just sent a really nice sequence: %I A116700 %S A116700 12,21,23,31,32,34,41,42,43 %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... -------------- next part -------------- An HTML attachment was scrubbed... URL: From warut822 at gmail.com Mon Jul 23 14:35:22 2007 From: warut822 at gmail.com (Warut Roonguthai) Date: Mon, 23 Jul 2007 19:35:22 +0700 Subject: Early Bird numbers In-Reply-To: <450839.70489.qm@web86611.mail.ukl.yahoo.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> Message-ID: <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> FYI, here's my Ubasic program for generating the early bird sequence: 10 X="" 20 for N=1 to 396 30 A=cutspc(str(N)) 40 if instr(X,A)>0 then print N; 50 X+=A 60 next N Warut From jeremy.gardiner at btinternet.com Mon Jul 23 13:53:35 2007 From: jeremy.gardiner at btinternet.com (JEREMY GARDINER) Date: Mon, 23 Jul 2007 12:53:35 +0100 (BST) Subject: Early Bird numbers In-Reply-To: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> Message-ID: <450839.70489.qm@web86611.mail.ukl.yahoo.com> I checked the parity of Warut's early bird values and there *may* be a connection with the following sequences: I have no idea why this should be the case and my apology if this is a red herring !!! A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals. A128138 A000012 * A128132. A128219 A000012 * A127701. a(1) = 1, a(2) = 2, a(3) = 2; by rows, n-1 terms of 2, 3, 4...followed by "n". Parity values below; note these fail to match in a couple of places, suggesting I may have made an editing error, or that perhaps Warut's values should be checked? Jeremy 0,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1, A091264 ,0,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0, 1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0, A128138 ,1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0, A128219 ,1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0, A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals. A128138 A000012 * A128132. A128219 A000012 * A127701. a(1) = 1, a(2) = 2, a(3) = 2; by rows, n-1 terms of 2, 3, 4...followed by "n". ------------------------------------------------------------------------------------------ Warut Roonguthai wrote: Here are the first 157 terms of the early bird sequence: 12,21,23,31,32,34,41,42,43,45,51,52,53,54,56,61,62,63,64,65, 67,71,72,73,74,75,76,78,81,82,83,84,85,86,87,89,91,92,93,94, 95,96,97,98,99,101,110,111,112,121,122,123,131,132,141,142, 151,152,161,162,171,172,181,182,191,192,201,202,210,211, 212,213,214,215,216,217,218,219,220,221,222,223,231,232, 233,234,241,242,243,251,252,253,261,262,263,271,272,273, 281,282,283,291,292,293,301,302,303,310,311,312,313,314, 315,316,317,318,319,320,321,322,323,324,325,326,327,328, 329,330,331,332,333,334,341,342,343,344,345,351,352,353, 354,361,362,363,364,371,372,373,374,381,382,383,384,391, 392,393,394 -------------- next part -------------- An HTML attachment was scrubbed... URL: From joshua.zucker at gmail.com Mon Jul 23 15:58:50 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Mon, 23 Jul 2007 06:58:50 -0700 Subject: Early Bird numbers In-Reply-To: <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> Message-ID: <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> I wrote my own program and let it run to make all the terms up to 1000. Up to 394 they match the terms Warut's program produced. --Joshua Zucker 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 On 7/23/07, Warut Roonguthai wrote: > FYI, here's my Ubasic program for generating the early bird sequence: > > 10 X="" > 20 for N=1 to 396 > 30 A=cutspc(str(N)) > 40 if instr(X,A)>0 then print N; > 50 X+=A > 60 next N > > Warut > From maximilian.hasler at gmail.com Mon Jul 23 18:00:24 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 12:00:24 -0400 Subject: Early Bird numbers In-Reply-To: <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> Message-ID: <3c3af2330707230900y56c82727tfae0564679ae8746@mail.gmail.com> This is another example of how computers can denature things. "Early birds" seem interesting when you do it by hand, for n<199, say ; but from then on it would be more interesting to study the complementary sequence ("late birds" ? which appear not before their "regular" place) - e.g. among 500..999 only about 50 terms are not present. At a first glance, I'd almost be tempted to conjecture that from a certain rank on, the only late birds are of the form d*10^k with d in {1,...,9 }, and all other numbers are early birds... M.H. On 7/23/07, Joshua Zucker wrote: > I wrote my own program and let it run to make all the terms up to > 1000. Up to 394 they match the terms Warut's program produced. > > --Joshua Zucker > > 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 > 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 > 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 > 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 > 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 > 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 > 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 > 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 > 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 > 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 > 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 > 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 > 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 > 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 > 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 > 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 > 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 > 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 > 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 > 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 > 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 > 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 > 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 > 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 > 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 > 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 > 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 > 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 > 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 > 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 > 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 > 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 > 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 > 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 > 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 > 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 > 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 > 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 > 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 > > On 7/23/07, Warut Roonguthai wrote: > > FYI, here's my Ubasic program for generating the early bird sequence: > > > > 10 X="" > > 20 for N=1 to 396 > > 30 A=cutspc(str(N)) > > 40 if instr(X,A)>0 then print N; > > 50 X+=A > > 60 next N > > > > Warut > > > From warut822 at gmail.com Mon Jul 23 18:10:00 2007 From: warut822 at gmail.com (Warut Roonguthai) Date: Mon, 23 Jul 2007 23:10:00 +0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: <20070722.072158.944.1.pauldhanna@juno.com> References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: <482644420707230910s22b233aeg6b06cf2dcf0d2fe7@mail.gmail.com> Very interesting observation, Paul. Your conjecture is too beautiful to be wrong! However, it seems to be very difficult to prove. I've checked the first 65,000 terms, but I think it would be easy for some seqfan programmers to extend the calculation to 10,000,000 terms or so with C or some other powerful tools. Note that we only have to keep track of the parity of a(n), not its entire value. Warut On 7/22/07, Paul D. Hanna wrote: > > Seqfans, > Consider the nice sequence A006336: > a(n) = a(n-1) + a(n-1 - number of even terms so far). > http://www.research.att.com/~njas/sequences/A006336 > begins: > [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. > > My COMMENT (NOT submitted to OEIS): > ----------------------------------------------------------- > It seems that A006336 can be generated by a rule using the golden ratio: > > a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, > > i.e., the number of even terms up to position n-1 equals: > n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. > > (PARI): > a(n) = if(n==1,1, a(n-1) + a( floor(n/((sqrt(5)+1)/2)) ) ) > ----------------------------------------------------------- > > Would someone verify if these are indeed equivalent definitions, at least > empirically? > Or, what is the first position in which terms are NOT equal? > > If these are equivalent, then this is another unexpected appearance of that > ubiquitous constant. > Thanks, > Paul From Eric.Angelini at kntv.be Mon Jul 23 18:25:48 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 23 Jul 2007 18:25:48 +0200 Subject: Divisor d is the total number of divisors Message-ID: Hello SeqFans, Is this seq of interest? If yes could someone check and compute a few more terms? 1,8,9,12,18,24,36,... Integers I having one divisor which is also the total number of divisors of I. 1 has 1 divisor which is 1 8 has 4 divs and 4 is one of them 9 has 3 divs and 3 is one of them 12 has 6 divs and 6 is one of them 18 has 6 divs and 6 is one of them 24 has 8 divs and 8 is one of them 36 has 9 divs and 9 is one of them ... 30 is not a member because 30 has 8 divs but not 8 itself : [1,2,3,5,6,10,15,30] Best, ?. From Eric.Angelini at kntv.be Mon Jul 23 18:33:29 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 23 Jul 2007 18:33:29 +0200 Subject: Divisor d is the total number of divisors Message-ID: Sorry, this is A033950 Best, ?. (had forgotten "2" in my list -- no hit then in the OEIS :-( -----Message d'origine----- De : Eric Angelini Envoy? : lundi 23 juillet 2007 18:26 ? : seqfan at ext.jussieu.fr Objet : Divisor d is the total number of divisors Hello SeqFans, Is this seq of interest? If yes could someone check and compute a few more terms? 1,8,9,12,18,24,36,... Integers I having one divisor which is also the total number of divisors of I. 1 has 1 divisor which is 1 8 has 4 divs and 4 is one of them 9 has 3 divs and 3 is one of them 12 has 6 divs and 6 is one of them 18 has 6 divs and 6 is one of them 24 has 8 divs and 8 is one of them 36 has 9 divs and 9 is one of them ... 30 is not a member because 30 has 8 divs but not 8 itself : [1,2,3,5,6,10,15,30] Best, ?. From maximilian.hasler at gmail.com Mon Jul 23 18:28:27 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 12:28:27 -0400 Subject: Early Bird numbers In-Reply-To: <3c3af2330707230900y56c82727tfae0564679ae8746@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> <3c3af2330707230900y56c82727tfae0564679ae8746@mail.gmail.com> Message-ID: <3c3af2330707230928g2bbb5ce9u165e91d66b0e3eef@mail.gmail.com> at the second glance, I take back my premature proposal concerning a "late bird" conjecture - as shows the following PHP 1-liner, Late birds: wrote: > This is another example of how computers can denature things. > "Early birds" seem interesting when you do it by hand, for n<199, say > ; but from then on it would be more interesting to study the > complementary sequence ("late birds" ? which appear not before their > "regular" place) - e.g. among 500..999 only about 50 terms are not > present. > At a first glance, I'd almost be tempted to conjecture that from a > certain rank on, the only late birds are of the form d*10^k with d in > {1,...,9 }, and all other numbers are early birds... > M.H. > > On 7/23/07, Joshua Zucker wrote: > > I wrote my own program and let it run to make all the terms up to > > 1000. Up to 394 they match the terms Warut's program produced. > > > > --Joshua Zucker > > > > 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 > > 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 > > 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 > > 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 > > 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 > > 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 > > 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 > > 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 > > 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 > > 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 > > 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 > > 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 > > 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 > > 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 > > 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 > > 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 > > 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 > > 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 > > 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 > > 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 > > 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 > > 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 > > 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 > > 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 > > 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 > > 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 > > 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 > > 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 > > 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 > > 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 > > 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 > > 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 > > 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 > > 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 > > 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 > > 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 > > 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 > > 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 > > 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 > > > > On 7/23/07, Warut Roonguthai wrote: > > > FYI, here's my Ubasic program for generating the early bird sequence: > > > > > > 10 X="" > > > 20 for N=1 to 396 > > > 30 A=cutspc(str(N)) > > > 40 if instr(X,A)>0 then print N; > > > 50 X+=A > > > 60 next N > > > > > > Warut > > > > > > From rayjchandler at sbcglobal.net Mon Jul 23 18:31:23 2007 From: rayjchandler at sbcglobal.net (Ray Chandler) Date: Mon, 23 Jul 2007 11:31:23 -0500 Subject: Divisor d is the total number of divisors In-Reply-To: References: Message-ID: <021101c7cd46$e9b55b50$6600000a@HPm400y> > > Is this seq of interest? > If yes could someone check and compute a few more terms? > > 1,8,9,12,18,24,36,... > > > Best, > ?. > Apparently a number of people thought so, see A033950. (2 is also in the sequence). Ray >Is this seq of interest? >If yes could someone check and compute a few more terms? > >1,8,9,12,18,24,36,... > >Integers I having one divisor which is also the total number of divisors of I. > > 1 has 1 divisor which is 1 > 8 has 4 divs and 4 is one of them > 9 has 3 divs and 3 is one of them >12 has 6 divs and 6 is one of them >18 has 6 divs and 6 is one of them >24 has 8 divs and 8 is one of them >36 has 9 divs and 9 is one of them >... > >30 is not a member because 30 has 8 divs but not 8 itself : >[1,2,3,5,6,10,15,30] See A033950. Tony From noe at sspectra.com Mon Jul 23 18:30:49 2007 From: noe at sspectra.com (T. D. Noe) Date: Mon, 23 Jul 2007 09:30:49 -0700 Subject: Divisor d is the total number of divisors In-Reply-To: References: Message-ID: ------=_Part_151547_12232578.1185210638925 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline Following Neil's suggestion to add the complement and his suggestion for naming it "punctual birds" : Subject: PRE-NUMBERED NEW SEQUENCE A131881 FROM Maximilian F. Hasler %I A131881 %S A131881 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 44, 46, 47, 48, 49, 50, 55, 57, 58, 59, 60, 66, 68, 69, 70, 77, 79, 80, 88, 90, 100, 102, 103, 104, 105, 106, 107, 108, 109, 113 %N A131881 "punctual birds" - numbers which are not in A116700 %C A131881 Numbers n that do not occur in the concatenation of 1,2,3...,n-1. There is no punctual bird larger than 9*10^k and smaller than 10^(k+1), for any integer k. %D A131881 Gardner, Martin. (November 2005). Transcendentals and early birds. Math Horizons XIII(2), pp 5, 34. %H A131881 Solomon W. Golomb, "EARLY BIRD NUMBERS", in IEEE Information TheorySociety Newsletter, Vol. 52, No. 4, December 2002 %H A131881 R. Barger (editor), "Brain Teaser" in Volume 1, Issue 1 of KANSAS CITY AREA TEACHERS OF MATHEMATICS" %e A131881 The first number not in this sequence is the early bird "12" which occurs as concatenation of 1 and 2. %o A131881 < ?php $s="."; for(; ++$i < 2000; $s .= $i ) if(!strpos($s,"$i")) echo $i,", "; %Y A131881 Cf. A116700 (early birds) %O A131881 1 %K A131881 ,base,easy,nonn, %A A131881 Maximilian F. Hasler (Maximilian.Hasler at gmail.com), Jul 23 2007 ------=_Part_151547_12232578.1185210638925 Content-Type: text/plain; name=b131881.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4h7slzn Content-Disposition: attachment; filename="b131881.txt" MSAxCjIgMgozIDMKNCA0CjUgNQo2IDYKNyA3CjggOAo5IDkKMTAgMTAKMTEg MTEKMTIgMTMKMTMgMTQKMTQgMTUKMTUgMTYKMTYgMTcKMTcgMTgKMTggMTkK MTkgMjAKMjAgMjIKMjEgMjQKMjIgMjUKMjMgMjYKMjQgMjcKMjUgMjgKMjYg MjkKMjcgMzAKMjggMzMKMjkgMzUKMzAgMzYKMzEgMzcKMzIgMzgKMzMgMzkK MzQgNDAKMzUgNDQKMzYgNDYKMzcgNDcKMzggNDgKMzkgNDkKNDAgNTAKNDEg NTUKNDIgNTcKNDMgNTgKNDQgNTkKNDUgNjAKNDYgNjYKNDcgNjgKNDggNjkK NDkgNzAKNTAgNzcKNTEgNzkKNTIgODAKNTMgODgKNTQgOTAKNTUgMTAwCjU2 IDEwMgo1NyAxMDMKNTggMTA0CjU5IDEwNQo2MCAxMDYKNjEgMTA3CjYyIDEw OAo2MyAxMDkKNjQgMTEzCjY1IDExNAo2NiAxMTUKNjcgMTE2CjY4IDExNwo2 OSAxMTgKNzAgMTE5CjcxIDEyMAo3MiAxMjQKNzMgMTI1Cjc0IDEyNgo3NSAx MjcKNzYgMTI4Cjc3IDEyOQo3OCAxMzAKNzkgMTMzCjgwIDEzNAo4MSAxMzUK ODIgMTM2CjgzIDEzNwo4NCAxMzgKODUgMTM5Cjg2IDE0MAo4NyAxNDMKODgg MTQ0Cjg5IDE0NQo5MCAxNDYKOTEgMTQ3CjkyIDE0OAo5MyAxNDkKOTQgMTUw Cjk1IDE1Mwo5NiAxNTQKOTcgMTU1Cjk4IDE1Ngo5OSAxNTcKMTAwIDE1OAox MDEgMTU5CjEwMiAxNjAKMTAzIDE2MwoxMDQgMTY0CjEwNSAxNjUKMTA2IDE2 NgoxMDcgMTY3CjEwOCAxNjgKMTA5IDE2OQoxMTAgMTcwCjExMSAxNzMKMTEy IDE3NAoxMTMgMTc1CjExNCAxNzYKMTE1IDE3NwoxMTYgMTc4CjExNyAxNzkK MTE4IDE4MAoxMTkgMTgzCjEyMCAxODQKMTIxIDE4NQoxMjIgMTg2CjEyMyAx ODcKMTI0IDE4OAoxMjUgMTg5CjEyNiAxOTAKMTI3IDE5MwoxMjggMTk0CjEy OSAxOTUKMTMwIDE5NgoxMzEgMTk3CjEzMiAxOTgKMTMzIDE5OQoxMzQgMjAw CjEzNSAyMDMKMTM2IDIwNAoxMzcgMjA1CjEzOCAyMDYKMTM5IDIwNwoxNDAg MjA4CjE0MSAyMDkKMTQyIDIyNAoxNDMgMjI1CjE0NCAyMjYKMTQ1IDIyNwox NDYgMjI4CjE0NyAyMjkKMTQ4IDIzMAoxNDkgMjM1CjE1MCAyMzYKMTUxIDIz NwoxNTIgMjM4CjE1MyAyMzkKMTU0IDI0MAoxNTUgMjQ0CjE1NiAyNDUKMTU3 IDI0NgoxNTggMjQ3CjE1OSAyNDgKMTYwIDI0OQoxNjEgMjUwCjE2MiAyNTQK MTYzIDI1NQoxNjQgMjU2CjE2NSAyNTcKMTY2IDI1OAoxNjcgMjU5CjE2OCAy NjAKMTY5IDI2NAoxNzAgMjY1CjE3MSAyNjYKMTcyIDI2NwoxNzMgMjY4CjE3 NCAyNjkKMTc1IDI3MAoxNzYgMjc0CjE3NyAyNzUKMTc4IDI3NgoxNzkgMjc3 CjE4MCAyNzgKMTgxIDI3OQoxODIgMjgwCjE4MyAyODQKMTg0IDI4NQoxODUg Mjg2CjE4NiAyODcKMTg3IDI4OAoxODggMjg5CjE4OSAyOTAKMTkwIDI5NAox OTEgMjk1CjE5MiAyOTYKMTkzIDI5NwoxOTQgMjk4CjE5NSAyOTkKMTk2IDMw MAoxOTcgMzA0CjE5OCAzMDUKMTk5IDMwNgoyMDAgMzA3CjIwMSAzMDgKMjAy IDMwOQoyMDMgMzM1CjIwNCAzMzYKMjA1IDMzNwoyMDYgMzM4CjIwNyAzMzkK MjA4IDM0MAoyMDkgMzQ2CjIxMCAzNDcKMjExIDM0OAoyMTIgMzQ5CjIxMyAz NTAKMjE0IDM1NQoyMTUgMzU2CjIxNiAzNTcKMjE3IDM1OAoyMTggMzU5CjIx OSAzNjAKMjIwIDM2NQoyMjEgMzY2CjIyMiAzNjcKMjIzIDM2OAoyMjQgMzY5 CjIyNSAzNzAKMjI2IDM3NQoyMjcgMzc2CjIyOCAzNzcKMjI5IDM3OAoyMzAg Mzc5CjIzMSAzODAKMjMyIDM4NQoyMzMgMzg2CjIzNCAzODcKMjM1IDM4OAoy MzYgMzg5CjIzNyAzOTAKMjM4IDM5NQoyMzkgMzk2CjI0MCAzOTcKMjQxIDM5 OAoyNDIgMzk5CjI0MyA0MDAKMjQ0IDQwNQoyNDUgNDA2CjI0NiA0MDcKMjQ3 IDQwOAoyNDggNDA5CjI0OSA0NDYKMjUwIDQ0NwoyNTEgNDQ4CjI1MiA0NDkK MjUzIDQ1MAoyNTQgNDU3CjI1NSA0NTgKMjU2IDQ1OQoyNTcgNDYwCjI1OCA0 NjYKMjU5IDQ2NwoyNjAgNDY4CjI2MSA0NjkKMjYyIDQ3MAoyNjMgNDc2CjI2 NCA0NzcKMjY1IDQ3OAoyNjYgNDc5CjI2NyA0ODAKMjY4IDQ4NgoyNjkgNDg3 CjI3MCA0ODgKMjcxIDQ4OQoyNzIgNDkwCjI3MyA0OTYKMjc0IDQ5NwoyNzUg NDk4CjI3NiA0OTkKMjc3IDUwMAoyNzggNTA2CjI3OSA1MDcKMjgwIDUwOAoy ODEgNTA5CjI4MiA1NTcKMjgzIDU1OAoyODQgNTU5CjI4NSA1NjAKMjg2IDU2 OAoyODcgNTY5CjI4OCA1NzAKMjg5IDU3NwoyOTAgNTc4CjI5MSA1NzkKMjky IDU4MAoyOTMgNTg3CjI5NCA1ODgKMjk1IDU4OQoyOTYgNTkwCjI5NyA1OTcK Mjk4IDU5OAoyOTkgNTk5CjMwMCA2MDAKMzAxIDYwNwozMDIgNjA4CjMwMyA2 MDkKMzA0IDY2OAozMDUgNjY5CjMwNiA2NzAKMzA3IDY3OQozMDggNjgwCjMw OSA2ODgKMzEwIDY4OQozMTEgNjkwCjMxMiA2OTgKMzEzIDY5OQozMTQgNzAw CjMxNSA3MDgKMzE2IDcwOQozMTcgNzc5CjMxOCA3ODAKMzE5IDc5MAozMjAg Nzk5CjMyMSA4MDAKMzIyIDgwOQozMjMgODkwCjMyNCA5MDAKMzI1IDEwMDAK MzI2IDEwMDIKMzI3IDEwMDMKMzI4IDEwMDQKMzI5IDEwMDUKMzMwIDEwMDYK MzMxIDEwMDcKMzMyIDEwMDgKMzMzIDEwMDkKMzM0IDEwMTAKMzM1IDEwMTIK MzM2IDEwMTMKMzM3IDEwMTQKMzM4IDEwMTUKMzM5IDEwMTYKMzQwIDEwMTcK MzQxIDEwMTgKMzQyIDEwMTkKMzQzIDEwMjAKMzQ0IDEwMjIKMzQ1IDEwMjMK MzQ2IDEwMjQKMzQ3IDEwMjUKMzQ4IDEwMjYKMzQ5IDEwMjcKMzUwIDEwMjgK MzUxIDEwMjkKMzUyIDEwMzAKMzUzIDEwMzIKMzU0IDEwMzMKMzU1IDEwMzQK MzU2IDEwMzUKMzU3IDEwMzYKMzU4IDEwMzcKMzU5IDEwMzgKMzYwIDEwMzkK MzYxIDEwNDAKMzYyIDEwNDIKMzYzIDEwNDMKMzY0IDEwNDQKMzY1IDEwNDUK MzY2IDEwNDYKMzY3IDEwNDcKMzY4IDEwNDgKMzY5IDEwNDkKMzcwIDEwNTAK MzcxIDEwNTIKMzcyIDEwNTMKMzczIDEwNTQKMzc0IDEwNTUKMzc1IDEwNTYK Mzc2IDEwNTcKMzc3IDEwNTgKMzc4IDEwNTkKMzc5IDEwNjAKMzgwIDEwNjIK MzgxIDEwNjMKMzgyIDEwNjQKMzgzIDEwNjUKMzg0IDEwNjYKMzg1IDEwNjcK Mzg2IDEwNjgKMzg3IDEwNjkKMzg4IDEwNzAKMzg5IDEwNzIKMzkwIDEwNzMK MzkxIDEwNzQKMzkyIDEwNzUKMzkzIDEwNzYKMzk0IDEwNzcKMzk1IDEwNzgK Mzk2IDEwNzkKMzk3IDEwODAKMzk4IDEwODIKMzk5IDEwODMKNDAwIDEwODQK NDAxIDEwODUKNDAyIDEwODYKNDAzIDEwODcKNDA0IDEwODgKNDA1IDEwODkK NDA2IDEwOTAKNDA3IDEwOTIKNDA4IDEwOTMKNDA5IDEwOTQKNDEwIDEwOTUK NDExIDEwOTYKNDEyIDEwOTcKNDEzIDEwOTgKNDE0IDEwOTkKNDE1IDExMTMK NDE2IDExMTQKNDE3IDExMTUKNDE4IDExMTYKNDE5IDExMTcKNDIwIDExMTgK NDIxIDExMTkKNDIyIDExMjAKNDIzIDExMjMKNDI0IDExMjQKNDI1IDExMjUK NDI2IDExMjYKNDI3IDExMjcKNDI4IDExMjgKNDI5IDExMjkKNDMwIDExMzAK NDMxIDExMzMKNDMyIDExMzQKNDMzIDExMzUKNDM0IDExMzYKNDM1IDExMzcK NDM2IDExMzgKNDM3IDExMzkKNDM4IDExNDAKNDM5IDExNDMKNDQwIDExNDQK NDQxIDExNDUKNDQyIDExNDYKNDQzIDExNDcKNDQ0IDExNDgKNDQ1IDExNDkK NDQ2IDExNTAKNDQ3IDExNTMKNDQ4IDExNTQKNDQ5IDExNTUKNDUwIDExNTYK NDUxIDExNTcKNDUyIDExNTgKNDUzIDExNTkKNDU0IDExNjAKNDU1IDExNjMK NDU2IDExNjQKNDU3IDExNjUKNDU4IDExNjYKNDU5IDExNjcKNDYwIDExNjgK NDYxIDExNjkKNDYyIDExNzAKNDYzIDExNzMKNDY0IDExNzQKNDY1IDExNzUK NDY2IDExNzYKNDY3IDExNzcKNDY4IDExNzgKNDY5IDExNzkKNDcwIDExODAK NDcxIDExODMKNDcyIDExODQKNDczIDExODUKNDc0IDExODYKNDc1IDExODcK NDc2IDExODgKNDc3IDExODkKNDc4IDExOTAKNDc5IDExOTMKNDgwIDExOTQK NDgxIDExOTUKNDgyIDExOTYKNDgzIDExOTcKNDg0IDExOTgKNDg1IDExOTkK NDg2IDEyMDAKNDg3IDEyMDMKNDg4IDEyMDQKNDg5IDEyMDUKNDkwIDEyMDYK NDkxIDEyMDcKNDkyIDEyMDgKNDkzIDEyMDkKNDk0IDEyMTQKNDk1IDEyMTUK NDk2IDEyMTYKNDk3IDEyMTcKNDk4IDEyMTgKNDk5IDEyMTkKNTAwIDEyMjAK NTAxIDEyMjMKNTAyIDEyMjQKNTAzIDEyMjUKNTA0IDEyMjYKNTA1IDEyMjcK NTA2IDEyMjgKNTA3IDEyMjkKNTA4IDEyMzAKNTA5IDEyMzMKNTEwIDEyMzUK NTExIDEyMzYKNTEyIDEyMzcKNTEzIDEyMzgKNTE0IDEyMzkKNTE1IDEyNDAK NTE2IDEyNDMKNTE3IDEyNDQKNTE4IDEyNDUKNTE5IDEyNDYKNTIwIDEyNDcK NTIxIDEyNDgKNTIyIDEyNDkKNTIzIDEyNTAKNTI0IDEyNTMKNTI1IDEyNTQK NTI2IDEyNTUKNTI3IDEyNTYKNTI4IDEyNTcKNTI5IDEyNTgKNTMwIDEyNTkK NTMxIDEyNjAKNTMyIDEyNjMKNTMzIDEyNjQKNTM0IDEyNjUKNTM1IDEyNjYK NTM2IDEyNjcKNTM3IDEyNjgKNTM4IDEyNjkKNTM5IDEyNzAKNTQwIDEyNzMK NTQxIDEyNzQKNTQyIDEyNzUKNTQzIDEyNzYKNTQ0IDEyNzcKNTQ1IDEyNzgK NTQ2IDEyNzkKNTQ3IDEyODAKNTQ4IDEyODMKNTQ5IDEyODQKNTUwIDEyODUK NTUxIDEyODYKNTUyIDEyODcKNTUzIDEyODgKNTU0IDEyODkKNTU1IDEyOTAK NTU2IDEyOTMKNTU3IDEyOTQKNTU4IDEyOTUKNTU5IDEyOTYKNTYwIDEyOTcK NTYxIDEyOTgKNTYyIDEyOTkKNTYzIDEzMDAKNTY0IDEzMDMKNTY1IDEzMDQK NTY2IDEzMDUKNTY3IDEzMDYKNTY4IDEzMDcKNTY5IDEzMDgKNTcwIDEzMDkK NTcxIDEzMTMKNTcyIDEzMTUKNTczIDEzMTYKNTc0IDEzMTcKNTc1IDEzMTgK NTc2IDEzMTkKNTc3IDEzMjAKNTc4IDEzMjQKNTc5IDEzMjUKNTgwIDEzMjYK NTgxIDEzMjcKNTgyIDEzMjgKNTgzIDEzMjkKNTg0IDEzMzAKNTg1IDEzMzMK NTg2IDEzMzQKNTg3IDEzMzUKNTg4IDEzMzYKNTg5IDEzMzcKNTkwIDEzMzgK NTkxIDEzMzkKNTkyIDEzNDAKNTkzIDEzNDMKNTk0IDEzNDQKNTk1IDEzNDUK NTk2IDEzNDYKNTk3IDEzNDcKNTk4IDEzNDgKNTk5IDEzNDkKNjAwIDEzNTAK NjAxIDEzNTMKNjAyIDEzNTQKNjAzIDEzNTUKNjA0IDEzNTYKNjA1IDEzNTcK NjA2IDEzNTgKNjA3IDEzNTkKNjA4IDEzNjAKNjA5IDEzNjMKNjEwIDEzNjQK NjExIDEzNjUKNjEyIDEzNjYKNjEzIDEzNjcKNjE0IDEzNjgKNjE1IDEzNjkK NjE2IDEzNzAKNjE3IDEzNzMKNjE4IDEzNzQKNjE5IDEzNzUKNjIwIDEzNzYK NjIxIDEzNzcKNjIyIDEzNzgKNjIzIDEzNzkKNjI0IDEzODAKNjI1IDEzODMK NjI2IDEzODQKNjI3IDEzODUKNjI4IDEzODYKNjI5IDEzODcKNjMwIDEzODgK NjMxIDEzODkKNjMyIDEzOTAKNjMzIDEzOTMKNjM0IDEzOTQKNjM1IDEzOTUK NjM2IDEzOTYKNjM3IDEzOTcKNjM4IDEzOTgKNjM5IDEzOTkKNjQwIDE0MDAK NjQxIDE0MDMKNjQyIDE0MDQKNjQzIDE0MDUKNjQ0IDE0MDYKNjQ1IDE0MDcK NjQ2IDE0MDgKNjQ3IDE0MDkKNjQ4IDE0MTQKNjQ5IDE0MTYKNjUwIDE0MTcK NjUxIDE0MTgKNjUyIDE0MTkKNjUzIDE0MjAKNjU0IDE0MjMKNjU1IDE0MjUK NjU2IDE0MjYKNjU3IDE0MjcKNjU4IDE0MjgKNjU5IDE0MjkKNjYwIDE0MzAK NjYxIDE0MzMKNjYyIDE0MzQKNjYzIDE0MzUKNjY0IDE0MzYKNjY1IDE0MzcK NjY2IDE0MzgKNjY3IDE0MzkKNjY4IDE0NDAKNjY5IDE0NDMKNjcwIDE0NDQK NjcxIDE0NDUKNjcyIDE0NDYKNjczIDE0NDcKNjc0IDE0NDgKNjc1IDE0NDkK Njc2IDE0NTAKNjc3IDE0NTMKNjc4IDE0NTQKNjc5IDE0NTUKNjgwIDE0NTYK NjgxIDE0NTcKNjgyIDE0NTgKNjgzIDE0NTkKNjg0IDE0NjAKNjg1IDE0NjMK Njg2IDE0NjQKNjg3IDE0NjUKNjg4IDE0NjYKNjg5IDE0NjcKNjkwIDE0NjgK NjkxIDE0NjkKNjkyIDE0NzAKNjkzIDE0NzMKNjk0IDE0NzQKNjk1IDE0NzUK Njk2IDE0NzYKNjk3IDE0NzcKNjk4IDE0NzgKNjk5IDE0NzkKNzAwIDE0ODAK NzAxIDE0ODMKNzAyIDE0ODQKNzAzIDE0ODUKNzA0IDE0ODYKNzA1IDE0ODcK NzA2IDE0ODgKNzA3IDE0ODkKNzA4IDE0OTAKNzA5IDE0OTMKNzEwIDE0OTQK NzExIDE0OTUKNzEyIDE0OTYKNzEzIDE0OTcKNzE0IDE0OTgKNzE1IDE0OTkK NzE2IDE1MDAKNzE3IDE1MDMKNzE4IDE1MDQKNzE5IDE1MDUKNzIwIDE1MDYK NzIxIDE1MDcKNzIyIDE1MDgKNzIzIDE1MDkKNzI0IDE1MTUKNzI1IDE1MTcK NzI2IDE1MTgKNzI3IDE1MTkKNzI4IDE1MjAKNzI5IDE1MjMKNzMwIDE1MjQK NzMxIDE1MjYKNzMyIDE1MjcKNzMzIDE1MjgKNzM0IDE1MjkKNzM1IDE1MzAK NzM2IDE1MzMKNzM3IDE1MzQKNzM4IDE1MzUKNzM5IDE1MzYKNzQwIDE1MzcK NzQxIDE1MzgKNzQyIDE1MzkKNzQzIDE1NDAKNzQ0IDE1NDMKNzQ1IDE1NDQK NzQ2IDE1NDUKNzQ3IDE1NDYKNzQ4IDE1NDcKNzQ5IDE1NDgKNzUwIDE1NDkK NzUxIDE1NTAKNzUyIDE1NTMKNzUzIDE1NTQKNzU0IDE1NTUKNzU1IDE1NTYK NzU2IDE1NTcKNzU3IDE1NTgKNzU4IDE1NTkKNzU5IDE1NjAKNzYwIDE1NjMK NzYxIDE1NjQKNzYyIDE1NjUKNzYzIDE1NjYKNzY0IDE1NjcKNzY1IDE1NjgK NzY2IDE1NjkKNzY3IDE1NzAKNzY4IDE1NzMKNzY5IDE1NzQKNzcwIDE1NzUK NzcxIDE1NzYKNzcyIDE1NzcKNzczIDE1NzgKNzc0IDE1NzkKNzc1IDE1ODAK Nzc2IDE1ODMKNzc3IDE1ODQKNzc4IDE1ODUKNzc5IDE1ODYKNzgwIDE1ODcK NzgxIDE1ODgKNzgyIDE1ODkKNzgzIDE1OTAKNzg0IDE1OTMKNzg1IDE1OTQK Nzg2IDE1OTUKNzg3IDE1OTYKNzg4IDE1OTcKNzg5IDE1OTgKNzkwIDE1OTkK NzkxIDE2MDAKNzkyIDE2MDMKNzkzIDE2MDQKNzk0IDE2MDUKNzk1IDE2MDYK Nzk2IDE2MDcKNzk3IDE2MDgKNzk4IDE2MDkKNzk5IDE2MTYKODAwIDE2MTgK ODAxIDE2MTkKODAyIDE2MjAKODAzIDE2MjMKODA0IDE2MjQKODA1IDE2MjUK ODA2IDE2MjcKODA3IDE2MjgKODA4IDE2MjkKODA5IDE2MzAKODEwIDE2MzMK ODExIDE2MzQKODEyIDE2MzUKODEzIDE2MzYKODE0IDE2MzcKODE1IDE2MzgK ODE2IDE2MzkKODE3IDE2NDAKODE4IDE2NDMKODE5IDE2NDQKODIwIDE2NDUK ODIxIDE2NDYKODIyIDE2NDcKODIzIDE2NDgKODI0IDE2NDkKODI1IDE2NTAK ODI2IDE2NTMKODI3IDE2NTQKODI4IDE2NTUKODI5IDE2NTYKODMwIDE2NTcK ODMxIDE2NTgKODMyIDE2NTkKODMzIDE2NjAKODM0IDE2NjMKODM1IDE2NjQK ODM2IDE2NjUKODM3IDE2NjYKODM4IDE2NjcKODM5IDE2NjgKODQwIDE2NjkK ODQxIDE2NzAKODQyIDE2NzMKODQzIDE2NzQKODQ0IDE2NzUKODQ1IDE2NzYK ODQ2IDE2NzcKODQ3IDE2NzgKODQ4IDE2NzkKODQ5IDE2ODAKODUwIDE2ODMK ODUxIDE2ODQKODUyIDE2ODUKODUzIDE2ODYKODU0IDE2ODcKODU1IDE2ODgK ODU2IDE2ODkKODU3IDE2OTAKODU4IDE2OTMKODU5IDE2OTQKODYwIDE2OTUK ODYxIDE2OTYKODYyIDE2OTcKODYzIDE2OTgKODY0IDE2OTkKODY1IDE3MDAK ODY2IDE3MDMKODY3IDE3MDQKODY4IDE3MDUKODY5IDE3MDYKODcwIDE3MDcK ODcxIDE3MDgKODcyIDE3MDkKODczIDE3MTcKODc0IDE3MTkKODc1IDE3MjAK ODc2IDE3MjMKODc3IDE3MjQKODc4IDE3MjUKODc5IDE3MjYKODgwIDE3MjgK ODgxIDE3MjkKODgyIDE3MzAKODgzIDE3MzMKODg0IDE3MzQKODg1IDE3MzUK ODg2IDE3MzYKODg3IDE3MzcKODg4IDE3MzgKODg5IDE3MzkKODkwIDE3NDAK ODkxIDE3NDMKODkyIDE3NDQKODkzIDE3NDUKODk0IDE3NDYKODk1IDE3NDcK ODk2IDE3NDgKODk3IDE3NDkKODk4IDE3NTAKODk5IDE3NTMKOTAwIDE3NTQK OTAxIDE3NTUKOTAyIDE3NTYKOTAzIDE3NTcKOTA0IDE3NTgKOTA1IDE3NTkK OTA2IDE3NjAKOTA3IDE3NjMKOTA4IDE3NjQKOTA5IDE3NjUKOTEwIDE3NjYK OTExIDE3NjcKOTEyIDE3NjgKOTEzIDE3NjkKOTE0IDE3NzAKOTE1IDE3NzMK OTE2IDE3NzQKOTE3IDE3NzUKOTE4IDE3NzYKOTE5IDE3NzcKOTIwIDE3NzgK OTIxIDE3NzkKOTIyIDE3ODAKOTIzIDE3ODMKOTI0IDE3ODQKOTI1IDE3ODUK OTI2IDE3ODYKOTI3IDE3ODcKOTI4IDE3ODgKOTI5IDE3ODkKOTMwIDE3OTAK OTMxIDE3OTMKOTMyIDE3OTQKOTMzIDE3OTUKOTM0IDE3OTYKOTM1IDE3OTcK OTM2IDE3OTgKOTM3IDE3OTkKOTM4IDE4MDAKOTM5IDE4MDMKOTQwIDE4MDQK OTQxIDE4MDUKOTQyIDE4MDYKOTQzIDE4MDcKOTQ0IDE4MDgKOTQ1IDE4MDkK OTQ2IDE4MTgKOTQ3IDE4MjAKOTQ4IDE4MjMKOTQ5IDE4MjQKOTUwIDE4MjUK OTUxIDE4MjYKOTUyIDE4MjcKOTUzIDE4MjkKOTU0IDE4MzAKOTU1IDE4MzMK OTU2IDE4MzQKOTU3IDE4MzUKOTU4IDE4MzYKOTU5IDE4MzcKOTYwIDE4MzgK OTYxIDE4MzkKOTYyIDE4NDAKOTYzIDE4NDMKOTY0IDE4NDQKOTY1IDE4NDUK OTY2IDE4NDYKOTY3IDE4NDcKOTY4IDE4NDgKOTY5IDE4NDkKOTcwIDE4NTAK OTcxIDE4NTMKOTcyIDE4NTQKOTczIDE4NTUKOTc0IDE4NTYKOTc1IDE4NTcK OTc2IDE4NTgKOTc3IDE4NTkKOTc4IDE4NjAKOTc5IDE4NjMKOTgwIDE4NjQK OTgxIDE4NjUKOTgyIDE4NjYKOTgzIDE4NjcKOTg0IDE4NjgKOTg1IDE4NjkK OTg2IDE4NzAKOTg3IDE4NzMKOTg4IDE4NzQKOTg5IDE4NzUKOTkwIDE4NzYK OTkxIDE4NzcKOTkyIDE4NzgKOTkzIDE4NzkKOTk0IDE4ODAKOTk1IDE4ODMK OTk2IDE4ODQKOTk3IDE4ODUKOTk4IDE4ODYKOTk5IDE4ODcKMTAwMCAxODg4 CjEwMDEgMTg4OQoxMDAyIDE4OTAKMTAwMyAxODkzCjEwMDQgMTg5NAoxMDA1 IDE4OTUKMTAwNiAxODk2CjEwMDcgMTg5NwoxMDA4IDE4OTgKMTAwOSAxODk5 CjEwMTAgMTkwMAoxMDExIDE5MDMKMTAxMiAxOTA0CjEwMTMgMTkwNQoxMDE0 IDE5MDYKMTAxNSAxOTA3CjEwMTYgMTkwOAoxMDE3IDE5MDkKMTAxOCAxOTE5 CjEwMTkgMTkyMwoxMDIwIDE5MjQKMTAyMSAxOTI1CjEwMjIgMTkyNgoxMDIz IDE5MjcKMTAyNCAxOTI4CjEwMjUgMTkzMAoxMDI2IDE5MzMKMTAyNyAxOTM0 CjEwMjggMTkzNQoxMDI5IDE5MzYKMTAzMCAxOTM3CjEwMzEgMTkzOAoxMDMy IDE5MzkKMTAzMyAxOTQwCjEwMzQgMTk0MwoxMDM1IDE5NDQKMTAzNiAxOTQ1 CjEwMzcgMTk0NgoxMDM4IDE5NDcKMTAzOSAxOTQ4CjEwNDAgMTk0OQoxMDQx IDE5NTAKMTA0MiAxOTUzCjEwNDMgMTk1NAoxMDQ0IDE5NTUKMTA0NSAxOTU2 CjEwNDYgMTk1NwoxMDQ3IDE5NTgKMTA0OCAxOTU5CjEwNDkgMTk2MAoxMDUw IDE5NjMKMTA1MSAxOTY0CjEwNTIgMTk2NQoxMDUzIDE5NjYKMTA1NCAxOTY3 CjEwNTUgMTk2OAoxMDU2IDE5NjkKMTA1NyAxOTcwCjEwNTggMTk3MwoxMDU5 IDE5NzQKMTA2MCAxOTc1CjEwNjEgMTk3NgoxMDYyIDE5NzcKMTA2MyAxOTc4 CjEwNjQgMTk3OQoxMDY1IDE5ODAKMTA2NiAxOTgzCjEwNjcgMTk4NAoxMDY4 IDE5ODUKMTA2OSAxOTg2CjEwNzAgMTk4NwoxMDcxIDE5ODgKMTA3MiAxOTg5 CjEwNzMgMTk5MAoxMDc0IDE5OTMKMTA3NSAxOTk0CjEwNzYgMTk5NQoxMDc3 IDE5OTYKMTA3OCAxOTk3CjEwNzkgMTk5OAoxMDgwIDE5OTkKMTA4MSAyMDAw CjEwODIgMjAwMwoxMDgzIDIwMDQKMTA4NCAyMDA1CjEwODUgMjAwNgoxMDg2 IDIwMDcKMTA4NyAyMDA4CjEwODggMjAwOQoxMDg5IDIwMjAKMTA5MCAyMDIz CjEwOTEgMjAyNAoxMDkyIDIwMjUKMTA5MyAyMDI2CjEwOTQgMjAyNwoxMDk1 IDIwMjgKMTA5NiAyMDI5CjEwOTcgMjAzMAoxMDk4IDIwMzMKMTA5OSAyMDM0 CjExMDAgMjAzNQoxMTAxIDIwMzYKMTEwMiAyMDM3CjExMDMgMjAzOAoxMTA0 IDIwMzkKMTEwNSAyMDQwCjExMDYgMjA0MwoxMTA3IDIwNDQKMTEwOCAyMDQ1 CjExMDkgMjA0NgoxMTEwIDIwNDcKMTExMSAyMDQ4CjExMTIgMjA0OQoxMTEz IDIwNTAKMTExNCAyMDUzCjExMTUgMjA1NAoxMTE2IDIwNTUKMTExNyAyMDU2 CjExMTggMjA1NwoxMTE5IDIwNTgKMTEyMCAyMDU5CjExMjEgMjA2MAoxMTIy IDIwNjMKMTEyMyAyMDY0CjExMjQgMjA2NQoxMTI1IDIwNjYKMTEyNiAyMDY3 CjExMjcgMjA2OAoxMTI4IDIwNjkKMTEyOSAyMDcwCjExMzAgMjA3MwoxMTMx IDIwNzQKMTEzMiAyMDc1CjExMzMgMjA3NgoxMTM0IDIwNzcKMTEzNSAyMDc4 CjExMzYgMjA3OQoxMTM3IDIwODAKMTEzOCAyMDgzCjExMzkgMjA4NAoxMTQw IDIwODUKMTE0MSAyMDg2CjExNDIgMjA4NwoxMTQzIDIwODgKMTE0NCAyMDg5 CjExNDUgMjA5MAoxMTQ2IDIwOTMKMTE0NyAyMDk0CjExNDggMjA5NQoxMTQ5 IDIwOTYKMTE1MCAyMDk3CjExNTEgMjA5OAoxMTUyIDIwOTkKMTE1MyAyMjI0 CjExNTQgMjIyNQoxMTU1IDIyMjYKMTE1NiAyMjI3CjExNTcgMjIyOAoxMTU4 IDIyMjkKMTE1OSAyMjMwCjExNjAgMjIzNAoxMTYxIDIyMzUKMTE2MiAyMjM2 CjExNjMgMjIzNwoxMTY0IDIyMzgKMTE2NSAyMjM5CjExNjYgMjI0MAoxMTY3 IDIyNDQKMTE2OCAyMjQ1CjExNjkgMjI0NgoxMTcwIDIyNDcKMTE3MSAyMjQ4 CjExNzIgMjI0OQoxMTczIDIyNTAKMTE3NCAyMjU0CjExNzUgMjI1NQoxMTc2 IDIyNTYKMTE3NyAyMjU3CjExNzggMjI1OAoxMTc5IDIyNTkKMTE4MCAyMjYw CjExODEgMjI2NAoxMTgyIDIyNjUKMTE4MyAyMjY2CjExODQgMjI2NwoxMTg1 IDIyNjgKMTE4NiAyMjY5CjExODcgMjI3MAoxMTg4IDIyNzQKMTE4OSAyMjc1 CjExOTAgMjI3NgoxMTkxIDIyNzcKMTE5MiAyMjc4CjExOTMgMjI3OQoxMTk0 IDIyODAKMTE5NSAyMjg0CjExOTYgMjI4NQoxMTk3IDIyODYKMTE5OCAyMjg3 CjExOTkgMjI4OAoxMjAwIDIyODkKMTIwMSAyMjkwCjEyMDIgMjI5NAoxMjAz IDIyOTUKMTIwNCAyMjk2CjEyMDUgMjI5NwoxMjA2IDIyOTgKMTIwNyAyMjk5 CjEyMDggMjMwMAoxMjA5IDIzMDQKMTIxMCAyMzA1CjEyMTEgMjMwNgoxMjEy IDIzMDcKMTIxMyAyMzA4CjEyMTQgMjMwOQoxMjE1IDIzMjUKMTIxNiAyMzI2 CjEyMTcgMjMyNwoxMjE4IDIzMjgKMTIxOSAyMzI5CjEyMjAgMjMzMAoxMjIx IDIzMzQKMTIyMiAyMzM1CjEyMjMgMjMzNgoxMjI0IDIzMzcKMTIyNSAyMzM4 CjEyMjYgMjMzOQoxMjI3IDIzNDAKMTIyOCAyMzQ0CjEyMjkgMjM0NgoxMjMw IDIzNDcKMTIzMSAyMzQ4CjEyMzIgMjM0OQoxMjMzIDIzNTAKMTIzNCAyMzU0 CjEyMzUgMjM1NQoxMjM2IDIzNTYKMTIzNyAyMzU3CjEyMzggMjM1OAoxMjM5 IDIzNTkKMTI0MCAyMzYwCjEyNDEgMjM2NAoxMjQyIDIzNjUKMTI0MyAyMzY2 CjEyNDQgMjM2NwoxMjQ1IDIzNjgKMTI0NiAyMzY5CjEyNDcgMjM3MAoxMjQ4 IDIzNzQKMTI0OSAyMzc1CjEyNTAgMjM3NgoxMjUxIDIzNzcKMTI1MiAyMzc4 CjEyNTMgMjM3OQoxMjU0IDIzODAKMTI1NSAyMzg0CjEyNTYgMjM4NQoxMjU3 IDIzODYKMTI1OCAyMzg3CjEyNTkgMjM4OAoxMjYwIDIzODkKMTI2MSAyMzkw CjEyNjIgMjM5NAoxMjYzIDIzOTUKMTI2NCAyMzk2CjEyNjUgMjM5NwoxMjY2 IDIzOTgKMTI2NyAyMzk5CjEyNjggMjQwMAoxMjY5IDI0MDQKMTI3MCAyNDA1 CjEyNzEgMjQwNgoxMjcyIDI0MDcKMTI3MyAyNDA4CjEyNzQgMjQwOQoxMjc1 IDI0MjQKMTI3NiAyNDI2CjEyNzcgMjQyNwoxMjc4IDI0MjgKMTI3OSAyNDI5 CjEyODAgMjQzMAoxMjgxIDI0MzUKMTI4MiAyNDM2CjEyODMgMjQzNwoxMjg0 IDI0MzgKMTI4NSAyNDM5CjEyODYgMjQ0MAoxMjg3IDI0NDQKMTI4OCAyNDQ1 CjEyODkgMjQ0NgoxMjkwIDI0NDcKMTI5MSAyNDQ4CjEyOTIgMjQ0OQoxMjkz IDI0NTAKMTI5NCAyNDU0CjEyOTUgMjQ1NQoxMjk2IDI0NTYKMTI5NyAyNDU3 CjEyOTggMjQ1OAoxMjk5IDI0NTkKMTMwMCAyNDYwCjEzMDEgMjQ2NAoxMzAy IDI0NjUKMTMwMyAyNDY2CjEzMDQgMjQ2NwoxMzA1IDI0NjgKMTMwNiAyNDY5 CjEzMDcgMjQ3MAoxMzA4IDI0NzQKMTMwOSAyNDc1CjEzMTAgMjQ3NgoxMzEx IDI0NzcKMTMxMiAyNDc4CjEzMTMgMjQ3OQoxMzE0IDI0ODAKMTMxNSAyNDg0 CjEzMTYgMjQ4NQoxMzE3IDI0ODYKMTMxOCAyNDg3CjEzMTkgMjQ4OAoxMzIw IDI0ODkKMTMyMSAyNDkwCjEzMjIgMjQ5NAoxMzIzIDI0OTUKMTMyNCAyNDk2 CjEzMjUgMjQ5NwoxMzI2IDI0OTgKMTMyNyAyNDk5CjEzMjggMjUwMAoxMzI5 IDI1MDQKMTMzMCAyNTA1CjEzMzEgMjUwNgoxMzMyIDI1MDcKMTMzMyAyNTA4 CjEzMzQgMjUwOQoxMzM1IDI1MjUKMTMzNiAyNTI3CjEzMzcgMjUyOAoxMzM4 IDI1MjkKMTMzOSAyNTMwCjEzNDAgMjUzNAoxMzQxIDI1MzYKMTM0MiAyNTM3 CjEzNDMgMjUzOAoxMzQ0IDI1MzkKMTM0NSAyNTQwCjEzNDYgMjU0NAoxMzQ3 IDI1NDUKMTM0OCAyNTQ2CjEzNDkgMjU0NwoxMzUwIDI1NDgKMTM1MSAyNTQ5 CjEzNTIgMjU1MAoxMzUzIDI1NTQKMTM1NCAyNTU1CjEzNTUgMjU1NgoxMzU2 IDI1NTcKMTM1NyAyNTU4CjEzNTggMjU1OQoxMzU5IDI1NjAKMTM2MCAyNTY0 CjEzNjEgMjU2NQoxMzYyIDI1NjYKMTM2MyAyNTY3CjEzNjQgMjU2OAoxMzY1 IDI1NjkKMTM2NiAyNTcwCjEzNjcgMjU3NAoxMzY4IDI1NzUKMTM2OSAyNTc2 CjEzNzAgMjU3NwoxMzcxIDI1NzgKMTM3MiAyNTc5CjEzNzMgMjU4MAoxMzc0 IDI1ODQKMTM3NSAyNTg1CjEzNzYgMjU4NgoxMzc3IDI1ODcKMTM3OCAyNTg4 CjEzNzkgMjU4OQoxMzgwIDI1OTAKMTM4MSAyNTk0CjEzODIgMjU5NQoxMzgz IDI1OTYKMTM4NCAyNTk3CjEzODUgMjU5OAoxMzg2IDI1OTkKMTM4NyAyNjAw CjEzODggMjYwNAoxMzg5IDI2MDUKMTM5MCAyNjA2CjEzOTEgMjYwNwoxMzky IDI2MDgKMTM5MyAyNjA5CjEzOTQgMjYyNgoxMzk1IDI2MjgKMTM5NiAyNjI5 CjEzOTcgMjYzMAoxMzk4IDI2MzQKMTM5OSAyNjM1CjE0MDAgMjYzNwoxNDAx IDI2MzgKMTQwMiAyNjM5CjE0MDMgMjY0MAoxNDA0IDI2NDQKMTQwNSAyNjQ1 CjE0MDYgMjY0NgoxNDA3IDI2NDcKMTQwOCAyNjQ4CjE0MDkgMjY0OQoxNDEw IDI2NTAKMTQxMSAyNjU0CjE0MTIgMjY1NQoxNDEzIDI2NTYKMTQxNCAyNjU3 CjE0MTUgMjY1OAoxNDE2IDI2NTkKMTQxNyAyNjYwCjE0MTggMjY2NAoxNDE5 IDI2NjUKMTQyMCAyNjY2CjE0MjEgMjY2NwoxNDIyIDI2NjgKMTQyMyAyNjY5 CjE0MjQgMjY3MAoxNDI1IDI2NzQKMTQyNiAyNjc1CjE0MjcgMjY3NgoxNDI4 IDI2NzcKMTQyOSAyNjc4CjE0MzAgMjY3OQoxNDMxIDI2ODAKMTQzMiAyNjg0 CjE0MzMgMjY4NQoxNDM0IDI2ODYKMTQzNSAyNjg3CjE0MzYgMjY4OAoxNDM3 IDI2ODkKMTQzOCAyNjkwCjE0MzkgMjY5NAoxNDQwIDI2OTUKMTQ0MSAyNjk2 CjE0NDIgMjY5NwoxNDQzIDI2OTgKMTQ0NCAyNjk5CjE0NDUgMjcwMAoxNDQ2 IDI3MDQKMTQ0NyAyNzA1CjE0NDggMjcwNgoxNDQ5IDI3MDcKMTQ1MCAyNzA4 CjE0NTEgMjcwOQoxNDUyIDI3MjcKMTQ1MyAyNzI5CjE0NTQgMjczMAoxNDU1 IDI3MzQKMTQ1NiAyNzM1CjE0NTcgMjczNgoxNDU4IDI3MzgKMTQ1OSAyNzM5 CjE0NjAgMjc0MAoxNDYxIDI3NDQKMTQ2MiAyNzQ1CjE0NjMgMjc0NgoxNDY0 IDI3NDcKMTQ2NSAyNzQ4CjE0NjYgMjc0OQoxNDY3IDI3NTAKMTQ2OCAyNzU0 CjE0NjkgMjc1NQoxNDcwIDI3NTYKMTQ3MSAyNzU3CjE0NzIgMjc1OAoxNDcz IDI3NTkKMTQ3NCAyNzYwCjE0NzUgMjc2NAoxNDc2IDI3NjUKMTQ3NyAyNzY2 CjE0NzggMjc2NwoxNDc5IDI3NjgKMTQ4MCAyNzY5CjE0ODEgMjc3MAoxNDgy IDI3NzQKMTQ4MyAyNzc1CjE0ODQgMjc3NgoxNDg1IDI3NzcKMTQ4NiAyNzc4 CjE0ODcgMjc3OQoxNDg4IDI3ODAKMTQ4OSAyNzg0CjE0OTAgMjc4NQoxNDkx IDI3ODYKMTQ5MiAyNzg3CjE0OTMgMjc4OAoxNDk0IDI3ODkKMTQ5NSAyNzkw CjE0OTYgMjc5NAoxNDk3IDI3OTUKMTQ5OCAyNzk2CjE0OTkgMjc5NwoxNTAw IDI3OTgKMTUwMSAyNzk5CjE1MDIgMjgwMAoxNTAzIDI4MDQKMTUwNCAyODA1 CjE1MDUgMjgwNgoxNTA2IDI4MDcKMTUwNyAyODA4CjE1MDggMjgwOQoxNTA5 IDI4MjgKMTUxMCAyODMwCjE1MTEgMjgzNAoxNTEyIDI4MzUKMTUxMyAyODM2 CjE1MTQgMjgzNwoxNTE1IDI4MzkKMTUxNiAyODQwCjE1MTcgMjg0NAoxNTE4 IDI4NDUKMTUxOSAyODQ2CjE1MjAgMjg0NwoxNTIxIDI4NDgKMTUyMiAyODQ5 CjE1MjMgMjg1MAoxNTI0IDI4NTQKMTUyNSAyODU1CjE1MjYgMjg1NgoxNTI3 IDI4NTcKMTUyOCAyODU4CjE1MjkgMjg1OQoxNTMwIDI4NjAKMTUzMSAyODY0 CjE1MzIgMjg2NQoxNTMzIDI4NjYKMTUzNCAyODY3CjE1MzUgMjg2OAoxNTM2 IDI4NjkKMTUzNyAyODcwCjE1MzggMjg3NAoxNTM5IDI4NzUKMTU0MCAyODc2 CjE1NDEgMjg3NwoxNTQyIDI4NzgKMTU0MyAyODc5CjE1NDQgMjg4MAoxNTQ1 IDI4ODQKMTU0NiAyODg1CjE1NDcgMjg4NgoxNTQ4IDI4ODcKMTU0OSAyODg4 CjE1NTAgMjg4OQoxNTUxIDI4OTAKMTU1MiAyODk0CjE1NTMgMjg5NQoxNTU0 IDI4OTYKMTU1NSAyODk3CjE1NTYgMjg5OAoxNTU3IDI4OTkKMTU1OCAyOTAw CjE1NTkgMjkwNAoxNTYwIDI5MDUKMTU2MSAyOTA2CjE1NjIgMjkwNwoxNTYz IDI5MDgKMTU2NCAyOTA5CjE1NjUgMjkyOQoxNTY2IDI5MzQKMTU2NyAyOTM1 CjE1NjggMjkzNgoxNTY5IDI5MzcKMTU3MCAyOTM4CjE1NzEgMjk0MAoxNTcy IDI5NDQKMTU3MyAyOTQ1CjE1NzQgMjk0NgoxNTc1IDI5NDcKMTU3NiAyOTQ4 CjE1NzcgMjk0OQoxNTc4IDI5NTAKMTU3OSAyOTU0CjE1ODAgMjk1NQoxNTgx IDI5NTYKMTU4MiAyOTU3CjE1ODMgMjk1OAoxNTg0IDI5NTkKMTU4NSAyOTYw CjE1ODYgMjk2NAoxNTg3IDI5NjUKMTU4OCAyOTY2CjE1ODkgMjk2NwoxNTkw IDI5NjgKMTU5MSAyOTY5CjE1OTIgMjk3MAoxNTkzIDI5NzQKMTU5NCAyOTc1 CjE1OTUgMjk3NgoxNTk2IDI5NzcKMTU5NyAyOTc4CjE1OTggMjk3OQoxNTk5 IDI5ODAKMTYwMCAyOTg0CjE2MDEgMjk4NQoxNjAyIDI5ODYKMTYwMyAyOTg3 CjE2MDQgMjk4OAoxNjA1IDI5ODkKMTYwNiAyOTkwCjE2MDcgMjk5NAoxNjA4 IDI5OTUKMTYwOSAyOTk2CjE2MTAgMjk5NwoxNjExIDI5OTgKMTYxMiAyOTk5 CjE2MTMgMzAwMAoxNjE0IDMwMDQKMTYxNSAzMDA1CjE2MTYgMzAwNgoxNjE3 IDMwMDcKMTYxOCAzMDA4CjE2MTkgMzAwOQoxNjIwIDMwMzAKMTYyMSAzMDM0 CjE2MjIgMzAzNQoxNjIzIDMwMzYKMTYyNCAzMDM3CjE2MjUgMzAzOAoxNjI2 IDMwMzkKMTYyNyAzMDQwCjE2MjggMzA0NAoxNjI5IDMwNDUKMTYzMCAzMDQ2 CjE2MzEgMzA0NwoxNjMyIDMwNDgKMTYzMyAzMDQ5CjE2MzQgMzA1MAoxNjM1 IDMwNTQKMTYzNiAzMDU1CjE2MzcgMzA1NgoxNjM4IDMwNTcKMTYzOSAzMDU4 CjE2NDAgMzA1OQoxNjQxIDMwNjAKMTY0MiAzMDY0CjE2NDMgMzA2NQoxNjQ0 IDMwNjYKMTY0NSAzMDY3CjE2NDYgMzA2OAoxNjQ3IDMwNjkKMTY0OCAzMDcw CjE2NDkgMzA3NAoxNjUwIDMwNzUKMTY1MSAzMDc2CjE2NTIgMzA3NwoxNjUz IDMwNzgKMTY1NCAzMDc5CjE2NTUgMzA4MAoxNjU2IDMwODQKMTY1NyAzMDg1 CjE2NTggMzA4NgoxNjU5IDMwODcKMTY2MCAzMDg4CjE2NjEgMzA4OQoxNjYy IDMwOTAKMTY2MyAzMDk0CjE2NjQgMzA5NQoxNjY1IDMwOTYKMTY2NiAzMDk3 CjE2NjcgMzA5OAoxNjY4IDMwOTkKMTY2OSAzMzM1CjE2NzAgMzMzNgoxNjcx IDMzMzcKMTY3MiAzMzM4CjE2NzMgMzMzOQoxNjc0IDMzNDAKMTY3NSAzMzQ1 CjE2NzYgMzM0NgoxNjc3IDMzNDcKMTY3OCAzMzQ4CjE2NzkgMzM0OQoxNjgw IDMzNTAKMTY4MSAzMzU1CjE2ODIgMzM1NgoxNjgzIDMzNTcKMTY4NCAzMzU4 CjE2ODUgMzM1OQoxNjg2IDMzNjAKMTY4NyAzMzY1CjE2ODggMzM2NgoxNjg5 IDMzNjcKMTY5MCAzMzY4CjE2OTEgMzM2OQoxNjkyIDMzNzAKMTY5MyAzMzc1 CjE2OTQgMzM3NgoxNjk1IDMzNzcKMTY5NiAzMzc4CjE2OTcgMzM3OQoxNjk4 IDMzODAKMTY5OSAzMzg1CjE3MDAgMzM4NgoxNzAxIDMzODcKMTcwMiAzMzg4 CjE3MDMgMzM4OQoxNzA0IDMzOTAKMTcwNSAzMzk1CjE3MDYgMzM5NgoxNzA3 IDMzOTcKMTcwOCAzMzk4CjE3MDkgMzM5OQoxNzEwIDM0MDAKMTcxMSAzNDA1 CjE3MTIgMzQwNgoxNzEzIDM0MDcKMTcxNCAzNDA4CjE3MTUgMzQwOQoxNzE2 IDM0MzYKMTcxNyAzNDM3CjE3MTggMzQzOAoxNzE5IDM0MzkKMTcyMCAzNDQw CjE3MjEgMzQ0NQoxNzIyIDM0NDYKMTcyMyAzNDQ3CjE3MjQgMzQ0OAoxNzI1 IDM0NDkKMTcyNiAzNDUwCjE3MjcgMzQ1NQoxNzI4IDM0NTcKMTcyOSAzNDU4 CjE3MzAgMzQ1OQoxNzMxIDM0NjAKMTczMiAzNDY1CjE3MzMgMzQ2NgoxNzM0 IDM0NjcKMTczNSAzNDY4CjE3MzYgMzQ2OQoxNzM3IDM0NzAKMTczOCAzNDc1 CjE3MzkgMzQ3NgoxNzQwIDM0NzcKMTc0MSAzNDc4CjE3NDIgMzQ3OQoxNzQz IDM0ODAKMTc0NCAzNDg1CjE3NDUgMzQ4NgoxNzQ2IDM0ODcKMTc0NyAzNDg4 CjE3NDggMzQ4OQoxNzQ5IDM0OTAKMTc1MCAzNDk1CjE3NTEgMzQ5NgoxNzUy IDM0OTcKMTc1MyAzNDk4CjE3NTQgMzQ5OQoxNzU1IDM1MDAKMTc1NiAzNTA1 CjE3NTcgMzUwNgoxNzU4IDM1MDcKMTc1OSAzNTA4CjE3NjAgMzUwOQoxNzYx IDM1MzUKMTc2MiAzNTM3CjE3NjMgMzUzOAoxNzY0IDM1MzkKMTc2NSAzNTQw CjE3NjYgMzU0NgoxNzY3IDM1NDcKMTc2OCAzNTQ4CjE3NjkgMzU0OQoxNzcw IDM1NTAKMTc3MSAzNTU1CjE3NzIgMzU1NgoxNzczIDM1NTcKMTc3NCAzNTU4 CjE3NzUgMzU1OQoxNzc2IDM1NjAKMTc3NyAzNTY1CjE3NzggMzU2NgoxNzc5 IDM1NjcKMTc4MCAzNTY4CjE3ODEgMzU2OQoxNzgyIDM1NzAKMTc4MyAzNTc1 CjE3ODQgMzU3NgoxNzg1IDM1NzcKMTc4NiAzNTc4CjE3ODcgMzU3OQoxNzg4 IDM1ODAKMTc4OSAzNTg1CjE3OTAgMzU4NgoxNzkxIDM1ODcKMTc5MiAzNTg4 CjE3OTMgMzU4OQoxNzk0IDM1OTAKMTc5NSAzNTk1CjE3OTYgMzU5NgoxNzk3 IDM1OTcKMTc5OCAzNTk4CjE3OTkgMzU5OQoxODAwIDM2MDAKMTgwMSAzNjA1 CjE4MDIgMzYwNgoxODAzIDM2MDcKMTgwNCAzNjA4CjE4MDUgMzYwOQoxODA2 IDM2MzYKMTgwNyAzNjM4CjE4MDggMzYzOQoxODA5IDM2NDAKMTgxMCAzNjQ1 CjE4MTEgMzY0NwoxODEyIDM2NDgKMTgxMyAzNjQ5CjE4MTQgMzY1MAoxODE1 IDM2NTUKMTgxNiAzNjU2CjE4MTcgMzY1NwoxODE4IDM2NTgKMTgxOSAzNjU5 CjE4MjAgMzY2MAoxODIxIDM2NjUKMTgyMiAzNjY2CjE4MjMgMzY2NwoxODI0 IDM2NjgKMTgyNSAzNjY5CjE4MjYgMzY3MAoxODI3IDM2NzUKMTgyOCAzNjc2 CjE4MjkgMzY3NwoxODMwIDM2NzgKMTgzMSAzNjc5CjE4MzIgMzY4MAoxODMz IDM2ODUKMTgzNCAzNjg2CjE4MzUgMzY4NwoxODM2IDM2ODgKMTgzNyAzNjg5 CjE4MzggMzY5MAoxODM5IDM2OTUKMTg0MCAzNjk2CjE4NDEgMzY5NwoxODQy IDM2OTgKMTg0MyAzNjk5CjE4NDQgMzcwMAoxODQ1IDM3MDUKMTg0NiAzNzA2 CjE4NDcgMzcwNwoxODQ4IDM3MDgKMTg0OSAzNzA5CjE4NTAgMzczNwoxODUx IDM3MzkKMTg1MiAzNzQwCjE4NTMgMzc0NQoxODU0IDM3NDYKMTg1NSAzNzQ4 CjE4NTYgMzc0OQoxODU3IDM3NTAKMTg1OCAzNzU1CjE4NTkgMzc1NgoxODYw IDM3NTcKMTg2MSAzNzU4CjE4NjIgMzc1OQoxODYzIDM3NjAKMTg2NCAzNzY1 CjE4NjUgMzc2NgoxODY2IDM3NjcKMTg2NyAzNzY4CjE4NjggMzc2OQoxODY5 IDM3NzAKMTg3MCAzNzc1CjE4NzEgMzc3NgoxODcyIDM3NzcKMTg3MyAzNzc4 CjE4NzQgMzc3OQoxODc1IDM3ODAKMTg3NiAzNzg1CjE4NzcgMzc4NgoxODc4 IDM3ODcKMTg3OSAzNzg4CjE4ODAgMzc4OQoxODgxIDM3OTAKMTg4MiAzNzk1 CjE4ODMgMzc5NgoxODg0IDM3OTcKMTg4NSAzNzk4CjE4ODYgMzc5OQoxODg3 IDM4MDAKMTg4OCAzODA1CjE4ODkgMzgwNgoxODkwIDM4MDcKMTg5MSAzODA4 CjE4OTIgMzgwOQoxODkzIDM4MzgKMTg5NCAzODQwCjE4OTUgMzg0NQoxODk2 IDM4NDYKMTg5NyAzODQ3CjE4OTggMzg0OQoxODk5IDM4NTAKMTkwMCAzODU1 CjE5MDEgMzg1NgoxOTAyIDM4NTcKMTkwMyAzODU4CjE5MDQgMzg1OQoxOTA1 IDM4NjAKMTkwNiAzODY1CjE5MDcgMzg2NgoxOTA4IDM4NjcKMTkwOSAzODY4 CjE5MTAgMzg2OQoxOTExIDM4NzAKMTkxMiAzODc1CjE5MTMgMzg3NgoxOTE0 IDM4NzcKMTkxNSAzODc4CjE5MTYgMzg3OQoxOTE3IDM4ODAKMTkxOCAzODg1 CjE5MTkgMzg4NgoxOTIwIDM4ODcKMTkyMSAzODg4CjE5MjIgMzg4OQoxOTIz IDM4OTAKMTkyNCAzODk1CjE5MjUgMzg5NgoxOTI2IDM4OTcKMTkyNyAzODk4 CjE5MjggMzg5OQoxOTI5IDM5MDAKMTkzMCAzOTA1CjE5MzEgMzkwNgoxOTMy IDM5MDcKMTkzMyAzOTA4CjE5MzQgMzkwOQoxOTM1IDM5MzkKMTkzNiAzOTQ1 CjE5MzcgMzk0NgoxOTM4IDM5NDcKMTkzOSAzOTQ4CjE5NDAgMzk1MAoxOTQx IDM5NTUKMTk0MiAzOTU2CjE5NDMgMzk1NwoxOTQ0IDM5NTgKMTk0NSAzOTU5 CjE5NDYgMzk2MAoxOTQ3IDM5NjUKMTk0OCAzOTY2CjE5NDkgMzk2NwoxOTUw IDM5NjgKMTk1MSAzOTY5CjE5NTIgMzk3MAoxOTUzIDM5NzUKMTk1NCAzOTc2 CjE5NTUgMzk3NwoxOTU2IDM5NzgKMTk1NyAzOTc5CjE5NTggMzk4MAoxOTU5 IDM5ODUKMTk2MCAzOTg2CjE5NjEgMzk4NwoxOTYyIDM5ODgKMTk2MyAzOTg5 CjE5NjQgMzk5MAoxOTY1IDM5OTUKMTk2NiAzOTk2CjE5NjcgMzk5NwoxOTY4 IDM5OTgKMTk2OSAzOTk5CjE5NzAgNDAwMAoxOTcxIDQwMDUKMTk3MiA0MDA2 CjE5NzMgNDAwNwoxOTc0IDQwMDgKMTk3NSA0MDA5CjE5NzYgNDA0MAoxOTc3 IDQwNDUKMTk3OCA0MDQ2CjE5NzkgNDA0NwoxOTgwIDQwNDgKMTk4MSA0MDQ5 CjE5ODIgNDA1MAoxOTgzIDQwNTUKMTk4NCA0MDU2CjE5ODUgNDA1NwoxOTg2 IDQwNTgKMTk4NyA0MDU5CjE5ODggNDA2MAoxOTg5IDQwNjUKMTk5MCA0MDY2 CjE5OTEgNDA2NwoxOTkyIDQwNjgKMTk5MyA0MDY5CjE5OTQgNDA3MAoxOTk1 IDQwNzUKMTk5NiA0MDc2CjE5OTcgNDA3NwoxOTk4IDQwNzgKMTk5OSA0MDc5 CjIwMDAgNDA4MAoyMDAxIDQwODUKMjAwMiA0MDg2CjIwMDMgNDA4NwoyMDA0 IDQwODgKMjAwNSA0MDg5CjIwMDYgNDA5MAoyMDA3IDQwOTUKMjAwOCA0MDk2 CjIwMDkgNDA5NwoyMDEwIDQwOTgKMjAxMSA0MDk5CjIwMTIgNDQ0NgoyMDEz IDQ0NDcKMjAxNCA0NDQ4CjIwMTUgNDQ0OQoyMDE2IDQ0NTAKMjAxNyA0NDU2 CjIwMTggNDQ1NwoyMDE5IDQ0NTgKMjAyMCA0NDU5CjIwMjEgNDQ2MAoyMDIy IDQ0NjYKMjAyMyA0NDY3CjIwMjQgNDQ2OAoyMDI1IDQ0NjkKMjAyNiA0NDcw CjIwMjcgNDQ3NgoyMDI4IDQ0NzcKMjAyOSA0NDc4CjIwMzAgNDQ3OQoyMDMx IDQ0ODAKMjAzMiA0NDg2CjIwMzMgNDQ4NwoyMDM0IDQ0ODgKMjAzNSA0NDg5 CjIwMzYgNDQ5MAoyMDM3IDQ0OTYKMjAzOCA0NDk3CjIwMzkgNDQ5OAoyMDQw IDQ0OTkKMjA0MSA0NTAwCjIwNDIgNDUwNgoyMDQzIDQ1MDcKMjA0NCA0NTA4 CjIwNDUgNDUwOQoyMDQ2IDQ1NDcKMjA0NyA0NTQ4CjIwNDggNDU0OQoyMDQ5 IDQ1NTAKMjA1MCA0NTU2CjIwNTEgNDU1NwoyMDUyIDQ1NTgKMjA1MyA0NTU5 CjIwNTQgNDU2MAoyMDU1IDQ1NjYKMjA1NiA0NTY4CjIwNTcgNDU2OQoyMDU4 IDQ1NzAKMjA1OSA0NTc2CjIwNjAgNDU3NwoyMDYxIDQ1NzgKMjA2MiA0NTc5 CjIwNjMgNDU4MAoyMDY0IDQ1ODYKMjA2NSA0NTg3CjIwNjYgNDU4OAoyMDY3 IDQ1ODkKMjA2OCA0NTkwCjIwNjkgNDU5NgoyMDcwIDQ1OTcKMjA3MSA0NTk4 CjIwNzIgNDU5OQoyMDczIDQ2MDAKMjA3NCA0NjA2CjIwNzUgNDYwNwoyMDc2 IDQ2MDgKMjA3NyA0NjA5CjIwNzggNDY0NgoyMDc5IDQ2NDgKMjA4MCA0NjQ5 CjIwODEgNDY1MAoyMDgyIDQ2NTcKMjA4MyA0NjU4CjIwODQgNDY1OQoyMDg1 IDQ2NjAKMjA4NiA0NjY2CjIwODcgNDY2NwoyMDg4IDQ2NjgKMjA4OSA0NjY5 CjIwOTAgNDY3MAoyMDkxIDQ2NzYKMjA5MiA0Njc3CjIwOTMgNDY3OAoyMDk0 IDQ2NzkKMjA5NSA0NjgwCjIwOTYgNDY4NgoyMDk3IDQ2ODcKMjA5OCA0Njg4 CjIwOTkgNDY4OQoyMTAwIDQ2OTAKMjEwMSA0Njk2CjIxMDIgNDY5NwoyMTAz IDQ2OTgKMjEwNCA0Njk5CjIxMDUgNDcwMAoyMTA2IDQ3MDYKMjEwNyA0NzA3 CjIxMDggNDcwOAoyMTA5IDQ3MDkKMjExMCA0NzQ3CjIxMTEgNDc0OQoyMTEy IDQ3NTAKMjExMyA0NzU2CjIxMTQgNDc1OAoyMTE1IDQ3NTkKMjExNiA0NzYw CjIxMTcgNDc2NgoyMTE4IDQ3NjcKMjExOSA0NzY4CjIxMjAgNDc2OQoyMTIx IDQ3NzAKMjEyMiA0Nzc2CjIxMjMgNDc3NwoyMTI0IDQ3NzgKMjEyNSA0Nzc5 CjIxMjYgNDc4MAoyMTI3IDQ3ODYKMjEyOCA0Nzg3CjIxMjkgNDc4OAoyMTMw IDQ3ODkKMjEzMSA0NzkwCjIxMzIgNDc5NgoyMTMzIDQ3OTcKMjEzNCA0Nzk4 CjIxMzUgNDc5OQoyMTM2IDQ4MDAKMjEzNyA0ODA2CjIxMzggNDgwNwoyMTM5 IDQ4MDgKMjE0MCA0ODA5CjIxNDEgNDg0OAoyMTQyIDQ4NTAKMjE0MyA0ODU2 CjIxNDQgNDg1NwoyMTQ1IDQ4NTkKMjE0NiA0ODYwCjIxNDcgNDg2NgoyMTQ4 IDQ4NjcKMjE0OSA0ODY4CjIxNTAgNDg2OQoyMTUxIDQ4NzAKMjE1MiA0ODc2 CjIxNTMgNDg3NwoyMTU0IDQ4NzgKMjE1NSA0ODc5CjIxNTYgNDg4MAoyMTU3 IDQ4ODYKMjE1OCA0ODg3CjIxNTkgNDg4OAoyMTYwIDQ4ODkKMjE2MSA0ODkw CjIxNjIgNDg5NgoyMTYzIDQ4OTcKMjE2NCA0ODk4CjIxNjUgNDg5OQoyMTY2 IDQ5MDAKMjE2NyA0OTA2CjIxNjggNDkwNwoyMTY5IDQ5MDgKMjE3MCA0OTA5 CjIxNzEgNDk0OQoyMTcyIDQ5NTYKMjE3MyA0OTU3CjIxNzQgNDk1OAoyMTc1 IDQ5NjAKMjE3NiA0OTY2CjIxNzcgNDk2NwoyMTc4IDQ5NjgKMjE3OSA0OTY5 CjIxODAgNDk3MAoyMTgxIDQ5NzYKMjE4MiA0OTc3CjIxODMgNDk3OAoyMTg0 IDQ5NzkKMjE4NSA0OTgwCjIxODYgNDk4NgoyMTg3IDQ5ODcKMjE4OCA0OTg4 CjIxODkgNDk4OQoyMTkwIDQ5OTAKMjE5MSA0OTk2CjIxOTIgNDk5NwoyMTkz IDQ5OTgKMjE5NCA0OTk5CjIxOTUgNTAwMAoyMTk2IDUwMDYKMjE5NyA1MDA3 CjIxOTggNTAwOAoyMTk5IDUwMDkKMjIwMCA1MDUwCjIyMDEgNTA1NgoyMjAy IDUwNTcKMjIwMyA1MDU4CjIyMDQgNTA1OQoyMjA1IDUwNjAKMjIwNiA1MDY2 CjIyMDcgNTA2NwoyMjA4IDUwNjgKMjIwOSA1MDY5CjIyMTAgNTA3MAoyMjEx IDUwNzYKMjIxMiA1MDc3CjIyMTMgNTA3OAoyMjE0IDUwNzkKMjIxNSA1MDgw CjIyMTYgNTA4NgoyMjE3IDUwODcKMjIxOCA1MDg4CjIyMTkgNTA4OQoyMjIw IDUwOTAKMjIyMSA1MDk2CjIyMjIgNTA5NwoyMjIzIDUwOTgKMjIyNCA1MDk5 CjIyMjUgNTU1NwoyMjI2IDU1NTgKMjIyNyA1NTU5CjIyMjggNTU2MAoyMjI5 IDU1NjcKMjIzMCA1NTY4CjIyMzEgNTU2OQoyMjMyIDU1NzAKMjIzMyA1NTc3 CjIyMzQgNTU3OAoyMjM1IDU1NzkKMjIzNiA1NTgwCjIyMzcgNTU4NwoyMjM4 IDU1ODgKMjIzOSA1NTg5CjIyNDAgNTU5MAoyMjQxIDU1OTcKMjI0MiA1NTk4 CjIyNDMgNTU5OQoyMjQ0IDU2MDAKMjI0NSA1NjA3CjIyNDYgNTYwOAoyMjQ3 IDU2MDkKMjI0OCA1NjU4CjIyNDkgNTY1OQoyMjUwIDU2NjAKMjI1MSA1NjY3 CjIyNTIgNTY2OAoyMjUzIDU2NjkKMjI1NCA1NjcwCjIyNTUgNTY3NwoyMjU2 IDU2NzkKMjI1NyA1NjgwCjIyNTggNTY4NwoyMjU5IDU2ODgKMjI2MCA1Njg5 CjIyNjEgNTY5MAoyMjYyIDU2OTcKMjI2MyA1Njk4CjIyNjQgNTY5OQoyMjY1 IDU3MDAKMjI2NiA1NzA3CjIyNjcgNTcwOAoyMjY4IDU3MDkKMjI2OSA1NzU3 CjIyNzAgNTc1OQoyMjcxIDU3NjAKMjI3MiA1NzY4CjIyNzMgNTc2OQoyMjc0 IDU3NzAKMjI3NSA1Nzc3CjIyNzYgNTc3OAoyMjc3IDU3NzkKMjI3OCA1Nzgw CjIyNzkgNTc4NwoyMjgwIDU3ODgKMjI4MSA1Nzg5CjIyODIgNTc5MAoyMjgz IDU3OTcKMjI4NCA1Nzk4CjIyODUgNTc5OQoyMjg2IDU4MDAKMjI4NyA1ODA3 CjIyODggNTgwOAoyMjg5IDU4MDkKMjI5MCA1ODU4CjIyOTEgNTg2MAoyMjky IDU4NjcKMjI5MyA1ODY5CjIyOTQgNTg3MAoyMjk1IDU4NzcKMjI5NiA1ODc4 CjIyOTcgNTg3OQoyMjk4IDU4ODAKMjI5OSA1ODg3CjIzMDAgNTg4OAoyMzAx IDU4ODkKMjMwMiA1ODkwCjIzMDMgNTg5NwoyMzA0IDU4OTgKMjMwNSA1ODk5 CjIzMDYgNTkwMAoyMzA3IDU5MDcKMjMwOCA1OTA4CjIzMDkgNTkwOQoyMzEw IDU5NTkKMjMxMSA1OTY3CjIzMTIgNTk2OAoyMzEzIDU5NzAKMjMxNCA1OTc3 CjIzMTUgNTk3OAoyMzE2IDU5NzkKMjMxNyA1OTgwCjIzMTggNTk4NwoyMzE5 IDU5ODgKMjMyMCA1OTg5CjIzMjEgNTk5MAoyMzIyIDU5OTcKMjMyMyA1OTk4 CjIzMjQgNTk5OQoyMzI1IDYwMDAKMjMyNiA2MDA3CjIzMjcgNjAwOAoyMzI4 IDYwMDkKMjMyOSA2MDYwCjIzMzAgNjA2NwoyMzMxIDYwNjgKMjMzMiA2MDY5 CjIzMzMgNjA3MAoyMzM0IDYwNzcKMjMzNSA2MDc4CjIzMzYgNjA3OQoyMzM3 IDYwODAKMjMzOCA2MDg3CjIzMzkgNjA4OAoyMzQwIDYwODkKMjM0MSA2MDkw CjIzNDIgNjA5NwoyMzQzIDYwOTgKMjM0NCA2MDk5CjIzNDUgNjY2OAoyMzQ2 IDY2NjkKMjM0NyA2NjcwCjIzNDggNjY3OAoyMzQ5IDY2NzkKMjM1MCA2Njgw CjIzNTEgNjY4OAoyMzUyIDY2ODkKMjM1MyA2NjkwCjIzNTQgNjY5OAoyMzU1 IDY2OTkKMjM1NiA2NzAwCjIzNTcgNjcwOAoyMzU4IDY3MDkKMjM1OSA2NzY5 CjIzNjAgNjc3MAoyMzYxIDY3NzgKMjM2MiA2Nzc5CjIzNjMgNjc4MAoyMzY0 IDY3ODgKMjM2NSA2NzkwCjIzNjYgNjc5OAoyMzY3IDY3OTkKMjM2OCA2ODAw CjIzNjkgNjgwOAoyMzcwIDY4MDkKMjM3MSA2ODY4CjIzNzIgNjg3MAoyMzcz IDY4NzkKMjM3NCA2ODgwCjIzNzUgNjg4OAoyMzc2IDY4ODkKMjM3NyA2ODkw CjIzNzggNjg5OAoyMzc5IDY4OTkKMjM4MCA2OTAwCjIzODEgNjkwOAoyMzgy IDY5MDkKMjM4MyA2OTY5CjIzODQgNjk3OAoyMzg1IDY5ODAKMjM4NiA2OTg4 CjIzODcgNjk4OQoyMzg4IDY5OTAKMjM4OSA2OTk4CjIzOTAgNjk5OQoyMzkx IDcwMDAKMjM5MiA3MDA4CjIzOTMgNzAwOQoyMzk0IDcwNzAKMjM5NSA3MDc4 CjIzOTYgNzA3OQoyMzk3IDcwODAKMjM5OCA3MDg4CjIzOTkgNzA4OQoyNDAw IDcwOTAKMjQwMSA3MDk4CjI0MDIgNzA5OQoyNDAzIDc3NzkKMjQwNCA3Nzgw CjI0MDUgNzc4OQoyNDA2IDc3OTAKMjQwNyA3Nzk5CjI0MDggNzgwMAoyNDA5 IDc4MDkKMjQxMCA3ODgwCjI0MTEgNzg4OQoyNDEyIDc4OTAKMjQxMyA3ODk5 CjI0MTQgNzkwMAoyNDE1IDc5MDkKMjQxNiA3OTc5CjI0MTcgNzk5MAoyNDE4 IDc5OTkKMjQxOSA4MDAwCjI0MjAgODAwOQoyNDIxIDgwODAKMjQyMiA4MDg5 CjI0MjMgODA5MAoyNDI0IDgwOTkKMjQyNSA4ODkwCjI0MjYgODkwMAoyNDI3 IDkwMDAKMjQyOCA5MDkwCg== ------=_Part_151547_12232578.1185210638925-- From keynews.tv at skynet.be Mon Jul 23 19:17:28 2007 From: keynews.tv at skynet.be (Eric Angelini) Date: Mon, 23 Jul 2007 19:17:28 +0200 Subject: Early Bird numbers In-Reply-To: <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> Message-ID: What about doing recursively the same with the "early bird" seq? We would then have to compare the concatenation of the "early bird" integers to 12345678910111213141516... and ask ourselves "what integers come ahead now?" By hand I get this (N = naturals, EB = Early Birds): N=12345678910111213141516171819202122232425262728293031323334353637383940... EB=122123313234414243455152535456616263646567717273747576788182838485868789. .. EB(2)=12,13,14,21,22,23,24,25,26,31,32,33,34,35,36,37,38,41,42,43,44,45, 46,47,48,51... We could start again from there to compute EB(3), etc. Could we bump into a "fixed point seq"? What would that mean? Best, ?. -----Message d'origine----- De : Joshua Zucker [mailto:joshua.zucker at gmail.com] Envoy? : lundi 23 juillet 2007 15:59 ? : Warut Roonguthai Cc : seqfan at ext.jussieu.fr Objet : Re: Early Bird numbers I wrote my own program and let it run to make all the terms up to 1000. Up to 394 they match the terms Warut's program produced. --Joshua Zucker 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 On 7/23/07, Warut Roonguthai wrote: > FYI, here's my Ubasic program for generating the early bird sequence: > > 10 X="" > 20 for N=1 to 396 > 30 A=cutspc(str(N)) > 40 if instr(X,A)>0 then print N; > 50 X+=A > 60 next N > > Warut > From maximilian.hasler at gmail.com Mon Jul 23 19:17:23 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 13:17:23 -0400 Subject: Early Bird numbers In-Reply-To: <3c3af2330707231010g931f3cfl50118a3a07020f3b@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> <200707231623.l6NGNZMN1224353@fry.research.att.com> <200707231659.l6NGxGe81231836@fry.research.att.com> <3c3af2330707231010g931f3cfl50118a3a07020f3b@mail.gmail.com> Message-ID: <3c3af2330707231017j1b99c155ga7514f3430c3b302@mail.gmail.com> Definitely, I did too much administrative work this morning. As the last line of my B-file shows, the comment is wrong. Once again public apologies and Neil, please delete the 2nd line of the %C... (9090 is a punctual bird.) Maximilian On 7/23/07, Maximilian Hasler wrote: > Following Neil's suggestion to add the complement and his suggestion > for naming it "punctual birds" : > > Subject: PRE-NUMBERED NEW SEQUENCE A131881 FROM Maximilian F. Hasler > > %I A131881 > %S A131881 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, > 19, 20, 22, 24, 25, 26, 27, > 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 44, 46, 47, 48, 49, 50, 55, > 57, 58, 59, 60, > 66, 68, 69, 70, 77, 79, 80, 88, 90, 100, 102, 103, 104, 105, 106, 107, > 108, 109, 113 > %N A131881 "punctual birds" - numbers which are not in A116700 > %C A131881 Numbers n that do not occur in the concatenation of 1,2,3...,n-1. > There is no punctual bird larger than 9*10^k and smaller than > 10^(k+1), for any integer k. > %D A131881 Gardner, Martin. (November 2005). Transcendentals and early birds. > Math Horizons XIII(2), pp 5, 34. > %H A131881 Solomon > W. Golomb, "EARLY BIRD NUMBERS", in IEEE Information TheorySociety > Newsletter, Vol. 52, No. 4, December 2002 > %H A131881 R. > Barger (editor), "Brain Teaser" in Volume 1, Issue 1 of KANSAS CITY > AREA TEACHERS OF MATHEMATICS" > %e A131881 The first number not in this sequence is the early bird > "12" which occurs as concatenation of 1 and 2. > %o A131881 < ?php $s="."; for(; ++$i < 2000; $s .= $i ) > if(!strpos($s,"$i")) echo $i,", "; > %Y A131881 Cf. A116700 (early birds) > %O A131881 1 > %K A131881 ,base,easy,nonn, > %A A131881 Maximilian F. Hasler (Maximilian.Hasler at gmail.com), Jul 23 2007 From maxale at gmail.com Mon Jul 23 19:29:13 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 10:29:13 -0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: <20070722.072158.944.1.pauldhanna@juno.com> References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: On 7/22/07, Paul D. Hanna wrote: > > > Seqfans, > Consider the nice sequence A006336: > a(n) = a(n-1) + a(n-1 - number of even terms so far). > http://www.research.att.com/~njas/sequences/A006336 > begins: > [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. > > My COMMENT (NOT submitted to OEIS): > ----------------------------------------------------------- > It seems that A006336 can be generated by a rule using the golden ratio: > > a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, > > > i.e., the number of even terms up to position n-1 equals: > n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. To simplify notation, let p = Phi = (sqrt(5)+1)/2. Lemma. The sets { [n*p] : n=1,2,3,... } and { [n*p^2] : n=1,2,3,... } are disjoint, and every positive integer belongs to one (and only one!) of these sets. I leave the proof of this Lemma to the reader as a challenge. Theorem. The number of even terms in A006336 up to position n-1 equals n-1 - [n/p]. Proof by induction: Suppose that the number of even terms in A006336(1..n) equal n - [(n+1)/p] for every n=2..m. In other words, A006336(n) is even iff n - [(n+1)/p] = (n-1 - [n/p]) + 1, that is equivalent to: A006336(n) == [(n+1)/p] - [n/p] (mod 2). We will prove that the same statement is true for n=m+1. By the definition of A006336 and our induction hypothesis, we have a(m+1) = a(m) + a([(m+1)/p]) == [(m+1)/p] - [m/p] + [([(m+1)/p]+1)/p] - [[(m+1)/p]/p] (mod 2). Therefore, we need to prove that [(m+2)/p] - [(m+1)/p] == [(m+1)/p] - [m/p] + [([(m+1)/p]+1)/p] - [[(m+1)/p]/p] (mod 2) or [(m+2)/p] + [m/p] + [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] == 0 (mod 2). Let m+1 = q*p + r, where q is integer and 0 < r < p, and q = s*p + t, where s is integer and 0 < t < p. Then m+1 = (s*p + t)*p + r = s*p^2 + t*p + r. It is easy to see that [(m+2)/p] + [m/p] = 0 (mod 2) if and only if p-1 < r < 1. Similarly, [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] == 0 (mod 2) if and only if t < p-1. There are three cases when [(m+2)/p] + [m/p] and [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] may have different oddness: 1) If p-1 < r < 1 and t > p-1 then m = [q*p] and m+1 = [(q+1)*p]. We also have m+1 = s*p^2 + t*p + r > s*p^2 + (p-1)*p + p - 1 = (s+1)*p^2 - 1 and m+1 = s*p^2 + t*p + r < s*p^2 + p*p + 1 = (s+1)*p^2 + 1, implying that [(s+1)*p^2] = m+1 or [(s+1)*p^2] = m, a contradiction to Lemma. 2) If t < p-1 and r < p-1 then m = [q*p] and m+2 = [(q+1)*p]. We also have m+1 = s*p^2 + t*p + r > s*p^2 and m+1 = s*p^2 + t*p + r < s*p^2 + (p-1)*p + p-1 = (s+1)*p^2 - 1, implying that either [s*p^2] = m or [(s+1)*p^2] = m+2, a contradiction to Lemma. 3) If t < p-1 and r > 1 then m-1 = [q*p], m+1 = [(q+1)*p]. We also have m+1 = s*p^2 + t*p + r > s*p^2 + 1 and m+1 = s*p^2 + t*p + r < s*p^2 + (p-1)*p + p = (s+1)*p^2 implying that either [s*p^2] = m-1 or [(s+1)*p^2] = m+1, a contradiction to Lemma. Therefore, [(m+2)/p] + [m/p] = 0 (mod 2) if and only if [(m+2)/p] + [m/p] = 0 (mod 2), implying that [(m+2)/p] + [m/p] + [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] == 0 (mod 2). Q.E.D. Max From davidwwilson at comcast.net Mon Jul 23 19:56:08 2007 From: davidwwilson at comcast.net (David Wilson) Date: Mon, 23 Jul 2007 13:56:08 -0400 Subject: Divisor d is the total number of divisors References: Message-ID: <002c01c7cd52$bf849ce0$6501a8c0@yourxhtr8hvc4p> These are the refactorable numbers, A033950. ----- Original Message ----- From: "Eric Angelini" To: Sent: Monday, July 23, 2007 12:25 PM Subject: Divisor d is the total number of divisors > > > Hello SeqFans, > > Is this seq of interest? > If yes could someone check and compute a few more terms? > > 1,8,9,12,18,24,36,... > > Integers I having one divisor which is also the total number of divisors > of I. > > 1 has 1 divisor which is 1 > 8 has 4 divs and 4 is one of them > 9 has 3 divs and 3 is one of them > 12 has 6 divs and 6 is one of them > 18 has 6 divs and 6 is one of them > 24 has 8 divs and 8 is one of them > 36 has 9 divs and 9 is one of them > ... > > 30 is not a member because 30 has 8 divs but not 8 itself : > [1,2,3,5,6,10,15,30] > > Best, > ?. > > > > > > > -- > No virus found in this incoming message. > Checked by AVG Free Edition. > Version: 7.5.476 / Virus Database: 269.10.14/912 - Release Date: 7/22/2007 > 7:02 PM > At 10:40 AM -0700 7/23/07, Max Alekseyev wrote: >On 7/22/07, Paul D. Hanna wrote: >> >> >> Seqfans, >> Consider the nice sequence A006336: >> a(n) = a(n-1) + a(n-1 - number of even terms so far). >> http://www.research.att.com/~njas/sequences/A006336 >> begins: >> [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. >> >> My COMMENT (NOT submitted to OEIS): >> ----------------------------------------------------------- >> It seems that A006336 can be generated by a rule using the golden ratio: >> >> a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, >> >> >> i.e., the number of even terms up to position n-1 equals: >> n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. > >To simplify notation, let p = Phi = (sqrt(5)+1)/2. Nice, Max. What does this sequence count? It is similar to A00123 and A005704, which both have a recursion a(n)=a(n-1)+a([n/k]), where k is 2 and 3, respectively. Those sequences count "number of partitions of k*n into powers of k". For sequence A006336, k=Phi. Does A006336(n) count the number of partitions of n*Phi into powers of Phi? Tony From noe at sspectra.com Mon Jul 23 20:39:32 2007 From: noe at sspectra.com (T. D. Noe) Date: Mon, 23 Jul 2007 11:39:32 -0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: Dear seqfans, I#ve been surprised not to find sequences of the following form in the OEIS: a(n)=min(k in N: sigma(r,n)=sigma(r,k)) with sigma(r,n)=sum of the r-th power of the divisors of n: new[r_, n_] := (If[Head[#1] === rep, #1 = n, #1] & )[rep[DivisorSigma[r, n]]] for r=0 (number of divisors) Clear[rep]; (new[0, #1] & ) /@ Range[0, 100] {0, 1, 2, 2, 4, 2, 6, 2, 6, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 6, 12, 2, 24, 2, 12, 6, 6, 6, 36, 2, 6, 6, 24, 2, 24, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 24, 2, 12, 6, 24, 2, 60, 2, 6, 12, 12, 6, 24, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2, 60, 6, 12, 6, 6, 6, 60, 2, 12, 12, 36} for r=1 (sum of divisors) Clear[rep]; (new[1, #1] & ) /@ Range[0, 100] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 12, 13, 14, 14, 16, 10, 18, 19, 20, 21, 22, 14, 24, 16, 20, 27, 28, 29, 30, 21, 32, 33, 34, 33, 36, 37, 24, 28, 40, 20, 42, 43, 44, 45, 30, 33, 48, 49, 50, 30, 52, 34, 54, 30, 54, 57, 40, 24, 60, 61, 42, 63, 64, 44, 66, 67, 68, 42, 66, 30, 72, 73, 74, 48, 76, 42, 60, 57, 80, 81, 68, 44, 84, 85, 86, 54, 88, 40, 90, 91, 60, 93, 66, 54, 96, 52, 98, 99, 100} r=2 (sum of squares of divisors) Clear[rep]; (new[2, #1] & ) /@ Range[0, 100] {0, 1, 2, 3, 4, 5, 6, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 24, 27, 28, 29, 30, 31, 32, 33, 34, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 40, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 66, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 78, 92, 93, 94, 95, 96, 97, 98, 99, 100} and so on. Are these of interest? And if so, up to which exponent r? Peter >What does this sequence count? It is similar to A00123 and A005704, which >both have a recursion a(n)=a(n-1)+a([n/k]), where k is 2 and 3, >respectively. Those sequences count "number of partitions of k*n into >powers of k". For sequence A006336, k=Phi. Does A006336(n) count the >number of partitions of n*Phi into powers of Phi? Answering my own question. If the recursion starts with a(0)=1, then I think we obtain "number of partitions of n*Phi into powers of Phi". That sequence is 1, 2, 4, 6, 10, 16, 22,..., which I just submitted as A131882. We need negative powers of Phi also, letting p=Phi and q=1/Phi n=0: 0*p = {} for 1 partition n=1: 1*p = p = 1+q for 2 partitions n=2: 2*p = p+p = 1+p+q = 1+1+q+q = p^2+q for 4 partitions etc. tedious! So A006336(n), which starts with a(1)=1, counts 1/2 of the "number of partitions of n*Phi into powers of Phi" Tony From noe at sspectra.com Mon Jul 23 21:39:53 2007 From: noe at sspectra.com (T. D. Noe) Date: Mon, 23 Jul 2007 12:39:53 -0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: ------=_Part_156860_32560920.1185232257325 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline concerning the "duplicates" http://www.research.att.com/~njas/sequences/?q=id:A087186|id:A087189 I think all terms of the second one are wrong. A087189(1) should be = (A005191(3)-1)/2/3^2 = 1 A087189(2) should be = (A005191(7)-1)/2/7^2 = 83 etc, instead of what is listed : A087189 2,4,31,304,40044,500522,86094668,1167752848,225001039696, Thus these are no duplicates at all. PARI code : A087189(n) = local(p=prime(n+2-(n==1))); (A005191(p)-1)/2/p^2 A005191(n) = sum(k=0,(2*n)\5,binomial(n,k)*binomial(-n,2*n-5*k)) attached both sequences up to n=100 ; below the corrected entry for the wrong one. M.H. %I A087189 %S A087189 1, 83, 16907, 279021, 89444018, 1695011087, 658067703933, 5768410509553937, 122108313460051500, 1226978854222034501448, 593538703869555995238872, 13175226571428140572866093, 6594852118968926152838341468, 76339779380132942579800334346403 %N A087189 (P(p)-1)/2/p^2 where p runs through the odd primes different from 5 and P(k) is the k-th central pentanomial coefficient (A005191). %o A087189 (PARI) A087189(n) = local(p=prime(n+2-(n==1))); (A005191(p)-1)/2/p^2 \\ - M.F. Hasler %Y A087189 Adjacent sequences: A087186 A087187 A087188 this_sequence A087190 A087191 A087192 %Y A087189 Sequence in context: A018294 A051569 A087186 this_sequence A051759 A051570 A082913 %K A087189 nonn %O A087189 1,1 %A A087189 Benoit Cloitre (abmt(AT)wanadoo.fr), Oct 19 2003 %E A087189 Corrected and extended by Maximilian F. Hasler (Maximilian.Hasler at gmail.com), Jul 23 2007 ------=_Part_156860_32560920.1185232257325 Content-Type: text/plain; name=b087186.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4hkqnyy Content-Disposition: attachment; filename="b087186.txt" MSAyCjIgNAozIDMxCjQgMzA0CjUgNDAwNDQKNiA1MDA1MjIKNyA4NjA5NDY2 OAo4IDExNjc3NTI4NDgKOSAyMjUwMDEwMzk2OTYKMTAgNjUyNDk4Mjg4MTU0 ODIwCjExIDk0NTE3MzU3NjE2MjY4ODAKMTIgMjk3MzE2MDUzMTQ5NjkwMTc3 NzIKMTMgNjUyOTY3MzQ5NjcwMjg3NjYwNTA3MgoxNCA5NzMwMDgwNTgwMzQ0 NTc1OTQ2MDM2NAoxNSAyMTgwOTM0MDIyNTgxNTQ4NTk1Nzk5MDQ2NAoxNiA3 NDY0NzYwMjMzNzYxMDE0MDg3MjQ5MzMwMzE4NgoxNyAyNjA0NTY0NjY3MTk4 ODcxOTU2NzE1NzkxNzM5NTI5NzYKMTggMzk2NDYzNDU3NjY1MTc0Mjc1NTc3 NDE3MjM1NDY0NDI5NgoxOSAxNDExMjkxODYwNDQ1MTI5ODg2NzY4MDg2NjAx OTg4Mjk0MTQyNAoyMCAzMzEyNjgwNjI5ODkwNDI4NTQxNTMwNjI4OTM2ODc5 ODY2MzM4ODgwCjIxIDUwODQ0OTQ3NzYyMzk5NjM2MDY2NTkxOTE5ODU3NTMz MTY0NzM0ODk2CjIyIDE4NTA0MzA3MDA5OTEzNDQ2MDEwMjYwODE0NTM0NTc3 NTE0Mjc1ODgxMzQ0MAoyMyA0Mzk5NTQyMzU4MzE5NjYxMjQzNDk3Njg3MzMx NTEwMzIyMjEyNDMwMjg0MDM4NAoyNCAxNjIzMjgzNjgzNzE0MTQ1OTIzMzYx ODg3NjIxNzgyNzkxOTkzNDc1NzQyMTgyMzMwMDQKMjUgOTM1MjExODUzNTI1 OTc1NzIwMjg5NTk2NTgwNDcwNzI3MDI0MDQzNjUxMjI4OTc2OTU5Mjg2OAoy NiAyMjUzNTgxMTk1OTQ2ODQ5OTIwODU5MDg0ODYzNTcyODI5Nzk3MzgwMjA5 OTkxMDYxMjEwMjQwNjQ0CjI3IDM1MDE0MDEyMzIzMzkyNDAxNjYxODI5OTM4 MzE5NDQ1NzAxNzIyNzQ2NzU1MTM4NDI5Nzk1NTcxNzc2CjI4IDg0NjY1MTAw NTcyODk2NjY2Nzk0NDgzODYzODM4ODkzNDU2NDQyNTY0MzI4NDU0MDI3NDg1 MzE3Mzg4NTYKMjkgMTMxNzU5MDI0Nzg1OTYyMzg0NTE3MTM0NTUxMzAwMDky MTQwMDg3MDkxMTU4MjgxNDE3OTQ1MDAzMzQ0Nzk2CjMwIDMxOTU4MDU3NjMz ODA4ODkxMjIzOTE0MTM0MTQ1Njk3ODgyOTc5NDA1NzE2NzM0MTk2NjExNTY4 NjE3OTY2MDA4CjMxIDcyMDE4ODgzNTkzMzUxMTI1MTM1MzE5MDQ3NzA1NzEz MDYyNzgwNTMxNjcyMjk4NTA4MTIzNDcyMjI4NzU5MTE3NzczODI0MDAKMzIg MTc2MDAwMTc1ODU5OTQ5NzU5MTQwNzIxNDI2MTk5ODQyOTI1NDY2OTQ0MTkz MzM1NTA1NTk1NzI4ODQyNzM0NTY0ODAxNTEzNTYwMAozMyA2NzQxMjE1OTM3 ODMwMzEzMTA5NDY2NjI5NTEzOTMyNzQwMzgzMDExNDYzODc5ODc1NjI2MjU3 MDk5NzI5Mjk2MjEyMjY3MTIxMDgzNzYwCjM0IDEwNTU0MjkzMjA0MjYzMDA3 MTU5NzgwODg4Nzg3MzQ2NDkyNzAyNDcxNDY5OTAwOTAwMTM5NDU0NDI1OTE3 MjQwODExMzAzNDgzMTI4NjE2MAozNSA5OTczMDU3OTE1NDAyNjY5NTYzODYw ODY1OTU2Mzc1OTMwNjk0MDE5MTIzMDQzNjM1MTgyMjQ3NzM4NDkxMDUyODY2 NDUyMzkxMTQxODIwNTA3ODIyMAozNiAxNTY0MTI5NDg4NjIyNDY1NjM3Njkz MTMxODM2MDU1MDIzODg0Njc3Mjg1MTEzMjU4MzM0MjM2NDY1MDk0NjgyNjgw NzQwODUyNzQxOTA5NDM3NzE4MDgwCjM3IDYwNDMzNTYzMjc4NDYxODU4OTE3 NjE5ODQ4OTk5NzI4ODc2ODMxODM4NTk2Mjk3MDA3MjQyMTU1NzE1MjYxMDQw MTA3Mjg4OTMwNTM1ODQ0NDU1MjQ1NTExMjAKMzggMjM0MDA5NTg4MTA1OTc5 MzgyMzU4MDQxMTIyNDQyNjE1NTEzNDM5Mzg1NzkwMzM4NTk0Mzk5ODM4Mjcw NTM0Mjc3OTI3MTE1OTI4OTMwMDIyODI3MjczNTk2MTA1NjAKMzkgNTc3Njkz NTM5MTEyMDMyODgxNzI1NDI0MDEwMDY5NjcyMzI3NjI3NTczNzI2Njg3ODQ1 NDA4MTg5NDY2MDA1NDU4NDA1NjA3NDkwNzA1NTI1OTA4NzE5MjkzNjU5NjIy NAo0MCAyMjQ0MzMzMDgwNzU3MDQxMzU5OTY4MTUxMzU5MDc2MDIwMjk0OTAz MjgwMzU2NzA0ODEwNDA5ODUyNjMzMDYxNDA0MTExNTAwNTU3NTYwODUzNTU3 Njc3MzU4NDA1NTU0MDk5NAo0MSA4NzM0OTMyMjM0MDI0OTQwNzIxMDcwOTA3 MDUzNTAyMjc5NzY0MDcwMzI2MjAxNjcwOTYxNzM4NjA5NjIyMTUzNDg1MzMx MTY3MDAwMDE5MDc0MjgwMTA5NTA0MzkzMzgyNjk3MDgwMAo0MiAxMzc0NTEx NjY3OTU5ODI4MzEyNTQzNDc0NzA3NzE5MzA4MDQyMTk1MTIwNTE0Nzc3ODUy NzcyMzM4NjQzNjQxODc5NjQ2MDgwMzQ1NDg2NDI2NDcwMTI4MzcyNDc0NjA1 NDcyODQxOTMwCjQzIDEzMjk2ODg3OTIyNTUxOTYwMzY1ODQ2MzEwMjQ5MDg2 MDk3NTE0Nzc5NTk0NTE5NTk4NzU4MDE3MDI1Njg0MzQ1ODg3NTk4NDczODg5 ODI3MzEzMTAyMDk2ODI3NTM3MzUwNjM4NjgyMDAyMzE5MzYKNDQgMjA5NDU0 ODUzNDE2NDM2NjE2OTU5MjM3MjkxNDEwMzQ3MjEwNjQ3NzQ4MDA0MDA4MzQ4 NzU1MDk1MzY4Nzk3NzkzOTQyMTE3NjY2ODg4NjMyOTg1MTQ0Mjc3NzgwNTcx MTk4ODYxMDI4MDQwMTU0OTIKNDUgNTE5OTcxMjQ5NjE4NzA1NzczMDA3NDQ4 MTY0MzIxMzk5NTIxNzE1ODExNzMzMTM2ODA4NDAxMTc4NzIxODkxNjEwNDA4 OTY0NjczNzUyMTg4MjA0MzM0ODMwOTcyODE4MjE2NzQ3Mzg4Nzc2NjE5MDg5 Mgo0NiA4MTk0NTQ4MTE3OTMxOTQ1MzAwNDQ1MTYwNDE0NzkyMjkyNjAzOTQ0 MDg2NzA1OTA0NTYyMzIwMDI4MTg1Njc3MjE5MDM4Mzc5MTk4MzE1OTMyMDQ0 MzE0NTMyNjc0ODk5MDI0OTE0NDIxNTU2NTkwMjI3Mgo0NyAxMjU5MzE0NzQ4 OTI5NzIxMDkyNTkwMjM0NTEzMzg1MTk5NDQ2MTQxMjczMDg5MDI1NTQ1NTQ2 ODk0OTU2ODQ0MzgwNjMzMDUzODg4ODEwNTE3ODM1NDU1Mjg1NDQxNTMwNzY1 MzQ1OTA2ODcyMTk2MTQ0NzQ5MDA5MDg4CjQ4IDE5NDQ2OTAyMTU5NjkxNDUy MjU0NjE0MTA2NzIxODc0MzM1NDE4OTU1NDc5NDQzNjc0MzM0MTA5NzU4NDI3 ODU3MTQ5NTEyNzYzMTM0MzI0NTQwMjM5NjIxNDY3NTg0MDQyMzUxNjY3NzEy MzMzNDk5OTE3NjM4NDQ0NjkxNDkwMzA0CjQ5IDQ4NDc1MDM3NTQ0MzU4NTIw NTkzMjIxMzc0MjEzMDgwMDY0MTM4NzQyNTg2MTgwOTI3NzA3MDQ4MjkyODA3 MDk0MTI1MjE2MDg3MzYyOTk3NzE5ODUwNzE0NjIxNDA4NTk2OTQzNzYxMjgy OTUxNjAzOTMyNzU1NzkxOTQ1MDYzNDQxNjAKNTAgNzY1NDcwMDUwNTgwODcx OTMzOTk5Mjg5ODc5OTU4NzgwNDEzMDU1MTc5MzQwMDI1ODI3NzQ2NTk1MDA3 NDE1MjM0NjY4MTA1MTgwODQ4MTcwMjI3ODQwOTUzOTcyMzUzNDM3OTEyNDk3 NTQxMjQwNTU3NjkxMTkyMjE0MDM4MDg3MzU5NjAKNTEgMTkwOTM5NzIyNjg2 MDM3NTg4NDU5NDQxODc2MDIxNDg4MTYwMDM0NzM1NjAzOTU5MzQ2NTg2OTE4 NDc4OTU1MDkyNzA3Njc1Nzg5NTg2NTU5NzkyOTc2NDE3MzU1MjY2MzQyODA4 NjY0NTk2Mjk1NTczMTMxNDcxMTU2ODk3Njk3ODg4ODE5NTIKNTIgNzUyODQ1 NTM3MzQzMDkxNjc1MTkxODIwNzAzMzk0MzY4Njg1OTI5NTEzODI2MTM1NDUy NzA3OTM0MTkwNzMyNDMwNzY5MjE2NzM2ODgyMDAzODY2NTU5NTc5NTIxMzQ4 NDg3NTI3MzQzODAyNTI4MDI5MjU3MTM3NTUwNTkyOTA5NTY1MTY0MjU0NzIK NTMgMTE4OTYwMDcxMzYzMTI0MDYwMTcyNjg0NzkwNjcwMDQyODAwMDI1MTM1 MzM4NDc4NTA3NTU5NzcyMzYyMTUyMzg0MDE3NTc1NzcyODk3MjcyNTc5Njcz NjU4MDg5MzM1NTExOTIyMTMzOTY1NDY3NTE5OTQzNzQ1MDg2MDIyODkwMDY0 MTc2NjE5ODE5Mgo1NCAxMTczNjQxNTI1Mjg2Mzk0NTA1NzU2MDA4NjM5NjE0 ODQ5MDQyNTU4NDI0NDUyMTkxMzg2ODQ5MDg3NDgwMTIxODE4MjgyNjgyMjE5 NzIwMjAzMjg3NDg2MTg1OTkzNTA2Mzc0MjM5Njc1MjExODA0OTYwMjQxNzM0 MzEyNTgxMTMyMjM5Nzc0MDIyODI5NDgyMzA0CjU1IDQ2Mzk5OTE2OTc5Mzcz NjcwMDcyNTI1OTA3NTg2MzM3NTkzNjg3NzE1MDQ0NjU5OTc5Nzc3OTMzNjEz OTkwODA5ODk4MDI1MDM1NDE3OTcyMDE0Mjc2MDQ2NDY4Njg3NDcxMjI2MDY1 MTgxMDE5MDYxNTAyMDA2OTk5NjUwMzM4NjE5MDE5NTcwNDQ3NzIwODA4OTU1 MTYKNTYgMTgzNTkxOTM4ODU2NzMwMjYzNzU5NzYwOTcyNjg0MTkyNTY1NDI3 MDgyNjk0NTU5ODY4NTEzMzM3MjM2NDIxMjQ5NDU3MDQwMzUzOTE1NjY3MjE2 MDYxNjI3MTEzNDU3NjU5Nzk4MDM4NTU1NTIzNjYxNTMwMDUwNTY1MjQ1NzA0 NDIzNzYwMDk2OTM4ODMxNDE3Nzc3NzM4ODgKNTcgNzI2OTkwNDIzNzk5OTE1 MTU5NTg5OTYxNzUwNzY5NDQ3MjgxNjA3NzIzNjY5OTUzMTA5NzQyNzE5MDgw OTc2MzgwMTA3MzgzMTYxNDg3OTkwMDUxNTkzMjg1ODU2MTMyODQxOTEyODU4 MTkxNzg2ODQ4MTczMzM3MDU2NjU1ODkwMjUzNTIwMzQzMjI2Mjc5MTU5OTE0 NTY2MzY2MzIKNTggMTE1MDM0MDM5MTQ5NjQ5MDc0OTkzNjQ4MTkxMzU1MzY1 NzA4NzQ4OTEwMzA2Mzc2MTg4MDkwOTM0MjUwNTQ4NDA1ODIwMTcwNjIzNTgw Njk5NTk4ODgwNjc1NTI4NDczNjk2OTQ5OTkxNzcwODYxMTMxNTgyNTU5OTU4 MjA0NjExOTU3NjY4MDQ5Nzg5NzYwMDY0NDg1ODQxNTY1NzIxNgo1OSA0NTU5 NjMzNzU0MjE5NzI5OTIzMTExMDUwMjEzNzMxMjMzMjU5Mzg1NTQwMDk3OTYw Mzc1NjkxMzQ1NzA3NjE4NTczMzQzMzE0MzI3MTMwOTM4MDQ3MjIzMDc5ODM3 NjY4NjAyNjY1Njk4MzczMjA2NTI2OTY5NjkxMzY5MDIwNzcxODA0OTAyODMz NDYyNDQwODIwMzczNTkwNjAwOTA1NzgwCjYwIDExNDI0NDcxNDYyMzYwMzQy MTY5NjMyNjg2MTkzMjE5NTgyODIxMTUxMjI2ODg0MTczNzE0NjgxNzA2OTMx MzcyNzE0NjUyMTU2MDMyNTc2NjQxOTcyMjYzMDUyNjEzMjI3MDg3MjA2MDg2 Nzk3Nzk4NzA5NzkwMDQyNDY3NTMxMDUwMDk1ODY1MzAzOTU2NzU4MzI5NTA5 MjU4NzI0MDY4MzExMjAKNjEgMTgwODU4NDc3OTczMzAxNjY0NjY2NTA3NTI3 ODE1ODcxNDEyMzMwODAzMTY4ODAyMTg5NjI1NzI4ODYzNDM2NDU3MDQ0MjMy MDcxNTExNzYxNDY0NTMxNTg5MjgwNjczNjU0NjQxNzA5MzEwMjcyMDkxMTg0 ODg1NDk2MTQ4NDIyOTM0MDg0MzcyOTIwNjAwNDk3ODA1NTIxMjk2MDQ2NTY3 MDU4ODgKNjIgMTgwMDI0MzAwMjIzNjU4Njk3Njg1OTgzMjg2ODQwNTkzNDMw MTMxMTEzNjAwMjExNDQ2NDgxMzU5MTQxNTM4NjgwNzU3Nzg4MTIxNzUyNDY2 ODc2MDU5MDgwOTY3MDUwODA2NDM2NTU0OTEzODU5OTExOTI5OTU2NDc3MjIz MTM1ODE5OTY3NDE3Nzk1MTAyMjA0NjM0NjExODI0NDUzMTE5MDc0OTI4OTIx NzYKNjMgNDUwNTkxNjE0OTM5NjY4ODkwNDY5OTE1MDMyMTIyNjQxNjU1OTY0 OTQ4NjgyMTkxNDQ3MDYwNTc4MjMxMTAxODQ4MDY3NjEzNDY2MTM1MzE5NDE4 ODgwNDgxNzUxNTI3MjI1OTkwMDgxMTkzNzEzNjc3MzkwMDcyMjg1MzIxMDc0 NTQ5MzI4ODU0NDQ3MjI4NjUzNzg5ODY2MzQyMDk3MDYwMjg5NDQyMzM0NjI5 NTY5MjIyNAo2NCAxMTMxMzQ0NzI4MjQwMzUzODcyOTg0NTk5Njk0Mjc0OTAw MjkzNDU1MDMzNTQzMjUwNDUxODQ4OTQ4OTQyNjYxMTk1NzcyMDYwNDE0NDUz NjE4MTQ3Nzc5ODUzOTYyMDgyNTg3NzQ2MzgwODMyNzA2NDE5NzI5NDgxMjQ5 NTM3MTI2MjY2NTAyMDQ5NzIwOTcwMzI3ODYzNTM4ODk5ODUxOTU0MDY3OTQy MTY5MzkyNDc4MjU0NDY0CjY1IDE3OTI4Mzk1NDg0NzczMDQ3NDYyNjIyMzA3 MjY4NTgzMTI0ODcyMTM1MjUzOTk0OTU1MDI5ODQzMDUyMTMwMzE2MDE5Nzc2 MDc0ODQwOTIzNzYzMzQxMzcwMjg3MTYzODY3NDkxODE0Mjg3NjMwMzgyMDkx OTQxNDI3MTcyNzUyNTE4NDI2NTM0Mjc1ODY5NTkxNTcwMDcwNDg5ODA0MDE2 OTAyNjE1MzkxMjkzNzA3MDg5NjI3NTUyCjY2IDQ1MDMxMjIxMTExMTczMzQy MjUwNzMwMTQxMTUzODIyMDg4MTE3MDUzNjM2NzM5NDczMzcyNjk0OTI1NzM5 MDQwMDUxNTQzNjY5MzcxMzExNjMxNDEzODUxMTIwODAwMzg4MDI4NzgxMTk4 ODUxMTMzNjA5OTQ2Mzg0MDI5MjYzMzkwNjMzNjMxNTMwMzE4OTYyNTgyNjU4 NjEyNjU0MTc0MTcyODc4NTAyMjY0MTMwMzI4NjAwMDI5NzYKNjcgMTEzMjk2 NDA1OTUzNjA3NjQxMTQ2NjUyMzc2OTcwNTcyODQyNDAzMDIzNTc3MjYxMDg5 NzUyODUyMTQwMzE2MjU0MzI3Mjg0NTMzNDg4MTA5NDg2ODk2NzcyNjY2OTE0 MzQxNjY4MTQ1NTY2OTk0MjkzNzM3NTczMTY1MTg3OTcwNTMyNjE4MjE4MTkw MzY4MDEyMjI4NTQ3MDgyNDI0ODc3MDA5MTE1NTYzNDc1ODY5Njg2NTg2MTM5 MDA3Mjk1MzI4MAo2OCA0NTE3MzA2MTA5MjMzMjc0NTAxNjE0MTYyNTcxODY1 NTQzNzYxODc4MjY3OTQ5OTE4MjM0MzU4NzU5MDM0MjgwOTQwMjQ2MjUyMjYy NzYwNDU5MjM0MzgwMDEwMDAyNDM1MzczODYwMDI3ODE0NTczMDUxMjM4NzQy OTkzNzI4ODA3MDYzNDMzMDE3NjIxNjYxMzcwNTEzNDg4NzYxNTg0MDAzOTc1 MTM5NDk3MjcwMzkwMTc0MTk0NTAyMDMyMTQ5MjM1MzkyCjY5IDQ1MzM1Njc1 NDAzNzMxNjk3Njc5MjU1MTEyOTQxNjEwNDc4OTkzNTY5Njg1NDgwMDM2MzIx MjcwMzUxOTY1OTc1ODEwNjM3OTI1MDM1MTMxOTU5Mzk5OTgxMzkxMDI2Mzg4 MzgxMTc3MzQ0NTU3MjU5MjU1NjgxMzkwNzg4NDkzMzMzMTE3MzA1MjY3MDI5 ODEyNjkxMzI0MDYxOTA5MDAyNzU4Mjc2MTkzNzUyNzQyNjc0NTMwMTc3NjA4 MzA4NTA2MjY1NjQwMTYxMDQKNzAgNzE5MTQ3NjcyMjkxMjY2MjYxNDEyODIx NjEyOTI5OTkyNDg2ODExMTAwNzU3OTExOTM3NTM5MzQxMTk5NDMwNDM3NTIw NDM4ODU0MzY2OTI5ODY2NTA3MDcyODk4NjA0Nzk3ODcwNzIxNzkzNDgzMTE5 NzAxMTE4MjU5MjU0ODY2OTUyMzY5Njc3MTY1NTIzMzk1MjMzNTg4MTg3NTAy ODI4MzQwNzE2NTM2Nzg0MTE3MzE2Mjk5NTY5NTU3MzgyMTczOTcxNjE2NTA5 NjQKNzEgMTgwOTgzMDYxMzM4OTMyMTA5NzQ4MjA2OTE1NDE1MDM0NjgxMzA0 NTkzNTYwODAyODUyMTM0MDgzMDcyNjUwMDg5NDk2MzczMDYyMzk4ODgxNjcw NjE1Mzc2NTQ3OTEzNzM0NDM4MTgwOTQ5Njc3OTA0Njg0NjEzNzIyOTM4MTY3 ODYxNDcxOTUzMzIxOTQ0MzY0MjA1Nzk4MDcyNjQyMDg3NDM0MzIwMzk4NDUx MjU1MjE2Mzc1MDMxODg5MzA2NTM1MzE5MjM4NDQ3NDM5NDAKNzIgNzIyODA5 NDI5MTUxNzA5NzA0NTg2NTU5MjcxNTExODM0Nzg5MjQ4MjE4MjEwNDQ5NDEy MjY1MTc2MDcwNDg4Nzk1MzE4ODk0NjU1NzcxMjEyNjgyOTI4MzUwNzkwODY5 NzI5ODM0Njc3MzY1NjUzNTU5NzU0NTU2OTI5NjcyOTA0NzQ3OTA2NTI3ODQy MzE4NDMzNzY5NTcyNDk5MzM5NDI0MjQxMTU3ODY2NjcyODc0NjA4MDc5NDUz MzA2NjEyNDUzNTM0MzY1NzQwNzcxOTA3MjAKNzMgNDU4MzAzNzY5NTY1ODY1 NTEwMDAzOTQzNjYxNTYwNzU0Mzg1ODc2NzIzNDg5ODgyNDAwMjM3MTEwOTY0 NTk1NTQzNTE0NDU1OTcxNjQ5MzY4NzcxMjI2OTgyMDY0MzU4Nzc0MDc0ODc0 MDQ2NzA5MzkwMzM4NjM2MDAwODI0NDQzODY1NTk3MTM2OTQwODg0ODQwNzIy MTc2ODg4MjcxNDY0NTE0NTY5NDQwNzM3NDY2NzIyNDUzNTAyMjExMzk0MDgw NTM3NDA0NDg4OTQ4NjE0ODU0NjQzMgo3NCAxODMyMTIxODc2NzMyMzUzMjk1 NTUwODAxNTE0ODY5NjE0Njc4MzgxMTYxNDQwNjkwNzcwMjk2MDIzNjQwMzE0 MDgwNDQxOTk3MTAxOTE4NDkzNzI5NjgzNjYzMDIxNzYxMzIyMDIyMzgyODEx MDA2NDA2MzY4MTA1MzQ5NzkxNTQ2NzU3OTI4MDQyNDc1MTMyMjg4MDYyODQx ODY3NTUxOTI4ODEzMzc3NTYwNjAzNTA3NzEyMzE2ODEyNTQ1OTE5NTA4ODcw NTg0NjM2MzY4OTIwMjIyMDMzNTQ5Mgo3NSA3MzI2OTU4MTg5MDk1MjA4ODIz MTM3MzM2Njg1MTI3OTQxNjYxMzI2MDQxODQ1OTU3Mzg3MjU1NTUzNzc2NzYz NDI5Njg4NDMwOTI1OTkwOTU5MTg0Njk5Nzk3NDUyOTE0NDA5MDcxODQ4NzQy MjAzMDMxNTg0NDIwNzc0NzM1OTQ0ODYyMjE1MTcwNDM5OTI4NjczNDQ4MDEz OTAxMTU1MzI1NzY4NDU3NDA5NDk5NjMzOTY4Njk2OTkyMTQ0NjYwMzk5NzE5 Mjk2Nzg0NDkwNjAyMzI2MDc2MjY3NjAwMAo3NiAxODQ2NDA3NTIyMTIzNDEy OTIxOTc5MDc5NDIyNDk1Nzk0MTM2ODUzMDI2MTYzNDkyMzg4NDE4MjM4NjAw ODA1NDcwMDE3NzI4ODU0MTk3MDg4MzY0MjY4MDYxOTAwNTE1OTM0MzcyNTM2 NDY4OTk1MTAzOTk1OTQ4OTM1NTgxMjY0NDk1MjUzMzkyMDc0NDU5NjcwMjg0 NTU0Njc4NDI4MTQ5MDkwMTY2NTYwMzkxNzk2MDc3MTE0Njc3Mzk5NTY1Mjc3 MTM5OTY2MDE2NjQ2NTM3NzgzNDI4OTk1NDU5MDcyMAo3NyA3Mzg4NjY1MTU4 NzY0NDc1MzAyMDczNzkyNTQ1MTUzNzAwMzAyMjA1NTk3NzEwNDY0ODQ4NTIy NzIwMTQxMzgwMzc0MjUyOTc0MDc5OTI5NjEyNjU5OTM2MTM0MTcyMTIxMTQ4 OTM2MDUwMDM3MTU2NDE2NjcxNTM5MzQyNjEyNjYyODgyODQ2OTkwOTAxNDUz NjMyNzQ1MjMzNjM0MDQwNDcyOTAyMzE0MjMzMDY3NzgwMTQ0NzQzMDc5OTQ5 NzY4OTE1MjY2MTA3NDAwNTAwNDQyMTk4OTI0ODYyNzg3NDE2NTAyMAo3OCA0 Njk2Njc2MjczODkxMTU4NDI2OTE4ODI1NTY1MDY1MDE5NTUxNjgzNTYyOTM3 ODkzMTk1NjM4MjE3MDUyMzM2OTc0OTY0MDMxMzk2MjQ5MzkyMDM1NjEzNDgx MTI0NTI4MDQxMDY4NDY1ODcwNTY0MDk2MDY4MjgzMjY4NjQ4MzE4MjcyMzEy NTk0NDIxMTI5MTU2NjY1MjExODQ2Mzg5MjcwMDg1Mzk1NzQxMjc1Nzg1MDY3 NjEzODgzODQxNzM3NTY3MjQ3MjkyNjA4MTI0NzEzMDAxNTg3MDYyOTg3MDQ0 NjU4MjUzNjQwCjc5IDExODQ0MTE4MzEwNDM5NDczMzg0NDQyODE0Mjg4NjU2 MTE2ODMyNDA4ODc1NzM0NDM4OTgxMTQ1MDk2ODk5NzA3NzA4ODU3MDY4MzE4 MzMwNDE5MDUzNjYzMTc3NjkzNjI1MzAxOTExNDEwNTAxMDU4MTQ1MjcwNDAw OTEzNDQ0NjA3ODk0ODk1MDQzNTk4MDczMTE2Njg1Mzg5OTE2MDE3NzYyNTQy NTkxNTEyMTU1MTAyNTg1MDQxMTk4OTEyNTAzNjcwNDY4NjExODIxNzgzMTE5 NzcwMTU5NDk4MjA1Mjc0NTA2NjUzMjk1MjAKODAgNzUzNTYzNzE1ODgwOTAx NTYxMjQyNzg2NzE5ODA3MDE1Njk5NzEzMDExNDkzNzk4Nzc3NTExMzE3NTA3 NzY3MDE0ODE0MDA1NDYwOTY5OTI3NjI3NjAyMDg1Mjg1OTQyMDY4NDE2OTEy NjEwNzg0MDc5MjU5ODA2MDQ2MTMxMTExNjkxNzIxOTcxOTM0MTYxNDQwMDgz ODEwMDMwNDQwMTA5NjQ0NDM0MTUyNjkwMzUxNjI4MzQxNTI4MTY3NDE4NzU4 ODY5MTAzNjUwOTMyNTgzNTUxMjg3ODI0MjYwMDYzNzk0MzkzNDQ3NjIwMTI4 ODAKODEgNzYyMDYyNjE0MzI5MzU1MDI5OTcwNjQ5MDk5MDE2ODEzNjcxOTA0 NzM3MTU2NzkxMjk1Njg4MTkxMzg5ODM1OTE3ODU1NTI3MzIyMTg3MzY1MTIw OTk5MzAwMzk0NjUxNTQ1NzU2MTgxNjk4MzQ2NzUwMDk0NDAxMDU2OTgwODk2 MDA0NjgxMjI3NDgyNjA3NTM2OTQ1NTM5Njg1OTIyMDQ0Mjk1NjAyMjM3OTQ0 MjY2NTQyNjMzNDExNDg0NjM3ODkwNDQ1MTM4MjU2NTMyODQ3ODExNjM2NjU0 ODY1MDMwMDY1NDA2OTcwNDQ1MDQ0OTU2ODEwODgKODIgMTIxMDYyNTYxMzA2 MDg1NzQyMDY5Njc2NzI5ODI1NTI4ODcyMzkzMjI2MjAzNTYyMDM2NjMyMTc5 ODkwNjU5Mjc5NDIxMDI3NjAxNzY1MjY2NjkxNjkyMjM2NjI5NDA1MTY4NzA5 MjI3MDU3MzM1NjYxNDU0MjkwOTc3MTI5NzQxNDM4MTA0ODY0NTA1MTg5MzA0 NjAxNDE3NzQ4Mjk4MDM1NjU4NzI2MzI4NTY2ODQ1MzMxNTM1MDEyNTM3NTA2 NzE4MTc0NzEwMDUxNTE5OTg3NDA0MzI2MDA1MzI1MTI3NjQ2MzQ4NTkzMjE0 ODMxOTk5NjMyNzA1Ngo4MyAxMjI1NTI4NjQ0NzE2NjA4ODA3MTY4NzEyNTY5 NjM0NTI1NTU1MDE2MjU1MTQzMTQ0MTkzNzk5NzIwMTU1OTgzNjk0NDY5NzAz NTc0NTg4NjAzNjA3MjkyMjE4NzQwMjAwMDQwODA0MTk5OTkzNTYzMjMzOTU1 MTM2NjY3NTEyNTIzODM4NTc2MTkzNzQ0MzI4MjQ0NTE3MzgxMDEwNjQ2Mjkw OTQ2ODY2OTMwNzEwNjc2NDQ2NjY2ODMwNjUyMDEyOTU0MzE1MjgyMzI0OTIy NTA0MjU4NDY1ODc5MDc3NDU5ODAxOTU1OTAwOTAzMDA0NDUxMDcwNTg3OTky OTYwCjg0IDE5NDcyODE2MjQxOTg3OTI2MDk1ODQ4NTI5NTU0OTQ5OTk1Mzg4 MTA3ODQ5NDM0NzEyODI0MDk2MjU5MTA0MTIyODkxMzE0MTU0Njg5Nzc5MTYw NjQwNTgyODgwNDE2OTcyMTUxNzgwOTgwMjU4NDkwNTUzMjc3Njc2MjAyNjU5 MDI3NDc2MTE4OTAxODgxODkzMTEwMDM1MDk2MzU5NzM4MjUzNzY0Mzg1ODgx MTQ5ODg0NDU1ODcyODI5MDg2MzI0NjgwNDgzNjY2NDc2MjU2MDA0NjUwNjQz NTEzNjExMDMyMjI2MDk0MDA0NTQ5MTM0OTQwMDYwMjI5OTQ4NjMyCjg1IDc4 MTMxNzM2MzQ4Njc0MjExNjIwODk1ODY0MDYyMzE4NzYzMTA0NzQwMjQ5NDQy NTIyMjY2MDM0ODI5OTk2NzE4MzUzMzk2NjM2NzA3OTUxMDAzMzQyMTMzNjA2 MTI0MjY4NjkyMjUyOTU5Mzg3Njc5MTc1MDMyODU1OTYxMTQyODc0ODM0NjI3 NTQ1MTI4Nzg1OTg2NTUwMjM2Mzg1MjU2MzY5ODEwMzgwODA0MjkzNjgwOTYy MDAzNjgzOTg5MjA2NjkzMzUxODQ5MDU0OTk4NzU1NTE1NDcwODg4NjQxMjg4 NTgxODk3NjM3MjQzMDE1NzI3OTAyODg2NDU1Mzc4NzUyCjg2IDE5NzMxNTQy NzE3Nzk1Nzg5OTYxMDI0MzkzNTM1Nzk2NTk4Mzg0NjIwMzUxODYzODk2Njc1 MzcwMTc0MTA5OTk3NDg0MDQ5MTEzNDE5NTkwOTUxMzE4NzIyMTQ3Mjc0OTcy ODU0ODc5NDk1OTkwMjI4NTYyMzI1OTc0ODU5ODYwMTM3Mzg4MDA5OTA1OTc5 NzI1Nzc0ODY4NDg3MTA5Mzk5NzQ2MDU1MzMwNDU3MzcyNzY0NDA2MDYwODUz Nzc2ODczOTQzMzYzNTUxMzU0NzI4OTIxOTQxMzk4NDM4NjI0ODI1MjQzODY5 NDY1ODE1MzQyODQ0NTY2NTEzOTk3MjAzNjg5MTg0Cjg3IDc5MjA2NDU5NzE1 NDEwMDEyMjYwMDU0NTYzMjUwNDY4NDAwODc5NTI5ODc0MzUwODY2MjU3MzM4 MjYzMTcxMzk2MjcxNDgwMzI3NzMzOTA2MDY0MjMwODAxMDcyMDc3NjcwMTkx ODcyNzEzODMyNjA0MDIxNDY0NjY3MjE3ODc4ODIzNjIxNjM5NDI1OTY3NDUw OTYzMzA2NTY0ODY5NzMyOTQ1MTY0MzI3NDg1NjI0NjYwMjM4NjUyNTkwNzA5 OTE3NTUwODE5MzA4NTAwMzQyNTY2NzA1MjMxNjcyMzY5NDg3NzExODY1ODg1 NjMzMzcwMDA1MTQyODM4NzY0MzI1MDk1MTg1OTQ0Cjg4IDUwNTUyMjI5Mjg1 NjA0OTEzNTE3NjI4Mzg1NDAyMTUyMzAxNjUxNDA1MzA4MDMzOTcwODUzMTM4 MzI3NzMwNTM0NzUyOTA2OTg1NDU5NTczNzA0MTIzMTQ1MzA1NDU0Mjg0MTc0 NTc0MjQ4MDE4MjEzNzg1MzY3NjcxNTY2MjkxMjIxNTA3MTA5NTg5NzcyOTY3 NTIzNDc5NDY3MTg2NjQ4NjIxMzU0NDA0MjIwODkzNTc5NzE0ODEzMjExOTE1 NTk5OTcwMTY4MTcyNTI4OTM5ODc3MjM0MDQzMDMyMzUyMTk5NDc3NTkzOTc0 MTM1Mzg3MTc0MTQ2NDMxMDg2NTY3MTI5MTk3MDgzNzcwNTYKODkgMTI3NzMz Njc2OTc1NDc3ODY4NDM2NTQyMjY3MzA4MDExMTExNjIxMDY3ODg2NTMyOTI4 NzYyNDM3OTYxMTA2Mjk3Mjc5OTUyMjk0MzE5OTA4NTA2MzA3MjEzNzU5NDAx Mjg3NjUyMzUxMjYzMjE2NDY3NTU5Njc4NjAwMTg1MjMxODY4NjM0MjM2MTkw MzYxNjM2NDkxMTIwMTM1NTAwOTY5MjIwNzM1ODcwMTA4Mjg5MzYxODM2MDMx NjEzNzk4NTcyMTI0MzQ4NzAwMTMwNTIwNTQ0NjU1MDIzMjk2NTAwNTMyMjM2 NDEyNDk4NDg3NzA1OTExMTk4NjA1ODc0NDk2MjYyNDg1MzE5OTg3MjAxNgo5 MCAyMDMwNTE1OTA3Mzc0MDgxOTQ3Mjk2MjUwMDE3MzMwOTc5MDQ0MDc0Njcz MjU4NTA2MDY5MzY5NDgwNDc5MzY5MDM4NzI0MDgxMTQyMzUwNDczNTU3NzA0 OTA3NDk4ODIwOTk2OTg2NzkzMDg4MTEyNjEyNTUzNjYyNjM4ODk1MjEzMjgz NzExODUwNDI1NTk3Nzg1OTUzNDYwNTUyNDE2MTA2MTAxMTQ4MTIxNzY1MDMz NTIzMTY1OTY4MTM1OTI5NTI0Njk5NDM5MzIyMTI4MjAyODEyODczODU2MTE0 NzkyMzgzMTM0ODMxMTIxNDMwMDg2MDg1Mjc5Nzk5Mzg3NDk5MDUzNjAzNzk2 MDk2OTcyOAo5MSA1MTMxNTA0MjcxMjE2NzIxNTQ1MDY0MTg4Mjk5ODMxMzUy MTA5Njk5OTkzNzY2NzAzNTUzNzM3OTYwNDIyOTQ4MDc5NTAwMTA0OTQwOTQx OTQzMjgxODIwMjcyMzkyNDA5NjEzNzIyNTEwOTc3NjAxMTgyNDQ2ODUyNDky MTg2Mzk3NjAwMTc5MTM1MzQ2ODQ1NDQ2Njg2NTA1NTc5NjgzOTM5MTMzMDg4 ODI2ODc0MDE4MTUzNTUzNDIyNzM2Mzc5MzA2MDM5NjYxOTg0NDYwMDY4MDg5 NTM2MTEyNzc5NjUyODI5NTU4MjE5OTIwMjYzNzI3MzczNzc0NzUzMDczNjA1 NDEyNTAxOTgzNDkzMTkzODU2CjkyIDgyODc4Njk5MzY0NDMwNDUyNDcyNDUz ODQxMjU2NzQ3NzkzNjI4NDE5NjUxMTc3ODQwMjYzNTM0NzA5NDA3MzMyMTAz Mjc1ODYzNTcxMTU2MzYyNDQyMDA0MjIyNDI5NzM2Nzg1MzUxNjkwODg2NjMz NjYzNjA1NTQ5NzM4MjQ5ODA5OTg5MTQ0NTM2NzQyNjk2ODY2OTAyMjEwNzc4 NDExMzczNTAyNTk1NzYzMzM0ODIzNDI5ODA4NTA1NzQ2Njk2MzkyMDI5ODIy NDMyNTU1Mzg1NTIyNDE1OTQyODg5Mzc4NTE4NDgyNDkyOTY4MjI5NjY3NzY4 Njk4MTUzOTg0ODM5NDQ5MjM1OTc1NTM3NTI5NjU4MjE5NTIwCjkzIDUyOTgz MDE5Mzk3MTk3NDg2MTgwMDgzODgxNjc0ODY5NTA0OTI1ODA1Nzc5NTIxMTA5 NDgyOTIyMTQ1MDU4MTMxMTY5NzAzMzI1OTU0NDU2NTEyODU0Nzk2MjMyMTM3 MDM0NDkxMjkyNzgwODYxNDkwNjM5MjY0NzE2NTkzMTY0MjMyNjc4MjIzNDEy MTYzNzYwMTk5NTA1NjUwNTY4OTU3MjU2MDYwNzg0NzIyMzU4NDE0OTc4NDM3 MDcyNjQ1MDE3NjU3MTcwMzc1MjY3MDY2NDI4MjQ2OTU5NjIzNDYwMTY4MTg5 NzI1NzA0NTEzOTAzNTM1OTUzMDY1MzMzNjIzNjI0MTQ5NzIwMjg2NzQ4NzI3 MTQ1ODUzNjY4NzU5MDQKOTQgMTMzOTgzMDQxNzk3MDczNzQyMDQ5Mzk0NDQ3 NTQxODY1ODUxODI0MTk0MDYzNjk4MDYxNjEyODc3MTM2Nzg1OTUwNzQ0NzU2 MjAyNjA1NDM3NzEzMzQ1ODg3Njc0MTM5Njk2NTcxODQxMzEzNTEyNDIyMDIy NTc5NDc4MzUyODM3NzI0MTU5MzI1NDE3NTA1OTgxODUxOTk1NzkwNDgwODU4 MDQ4ODY3MjEzMDc0MTI5OTU1MDIyOTg5NTMxNjIzNzM5NjQ5Mzg4MjIwMzk3 NTE1MDczODIxNjc2Nzk1OTk3ODk1Mjg2MTQ0ODgyNTgzNTAyNjE3MTUyMTky MzYwNzk1ODc3MDkwMTE2Nzg2NDc5NTc4MDYxNDgyMDM5NTM2MzEwNAo5NSA4 NTcwNDc3MzEyNjUxNzI1MzU1NDg5OTAzOTM3OTIxMzYwNzk1ODYxODc2NDc1 OTA4OTc0NjYyOTQxMDk3NjEyODg1NDIzODY2ODQwMDMwNzQyOTQzODg1OTgw OTk5NDg5NTM4NTUzMzQ0NTE4MDk3OTYyNDI3NjAxNzE1MTA2NzU4ODYwMDkw ODgwMTAxNDI4MzMwMTA2MTEwNTE3MDE3NTE0ODc4MzY5NzEzNjk2NTU3MDkx MjIwODM2MjM0NzIyMzIyMTI2NDA0NTIxMjk1NTA3NjQ3OTQ4MTY0ODE4NzY1 NzcwMDQ2NzQyMjQ0ODAyODg4Mzg1OTI2MjcyNjk2OTEyNjY3OTU3NDc0NDEy MzYzNDQ4NzY1NzE2MDkzMzEwOTA0NTg4OAo5NiAyMTY3OTMyMTM2MDU2MjAy NTY3MzMzNzc0OTQ4NjQ4ODkwMzY1MjA4NjYyMjYxMDc0MjEyMzUwMjY0MzE0 MDE5Mjc4MTMyNDc0OTYyNTk3MjUyOTUyNjI1ODAyMDU4MjgyOTQ0ODkxNTQ4 NzE0MDYxMTY3NDU2OTQ1NTIwMzY5NzEyNzg2MTUyODI4ODA1ODAzNjYxNzE1 OTc2MzI4NjgyNjg0OTg5MTI1MTMyMjQzOTQ5OTAyMzg5NzM4MzI2OTY4MDg1 NTQ0MjA5OTM4MjMwOTI5ODM2Njg0NTIwNzI4MjI2MDA4ODgzMTQ1MTk0Nzk4 NzE0MDQwMjM2MDc1NjE3NjAzMzI4MzY1ODM2MjM3NDI3OTg0NDM4ODQzNTI2 MTYyNjE2MzQ5OTc3Ngo5NyA4NzIzMzU3NzAzMzc2MzA3NDU4OTU4MDk3Njk3 MzAwMTM3MTQ4MTQ5NDMwMzAxMDMyMTk3NjQ0NTQ1NjQ3NDgxMjQwMjI5NjQ0 MDkxNDc0MjE3MzUyNzU0MTc4OTA5ODc4NzcxMjY2OTY2NDU4MTEyNjczOTAx MTY2ODg2MjIyMjY5OTM5NzM4OTk5Mjk5MTYzOTEzMjM5OTUxODIzODgxNDE3 ODAzNzM0NTU2Njk4NjA0OTIzOTMwNTEzODM5Njc5NzkwOTYyOTU0MzIyODQz NjgwNDM3NjA3NzgxNzU3NjI3NjQyMzU0MjQyMTc2ODI5NDk1MTc3OTA5MzQz NTk3MDM4OTE5ODA2Njc1MzUyOTU4NTIyNzMwODU1MjI5MTA3MzQ4NzIyMjIw NjAxNgo5OCAxNDEzMjgyNDU2NzQ4NzI0NTA2NDk5NjkzNzczOTc2ODMzNDcw NzI1NDM2ODI2OTY1Njk5NDEyNDM3OTg2MDQwMTEzMTgwMDQyNzY3NDg3OTY3 MDAzMzE1Njc5MzcxMTEzMTkyODQ2MDQ1ODIzOTUyMjA4Mjc1NzgxNzEwNTU5 MDg0MzkyMzgxNTg0MjM2NjI2MTk1NTUwNDc0NTM5MTMxMjg3OTA1MDQxMzE0 ODI2MDk0MDIwOTUzMjY4ODcxNzIyMDUwNDI5Njg5NzY4MjcyMjA4Mjk5Mzg4 NDgwMjA1OTAzODk3OTAyNzk3MjY1MjU0NzMxNzU1NzM2MDY5NTU5ODM2NDE0 NzQxOTU0ODE5NTczMzU4NDY3NjMyNTMxMDAyMjU0MjM2MTM0MjEwMjc2MTQ3 Njk2Cjk5IDIyNDgyOTc5MzkzMDI1NzE5MjQwODcwMDg5ODg5ODQxNzU3MDgx MDUyNDQyMjM4ODc1MTk2ODY4Mjc5MjU2NTM0ODgxMDYxMjMzOTczMzA2NTE2 NTM2OTc5MTc4MzM2NjM0NzcwNzQyMjk5NDU0NjY4MTk1NTE3MTQyNTQ0NzYw NTAzNDk1MzEyNDQ5MTc5MDI5MzQ3MjQ2OTczMjQ2NTIxMDU5MjcwMzE5MDEw ODQ1NTI5MTk2OTQ5ODI1OTA1OTQ4MTQ3MzU2ODMwOTM5MTczNTE4OTYyNDM0 NjE1MTkzNjk0MDU3MDI5MTUxOTI2NjU0NzQ2MDc3NDAyNjY1NTA4MzA0NDcy MTAyMTE1NjM1MDY4ODg5NzQ5NDI0MzEyMTExNzQ0MDM3OTYyOTA2MzE0NDQx NDI0CjEwMCAxNDY4NTgwNjMyOTM2MDA5OTk5NjcyNzg1Njc1NjI4NDA5NTgx ODc1NDc2NjAxMDU4NTU0MzcyOTIwMjE2MTYyNzA2MDI0NzgwNDg5ODI5NzIx ODg2MzY3ODMzNjY3NjE0MjIwOTQ1NTQ1NjA3ODQxMjA3OTY3NDE0MTU2MzI1 OTY3MDg1MTkzOTU2NDUyMDU2MzkxMjQ1ODQzMjc0NjI1MTk0MTYwNTE0ODE5 MjEyNTk4MjY3NDM3NzA2NzQ3NDg3MDcyNTIwMzIyMzg1NjUzMzYwMjY3MzEw MzYyMTU2NzgzNTEwOTY2MzAyMzA0OTYxODQ0ODQxNzIxNTUwNTM2MjQzMDU5 MzM0MjczNzc4MjI0MjUzNDYwNjAwNjk4NDg0NjMyMTU4Njk5MzYzNjMwNzQ4 OTI1MTEwMTgzODg1ODA4Cg== ------=_Part_156860_32560920.1185232257325 Content-Type: text/plain; name=b087189.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4hkqzvy Content-Disposition: attachment; filename="b087189.txt" MSAxCjIgODMKMyAxNjkwNwo0IDI3OTAyMQo1IDg5NDQ0MDE4CjYgMTY5NTAx MTA4Nwo3IDY1ODA2NzcwMzkzMwo4IDU3Njg0MTA1MDk1NTM5MzcKOSAxMjIx MDgzMTM0NjAwNTE1MDAKMTAgMTIyNjk3ODg1NDIyMjAzNDUwMTQ0OAoxMSA1 OTM1Mzg3MDM4Njk1NTU5OTUyMzg4NzIKMTIgMTMxNzUyMjY1NzE0MjgxNDA1 NzI4NjYwOTMKMTMgNjU5NDg1MjExODk2ODkyNjE1MjgzODM0MTQ2OAoxNCA3 NjMzOTc3OTM4MDEzMjk0MjU3OTgwMDMzNDM0NjQwMwoxNSA5MTI1NzA4NTI4 MDU0MDQ3NTk1MTUyNjMzNDg4MDkyMzU4NTIKMTYgMjA5OTE4ODQzOTU2NjYx MjkyNDg1NzA1MDAwNzQ3ODg2Njk1MjIKMTcgMjU5NDg1NDcxMzAwOTM0NjMx Njg3Nzk1NDEyOTkwMDI3MzQ4Nzk5MzQzCjE4IDE0MDMxMTY1ODM4NzM3MjYy MzM4MTcwMTAyOTIxNTk4Njk4OTY1NzY3NjE3NwoxOSAzMjcyNjUxOTE1NzUz OTU1MjQ1ODUwODY0NDc5NDA1NTI0NDQ2NjIxMTkyMTg4CjIwIDQxOTc5MDgx NDQ1NDU1MTYyMzU2ODU4ODAzMTUyODUyOTc1NzY1ODg4OTAwNjA3NzUyCjIx IDIzMTkxNDg4OTMzMzQxNTE5ODQ3ODkwNDA1MDgxNDYxNDQ1Mzg1MTQzOTI0 MTYxOTA3MzkzCjIyIDMwNDM4NzE4Mzc0NTQ1OTc0NzYyMzEwNTE4NDgxNTQ4 NTQxODMwMTg2NTEyNTYwOTY0OTA2MDEzNwoyMyA5NTg5NTM3MzI3NTAwMjMy ODc4MTY4MDA2NDE0NzUyMzA4NzcwMjkwMDExMjA0ODU3MjU4NDExOTQzMTQ0 MwoyNCA1NDE3OTE4NDAzNzA4ODgwMTUxNjIwOTA1MDg4NjQ2NTgwMzc2NDM5 MTM4NjM2NjgwODMwMjIwOTcwNzkwNTA5NwoyNSAxMjg5NzIyOTk0MDQ5NDcy MDgwMjQ2ODI2MjcyNDUyMzI0Nzc5MTIxODE2NjMzMjQ5MTU5MjA3MzQxNTEz NjMzMDI4CjI2IDczMjg4NDg2NTMxMzgzMDk0Mjc0MjYzMDU5NjMyMDYyNDc0 NjI2NDE4NTMwMTc5OTkwOTI1ODkwNDY1NDQ0NDA4MTQzOAoyNyAxNzQ5MzY3 NjUxODIxNDIwNDg4NzEzMzY4OTg5MzMxMTQ0NTQxNTc4MDEyNTgyOTY2Nzk5 NDA5MzQ1ODU4MjQxMDI0MjgwMgoyOCA5OTkyMDQxMTk5MDcyMjc5NDIzNTQ1 NDA2ODY2ODcxOTczNDcxOTc4NjA3MzMyMzI1OTE4ODQ4ODMzMTc2NDI3MTc2 OTU4NjUzCjI5IDQ1NTUwMTc3NjY0MTY1ODAwNjA5NjQ3NTMyNDcyNzQ2MTA2 NTg5MTMzMTIwMzYxNTc0Mjc0NTQ0NzIyNTYzNjUyNzc1NjI5MjgzNzA1MDAx MzYzCjMwIDI2MzQ2MjEwNDYwNDU4MTM3NDE2MzEzODQxMDk3Mzg2MzA2NTYy ODI0OTkxODk4NDMzMTc3NTM3MTA2MTgyNjUyMTU0NDIyODAwNDg3NzU3NTU1 MjE1CjMxIDM2ODA3Njk2NzU2NDkyOTcxMDU3NjA0NDE0NTcyNDQzMzQ0NjMx MjI0NzkzNDcyMDM0NjA0NDc5NTM5NDE0OTY4NDE3NzY4NTg0ODY2NjY0NDU3 NDg2ODc0OAozMiA4ODc0NjM0ODY3NDQzOTQzMDI3OTIwNzI5NjAxMTU4Njgy Nzg4MDYwNTA4ODg1MzA5MDQyNDYzNzk5MzY4ODg5MjY1NjE0MzA3NTgyOTgy OTI3NDE5MTkwMTM3CjMzIDcyODU0NDM2MjAwMzg5MzA2MTM5NjY3MzY1NjEz MTQ5OTQ1OTc1MTQ3MDgwNTg3NTE3NDQ4NTk5NjY5OTMwMzkyNTcxOTQ4ODE3 MjQ0NzU3Nzk0MjM3MzU0NjAyMzAxNjYyCjM0IDE3NjE2NzQyMTIzODc1NDQw MTM4NTgzNzE4NDk3ODIzODIwMDI3OTk0ODk2Mzg4MjYwNzc4NzA3NTcxOTE1 MzAyMTM1ODY5NjUxNTkzODIzNjY5Mjk3NjU1NDYzMDIyODUzMTUKMzUgMjQ5 NzIxOTY5MjE2NTUwODA5NTU1Njk5NDY1NjUxOTIyNjY2MTY4NDU1MTAzMjAy MzI0OTc1NzI1ODk4NDIyOTY4NTI5OTgyNTE1NzU1MzU0NjQxODAzODcyNTc3 NjU4ODIxMzYxODMKMzYgMzU1MjgyMjE2Mzk3MTAxNDgzNjM4MDQ4NTE5Njc2 ODA1NDc4NjE0MTYzOTIyNjAxODgyNjk4NzYwMTAwNjgxMzIwNzU3NTgyNTYz NTcyMDU1ODU2MDk0MzU1NTc0MzgzMzA4NDU1MTE1MDczCjM3IDIwODk5Nzc5 NTk4Mzc5NDI4MTQ3NzAyOTgwOTc4NTgwODE0MjcxOTU1NjUyNjIwOTIwMDcx NDA5MzUyNTk3MDk2MzEzMzE5MzUxOTMyMDY5NzQyODkzNzcwODgxMDMyNjMw MDI4Njk3MTU2NDY4MwozOCAyOTg5ODcwMTcxNTY3NzMwNjc4Njg1Mjc1NjI5 OTQ0MzMyNDI5NTQ5MTg0NzI2NjA5MjAyNDU3MzM2MjgxMDI1NDgxNDQzMzE0 OTAzMTkwMDE4OTI3Njc3NjQxOTY2ODgzNjMyOTM1OTk1ODM0OTc1MzUzCjM5 IDQyOTAxMTI5ODg1NDg4NDU2NTM4ODU1MTQ1MTQ2MzU1Mjg1OTEwOTQ4NTk0 NDI4NTc5NDY5NDMyOTA4MTgxODcwODg3NTUxMDUwMDQ3NTUwOTU2OTc4NTE2 MDc3MjgxNTI0Mzk0NjIxODUyOTYzNDgzNjU4MDMyCjQwIDEwNDMxNTU5NTU2 MTg3NjQxOTIwNTg0NzQxODk2MDU5MDEwMTM4NzQyODA2MzQ4MjE1MTQ3NDA0 NTIzNDI3NjU2MjQ2NzgyMTk1NjI2OTQ0NjgzOTkxMzQ3ODk4MzkxMTQ1MTAw ODI2MjYyOTQwNDcyNTUwMzEzMTcKNDEgODkwNjAwMTEzMTcwNjA2Mjk4NjY4 MzMxMzgzNzAyOTc4NDM5MjE3MTQxNjU2MTcyNzg2NzEzMjQ3Njc0NTU0NTM3 MzM5NzcwMDU4NjkzMjg5ODE5MDMyMjUyMDE0OTAyMTEyOTQ0NDg1NzI0NjMy OTcxMzM2OTA0MTE4OTM0Nwo0MiAyMTY5Mjg1NjA0MzMwNTc5ODk5Mjg2NTI1 NDExNDc5NzU1Nzk0NTgyNDI0Nzc0NTQwMjM0MDQ3MDg0MjI1MTI1MDg1Njg1 ODc1NjA4Nzg5Njk5NzU0OTY3NTM2NTcxNTAyMzQ2MzM1NzA4MTI5MDI1MzEz MTU0ODQ1Mjc3NzA2NDMKNDMgMTI4ODA0NzU0MTI3ODMwMjE2NzU5OTg0NDQz NDA5OTk3ODIyMTU5MjE1OTEyMzI3ODU3NjA3MTQ4NzI2NTMzMDg5NjMxNTg1 MTA0MDA1Njg1NTA2MjY0OTU2ODQ1MTc4ODA0ODI5NDIxOTE2MjEwMjM3NzI3 MTk3NjQ5ODEyNDQ4ODkzCjQ0IDMxMzk4NDYyNDAxNTU0MjM3Njc3NTg0OTgy MTY1NjU0MDY0ODEwNzQ4NTI5MzIyODU0NDE3ODg2OTM5NDEzOTIzMDk2NDI0 NTIxMjAzNjkwMjI1NDA4Njk5NjA0NzUxODc1MDUzNzQzMjEyMDMwMjg0NDU3 MDcwNzk5OTgxMTU1MjUxMTIKNDUgNjYyMjA5MTUzNjQ5NDcxNTUzMDk1Nzk3 ODMwMzA1MDM0NjI0MTMyMzY1Njc5Njg4NTcxMTc2MDI1MzYxMTg5MzI2NDEy NjM4MDQ0MTk5OTU1MjU1NjA2NDI5ODMyNzM2OTYwMjEwMzQ0NDU3NjEwNzI2 NDM1OTc3MzA1NzY0MDYxODk1MDQyMzYwMzIyCjQ2IDE0MDc5ODI0MTc5ODcz MjQ3OTg3NTA4NDI1MjgwNzMzOTIyMzIyNjMxMzAzNTU4Nzc5ODkxNjM3NzYx MDMyNDA1NjE2NjU0MzgwMzg0OTAwNjM1OTIwNDI1NzE5NTQxNDYyODUyNzMw NjEzNjA5NDA2NTUxNjg4ODQzNzg5MTE1MDAzNzI4NjIwNjcwOTk0NjYyMTc1 Mwo0NyA4NDE3NDQ2MTQ1Mzg4NDM2NzU3NjIwMjc4ODEzNjYwMzYxODk1ODI1 NzA5NzE4NDI5NTkxNDQzOTc1MjQ0OTY5MTMzNjQzNjE5MjU4MTgzMjY0OTcw MDcwOTA3NTA4ODg0Nzg3ODM1NTI2MjU2OTc0MDIzNDY0MDQ2ODUyNTEyNDk5 NDAzNzkyNDc1MDc2NjE2MzY2NTUyOAo0OCAyMDU4NzI4MTg2MTYzMzUyNTE1 MDE5NjIzMzkwNTI3MTM0MDc3MjM0MDkyNjUxMzg4OTY0NjkzNzk1NjQ0NDM4 MjkxNDExNzQ2ODE5NTg2MTI4MzQ2MzU1NzA5MjAyMDI0MzI2NTE4OTkxNzA0 MzQ2NTk4MzU3MTQ5NzQwNTEyOTU4OTAwODY3MjUzMjUxMzcyNTA0MTc3NjA3 CjQ5IDEyMzIyMDU3NDAwNDIwODY3NDk2MDcxNDQ1ODI5ODI0MDk1NjMyMTQ3 ODExODc1NjM2NjQ1OTk5ODI1MTUyNjI3ODQ5NDM0Njc1Mzg5Mjg2ODE5MjIx Njc0MzQ5NzMzODkwMzczMDM5ODM5NDQ3MzE0MzU0MjA0Mjc5NzQzMDQ4NDEz MzQxNTIwODM5MTgyMjA0NDA0NDA1MzYzODMKNTAgMTgwNjc4MjY2Nzg3NDg3 MzkwMTYyNzEyMDEwMDUxMzE4MzUwNjY5MzAzMDI5ODk5ODc1NTAwMjc0MTA2 MzQ1NjA5NzEyMDM1OTkzMDE2NzAwNzg4OTEzMjUxMDg1ODAwNjM5NzYwMDA0 MzU4MzkzOTc5MDg2MDkzNDUzMDkzOTc5Mjc5NDA4NTgxNDczNzgxMjAwMjAy NTU5NDI0ODg1NDcKNTEgNDQyMzg1MTMzMDQ0NjM4NTA1NjI1MDY1NTMwNzM0 NDMxNTA5NzA4MDQ2NTQ4NzA2MzU2MTY0NDQxOTg1NTI2MDkwMTA1MzAzMzY1 MjUxOTMyODk2NTk5NzY5MzAwNTMxNjY5MTUyODAwOTgxNDgzNDA4NjM3OTUz MTUxNzY4ODU3MzQxNjczMDAxMjg1MjgyODMxNzk0OTU1NTg0MjYzNDUyCjUy IDM5MDI3NDgzNDUyODEyNjE1MzcwMzk0OTIwODIyNzQ3ODA0MjMwMTU1NzA5 NTUwNzc4MDk5MjgzNDM5MDQ3Nzk0MDE4NDE3MzgwNzMxNzE5MTIzNTkwMDk1 NzYzODU0MjgzMjIwNTYxMjg4MzgwNjc1NTMxMjE5ODUzNzAxNTYxMjI0ODU4 NjUyNzIxMjYxOTMwMjkzODAwMDM5NDYwNzI0NzM2NzQzNDcKNTMgNTc0ODQy MTk2ODAwOTUzNTkzMDAxNjM5NjcwOTg5MTk3NDEwOTgwOTA3NTU3ODc5MjU1 Nzc1NTA2NDc4NDk0MzY1NTY1NzcyOTk5NzczMjY4MDgzMzY5ODQyMTg4ODk5 NDAwOTIzNTY2NDY3Nzc4NjM1OTQ4ODgyMjU2ODc4NDIxMTM5ODg2NDg4Nzky MzQxNDk4NDExMzQyNTY5NzE2MTgxMDAzNjE0MDE3MzgKNTQgODQ3ODQ4NzMw Njg5MDY1NTMzNzQzMTkwNDk5NDAwOTE3MjQwMDg5OTU1NzE5NzIyMTMxNzIz MTM1MzY4ODI2OTA3NTg0MjU5MTkyNzQyNzM1NTU0NTQ4ODY2NDM3OTMxMjY2 OTUxOTk1OTAwMTk4NzE4Mjg1MDMwNDQwNjQ1MjU2MzA2NDQ3OTYzNjYwNzgx ODE5MDE4ODE0NDYzMDgyOTMwMjkxMDYxMDAwMjIzMDMzCjU1IDEyNTIxNDA0 OTg5MjY0NDQyNTE4ODY5NTExNTUyMzg2MDYxOTMwNDA5NjY5NDMyMTU1NDc5 MTU3MjU5MDgwNjkyMzY5MDQ0Nzg0Mjc2MTYzMTE0MzYwMTAwMjM1ODY3Nzkz OTc2ODc4MjcwOTI3MjUxNjA5MDI2NzA3NzEwNTI2Mjk1NTQ3NzQ1Mzc4OTIx NzUzMzE3NTIwMTUyMTUzNjE1NDYzMDYyNzY1OTgwMzc3OTQzNDY3CjU2IDMw NzI5Mjg2ODg1MDY5NDUxMjI4MjUxNzUzOTAzODMzMTA1MDUwOTg3MjM3Nzk5 NDE0MDMxOTAwMjc3NzI3NDY0NzA4OTIyNjQzODA3MDYwOTk3ODAzNzI2MTI3 OTk0MzA1MzE0OTcyOTg5ODYyOTQxNjk4ODU4NzAwNzkxODM0NjAzMzg5MzI1 MDAwMTczNjQ3NzYyNTUyOTkxNTA1MzQ5OTAxNDA1NjIzNjE5NzkxODc5OTQz Mgo1NyA0NTQ1NzEyNDM1NDU4MjczNTE1NDQ1ODQ4ODM5OTEwNzY1NjE0MTAw MjI3NzQxNzI5Mzc2MzU1NTI0NjEyNjY4Mzg3NjczODExMzYzNzE2MjUwNTI4 MzIyNzQ5ODI0NDY4NTgzMzg5Njc2NTg0MTQ1MDA0NTk3Mzc4ODYwNDY3Mzcz NjU4ODAwODk4NzU0NTQyMTEzOTQ3MTc3NzE0MTc2MjM5ODk0Mjg4ODgzMTYy NTAyNTg1NDIwMDc4CjU4IDI3NDEwNjQzMzQwOTUwNjg1NTEwMDQwNTY3MDc1 NDEwMzAxNjQ2Mjc5OTc0NTY1NTcwNzAwMTU5MjEwMTQzMjQ3ODU5MTkxNDE4 MTMzMzA5MzI0ODE5NzI5NjU2MDUzNDEwNzUzODQ3MDQ1OTA5OTMxNzAwMzE0 NjU5NDgwMzAyMDkzMzIyMTExMDg5MjIyOTY4OTYwMDEzMzM2MjUwMTY0NTk1 MjMzNzQwNjQ3ODI1Mjg5MzQ5NDg1ODIwNzcKNTkgNjczMjI1NzU5NDA0ODQy NzMyNDc1MjQxMzE0MzcyNTg5MDU5ODM3NzgyNTQxNDk5NTQzMjAzMTgzNzE1 MzQ0NDkzNzM4MTQ0NTA3NzQ2Njg3NjM2NzczNDc1Mzc5NzQyNzU5OTQ1NzU1 NTUzNDkxNDU1OTg0OTIzODQxNzc0MTQ2NjMzNjIwMjM2MDc2NzgzNjQzNTkx MjUwMjQyMDIyMTM3OTExOTQyMzU3ODk3MTU0NTE0MjI2MjM2MTM5MDgKNjAg NjAyNzkwMzk2NjE2OTQwOTYwNzk2MDM5NDUzMDc5NjYwNTY5NTE0MTI5OTQx NjIyNzU2MjM3ODEwOTAwMTUwOTUzNjA0NjkwMzY0NTUyNDYyMjI0NTk2OTIz NzA5Njk1ODM3MTA2OTYzMTg0MjY2MDIxMjk3NjcwNzE4Njg1NTA5NTI2MjA4 ODMzNjI2NDkyMTMxNjU3MTc1OTMwOTMwNDg1NTMxMzMwMjE2NDM4MDY2MjI0 NTI2Mjk1NTMzMjUwMTk4MTM4CjYxIDMyNzQwMTM2ODg3MDQ2NjM4NjE2MzE4 NjEyNDYzOTk4OTM5MzM1ODgxMTE3NzAzMTIwMTc0ODAwNzYxMjkyNTIyNDI2 NjQxOTc5MjA5ODgxMjg4MDc1MTg1MjkwMjA3MjU5MTY5ODk0ODA3ODc5NTgz MzQ2MjY4MTkyMzEzMTQ3NTUxOTQzNjU4NTQ1MjY2ODQ2MzExOTgwOTY2MDA2 MjY4MTY0MTQ3MzQ4OTExNTg5NjkxODQzNDExNDMwNDAxMjI4Mzk3NDI4OTA0 OTgxODgKNjIgMTk4MTEwOTI4NDk1MTMzNzkxMTQ0NDk2ODMyNDA3MjIyMjcy MjAwOTMyODY0NDAzNjcwMTI1NjE5MjA3MzU3MTAyNDI3MjE1ODA2MjAyNTA4 MzQzNTIxODM5MjkwOTk1OTEwODc4MTQwNDA5NDE5NDEwMjM2MTEyMTEyODE2 MzAyMDg3MTI0MjE1MTM1NjExNjk5Mzc5ODQyOTY0ODQ4MzczNzA5NTYzNjQz NTE2ODMzOTU1NjA0MzA5NTYxNzI2Mzc0OTUxOTgzMzcwNzYwMjQ3Mgo2MyA0 ODc0MDUwNDcwMjUwNTA5MTI4MjY4MTM0Njc2MzE3MTE1NDUzODEwNjEwMDky OTY1MTE2MjgxOTkyODUxOTkzODY3MjkzMTgzNjIzMTA5NzI5ODA1ODkwNTc4 Mzc4OTA1MzczODc2MTQ1Mjk4OTEwMTYzNzM3MDQ3MjYzMzMzMzQ5NzI2NTM0 MDYwMTAyNDkyMjA2Mzg5MTcxMjkwOTk2NDQ3MjgwNzQ1NjgxNDY1NzQ3NTIz ODkwNjAyNTU3MjQyNDE2MzA3MDAwOTIyODMyNTM3MQo2NCAyOTUxMTExMjA0 MzI3NDc2MTg4ODM1NzQwMTg2MDQ2Mzk5OTI2MDk0NjAxNjYwNTU4NDY5MzIy NTc2NTYyNDk0NDkyNjY1MTg0MzEzMjUwODU0ODAxNTIyMzIwNjgyMDA1MzEx Nzc3MTEyNjQ2NDAzMjE5NDkyNjM4NjY1NjA4NzcwOTk4Njg4ODgyNDIzNjMw Mzc2OTg5NjM5NjQ2ODAxMzE3NjE1NTg2MzkxNjAxMjA2MTg3MDA1NTMwNzE3 MTQxNzIwMDczNjE4MDU0NjE4ODU1ODQ2OAo2NSAxNjE2Nzg4NTcwNjI4NDM5 NDY5MDgxODUxNTkzMzUzMzk5NDYyMjc1NDMyNjcxNTM0MDc0Mzk4Nzc0MTM3 NDMwMTIyMzM4OTk4NzUyMDc0MjU1NjAzMzcyOTkzOTczMDIyMzk4NDE3Nzc2 MzY5MjE1MjU3NDg3MTc3OTAyMzE0MTU0NTMwODkyNjc5MDQ2Mzc1OTYwNDUy OTIzODQ0ODM0MDcxNzE2MDA1NzA4MDkzOTg0MDQ0NzM5NzQyOTcwMTI0NDM0 NzY2OTYzMjE5OTI3NDM5MzAxMTgzOTQxNjYwMTkKNjYgMjQxNTMwNjcwODQ4 MzkxNTA3MTUwNjA3MDgwNzYwNjg2MzcxNjA1MjkzNDUzNzg1MzI1ODI1OTI1 MTMzNzM4NTYyMTcwMjQ0MjA3MDk1NjI2OTE5NzQ0NTEwMDc0MTY4Mzg3NTEx NTAwNzU0OTM2MDU1ODgwOTgxNDg3MDQyNDI5OTI0MTgyMTUyODI4MzM4NjIy ODIyNTE1OTY2MjU3NzI2NDY4NjM5MzE1NDIzNDg4ODc3Mzk5OTIyMTY4MTA3 MDYzMDYxMTMxODAyNzMwMjkyNDk3ODUwODAxMzIxODg4NTk5OAo2NyAyMTky NDQ4Njc2NDczMTQ5OTE1Njk3MjM0NjAwNjU5MzM3NzI2NjI0Nzg5NjIzMDI5 NTAwNzg2MzUwODAxMDMzNTc4MTYwMzE2NTYzMjM0NjIzNjUzNjA1MTI5MTAz MzA3ODM4NTkzNTM4MzM0MjM2NzIxNDk2MTIwNTU1MTYwMTQ3NjUyMjQ2MTU1 ODQxNzM5NDM2NDMwNTkyMTA3NjY0OTMyNDQ4MjA4MjM4MTE3MTA4MTI2Njg0 MDUwNTQxNzY0MzYxNDk2MjMzODQ2MjcyMDY4MDIyNjExNDMwNDY4NDg3MjM1 MDEwMTMxOAo2OCA1NDAyOTQ3Mjg0ODM3MzI0Nzg0Njc1MDU1NzI1MTYwNDgy MTcyNjIzNDI5MjkxNTk3Nzk2NzkyMzc3NzA1NDMzNTQ5MzQ1MTMyMjc2MDc3 NzU4Mjc3ODI0MzE0NTE0MDg0MTcyNjU5MDM3NzM0OTc1MDY3OTI1Njk4NDYx ODQ4NzI2MDE3Mzc0NTgzMjU5MTU5ODU1NDYxNTEzMTA0NTg0NDY2ODY5NjY3 ODU4MTM3MzU5MDcwNTgwNDQwMDQwMzYyMTY4OTMwNTgxNDYyOTU0MjgwNTEw NTEyNTA0MDAwMDY4ODU5MjM3NjE4MzcKNjkgMzI4MjAwOTU4MTI4MzM1NDk5 NDU4MTcwMjYwNDk1NTIwNDA0MzM0MjkxOTkzMDU4NzIzNTA0ODc4ODQwOTE3 NDYyMzcxNjgxMDYwOTIzMDIwNjMxODA0OTc2NzQxNzk5MzM3OTM4MDQ2ODc5 NTMwMTMyNDE3MzQzNDY0Mjg3OTg4NDc5MjM4NzAwMDY0NzkyMjQ0MDAxMjI3 NjI4ODAxMTMyMzUxMzg1MTU4OTI0NDczNjUzMDExNzQxMzg1MjIzNTc3NTAz Njg1MDA0OTExODI5MDc3OTc1MzgxNjQ2NDE1MDYxOTE5ODc1MTkyNjEzCjcw IDQ5MTY1ODg0NDcxMDg3MjYyNTU5NDAzNjIwMTEzNTMwMDk0NjA1NDM3NzQx OTQ5Nzk4ODc1NDQ3NzI0MTExNzg0MjI1OTQxNjg5OTAyMTIxOTYxNDY1NDgz MTI4NzU5OTU2MzAxODc2MDkzMzIwNTgxOTU0NjI1NDU3NTM3MTExNzI3MTc2 NzgxMzU4MzU3NTIxMzc2ODg1MDg4MDU4MDQxMTg3NDQ3MjgxMzI3OTQ1NTY3 NDc3NTUxODYzNjAxNzIxMjc0NjExMjE5MTIwNzA1NTExNDE2MDIwNTk5OTEy MjkwODY3NzkzODg4ODQ1NjI4MDIKNzEgMTgxNzYwMzQ1Njc0MDczODM0ODMx NDYyMDE4MzUyOTAzODUwMTI3NTI5MDA1NTEwMTE5ODg3NjI1MDc4NjcwNDY5 MDQxMzYyMTg2NTczOTAyMTUxMzA1NTMwMjk2MTkyNTc3MjU2NjIyMzcwNzgz OTU1MTc4NjUwOTcxNzU5ODczNjIwNDE3Nzk5NzA5OTcyODc5MTk0ODg4NzUy MDE5NTQ5NjQ1NTI3NzczMzA2NzY1MzA2MzU1ODUzOTAwMTA2MTE5MDY5MzIw NDQxNDc2MDc2MTY0MzkwNDg5NjQ3MDgxODc2OTY4MTAxMjI4NjgyNTUyNDIw Mzc4Mwo3MiAyNzI3MTg5NjY1MzEzNTA2ODE4NzAxNjY1NzM4MTk1NjY2MTU2 MjkxNjUxMjIzNDQzODUyNDU5ODE0MTg5MTk1MjkyODMwMDYyNjk3MTY4Mjgz NjY0NjExODc1MTI1NDI4MzA2NDIwNTU0MDg3MDI4NDU2MzM4MzEyMzYzNDM4 MDgwNDExMDE0NzIwNTQ3MDE2MjAxNzQ2NDE3Mzk3OTI5NzQwMzk1MTA1Nzgw Njg4ODY4NjI4NzU2NzUwMDkxNzk3OTU3MzQxMDI2OTEzMDkyMjMzNjU2MTc2 NzE0MjA5OTg3ODgzODk3ODEyMDkyODk5OTg3NDc4MTIzODI1Mwo3MyA0MDk0 NjA4ODQ2NTM2NDU4MDQ0MDQyNzY2NjE3MTA2OTIyNTEzMDUwNzYyMTU3Mzg3 NTQ3NTU5MTA3NTgwMDE3OTkzOTk3MjAwNzAxMTgyNzUwNzQ3MDg3MjQ0NDQ2 Nzc1MjEwNDIyODc0OTc2MzY1NzAzMTUyMDA4OTcwODM0NTY1NTAxODUxMjk0 NjIzOTE2NDQ5OTQ3Nzg5NTc5MjU2NjA3ODczMjQ1MzE4MTEzMzk4NjAxNzA1 NjIzNTg0MjgwNDM5NDY0NTU1MDk4MDU1OTg0NTE1NTk1MDY5MDc2OTc1Mjc2 NzMxMzE2MDAzMDczMzIwNTUwMDM0NDU1MjI5MjcKNzQgMjQ5Mjg0NjEzNjM1 ODg1MDk1MjEyODI1NTk4MDcwMDU3OTk2ODM5MTI0MDE2MTQzNjMyOTIxNDcy NzgwMjAzNTk2Mjg4Mzc5MjYwMDk0NjMwODQwMjI4MzU3MzQ2MTQ0NTMyMTcz NTY4MjU4MTAwNzI2NzU5Njk5NzU3MDUyNTU3MDI2MDM4NTI4NzUyMTY2NTMy MzcxMDE2MDkzMzk4MDQ3Mjg1OTg2Nzc2MTUzOTIyNzA4ODAzMDkyMzM4NzAy MTQxNDQ2Mjg1NTUyMzU4MTIwMzM5NTQwMTEwMjIyNTU5NDEyMDMyNTM1MTE5 MzQ4MDk1OTI5ODYzOTA4MzM1NzA5ODUzCjc1IDM3NDY2MzQwNDY4MjI5MDc5 NDg4MTIxNDg0NzA5NzI1NDc1ODU2OTAwNjAwNjkwMjQ3NzgyODEzOTE4ODI0 ODk0ODQ1NTA3Mjc1NDg5OTI0NTQyODMxNTU4MzM2Mjk4MDQ4ODIzNDIxNDIx MDQ4OTI0Njc3NzAzMTg0MjE4ODA2OTAyMzMxNzU0MzQ4MDIyNzY5NTY5NTk2 NjE5MDk1MTU4MTQ4NDg0OTQ0MDYwNTA4ODkxMTg0OTQ0NjQ5NjAzMTk4OTk0 MzYxMzkxNzY2Mjk1NjI1NTQyMDAzNDcxNjAxOTQzMzUxNTU0NTgyNDA3OTc4 MzMxMjQ1NDQ5NDIwMjE2ODY1NzI1NTcKNzYgMTM5MDkyMTc3MDQyNzEwNDk0 NjEwMjQ4NTk5NjU5NzgzMTkwMjk3NTAyNjM3MzM3NzQzNzI2MzMxNDI0ODg4 OTE5ODg3NjEyNDg4NDU3MzM1NzY1NTMzMjQxNTY0NzY4NDEyOTI5MDA2NzAy MDA0NjAwODE3MzAyOTI2NDczMzQzMDYzNDk0NTQyNDgxNDg4Njc3Mzg3NzA4 Njc0NjEwMTIwNzU4NzI2OTAwMTM4NjYwNDEwNjgwMjg1Nzc2NTg5MzU2MDIw MDgzMzc1ODY1NTM0Mjk4MTY5MDY2MDQyODU0NTYzMDIzMTgzODcyNzgyMjQx MTExNTMzNTI3MzYwMzE1MTEzMTQwNTU5MDkxOAo3NyA4NDc4MTI1MzE3Njkx MTQyODE2MDc1MzUwNTMyOTk4NjkyNTczOTA4MjU4MjM4NjU4MTgxNTUzMTI2 NjcxMTc2NTAyMDk3MjM5ODE5NDU4NzYwNzkwMTIyMTkwMjgwNjYzODk2ODQ2 OTIwODc4NDA1NzQzMzE0NzYyNTI4NjcxNDY0MDQ0Nzg1NjI3OTMwNjE0NTQy NzIzODQ3NDc0NjM2ODkxMTE3MDI4MjM0MDk0ODc4NzAxMDQwNzI0OTI4ODI0 MzQ1NzQ1NDk3MzgwMTY0NzQyMzk2MTM5MTQxMzY4NTAyODA4OTM5MTM3Mzg5 Mjg4NDI2MzEwNDgyMzA5MjUxNTgyMjYzMjQ1MTUzMTU4MjkKNzggMzE1MjIx NjAyNDU2ODY4NDc4NDQzMDk2MDY1ODUxNTEyMTQxODU2NTk5OTkxMzA5Mjg5 Njc5MjgyNjY1MDc2MDIwNDU1NjQ1NDU1MjcwNTc0MDE1NTcwODIxNzU1MDIy Mjc1MTYwNDU2NTk1MjEzMzQ3NTYwNjY0MTM2NTU3MTkzMDU2NDc1Nzc1OTYw NTQwOTU4NjIxNzQxNzgzOTM5OTQ3MzU5NzA1NjM1NzgxMjA5MDEyOTYzMTQ1 NTI0MjQ0NDg1MDM4OTI4NTA0MzUyNTE1ODMyODU2ODIyNTkyNTEwNjYzMjg1 NjgxNDA1ODkyMzUxMDAzMjIwOTg4MTY0NDc2ODIzMDUyMjMxOTQxODM3MDMw MjUyCjc5IDI4OTc5NjY0MjE5NTAzMTc1MzIzNjA1ODEwNjUwNTc5NDcxMDMy MzQ2NjQ1MDI3MjQxMjEzODI2MDk3NzUyOTQwMDMxOTcwNzEzMjEzMzc4MDEx NDU0NzUyNTAyMjg3OTk3MjMwMzM1MzI1MDU1NzEzNzk1NzgzMjkzODgxMTEy OTk4MTExMTU4NTQ4NzY0MjEyOTY0NTM5MjQ5NjU0Mjc2MzI0OTk2NzA1MDk0 NjMwODQxODEwODExMTQ0Njg2MzE1MTU5MjExMjQ3OTM3Nzc4MzI5MTM1OTY0 NzUyOTE1MjM5ODY4Mzc2Mzg3NjMwMzcxMzg4MTM1ODE5NDMwMzkyNDkyMjM5 NTgwMTk0ODE0OTQ2MzA3NjkyNzE0NDIKODAgNzE1OTE5MTQ0NzAyMjM4NjE2 MDA1NjUzODkzMzkwNzk2ODM4NjQ5NjE4MTUwMTM2ODg3MjY1NjcwNTYzNDQy OTg1NDU0Nzg0MTU2MjQ2NTEyMDg3NTI5NzAzMjQ1NDcyNjcyMDYzMTEzNzUz MzE1NzAwMTc0ODI3MzM0MjA3ODM0NjY1NDE2NjE0MzI3MzE0MTk1NTcwNzU3 OTY1OTU2MDQ5NDc1NjA2NDQ0ODMwNDA5ODQzNTExMjE2NjQzOTc3NDk1Nzcz MTU4OTYxMjE5NjkwMjM1MTkxODY4NTkxMDE4MzY1OTU1NzcxNjIxOTI5NDg0 ODEzNzUzNjI2Mzk4NTAyNjIwNTI0ODE5MjA5NzUwNzIyMzY1MjY4ODA1NTcK ODEgNjU5Mjk1MjkzNDgyNDg5MTk3MTY5ODg0NzUwNTQ4MDg1MDQwODkxNzIw NzM2MDA2Mzk3NzMzMjIxMDQ0NzE1NzE4NTIzMjI1NTIyMTY2NTEzNjQ1MDM3 MTM3NjM1NjM4NTY4Mzc1MzI0Njc0OTc5ODY5MDQ1NzEyMTYzNTM3MTMzNzUw MTAyODkyNTAwNzc1OTA5OTAzNzAzNzExODE1NDkzOTQ4NTMyMzMwMzgxMTAy OTYzOTI5MTk5NDkzMzQ1NzM4OTI5OTEyMzAyMTI2NTYyNjg1NDc0MzMxOTU3 MDE2NTExMDIwODAyNTgyMzk4NTYzNzk4ODkxMjE4NzI0NTU2Mzg4MjA1NzE3 NDAwMjExNTA3NTU0NzcwOTgzNzk2OTU2NzM3CjgyIDE2MjkyNzQxODEyNjQ5 NjExMzcxMDc2OTY5MjYxMTA4MzcwMjM1OTA2ODE3MzI2MDIzNTg0NDQ1MDE0 MTcwNzMwMzc5MTg5ODgyNjY4ODQxMDgyNTg4NjY4NDEwODEzNDQ5NDkxNDgy NzgzMjQ2ODgwMzczMjUzOTA2NzYwMjk3NDY0NzM2NDMzODI0ODYzODkwNzQ4 MDM5NzAxNjUzMzE1NzIxMDUzODY5OTEzMTA3NTkzMTU3NjkyNDExMjM0NjY4 MzU3NDMzNzM2MzI3NzE4MzU4MjkzMjE1ODQ5NDIyMDE2MDM4OTQzOTQyODQ1 OTkzNzQ4NjA1OTc2NzIzNTUyMzY5NzUwODgwMjI1MzQzNjkwNDA0NDU4MjA1 NjIwMjQ4NDM2NDA4CjgzIDI0NTk2NTg4MjIzOTAyMTkzMTcyMDcwNjI0ODc1 NDM0NzcxMjYyNzY1NDI3Njk4MDcyODY5OTM0ODk1OTIyMzAwMjk2MzM2MzA4 MzA4MzA3MTA5OTUwMTc1Nzc4OTA3NTMxNDI2ODc3NzYwOTU2OTg2ODUwMDI1 Mjk5MTM5MzA3MjMyOTM3MTM4NDcwOTE4NDE2NjUzMjIwNjk0ODkxNzk3ODMx MjczNzU1MzMyMTIxNzY2ODYwMjQ2MTM5NTMxMzAyNTk2Mzc3NDAxNzUyMTQz ODE4MTUyNTI1MDUyNTAxNzAxMzc4OTc3MjQxODU3NzkwMjAzMDc3NDAwNjU1 NzU5OTM2NjYyMTgxNTQ0MTk5MzkxNTQ1ODM2NDAwMjA4MzY0NzczMTcyNTEz Nwo4NCAxNTAyODI0NzAzMzM2NDI2MDAyMDI3Mzg2MDkwNzYxOTk1NjA2NzY3 NzcxNzgzMjg3NjI2NTY2NTgwMjA4ODE0MjI2Mjk5MzE5OTQxODA3MDQ4NDQx Nzk3NTYyODg3NzkzMDYxNzU4NDY2NzQ4NDU5MTQ2NzI5ODczOTE0NDAxMjM2 NTExNTc2NjQ4OTY2NDU2ODg5NTYwODY3MDkwNTAwOTc4MTAwNDIzOTkwMDUz NDEzOTM5OTgzODEzODM3MTA0MjY2MTAwNDQ5NTc5MDcxNjM4Mzc5OTc1NDQx ODQzMTc0OTMyNzM3OTQ0NzA1NjgyOTQ2MzcyMzEzMjk3Mzg5MzMxODMwNDU2 MDcyMzY3NTc0MzExMzQ5MDI2NDY0OTM2NzUyNTYzOTM0MzMyNDEKODUgMjI3 MDUxMjc0NzA2MTUxNDQzMjc3NTQ3Mjg0NTYzNDUxMTIwMTM5ODg5NDQyNzA5 MTg4Njc1NDI1Mjc1ODQzOTg2MjA3NzQwNDk1NzA3NTQ3NTU5MTgyNjc2Mzg0 NDI0MjEwNjk2ODE1OTY1MjY4NzkwMzc3MzQzMTMxNjE3MTM3MTQ5MjQzNTc0 NTM2NjI2NTM3MDk5MDcxNjAxMjc1OTA5OTQzMDUxMzQzMTc2NzAxMjU1MjM1 NDAzOTU2MDM4OTU4MDk1MzAwMDI3NTk0MjI3ODk1NjYxMDQyNTUwNjIwNDk3 MTIyOTMxNDM5NTI4NDUxNjk3NDY0MjUyNTEyMzc5NzAyNjIzMTAzOTI4MTYw NTMwODIzMjg3MTg1NDU1MjA1MjgzMzIxNjEzMzkzMzIzNwo4NiA4NDg2MTc2 OTc0Mjg4ODQ4NzAzODYxOTE5NDAxMzcyMTk4ODcwNjg0MzgwODAwOTIzNDIw ODk3ODE1MDU1OTQ3Mzc0Njk0NjQ1MzQxNTczNjUwNjA0MDUzMjYwNjk0MzAx MDA0NTE4NjkyNDUwMTQ2MDYxMzExMDc2NTAyNzY1NjU1MzU3MjIyMTU4NDE1 ODk0NTIxNTcxNzIzMTkyNzkyMTM1NjUzMDk4OTAzOTcyMjQ4MTcyOTQ5NjU2 MjAyMDM4NjgyNTYzNTMyMTA0NjQzNDkxOTA2MzY0ODIzMjI0MTE0MjA4NTI4 NjAzMTE2MDk5NzE2MjA4Nzg3NDA0MzAzMzIyMjg2NjUzNzIxNTAxODIyNzIw NDUxNDI5NDAyNzA2MTU2NzYxNzkwODk5Mzk3OTU5ODEyNDMKODcgNTE4OTU3 MzA0NTI1NDg2MzY4Njc3NzgwMDQ5MTA3NjUwNjM5MzgzOTk4MTE0Mzc4NTY4 OTQ2NjIxMDQ4NzkxODQ4NTYzNTA3MzIwODQ2ODExMDMyMDA4MjgxODgxOTg4 MjU5NzQ2NzMyMTUyNzMzMTU3MTQ3MjY5NzQzNjY3NTc0MTMxNjcyMjY0NDU0 NTcyOTIwMTgzNzQyMTQ3MDgxNTc3MDM2OTg5Mjc3NTgzOTAxMTAxMTEyNzU1 Mzc0NTkyMDIxNDk4OTY4MjEzMjA4MjUyMjQyMDQzNTYyNTg3ODgwNDczNjM5 Mzc0NjI1NDIxMzMxMTg1MTQ4MzI4NjQ4Mjc1NjUzMTc3MDkzODcxNzg1OTU3 Mjc4NTk4NDQ0NDI0NzcwNTgxMzQ1NTMyNzIyMDE3NDA1OTgxNjkyCjg4IDEy ODM0Mjk4NDg2NjY1NjE2NDUyNzM4MzM0MDgzMzQ1MDM1MDIxMTM5MDUyMjg1 NzY3ODI1NDI5NDA3NDIyNjA2Mjc2NzE5MzMxMjgyNzE2NTE2NDM3NjMyOTc2 ODEzNzQ0ODgzMjg0NDAyNDE5Nzg0MjM1MTE2Njk0NjkzNzkyMDEwODI0MjI4 NDMwNDc5NzQ5MzE0OTg4NjUyNDA0ODQ5Mjc2Mzc4NTEzNDMxOTI1MDYyMDcw MTQ4OTUzMjg4Njc0NjU4MTU2Nzk3MDI1OTk5MzE1OTU1Mzc5NjIxODExODY5 ODU1MzcxNTExNjQ4NzQ5ODYyNjI3NTc1NzA2MzMwNTczMDY3NTkzMDA5OTEx NTE3NTkyMDY4Mjg0NjAwOTYzNjYyMjc1Mjg0Mzc2NTEyMDk2NzkxNDQxNTkx Cjg5IDc4NTA3OTY3NzEyOTA0NzIxNjI1Mzk0NjI0NDA3NTEwMTczNDYyMTY4 ODc4NDQ1OTM5MTY2OTM2NTk3MTExNTU1OTUyNDE2MzcxNzU4NDA0Mzg4NjY2 MTMyMzYyNTI1MDI2NTMzMjIyMzkwODcwOTg4MzYwMDI0NDkxNDQwMjgyMTEx MDc1MDg2NjA0MTg4NDQ4MDU4OTE5NTY5MzYzNjMyNzc2MjAyMzU5MzUzODg3 MDgxNDQwNDg0MTkwNjg2ODIxMTkxOTAxMzUyODI3MDgzMTM3MTI4MjIzNDcz OTQ4MjkyMjg5MjI5MzgzMDM5NjUwMTc2MjkxNDcxMDQ4MjQxMDQ4MTM0NzM1 NTkzNzYyNjgzOTMzOTAwMTU1OTIxMjgxNDA5Mjc2NDU1NTg5NDAzMTcwNjkz Mzg4MzA3MTgKOTAgMTc5ODkxNjQ0OTM0MjgwMzEwMTI3MDkyMTk5NTAwNDc2 Njc1MjE1MDE0NTg4MTc4NzE4MTgwODYxMzIxNjQ1MTUwMzkxMTAxODY1ODAw NjM1Mjc1ODc5NzIwMjA0MzM3MjU1NDAxODQ0MzE3OTE3ODE3MzQyNzEyNTQ4 ODAzNjkwNjk5Nzk3ODMxNzA0NjY0ODM0MTAzOTA4ODIwNTE3MDUyODA5NDMz Njg3NjM0MTYzMDY2NjA0NzMwMDE0OTI0MjIzNDU1NTI2Njk1Nzk3OTAyMzYx NTk1MDkwMDk2MTU1NTg0ODQ5ODc3NDQwODMwMzg0Nzk5ODgwNjM3OTU0Mzc0 ODc5MjMwMTYxNDYzOTk2NzE0MDUxMDgyMDQ2MTk0OTUyNTUyNDkxODg3NTg3 ODQ5ODk4OTU4NzIxMTM4MzIxNjUzNjM1Nwo5MSA2NzQyMDE2NzkwMDQ5MDQ5 MjU1NjU2NTIwOTY4Njc5NzM4MzAxMjU0NzA0NjExNTc5MzE4NDkyODgwMTQ5 MDY2MDU4NDg5Njc1MzcyNzM4OTQ2ODI4NDEzMzk5OTYwMTk2MzI3OTU1NjQz MjU1NjAwNTc0NjQ2MTk4NTAzMzc5MDIyMzI0MzYxNDUzMzY5NTIyNTc4MDU3 NDM1MjMxNjM0MDA2ODE3MDQ2NDk4MjI1NzUzNzQ3Mzg0MjA4MDA1NzYxODA0 MTA0MTgwODYxNTgzMzk5MjM4MjQyOTA0NjEzNjc3NjM2NjQyNDA0ODc5Nzc5 ODIwMjc5MTg4MjYxODA5MjY3NTIzMTcwNDQ1MzkwMjY5MTEwNzQzNjQ3ODU5 NDU3MzgzMzE2MjM1Mzk5NTQyMDc2MTEwMTE0NjAxODUxNjE3OTU5MDA0MjE3 MjMKOTIgNDEyODQ3NTM5ODQxNjM0NjU3ODQ1NjI5NzU4OTkwNzQwMTQ5MjUw NzUyNjI5MDY4MDQwNDgyODE2NjA5MTY0ODQwMjYzNTA0NzE5MTg5Mzg5MzE5 OTk0MjIwMDQ3MDQwMTUwODYxNzAzNzQ1NDg4MTA3NzY4NjkxODAxNzg2Njc1 OTA0MzI4OTQ3Mzk3MzYxNjg4MzM5MzQ4OTM2NzYwNDM4NjYxMTgyNDU4Nzk2 NDUzMzIyMTk3NTkwMzQzNTgxOTIxNjY0NTMzNDM0NTgxOTQxNTMxOTQ1NzI3 ODM2NzE1NTg0MTg5MTM5OTkzOTE0MTEzNTYyMzYyMDcyODU3OTg2NzgyMjg2 ODEzNjQxMDA5NzgwMzI1OTY4MzYzNDkxMTA4MTQ0MTAyNDQwNDA0NzMyNTg1 ODM0NjkxNzcxMjQ5MTM3MTE2ODczMDk3Mzc3CjkzIDE1NDg4MzIzMzcxMzYw NDMzNTI5MTg1MjUzMzI3MTc2MDIyNDYxMDk0MjEyMDk4OTcxOTM1NDMxMTg0 NjgzNTc3OTg1OTM3NTE3OTY0MjMzNjg2MTQ3MTE0NzY4MzY4OTQ0MTIzODA2 NDMyNzg4OTkwMzk0MDc1Nzk2NzA1OTgwMTkwNTA3NjM0NjQzMzY1OTI2MzUw MzgwMzE5OTM2ODYzMjY4Nzc5MTQ2Mjk5ODU4MDg4MjQxNTk2NTk3OTUyNTg3 NTQ0MjIxNDI5Nzk3ODE2NTc3MTI1NDQyNTIzMzgwMjc5NzAyMjU5NDg1NjAx MTg1MTk1NTU1NzczNzExNjU2NjkyNDA3OTc1Njg0NTA4NTEyNzE4MDc4NDYx MDc3MTA4NjU1MzAyOTgyMTIwODUyMDQ0ODAzMjk2NTA0NzcyNzI4MzM2MTUy NTc4MjU5MTExNjY4Nwo5NCA5NDg4OTIzNjMzMDYzMTkzNzI3NDM3NTMwMjQ2 NDE3NDYwMzY5NDI2NjUyMDk4NjcyMzI2MjI0MDcwNTA2NTk5ODYyMDM2Mjg1 NjQwMzg3MzMxNDc1Mzc3MTAxOTY0MTAyNDMxMzUwMzY4NzA5NzI3OTc1MzM1 Nzg0OTUxMDI5NDY5MjQxMjczOTcwMDcxMDQ3NTk1MDkwNDQxODM0MzE5MjA5 OTQyNzA4OTk2Mzc0MzU3MjEwMTM5NDYwNTQ1ODM4MTU0ODkwNjA1MDg1OTc3 OTIwOTg4MjE2NTUyMTczNjg1NDAwNzQwOTYzNTA0OTY5Nzc2NjQ5MzkyOTMy MDY1NjY1MDc3NzgzNzU2OTk5MDkzMjkyNzM4ODQ4Nzk3NDI2NzczMTU5MDg3 Nzc0NzgyMDIyMDAxMDk0OTEzNzYxMzI2NzgzMzY3NDA0MTExODI3MDM4MDQ1 Mwo5NSAxNDM5MzQyNDY2MjE4NjY0MTc2OTYxOTY0NDYxMDkxNTA4MzQwMzE0 MzM2NDczNzExMzE4ODIyNDYwMDY3NDg2NjcxOTcwMDU4Mzg2OTQyMDc3NjQy NDM4MDAxNTUyMDEwMjE5MjczMTI1NzU5MzU3NjMyNDI3NDM5NDcxODQ3NDQ2 ODQwNTc1MjMyMjc4OTUwMzcyMjkxOTczOTQ1NTM2MDg1MDkxMjg4MTQ3ODY4 MjYwNjExNTQ1MTExMDA4ODI2NjI0ODg4ODg3NTk3OTQxMzE3MzkxODUzNzkx Nzg3OTk5MDQ2ODgxNTAxOTk3MDMzNTExOTA3ODg0NDM3MzYxNjU2MDY0NzE0 ODA2Njg2MTI3NDc1MTc5NjQ2NjEwODgxNDM0ODY1OTkyNjAyMjk2NjUyMDQy MDg3NTI4MjY1MTIwOTcyMTA1OTc0NjQ2MDE1NjI2MDY1NzM3Nzc3Cjk2IDMz MTUxODMyMDU1NjE0Nzc5NzIzNTIyMjg4NzI4Mzc2ODUzOTE4NDMzMTkyOTA3 ODg3MjMzMDk4NzM4MjAyMzczMTkzOTM3NjUxMzQxOTg5MDA3MzkwODU0Nzc3 ODM3NDUxMDM4MzE1MDkwOTgzOTU5NzEwMTQwODMyMTk1MTAyNTI5NDA4MTM5 MjAyNzc1NjMxMDI3MDc5OTUzMjAxMzU5MTM2NTczMTU0MjMzNjQ2NTM1OTUx NDc2NDYwNjMyNTAxMzcyMTk0NTM4ODc5MDU4MTY5MDIwNDgwODE1MTc4MDQ0 MzE1NTcxNjYxODEzNDAxNTI5NjQ4ODY5OTQyMzY4ODA0NTg4ODU0NTEzMTk0 MDgzMTc5MTI0MTk3MjE3NjQ3MDI5Mzk1MzA0MDc2MTU1ODQyNjYzMjYyMjMy OTI1Njk5OTk1Mjk0NjI1MzcyNjI3MzU3ODIwMDUwMTUyOTQ4ODkzMgo5NyA4 MjA4OTYwMTM1NDE2NDA0NzExMTM0ODQwNjg4MDg2Mzc5MjI1MDEzODIwNTM1 MDg3OTU4MzQ3ODcxNTczNDY0MTQ5NTU4NzIxODU5OTgyMjA4MDAxNDI0Mjg3 NzAzNjc3MTE0MTIzMjg0MTkxNDkzMzIzMzUyMDEwODQxNzc1NjE0NzgxNDEw MzU1NDU2MDk3Njg5OTcwMzAwNzM5ODUzNTQ4MTgwNDY5MTg3NDc2NzQxMTc5 Njg2MjQ1MjQ0Mjk3NzM4NzU0OTI1Nzk1MjAxNjU1OTE5NTcyNzU2ODkyMTQz NDIzMjExMzIyMTE4NTYyOTU0MjAyNjM1MjM5MTcwNzg1MTY1MjQ1ODY3NzAw NDg3OTExMTM4ODQ4NjQ1NDIzOTY2OTUzMzc4NDg1MzE0MDc1MTcyMTE4OTkx MjgwNTM5ODkzNDM1OTkyMDM5NzAwNzEzNzg2ODAwMzQ2OTc2NDQyNzUzCjk4 IDI4Nzc0ODk2ODc1NTYyODkyODYzOTI1MTc2NDE2NTI5Mjk5MTU2OTI4NTYy MTIyNTk5NzQ2NDY3MTgwOTI2MjY5MDI0MzIxNDMwNzU1NDYyOTU2OTA1Mzk4 OTg0NTY3MDI2MTM0MjczOTc0NjgwNDAzNzYwODcwNDkzNzE4MDU2NzgwMzUx NDkyNTMyOTY3MTIxNDAzMTE3MzE5NDAzOTIxNDI1MzcyOTQxMjE2NDg5MDE4 NDM4MDY3NjU5NDQyNjA4Njg5OTA2MTA1NjY3NTY0Njc3MTg3NTQ0MDQyNjQy ODYyMjc4ODc5MDg3OTMwNjkzMzgyNzY0NzcxNzQ2Njg5MjQ3ODM1NjUxODk0 MTE5OTg4NTU0OTQwMzQwMjU4NDY0MjI3OTQ1MDkyMTc3NzM2MDgyMzgxMjMw MTg5OTg2OTkyODc5Mzk5OTcwNTgyNzk4NTA5OTc5MjYzOTM5OTg1MjI4Njk1 NzgwMTgyNDMwMTI3Cjk5IDQzNzM4MTE2ODM2MjM5ODYyMDU0MjM3MjQ2ODAz Mjc5NDU4MjEzNTEyMjc3Mjc5NzQzNDc1MDY3MTcyNzUxMTAxMDY5MzA3Mjkx NDc5NTkzNjQ3OTQ4Njc2NjQ5MzQzMDMyNjkzMDAzMzg0OTMzMzg0MzU4MzYy MDkxNzg2MjY3MDU1Mzc0MzM1NTM2MDc4MDI1NDgxOTM5MTQ4NjU4NjI4NzQ0 MTE2OTQxMzU0NjI2ODQ0Nzc2MTI0ODk4NjI3MzQzMTIyMzAyODA1MTYzNTA0 MTczNzM2MDA1MTI4MDEwMjYxNzg2NDA1MDA0NTI1NzY4MTg2MDUwMTY5ODk5 MTMzNDc2Mzg5MDU5NjUwOTU3NDM4NjI3NjY2NDY1MDA0NjM2Njk4NjkzOTMx MjE5OTg5OTY1MzE3Njc0MDk5ODg2Nzk3ODYzOTEyMzk2OTIyOTg5OTgzOTgx MTIwODkyNDI5NDAxMTM1MDEwNDY1Nzg3ODA1ODA5MwoxMDAgNDA4MjE4NTgx MjQxMTM5Njg4ODAyNzgyMzY1ODQ2MDE5Mzg5NDAyNTM4Njk4NTMxMzk0NjU4 ODU1Nzg4Mzc1MzMwMDQzNTA0NjI3MDMxNjg4Mjk4ODcyMTI0MDMxNzM2MTc2 ODk5NjMzMjg0Mjc5Nzc0MTc3MjM2OTMzNTYwMTYxMzkwMjQzNjc2MTM2Nzg5 MDE0MzM2MTkxMDc4NDk5OTk1Mjg1MDg4MTIzMDA3Mzc5NjcxMDk3NzM0ODgy NDQ4ODMzNDI5Mzg2NzIwNTM2MTk1NzA2NzkzMzc0MjAyNzk0MTAxOTUxOTI4 MzExNTkzMTE5NjgyOTkzMjMyMDU3OTA4NTAwOTI0NTY2ODU4MDE4NTgwMDkw MzY2MzUwMDI5NTE2MzAzMzUzMjA5MTIyOTkxNTg4NDMyMzUxMjkyNTQ4MjY0 MjQ1MjMzODExNzI0NzIyNDAxNTc3Njg4MDMzMzkwNTM0NzEyMzMyMzAwNjkw NDg1ODA0NjU0NTgxMwo= ------=_Part_156860_32560920.1185232257325-- From maximilian.hasler at gmail.com Tue Jul 24 01:37:12 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 19:37:12 -0400 Subject: Outstanding duplicates In-Reply-To: <46a5200f.17bb720a.66c6.ffffffabSMTPIN_ADDED@mx.google.com> References: <46a5200f.17bb720a.66c6.ffffffabSMTPIN_ADDED@mx.google.com> Message-ID: <3c3af2330707231637i456739e7u74d5b064e8c5135@mail.gmail.com> These : http://www.research.att.com/~njas/sequences/?q=id:A023237|id:A105434 can be moved to the section "STRAIGHTFORWARD DUPES": A023237 Numbers n such that n and 10n + 1 both prime. A105434 Primes which with a 1 appended stay prime. obviously the same. M.H. From alec at mihailovs.com Tue Jul 24 02:52:14 2007 From: alec at mihailovs.com (Alec Mihailovs) Date: Mon, 23 Jul 2007 19:52:14 -0500 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: <1846E28BE6ED4805A69C8A9D6954FEA6@AlecPC> From: "Max Alekseyev" Sent: Monday, July 23, 2007 12:29 PM > On 7/22/07, Paul D. Hanna wrote: >> Consider the nice sequence A006336: >> a(n) = a(n-1) + a(n-1 - number of even terms so far). >> http://www.research.att.com/~njas/sequences/A006336 >> ----------------------------------------------------------- >> It seems that A006336 can be generated by a rule using the golden ratio: >> a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = >> (sqrt(5)+1)/2, > > Lemma. The sets { [n*p] : n=1,2,3,... } and { [n*p^2] : n=1,2,3,... } > are disjoint, and every positive integer belongs to one (and only > one!) of these sets. > I leave the proof of this Lemma to the reader as a challenge. > > Theorem. The number of even terms in A006336 up to position n-1 equals > n-1 - [n/p]. Another proof is based on the fact that A006336 mod 2 is A005614. The proof is rather simple, but I don't have time to write it in a simple way at the moment. I hope that Max can write a simple version of it based on his proof of the Theorem above. By the way, looking at that, and searching for the initial terms of A001950, I found that A090909 seems to be a duplicate of A001950. Again, I don't have much of free time at the moment and I live it to Max to prove that. Alec From jvospost3 at gmail.com Tue Jul 24 03:11:31 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Mon, 23 Jul 2007 18:11:31 -0700 Subject: definition of anti-divisor In-Reply-To: <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> Message-ID: <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Any work since 2001 on whether or not there is a 6th anti-prime? How far has this been searched? Any proofs or disproofs as to finiteness of A066466? COMMENT FROM Jonathan Vos Post RE A066466 %I A066466 %S A066466 3, 4, 6, 96, 393216 %N A066466 Numbers having just one anti-divisor. %C A066466 Jon Perry calls these anti-prime numbers, saying that these are the only 5 known. This sequence is worth extending, if possible, or proving finite. %F A066466 A066272(a(n)) = 1. %Y A066466 Cf. A066272. %O A066466 1 %K A066466 ,more,nonn, %A A066466 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 23 2007 From alec at mihailovs.com Tue Jul 24 03:16:57 2007 From: alec at mihailovs.com (Alec Mihailovs) Date: Mon, 23 Jul 2007 20:16:57 -0500 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: <1846E28BE6ED4805A69C8A9D6954FEA6@AlecPC> References: <20070722.072158.944.1.pauldhanna@juno.com> <1846E28BE6ED4805A69C8A9D6954FEA6@AlecPC> Message-ID: <707C3179321F466FAC06D9EDA30EF672@AlecPC> I forgot to mention that n-1- (number of even terms thus far) = number of odd terms thus far and number of odd terms = the sum of the terms in a 0-1 sequence. Alec From maxale at gmail.com Tue Jul 24 03:57:27 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 18:57:27 -0700 Subject: definition of anti-divisor In-Reply-To: <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: Except element 4, the elements of A066466 have form 2^k*p where p is odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin primes). In other words, A066466 without element 4 is a subsequence of A040040, containing elements of the form 2^k*p with prime p. Max On 7/23/07, Jonathan Post wrote: > Any work since 2001 on whether or not there is a 6th anti-prime? How > far has this been searched? Any proofs or disproofs as to finiteness > of A066466? > > COMMENT FROM Jonathan Vos Post RE A066466 > > %I A066466 > %S A066466 3, 4, 6, 96, 393216 > %N A066466 Numbers having just one anti-divisor. > %C A066466 Jon Perry calls these anti-prime numbers, saying that these > are the only 5 known. This sequence is worth extending, if possible, > or proving finite. > %F A066466 A066272(a(n)) = 1. > %Y A066466 Cf. A066272. > %O A066466 1 > %K A066466 ,more,nonn, > %A A066466 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 23 2007 > From maxale at gmail.com Tue Jul 24 04:29:49 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 19:29:49 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: Furthermore, since 2^(k+1)*p-1, 2^(k+1)*p+1 must equal -1 and +1 modulo 3, the number 2^(k+1)*p must be 0 modulo 3, implying that p=3. Therefore, every element of A066466, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. There no such new k (i.e., except known 1,2,6,18) below 1000. Max On 7/23/07, Max Alekseyev wrote: > Except element 4, the elements of A066466 have form 2^k*p where p is > odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin > primes). > In other words, A066466 without element 4 is a subsequence of A040040, > containing elements of the form 2^k*p with prime p. > > Max > > On 7/23/07, Jonathan Post wrote: > > Any work since 2001 on whether or not there is a 6th anti-prime? How > > far has this been searched? Any proofs or disproofs as to finiteness > > of A066466? > > > > COMMENT FROM Jonathan Vos Post RE A066466 > > > > %I A066466 > > %S A066466 3, 4, 6, 96, 393216 > > %N A066466 Numbers having just one anti-divisor. > > %C A066466 Jon Perry calls these anti-prime numbers, saying that these > > are the only 5 known. This sequence is worth extending, if possible, > > or proving finite. > > %F A066466 A066272(a(n)) = 1. > > %Y A066466 Cf. A066272. > > %O A066466 1 > > %K A066466 ,more,nonn, > > %A A066466 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 23 2007 > > > From maxale at gmail.com Tue Jul 24 07:02:50 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 22:02:50 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: On 7/23/07, Max Alekseyev wrote: > Therefore, every element of A066466, except 4, must be of the form > 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. There no > such new k (i.e., except known 1,2,6,18) below 1000. Small corrections: 1,2,6,18 above correspond to k+1 not k. In other words, 3*2^n - 1, 3*2^n + 1 are twin primes for n=1,2,6,18. According to these tables: http://www.prothsearch.net/riesel.html http://www.prothsearch.net/riesel2.html there are no other such n up to 1200000. Therefore, the next element of A066466 (if it exists) is greater than 3*2^1200000 ~= 10^361236. Max From jeremy.gardiner at btinternet.com Tue Jul 24 11:35:35 2007 From: jeremy.gardiner at btinternet.com (JEREMY GARDINER) Date: Tue, 24 Jul 2007 10:35:35 +0100 (BST) Subject: early bird sequence In-Reply-To: Message-ID: <836624.76115.qm@web86605.mail.ukl.yahoo.com> Cf. A048991 and A048992 (Rollman numbers) -------------- next part -------------- An HTML attachment was scrubbed... URL: From maximilian.hasler at gmail.com Tue Jul 24 21:52:51 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Tue, 24 Jul 2007 15:52:51 -0400 Subject: early bird sequence In-Reply-To: <836624.76115.qm@web86605.mail.ukl.yahoo.com> References: <836624.76115.qm@web86605.mail.ukl.yahoo.com> Message-ID: <3c3af2330707241252g52e73c0awb1ad943f7562cb7a@mail.gmail.com> thanks for the reference. someone could add an explanation to either of those to explain why they are not the same (e.g. 12 being omitted, 21 is no more "earlier in the sequence"). M.H. On 7/24/07, JEREMY GARDINER wrote: > Cf. A048991 and A048992 (Rollman numbers) From maxale at gmail.com Wed Jul 25 05:30:36 2007 From: maxale at gmail.com (Max Alekseyev) Date: Tue, 24 Jul 2007 20:30:36 -0700 Subject: stapled intervals (following A090318) Message-ID: SeqFans, I'm about to submit the following sequences you may find entertaining. A090318 defines stapled sequence as an interval of positive integers that does not contain an element coprime to every other element of the interval. In other word, a sequence is stapled if for every element x there is another element y (different from x) such that gcd(x,y)>1. The shortest stapled interval has length 17 and starts with the number 2184. A090318 gives the smallest stapled interval of the given length n>=17. In particular, it is interesting to notice that the intervals [27829,27846] and [27828,27846] are stapled while the interval [27828,27845] is not. It is clear that a stapled interval [a,b] may not contain a prime number greater than b/2 (as such a prime would be coprime to every other element of the interval). Together with Bertrand's Postulate that implies a>b/2 or b<2a. And it follows that * a stapled interval may not contain prime numbers at all; * for any particular positive integer a, we can determine if it is a starting point of some stapled interval. Sequence of starting points of stapled intervals is: 2184, 27828, 27829, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 151059, 151060, 151061, 151062, 152334, 163488, 171054, 177980, 182364, 185924, 185925, 185926, 208010, 212394, 238040, 242424, 249678, 260810, 260811, 260812, 260813, 260814, 264498, 268070, 272454, 298100, 302484, 320870, 320871, 320872, 323510, 324564, 328130, 332514, 339434, 339435, 339436, 339437, 339438, 347004, 358160, 362544, 388190, 392574, 399500, 409188, 409189, 409190, 418220, 422600, 422601, 422602, 422603, 422604, 448250, 452634, 471014, 471015, 471016, 478280, 482664 Call a stapled interval "maximum" if it is not a proper sub-interval of any other stapled interval. Starting points of maximum stapled intervals are: 2184, 27828, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 152334, 163488, 171054, 177980, 182364, 185924, 208010, 212394, 238040, 242424, 249678, 260810, 264498, 268070, 272454, 298100, 302484, 320870, 323510, 324564, 328130, 332514, 339434, 347004, 358160, 362544, 388190, 392574, 399500, 409188, 418220, 422600, 448250, 452634, 471014, 478280, 482664 Similarly, call a stapled interval "minimum" if it does not contain any stapled proper subinterval. Starting points of minimum stapled intervals are: 2184, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151062, 152334, 163488, 171054, 177980, 182364, 185926, 208010, 212394, 238040, 242424, 249678, 260814, 264498, 268070, 272454, 298100, 302484, 320872, 323510, 324564, 328130, 332514, 339438, 347004, 358160, 362544, 388190, 392574, 399500, 409190, 418220, 422604, 448250, 452634, 471016, 478280, 482664 Max From maxale at gmail.com Wed Jul 25 05:48:56 2007 From: maxale at gmail.com (Max Alekseyev) Date: Tue, 24 Jul 2007 20:48:56 -0700 Subject: full rank designs over Z_m Message-ID: SeqFans, Does the following sounds familiar to anybody? Fix an integer m>=2. For any positive integer n consider a matrix k x n over Z_m such that any n rows (out of k) are linearly independent. Define a(n) as the maximum possible k. From practical point of view such construction gives rise to a number of sequences for different m. Are they in OEIS? I'm also interested in the theory behind. I believe such matrices should have been studied. Thanks, Max From bdm at cs.anu.edu.au Wed Jul 25 06:23:33 2007 From: bdm at cs.anu.edu.au (Brendan McKay) Date: Wed, 25 Jul 2007 14:23:33 +1000 Subject: full rank designs over Z_m In-Reply-To: References: Message-ID: <20070725042333.GA8211@cs.anu.edu.au> In the case of m not prime, one has to be cautious because several equivalences from the prime case do not hold. In particular, being linearly independent is different from having a full-sized submatrix (in your case, n*n) of non-zero determinant. I wrote a paper long ago with Richard Brent that counts integer matrices with given rank defined by the submatrix-determinant method: http://cs.anu.edu.au/~bdm/papers/BrentMcKayZm.pdf I don't see how it applies to your problem easily, but maybe some of the ideas are useful. Also, regardless of your problem, that paper seems to provide any number of sequences not in OEIS (so this is an invitation for some enterprising oeiser to jump in). The paper refers to probabilities but of course you just need to multiply by the total number of matrices to turn it into a count. Brendan. * Max Alekseyev [070725 13:49]: > SeqFans, > > Does the following sounds familiar to anybody? > > Fix an integer m>=2. For any positive integer n consider a matrix k x > n over Z_m such that any n rows (out of k) are linearly independent. > Define a(n) as the maximum possible k. > > >From practical point of view such construction gives rise to a number > of sequences for different m. Are they in OEIS? > > I'm also interested in the theory behind. I believe such matrices > should have been studied. > > Thanks, > Max From jvospost3 at gmail.com Wed Jul 25 06:26:38 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Tue, 24 Jul 2007 21:26:38 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: <5542af940707242126q68201c55pf5c674ce6848194f@mail.gmail.com> NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 2, 6, 36, 144, 4320, 64800, 777600, 65318400, 2743372800 %N A000001 Anti-divisorial; the product of all anti-divisors of all integers equal or less than n. %C A000001 Different from the anti-primorial, which is the partial products of anti-primes. %F A000001 a(n) = PRODUCT[k=3..n] {anti-divisors(k)} = PRODUCT[k=3..n] PRODUCT[j=1..A066272(k)] (j-th element of k-th row of A130799) = partial products of A091507. %e A000001 a(11) = anti-divisors of 3 * anti-divisors of 4 * ... * anti-divisors of 11 = (2) * (3) * (2 * 3) * (4) * (2 * 3 * 5) * (3 * 5) * (2 * 6) * (3 * 4 * 7) * (2 * 3 * 7) = 2743372800. %Y A000001 Cf. A066272, A091507, A130799. %O A000001 3,1 %K A000001 ,easy,nonn, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 25 2007 RH RA 192.20.225.32 From maxale at gmail.com Wed Jul 25 11:49:44 2007 From: maxale at gmail.com (Max Alekseyev) Date: Wed, 25 Jul 2007 02:49:44 -0700 Subject: ps Re Divisors concatenated shape a prime In-Reply-To: <33a322bc0707200443l833a591gc4abfcff9e172a43@mail.gmail.com> References: <200707201002.l6KA2ZKE432256@fry.research.att.com> <33a322bc0707200443l833a591gc4abfcff9e172a43@mail.gmail.com> Message-ID: Three more prime divisors have been found with ECM: 1303590319, 2029994921, and 2635016943923513073981336313737132619. The co-factor is still composite and requires further factorization. Regards, Max On 7/20/07, Simon Plouffe wrote: > The number is > 23637741111132222263396784181836212543250863192525397638\ > 5050794957757619119155152382118123439689236246879378\ > 3543703190673607553698617087406381347215107397221082\ > 2661095832164532219166133479486848572669589736971440\ > 0438460545718008769210914230132785470246166539693602\ > 6557094049233307938690398356410738499619079180796712\ > 8214769992381581114913062399108161968641222982612479\ > 8216323937282334473918719732448590592334050047581378\ > 1681898530966894783743946489718118466810009516275633\ > 6379706181021501427441345045695592720430028548826900\ > 9139118541259851760510992223024564332519703521021984\ > 4460491286637795552815329766690736929975591105630659\ > 5333814738598961996828961134745198615110831211923993\ > 6579222694903972302216624228859904868834042355958453\ > 3249363577198097376680847119169066498726355938826715\ > 6198557234875910075477711877653431239711446975182015\ > 0954106781648014685956717046277302264311087056416726\ > 0822620744350752392673213563296029371913434092554604\ > 5286221741128334521645241488701504785346326116925017\ > 8246786223305225717801965223385003564935724466104514\ > 3560384022108741886504369675409778385289018044217483\ > 7730087393508195567705780212066326225659513109026229\ > 33515586703 > > and divisible by 13 and 47 if I am not mistaking. > > the rest (%/13/47) is not prime either but I can't determine > its factors. > > simon plouffe > From zakseidov at yahoo.com Wed Jul 25 15:42:55 2007 From: zakseidov at yahoo.com (zak seidov) Date: Wed, 25 Jul 2007 06:42:55 -0700 (PDT) Subject: A005589: Number of letters in the English name of n, excluding spaces and hyphens Message-ID: <320334.92018.qm@web38204.mail.mud.yahoo.com> Dear seqfans, I'm going to submit b005589.txt and a005589.txt (after end of OEIS vacation?). In the process, I've found that numbers 800 and 900 (with their English names) are missed in G. Schildberger's file http://www.research.att.com/~njas/sequences/a000027.txt If someone's interested I can send both files - for checking/extending. Thanks, Zak A005589 Number of letters in the English name of n, excluding spaces and hyphens. %%%%%%%%%%% b005589.txt 0 4 1 3 2 3 3 5 4 4 1017 20 1018 20 1019 19 1020 17 1021 20 1022 20 %%%%%%%%%%%% a005589.txt zero one two three four onethousandseventeen onethousandeightteen onethousandnineteen onethousandtwenty onethousandtwentyone onethousandtwentytwo ____________________________________________________________________________________ Got a little couch potato? Check out fun summer activities for kids. http://search.yahoo.com/search?fr=oni_on_mail&p=summer+activities+for+kids&cs=bz I will be doing occasional updates, but that's all. Neil From njas at research.att.com Wed Jul 25 18:51:08 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Wed, 25 Jul 2007 12:51:08 -0400 (EDT) Subject: The OEIS "vacation" continues through the end of Sept. In-Reply-To: <320334.92018.qm@web38204.mail.mud.yahoo.com> References: <320334.92018.qm@web38204.mail.mud.yahoo.com> Message-ID: <200707251651.l6PGp8YP2000882@fry.research.att.com> Zak is right. I'd found that a year ago, when I built a table of the alphabetical reversal of the standard names of nonnegative integers from G. Schildberger's draft. He also had one or two misspellings, as I recall. On 7/25/07, zak seidov wrote: > Dear seqfans, > > I'm going to submit > b005589.txt and a005589.txt > (after end of OEIS vacation?). > > In the process, I've found that > numbers 800 and 900 (with their English names) > are missed in G. Schildberger's file > http://www.research.att.com/~njas/sequences/a000027.txt > > > If someone's interested I can send both files - > for checking/extending. > > Thanks, > Zak > > > A005589 Number of letters in the English name of n, > excluding spaces and hyphens. > %%%%%%%%%%% > > b005589.txt > 0 4 > 1 3 > 2 3 > 3 5 > 4 4 > > 1017 20 > 1018 20 > 1019 19 > 1020 17 > 1021 20 > 1022 20 > %%%%%%%%%%%% > > a005589.txt > zero > one > two > three > four > > onethousandseventeen > onethousandeightteen > onethousandnineteen > onethousandtwenty > onethousandtwentyone > onethousandtwentytwo > > > > ____________________________________________________________________________________ > Got a little couch potato? > Check out fun summer activities for kids. > http://search.yahoo.com/search?fr=oni_on_mail&p=summer+activities+for+kids&cs=bz > From petsie at dordos.net Thu Jul 26 02:36:09 2007 From: petsie at dordos.net (Peter Pein) Date: Thu, 26 Jul 2007 02:36:09 +0200 Subject: Link to Mathematica script is outdated (says an advertising pest) Message-ID: <46A7EC79.4000406@dordos.net> The link to a Mma-script to easy put sequences in the OEIS-format on the page http://www.research.att.com/~njas/sequences/Submit.html which should link to a Mma-file http://www.seqfan.net/EISFormat.m leads me to a strange (hijacking?) site full of advertising which states that "seqfan.net expired on 07/12/2007 and is pending renewal or deletion." If I remember correctly, there's a package at mathworld.wolfram.com with some utilities needed for Eric's project which include some EISFormat functionality. From jvospost3 at gmail.com Thu Jul 26 04:23:36 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Wed, 25 Jul 2007 19:23:36 -0700 Subject: A005589: Number of letters in the English name of n, excluding spaces and hyphens In-Reply-To: <793412.80456.qm@web38202.mail.mud.yahoo.com> References: <5542af940707251527x10cfb2c8sefbebd8546c11f59@mail.gmail.com> <793412.80456.qm@web38202.mail.mud.yahoo.com> Message-ID: <5542af940707251923u5e8e02c4ua885db0f05bceffe@mail.gmail.com> Zak: You are right. Same misspellings that I found. =================== Source: Webster's Revised Unabridged Dictionary (1913) Eighteen \Eight"een`\, a. [AS. eahtat?ne, eahtat?ne. See Eight, and Ten, and cf. Eighty.] Eight and ten; as, eighteen pounds. Eighteen \Eight"een`\, n. 1. The number greater by a unit than seventeen; eighteen units or objects. 2. A symbol denoting eighteen units, as 18 or xviii. =================== * Is Amendment Eighteen Treason? by Joshua Grozier Author(s) of Review: Charles Hall Davis Virginia Law Review, Vol. 17, No. 2 (Dec., 1930), pp. 211-214 doi:10.2307/1066265 =================== From petsie at dordos.net Thu Jul 26 05:19:41 2007 From: petsie at dordos.net (Peter Pein) Date: Thu, 26 Jul 2007 05:19:41 +0200 Subject: a propos divisors... In-Reply-To: <46A50268.3040307@dordos.net> References: <46A50268.3040307@dordos.net> Message-ID: <46A812CD.60303@dordos.net> Peter Pein schrieb: > Dear seqfans, > > I#ve been surprised not to find sequences of the following form in the OEIS: > > a(n)=min(k in N: sigma(r,n)=sigma(r,k)) with sigma(r,n)=sum of the r-th > power of the divisors of n: ... > Are these of interest? And if so, up to which exponent r? > > Peter > Although the interst seems to be bounded by a fairly small n (0 until now), I would like to ask you if you could please help me. I decided to publish the sequences in two forms: a) n such there is at least one x0: sigma(r,k)=sigma(r,n)}) The issue with these is that they behave in a surprising way for r=3 (I think, sequences for higher exponents are too hard to calculate without tricks) for r = 0 the type-a-seq starts: 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20 for r = 1: 11, 15, 17, 23, 25, 26, 31, 35, 38, 39, 41, 46, 47, 51 for r = 2 7, 26, 35, 47, 77, 91, 119, 130, 133, 141, 157, 161, 175 but for r = 3 the air becomes very thin. If I did not make a mistake, this seq starts(!): 194315, 295301, 590602, 1181204, 1476505, 1886920, 2067107, 2362408, 2526095, 2953010, 3248311, 3691985, 3838913, 4134214, 4469245, 4724816, 5020117, 5610719, 5635135, 5906020 If any of you with some Mathematica knowledge could please confirm, that the following lines calculate the sequence described above? Timing[Block[{spa, nmax = 6*10^6, expo = 3}, Reap[For[n = 1, n <= nmax, n++, (If[Head[#1] === spa, #1 = n, Sow[{n, #1}]] & )[ spa[DivisorSigma[expo, n]]]]][[2,1]]]] the name spa is an artefact; I tried this with SparseArrays, but the allowed range of indices has not been sufficient. I use it as an initially undefined function (Block[{spa..}]). For each n to test I look wether spa[sigma(r,n)] has been defined. If not, the Head is still spa and I set spa[sigma(r,n)] to n; else the remembered value together with n will go to the result via the Sow-Reap mechanism. This way I get type-a and a hint for type-b sequences in one run of the proggie. And if you want to make me really happy (I have had birthday on July 24th ;-) (http://www.stevesbeatles.com/songs/when_im_sixty_four.asp this age will be reached in 20 years, but the symptoms... )): If you've got Mathematica and more RAM (4GB or so) than I do (1.5 GB), could you please run this code with, say nmax=10 or 20 million? On my machine it swapped heavily with nmax=6 million and I had to kill MathKernel as I tried nmax=10^7. The lines above took ~181 seconds to evaluate (nmax=10^7 has been stopped by me after 15 minutes). I do not expect any runtimes of more than 7 minutes. Would this be possible, please? Alternatively any hints how to calculate these sequences more efficient would be highly appreciated (AFAIK there exists no kind of "inverse function" to sigma(r,n) w.r.t. n which could be calculated without this brute-force method). Thank you for your attention and in advance for CPU-time, Peter * Peter Pein [Jul 26. 2007 08:51]: > The link to a Mma-script to easy put sequences in the OEIS-format on the > page http://www.research.att.com/~njas/sequences/Submit.html which > should link to a Mma-file http://www.seqfan.net/EISFormat.m leads me to > a strange (hijacking?) site full of advertising which states that > "seqfan.net expired on 07/12/2007 and is pending renewal or deletion." This is not a domain grabber but "network solutions" > > If I remember correctly, there's a package at mathworld.wolfram.com with > some utilities needed for Eric's project which include some EISFormat > functionality. http://www.aboutus.org/Seqfan.net ogerard at ext.jussieu.fr (CC) The domain should simply be renewed. Else at some point in time a domain grabber will get it. From arndt at jjj.de Thu Jul 26 10:50:45 2007 From: arndt at jjj.de (Joerg Arndt) Date: Thu, 26 Jul 2007 10:50:45 +0200 Subject: Link to Mathematica script is outdated (says an advertising pest) In-Reply-To: <46A7EC79.4000406@dordos.net> References: <46A7EC79.4000406@dordos.net> Message-ID: <20070726085045.GA8464@amd32.purzl.net> On 6/9/06, Max wrote: > On 6/9/06, Graeme McRae wrote: > > > It took me quite some time to understand how Ranier Rosenthal is counting > > rounds, before I obtained A112088 as the number of rounds necessary to kill > > all but one of n players of the Josephus Game with every third man out. I > > first tried using Hugo Pfoertner's idea where the final survivor counts the > > times he was passed by the executioner including the final rendezvous. But > > that method gives an entirely different sequence (A005428: > > 1,2,3,4,6,9,14,21,31,47,70,105,158,...). > > I've also ended up with this exactly sequence in my computations. I have found an old draft message where I was explaining the details of my computation. I reproduce them below in hope that someone will find them useful. Suppose that we have x persons at the circle (enumerated from 0 to x-1) and the executioner stands at the person number s. After one round we will eliminate 1+[(x-s-1)/3] persons and will end up at the person number (s-x) mod 3. This observation leads to the following algorithm (stated in the form of PARI/GP program) counting the required number of rounds: { a(n) = local(count = 0, s = 0, x = n, x_new); while(x>1, x_new = x - 1 - (x-s-1)\3; s = (s-x) % 3; x = x_new; count++; ); count } For n=1..50, PARI/GP gives: ? vector(50,n,a(n)) %1 = [0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9] This sequence (counting the number of rounds) seems to be missing in OEIS. Now we want to "reverse" this algorithm, i.e., starting with a single person make the given number of rounds r and output n. This involves solving of the following system of equations: x_new = x_old - 1 - [(x_old - s_old - 1)/3]; s_new = (s_old - x_old) mod 3; with respect to x_old and s_old. It is useful to notice that [(x_old - s_old - 1)/3] = (x_old - s_old + s_new)/3 - 1, implying x_new = x_old - (x_old - s_old + s_new)/3. Therefore, x_old = (3*x_new + s_new)/2 - s_old/2. From this equation we get value of s_old modulo 2 (it must make x_old integer). However, that does not uniquely define s_old since it can take 3 values: 0, 1, and 2. But we can follow greedy strategy here (though I'm not going to prove that) making x_old the smallest possible on each round. In other words, we can limit values of s_old to 1 and 2, and state that x_old = [(3*x_new + s_new - 1)/2]. s_old = (s_new + x_old) mod 3; That leads to the following PARI/GP implementation: { b(n) = local( x=1, s=0 ); for(r=1,n, x = (3*x + s)\2; s = (s + x) % 3; ); x } The first 50 values are: ? vector(50,n,b(n)) %1 = [1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 70, 105, 158, 237, 355, 533, 799, 1199, 1798, 2697, 4046, 6069, 9103, 13655, 20482, 30723, 46085, 69127, 103691, 155536, 233304, 349956, 524934, 787401, 1181102, 1771653, 2657479, 3986219, 5979328, 8968992, 13453488, 20180232, 30270348, 45405522, 68108283, 102162425, 153243637, 229865456, 344798184, 517197276] That is exactly the sequence A005428. Based on our method of computing, we can give an alternative description of A005428: Define a mapping f over vectors with two integer components as follows: f: (x,s) --> ( [(3*x + s) / 2], (s + x) mod 3 ) Then A005428(n) is the first component of the n-th iteration of f on the vector (1,0). Regards, Max From r.rosenthal at web.de Thu Jul 26 22:24:34 2007 From: r.rosenthal at web.de (Rainer Rosenthal) Date: Thu, 26 Jul 2007 22:24:34 +0200 Subject: Sequence A112088 Motivation and Example? In-Reply-To: References: <4489D93F.3080902@web.de> <020401c68c0a$9470a650$6900000a@mcraeclan.com> <02a801c68c1c$1421f320$6900000a@mcraeclan.com> Message-ID: <46A90302.8020905@web.de> Max Alekseyev wrote: > On 6/9/06, Max wrote: >>On 6/9/06, Graeme McRae wrote: >>>It took me quite some time to understand how Ranier Rosenthal is counting Rainer (please) >>>rounds, before I obtained A112088 as the number of rounds necessary to kill >>>all but one of n players of the Josephus Game with every third man out. Many many thanks for this post! Some days ago I found my last scribblings, which were meant for another comment to A112088. But it's all that long ago ... I didn't understand anything of what I wrote :-( I'm going to print your mail now and maybe I will find the energy to get back to all these lovely round-countings. As far as I remember I wasn't able to really grasp the idea of the original submitter (Simon Strandgaard). From the discussions in de.sci.mathematik and de.rec.denksport I remember that there were some remarks giving hints to Knuth. Oops ... long time ago. Friendly greetings, Rainer From petsie at dordos.net Fri Jul 27 02:26:33 2007 From: petsie at dordos.net (Peter Pein) Date: Fri, 27 Jul 2007 02:26:33 +0200 Subject: [Fwd: SEQ FROM Peter Pein] Message-ID: <46A93BB9.1010209@dordos.net> Dear Neil, I obviously made a mistake, when entering the sequence number which I've got from the dispenser. This should become A131903. sorry, Peter The following is a copy of the email message that was sent to njas containing the sequence you submitted. All greater than and less than signs have been replaced by their html equivalents. They will be changed back when the message is processed. This copy is just for your records. No reply is expected. Subject: NEW SEQUENCE FROM Peter Pein %I A000001 %S A000001 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63 %N A000001 Those integers for which a smaller positive integer exists which has the same number of divisors %F A000001 a(n)= n-th element of {x>0, there exists a k with 0<k<x and the same number of divisors as x) %e A000001 a(4)=8 because it is the fourth integer for which a smaller integer with the same number of divisors exists (after 3, 5 and 7). divisors of 8 are 1,2,4,8 which are four and the divisors of 6 which is less than 8 are (1, 2, 3, 6) which are four. %t A000001 Clear[tmp]; Function[n, If[Head[#1] === tmp, #1 = n; Unevaluated[Sequence[]], n] & [tmp[DivisorSigma[0, n]]]] /@ Range[64] %Y A000001 Cf. A069822, A131902-A131908 %O A000001 1 %K A000001 ,easy,nonn, %A A000001 Peter Pein (petsie at dordos.net), Jul 26 2007 RH RA 192.20.225.32 RU RI From petsie at dordos.net Fri Jul 27 03:38:21 2007 From: petsie at dordos.net (Peter Pein) Date: Fri, 27 Jul 2007 03:38:21 +0200 Subject: a propos divisors... In-Reply-To: <46A812CD.60303@dordos.net> References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> Message-ID: <46A94C8D.4090109@dordos.net> Peter Pein schrieb: > > Although the interst seems to be bounded by a fairly small n (0 until > now), I would like to ask you if you could please help me. > .... > > Thank you for your attention and in advance for CPU-time, > > Peter > Well, there are other groups on the net... THX for ignoring me completely Peter Peter, I at least did not ignore you! I saved all your messages to be read later. (I just didn't reply yet!) Neil >%I A000001 >%S A000001 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, >23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, >43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63 >%N A000001 Those integers for which a smaller positive integer exists >which has the same number of divisors >%F A000001 a(n)= n-th element of {x>0, there exists a k with >0<k<x and the same number of divisors as x) >%e A000001 a(4)=8 because it is the fourth integer for which a smaller >integer with the same number of divisors exists (after 3, 5 and 7). >divisors of 8 are 1,2,4,8 which are four and the divisors of 6 which is >less than 8 are (1, 2, 3, 6) which are four. >%t A000001 Clear[tmp]; >Function[n, If[Head[#1] === tmp, #1 = n; Unevaluated[Sequence[]], n] & > [tmp[DivisorSigma[0, n]]]] /@ Range[64] >%Y A000001 Cf. A069822, A131902-A131908 >%O A000001 1 >%K A000001 ,easy,nonn, >%A A000001 Peter Pein (petsie at dordos.net), Jul 26 2007 >RH >RA 192.20.225.32 >RU >RI Appears to be the complement of A007416. Tony From njas at research.att.com Fri Jul 27 04:02:35 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Thu, 26 Jul 2007 22:02:35 -0400 (EDT) Subject: a propos divisors... In-Reply-To: <46A93BB9.1010209@dordos.net> References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> Message-ID: <200707270202.l6R22ZH92491631@fry.research.att.com> On 7/25/07, Peter Pein wrote: > a) n such there is at least one x because there exists such a series for r=1 (A069822) > > and > > b) a(n)=min({k>0: sigma(r,k)=sigma(r,n)}) [...] > but for r = 3 the air becomes very thin. If I did not make a mistake, > this seq starts(!): > > 194315, 295301, 590602, 1181204, 1476505, 1886920, 2067107, 2362408, > 2526095, 2953010, 3248311, 3691985, 3838913, 4134214, 4469245, 4724816, > 5020117, 5610719, 5635135, 5906020 [...] > And if you want to make me really happy (I have had birthday on July > 24th ;-) (http://www.stevesbeatles.com/songs/when_im_sixty_four.asp this > age will be reached in 20 years, but the symptoms... )): My congratulations! Better late than never ;) > If you've got Mathematica and more RAM (4GB or so) than I do (1.5 GB), > could you please run this code with, say nmax=10 or 20 million? On my > machine it swapped heavily with nmax=6 million and I had to kill > MathKernel as I tried nmax=10^7. The lines above took ~181 seconds to > evaluate (nmax=10^7 has been stopped by me after 15 minutes). I do not > expect any runtimes of more than 7 minutes. Would this be possible, please? These are the values below 10^7 that I got with my C++ program using LiDIA library: 194315 184926 295301 291741 590602 583482 1181204 1166964 1476505 1458705 1886920 1880574 2067107 2042187 2362408 2333928 2526095 2404038 2953010 2917410 3248311 3209151 3691985 3513594 3838913 3792633 4134214 4084374 4469245 4253298 4724816 4667856 5020117 4959597 5610719 5543079 5635135 5362854 5906020 5834820 6023765 5732706 6496622 6418302 6791923 6710043 7382525 7293525 7677826 7585266 7966915 7581966 8268428 8168748 8355545 7951818 8563729 8460489 9132805 8691522 9449632 9335712 Each here line contains a pair: n k such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your notations above). I will let my program to run for a couple more days to reach 10^8 bound. > (AFAIK there exists no kind of "inverse > function" to sigma(r,n) w.r.t. n which could be calculated without this > brute-force method). I disagree with this statement. There is a more or less clever way to reconstruct the inverse of m=sigma(r,n) w.r.t. n, using integer factorization of m and a kind of brute-force but of the magnitude of the number of divisors of m. Regards, Max From petsie at dordos.net Fri Jul 27 16:32:12 2007 From: petsie at dordos.net (Peter Pein) Date: Fri, 27 Jul 2007 16:32:12 +0200 Subject: [Fwd: SEQ FROM Peter Pein] In-Reply-To: References: <46A93BB9.1010209@dordos.net> Message-ID: <46AA01EC.2070906@dordos.net> T. D. Noe schrieb: >> %I A000001 >> %S A000001 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, >> 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, >> 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63 >> %N A000001 Those integers for which a smaller positive integer exists >> which has the same number of divisors >> %F A000001 a(n)= n-th element of {x>0, there exists a k with >> 0<k<x and the same number of divisors as x) >> %e A000001 a(4)=8 because it is the fourth integer for which a smaller >> integer with the same number of divisors exists (after 3, 5 and 7). >> divisors of 8 are 1,2,4,8 which are four and the divisors of 6 which is >> less than 8 are (1, 2, 3, 6) which are four. >> %t A000001 Clear[tmp]; >> Function[n, If[Head[#1] === tmp, #1 = n; Unevaluated[Sequence[]], n] & >> [tmp[DivisorSigma[0, n]]]] /@ Range[64] >> %Y A000001 Cf. A069822, A131902-A131908 >> %O A000001 1 >> %K A000001 ,easy,nonn, >> %A A000001 Peter Pein (petsie at dordos.net), Jul 26 2007 >> RH >> RA 192.20.225.32 >> RU >> RI > > Appears to be the complement of A007416. > > Tony > Thank you, Tony for this hint. I ask a bit too late, but: is it common to let the superseeker have a look at the sequence before publishing it? I have published seven sequences last night. At the rate of one request per hour this would last too long. Peter * Peter Pein [Jul 27. 2007 17:36]: > [...] > Thank you, Tony for this hint. > I ask a bit too late, but: > is it common to let the superseeker have a look at the sequence before > publishing it? I have published seven sequences last night. At the rate > of one request per hour this would last too long. > > Peter I strongly support to super-seek all new sequences before having them in the database. How much resources does one super-seek take? (CPU & memory) Peter, I have put you on the list of "good guys" who are not subject to the one per hour limit! Neil From arndt at jjj.de Fri Jul 27 17:40:29 2007 From: arndt at jjj.de (Joerg Arndt) Date: Fri, 27 Jul 2007 17:40:29 +0200 Subject: [Fwd: SEQ FROM Peter Pein] In-Reply-To: <46AA01EC.2070906@dordos.net> References: <46A93BB9.1010209@dordos.net> <46AA01EC.2070906@dordos.net> Message-ID: <20070727154029.GA22447@amd32.purzl.net> While preparing to submit to OEIS the decimal digits of two constant used in the Ramanujan-Lodge Harmonic Number approximation and the DeTemple-Wang Harmonic Number approximation, I ran into trouble. I must be doing something really stupid. Both the low-res Google calculator and the high-res WIMS calculator tell me that ((12 * gamma) - 11 - (12 * ln(2))) / (1 - gamma - ln(2^0.5)) = -162.5909 where gamma is Euler's constant. But Theorem 6 of the arXiv citation, formula (1.13), page 6, insists that this constant is roughly 1.12150934. http://arxiv.org/pdf/0707.3950 Title: Ramanujan's Harmonic Number Expansion into NegativePowers of a Triangular Number Authors: Mark B. Villarino Comments: sharp error estimates and general formulas for Ramanujan's harmonic number expansion Subjects: Classical Analysis and ODEs (math.CA); General Mathematics (math.GM) An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas. As Harminic numbers and Ramanujan appear to popular on EIS, may I ask for someone to help me in my befuddlement? From jvospost3 at gmail.com Fri Jul 27 20:48:04 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 27 Jul 2007 11:48:04 -0700 Subject: Ramanujan-Lodge's Harmonic Number approximation In-Reply-To: <563222.67756.qm@web86610.mail.ukl.yahoo.com> References: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> <563222.67756.qm@web86610.mail.ukl.yahoo.com> Message-ID: <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> Thank you, Ray and Martin. I have emailed Mark B. Villarino, using the most recent Costa Rica email address I could find by Googling (oddly, one is not given in the arXiv paper), saying, before including your comments (but not giving out your email addresses nor that of Seqfans): I enjoyed your paper (and several earlier papers as well on Decartes' Perfect Lens, On the Archimedean or Semiregular Polyhedra, Mertens' Proof of Mertens' Theorem, ...), and initiated an online conversation that provides you a correction and a simplification. From martin_n_fuller at btinternet.com Fri Jul 27 19:49:50 2007 From: martin_n_fuller at btinternet.com (Martin Fuller) Date: Fri, 27 Jul 2007 18:49:50 +0100 (BST) Subject: Ramanujan-Lodge's Harmonic Number approximation In-Reply-To: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> Message-ID: <563222.67756.qm@web86610.mail.ukl.yahoo.com> It looks like a typo in the paper. It should be: ((12 * gamma) - 11 + (12 * ln(2^0.5))) / (1 - gamma - ln(2^0.5)) or more simply: 1 / (1 - gamma - ln(2^0.5)) - 12 The second constant is more simply written as: 1 / (1 - gamma - ln(3/2)) - 54 --- Jonathan Post wrote: > While preparing to submit to OEIS the decimal digits of two constant > used in the Ramanujan-Lodge Harmonic Number approximation and the > DeTemple-Wang Harmonic Number approximation, I ran into trouble. > > I must be doing something really stupid. > > Both the low-res Google calculator and the high-res WIMS calculator > tell me that > > ((12 * gamma) - 11 - (12 * ln(2))) / (1 - gamma - ln(2^0.5)) = > -162.5909 > > where gamma is Euler's constant. > > But Theorem 6 of the arXiv citation, formula (1.13), page 6, insists > that this constant is roughly 1.12150934. > > http://arxiv.org/pdf/0707.3950 > Title: Ramanujan's Harmonic Number Expansion into NegativePowers > of a Triangular Number > Authors: Mark B. Villarino > Comments: sharp error estimates and general formulas for > Ramanujan's harmonic number expansion > Subjects: Classical Analysis and ODEs (math.CA); General > Mathematics (math.GM) > > An algebraic transformation of the DeTemple-Wang half-integer > approximation to the harmonic series produces the general formula and > error estimate for the Ramanujan expansion for the nth harmonic > number > into negative powers of the nth triangular number. We also discuss > the > history of the Ramanujan expansion for the nth harmonic number as > well > as sharp estimates of its accuracy, with complete proofs, and we > compare it with other approximative formulas. > > As Harminic numbers and Ramanujan appear to popular on EIS, may I ask > for someone to help me in my befuddlement? > I'm curious how a sieve, similar to the sieve of Erosthanese, would "perform". The basic idea is this: suppose that n is some number that you want to factor. Assume that you can map, for x = 0 to some upper bound less than the smallest factor of n, n == a mod x --> f == b mod x, where f is a factor of n. Say, for instance: n == 2 mod 3, therefore f == 1 mod 3 n == 1 mod 4, therefore f == 3 mod 4 n == 4 mod 5, therefore f == 2 mod 5 & etc. Thus we could establish a "profile" for f, which can be turned into a sieve by finding all integers congruent to 1 mod 3, then a subset congruent to 3 mod 4, then a subset of that congruent to 2 mod 5, etc. My question is how "quickly" can we narrow in on possible values for f by using this sieve? I think something like this may be possible for values of n with certain properties, but I'm not sure how well it'd perform. From aplewe at sbcglobal.net Fri Jul 27 21:28:30 2007 From: aplewe at sbcglobal.net (Andrew Plewe) Date: Fri, 27 Jul 2007 12:28:30 -0700 Subject: A theoretical question -- sieving via n mod x In-Reply-To: <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> References: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> <563222.67756.qm@web86610.mail.ukl.yahoo.com> <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> Message-ID: <200707271935.l6RJZCci090307@shiva.jussieu.fr> I just submitted 4 related sequences, A131915 through A131918, which are the digits (1st 100) of the decimal expansions of, and the continued fraction expansions (100 integers) of the two formulae, in all cases crediting Martin Fuller's simplifications and/or corrections of Mark B. Villarino's paper. From jvospost3 at gmail.com Sat Jul 28 02:38:51 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 27 Jul 2007 17:38:51 -0700 Subject: Ramanujan-Lodge's Harmonic Number approximation In-Reply-To: <5542af940707271735t4ea8f890y39802dd9c657193@mail.gmail.com> References: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> <563222.67756.qm@web86610.mail.ukl.yahoo.com> <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> <5542af940707271735t4ea8f890y39802dd9c657193@mail.gmail.com> Message-ID: <5542af940707271738m4533a2e7rbe837493872723c8@mail.gmail.com> Synchronicity strikes! At the same minute, I received this email from the author of the arXiv paper which Ray Chandler helped me determine had a typo, and Martin Fuller corrected and simplified the formulae: ============== Dear Jonathan Vos Post, Thank you so very much for your letter. You are quite right, and I have incorporated the correction/simplification into my preprint. It should appear on lanl.xxx on Monday. I am very grateful for the trouble you took and, as a naturally prejudiced author, I thank you for your kind words about my other preprints. The paper on semiregular polyhedra will appear in Elemente der Mathematik...it has been accepted for publication as part of the "Euler year." The paper on "The Probability of a Run" was published in the March, 2007, issue of the Mathematical Gazette. Finally, the paper on the accuracy or Ramanujan's approximation to the arc length of an ellipse was published in the online journal JIPAM (Journal of Inequalities in Pure and Applied Mathematics) in January of 2006. I would be delighted to join into any further dialogue about the paper. Again, thank you very much. Sincerely yours, MARK B. VILLARINO MARK B. VILLARINO Escuela de matem?tica Universidad de Costa Rica San Jos?, Costa RicaTelephone: 506-857-4679 email: mvillari at cariari.ucr.ac.cr email: mark.villarino at gmail.com ============== From franktaw at netscape.net Sat Jul 28 02:43:56 2007 From: franktaw at netscape.net (franktaw at netscape.net) Date: Fri, 27 Jul 2007 20:43:56 -0400 Subject: A theoretical question -- sieving via n mod x In-Reply-To: <200707271935.l6RJZCci090307@shiva.jussieu.fr> References: <200707271935.l6RJZCci090307@shiva.jussieu.fr> Message-ID: <8C99EC783AE068B-5F0-7232@mblk-d13.sysops.aol.com> Assuming that evaluating your function is fast, this should be very efficient. Combining results in different moduli is essentially just Euclid's algorithm (for the GCD) -- which is quite fast -- followed by a couple of multiplications and an addition. Franklin T. Adams-Watters -----Original Message----- From: Andrew Plewe I'm curious how a sieve, similar to the sieve of Erosthanese, would "perform". The basic idea is this: suppose that n is some number that you want to factor. Assume that you can map, for x = 0 to some upper bound less than the smallest factor of n, n == a mod x --> f == b mod x, where f is a factor of n. Say, for instance: n == 2 mod 3, therefore f == 1 mod 3 n == 1 mod 4, therefore f == 3 mod 4 n == 4 mod 5, therefore f == 2 mod 5 & etc. Thus we could establish a "profile" for f, which can be turned into a sieve by finding all integers congruent to 1 mod 3, then a subset congruent to 3 mod 4, then a subset of that congruent to 2 mod 5, etc. My question is how "quickly" can we narrow in on possible values for f by using this sieve? I think something like this may be possible for values of n with certain properties, but I'm not sure how well it'd perform. ________________________________________________________________________ Check Out the new free AIM(R) Mail -- Unlimited storage and industry-leading spam and email virus protection. There are three seqs titled "Number of weighted voting procedures" http://www.research.att.com/~njas/sequences/A005254 http://www.research.att.com/~njas/sequences/A005256 http://www.research.att.com/~njas/sequences/A005257 Could somebody define the term "weighted voting procedure" and add the information to differentiate the seqs? Hello seqfans, Here I see two entries with the same name: A030225 Number of n-celled polyhexes (hexagonal polyominoes) with bilateral symmetry. A002215 Number of polyhexes with n hexagons, having reflectional symmetry. Probably, the second one should be about "restricted" polyhexes, BUT, there are two entries about restricted polyhexes: A002216 Harary-Read numbers: restricted hexagonal polyominoes (cata-polyhexes) with n cells. A002212 Number of restricted hexagonal polyominoes with n cells. On top of that, if a2216 is the number of cata-polyhexes, then what is A038142 Number of planar cata-polyhexes with n cells. I am completely confused. Best, Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com You did such a great job removing duplicate sequences. How about duplicate definitions: A002212 Number of restricted hexagonal polyominoes with n cells. A005963 Number of restricted hexagonal polyominoes with n cells. Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com A001168 Number of fixed polyominoes with n cells. A006762 Number of fixed polyominoes with n cells. _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com Let me remind folks that the primary purpose of the OEIS is to give pointers to the literature, you can find out who else has studied the same sequence. I don't claim to give precise definitions for every single If you find two sequences with the same definition ("Related to the enumeration of ***", say), feel free to track down the references and Neil From arndt at jjj.de Sat Jul 28 12:06:39 2007 From: arndt at jjj.de (Joerg Arndt) Date: Sat, 28 Jul 2007 12:06:39 +0200 Subject: weighted voting sequences Message-ID: <20070728100639.GA15382@amd32.purzl.net> so that when you come across a sequence in your work, sequence - that would take more time than I have available. send me more precise definitions. Return-Path: X-Ids: 165 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=rtbvWqQNL0y7upsL3gKBcNxhUDGa0Lj+cR+bNeMa8uWvu+bUk1P6xAwv7NWzPfUgqLUh7vortlAQh4yY3/kk9T64EjwhZFlA4I/dEjYxYRaxN1iz714wIa1lgwnw6JYDDwevoMDMzx5q/nOCtgwVzJMazJh/PngHfku0d4Lte58= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=DMQOxaWf8bqYEWoE14TvyaJZe9rOb4s9ObMoAvNuV/witTIBZUtBZFMHYEpxjB+e7MfxoofytCHs8K8egX6FFqeiVNTPLIOEdThyCFWhdk5MHrNULTwl8RRNBihnCWDxOZb0JBYzoR/S4qN4nf57zGK0iWm36mAbEtKeAQdZ5/g= Message-ID: <5542af940707281505n357500fbu2fada9399c6b518c at mail.gmail.com> Date: Sat, 28 Jul 2007 15:05:59 -0700 From: "Jonathan Post" To: "Max Alekseyev" Subject: Re: definition of anti-divisor Cc: "Maximilian Hasler" , "Sequence Fans" , jvospost2 at yahoo.com In-Reply-To: <5542af940707242126q68201c55pf5c674ce6848194f at mail.gmail.com> MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <200707211141.l6LBf9dn795643 at fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b at mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8 at mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc at mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154 at mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562 at mail.gmail.com> <5542af940707242126q68201c55pf5c674ce6848194f at mail.gmail.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.165]); Sun, 29 Jul 2007 00:06:02 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3797/Sat Jul 28 21:36:26 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46ABBDC9.002 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.569 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46ABBDC9.002 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 3, 18, 1728, 679477248 %N A000001 Anti-primorials, partial products of anti-primes A092680. %C A000001 This is to primorial (A002110) as anti-prime (A092680) is to prime (A000040). Max Alekseyev points out that every element of A066466, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. There no such new k+1 (i.e., except known 1,2,6,18) below 1000. In other words, 3*2^n - 1, 3*2^n + 1 are twin primes for n=1,2,6,18. According to these tables: http://www.prothsearch.net/riesel.html http://www.prothsearch.net/riesel2.html there are no other such n up to 1200000. Therefore, the next element of A066466 (if it exists) is greater than 3*2^1200000 ~= 10^361236. Hence the next element of the anti-primorials (if it exists) is greater than 679477248 *3*2^1200000 ~= 679477248 * 10^361236 ~= 6 * 10^361245. %D A000001 1. %F A000001 a(n) = PRODUCT[k = 1..n] A092680(k). %e A000001 a(1) = 3. a(2) = 3 * 6 = 18. a(3) = 3 * 6 * 96 = 1728. a(4) = 3 * 6 * 96 * 393216 = 679477248. %Y A000001 Cf. A000040, A002110, A092680, A130874. %O A000001 1,1 %K A000001 ,nonn,unkn, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 28 2007 RH RA 192.20.225.32 From petsie at dordos.net Sun Jul 29 01:04:43 2007 From: petsie at dordos.net (Peter Pein) Date: Sun, 29 Jul 2007 01:04:43 +0200 Subject: a propos divisors... In-Reply-To: References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> Message-ID: <46ABCB8B.2090809@dordos.net> Max Alekseyev schrieb: > On 7/25/07, Peter Pein wrote: > >> a) n such there is at least one x> because there exists such a series for r=1 (A069822) >> >> and >> >> b) a(n)=min({k>0: sigma(r,k)=sigma(r,n)}) > > [...] > >> but for r = 3 the air becomes very thin. If I did not make a mistake, >> this seq starts(!): >> >> 194315, 295301, 590602, 1181204, 1476505, 1886920, 2067107, 2362408, >> 2526095, 2953010, 3248311, 3691985, 3838913, 4134214, 4469245, 4724816, >> 5020117, 5610719, 5635135, 5906020 > > [...] > >> And if you want to make me really happy (I have had birthday on July >> 24th ;-) (http://www.stevesbeatles.com/songs/when_im_sixty_four.asp this >> age will be reached in 20 years, but the symptoms... )): > > My congratulations! > Better late than never ;) Thank you! > >> If you've got Mathematica and more RAM (4GB or so) than I do (1.5 GB), >> could you please run this code with, say nmax=10 or 20 million? On my >> machine it swapped heavily with nmax=6 million and I had to kill >> MathKernel as I tried nmax=10^7. The lines above took ~181 seconds to >> evaluate (nmax=10^7 has been stopped by me after 15 minutes). I do not >> expect any runtimes of more than 7 minutes. Would this be possible, please? > > These are the values below 10^7 that I got with my C++ program using > LiDIA library: > > 194315 184926 > 295301 291741 > 590602 583482 > 1181204 1166964 > 1476505 1458705 > 1886920 1880574 > 2067107 2042187 > 2362408 2333928 > 2526095 2404038 > 2953010 2917410 > 3248311 3209151 > 3691985 3513594 > 3838913 3792633 > 4134214 4084374 > 4469245 4253298 > 4724816 4667856 > 5020117 4959597 > 5610719 5543079 > 5635135 5362854 > 5906020 5834820 > 6023765 5732706 > 6496622 6418302 > 6791923 6710043 > 7382525 7293525 > 7677826 7585266 > 7966915 7581966 > 8268428 8168748 > 8355545 7951818 > 8563729 8460489 > 9132805 8691522 > 9449632 9335712 > > Each here line contains a pair: > n k > such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your > notations above). > > I will let my program to run for a couple more days to reach 10^8 bound. > >> (AFAIK there exists no kind of "inverse >> function" to sigma(r,n) w.r.t. n which could be calculated without this >> brute-force method). > > I disagree with this statement. There is a more or less clever way to > reconstruct the inverse of m=sigma(r,n) w.r.t. n, using integer > factorization of m and a kind of brute-force but of the magnitude of > the number of divisors of m. > > Regards, > Max > Dear Max, :-) thank you very much! :-) I just entered the extension to A13190{7|8} and of course mentioned your name. When your program gives more results, please extend the sequences or if you've got a lot of numbers, send Neil a b-file. The method you mention sounds mangeable - I will look for that algorithm. Thanks again, Peter Dear seqfans, I'd appreciate information (including references) about conditions (necessary and/or sufficient) on a sequence of positive numbers a1, a2, a3, ... in order that their Hankel matrix be positive definite. Thanks, Emeric Dear seqfans, I'd appreciate information (including references) about conditions (necessary and/or sufficient) on a sequence of positive numbers a1, a2, a3, ... in order that their Hankel matrix be positive definite. Thanks, Emeric From deutsch at duke.poly.edu Sun Jul 29 06:12:09 2007 From: deutsch at duke.poly.edu (deutsch) Date: Sun, 29 Jul 2007 04:12:09 GMT Subject: positive definiteness of Hankel matrices In-Reply-To: <200707280825.AA3347841186@TanyaKhovanova.com> References: <200707280825.AA3347841186@TanyaKhovanova.com> Message-ID: <46ac1399.275.718.7202@duke.poly.edu> A006762 is counting only polyominoes that are strictly 2-dimensional - it excludes those where all the squares are in a single line. Thus, for n>1, A006762(n) = A001168(n) - 2. Franklin T. Adams-Watters -----Original Message----- From: Tanya Khovanova A001168 Number of fixed polyominoes with n cells. A006762 Number of fixed polyominoes with n cells. ________________________________________________________________________ Check Out the new free AIM(R) Mail -- Unlimited storage and industry-leading spam and email virus protection. From neoneye at gmail.com Sun Jul 29 19:13:08 2007 From: neoneye at gmail.com (Simon Strandgaard) Date: Sun, 29 Jul 2007 19:13:08 +0200 Subject: Sequence A112088 Motivation and Example? In-Reply-To: <46A90302.8020905@web.de> References: <4489D93F.3080902@web.de> <020401c68c0a$9470a650$6900000a@mcraeclan.com> <02a801c68c1c$1421f320$6900000a@mcraeclan.com> <46A90302.8020905@web.de> Message-ID: On 7/26/07, Rainer Rosenthal wrote: > Max Alekseyev wrote: > > On 6/9/06, Max wrote: > >>On 6/9/06, Graeme McRae wrote: > >>>It took me quite some time to understand how Ranier Rosenthal is counting > Rainer (please) > >>>rounds, before I obtained A112088 as the number of rounds necessary to kill > >>>all but one of n players of the Josephus Game with every third man out. > > Many many thanks for this post! > > Some days ago I found my last scribblings, which were meant for > another comment to A112088. But it's all that long ago ... I > didn't understand anything of what I wrote :-( > > I'm going to print your mail now and maybe I will find the > energy to get back to all these lovely round-countings. > > As far as I remember I wasn't able to really grasp the idea of > the original submitter (Simon Strandgaard). From the discussions > in de.sci.mathematik and de.rec.denksport I remember that there > were some remarks giving hints to Knuth. Oops ... long time ago. I wrote a step-by-step guide to how a112088 works, see http://www.research.att.com/~njas/sequences/a112088.html maybe it can be useful to you? -- Simon Strandgaard From Eric.Angelini at kntv.be Mon Jul 30 00:11:35 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 30 Jul 2007 00:11:35 +0200 Subject: Substrings in A046043 Message-ID: Hello SeqFans, Integers of A046043 are interpreted like this: 0123 1210 = one 0 two 1 one 2 zero 3 -> one,two,one,zero = 1210 0123 2020 = two 0 zero 1 two 2 zero 3 -> two,zero,two,zero = 2020 01234 21200 = two 0 one 1 two 2 zero 3 zero 4 -> two,one,two,zero,zero = 21200 0123456 3211000 = three 0 two 1 one 2 one 3 zero 4 zero 5 zero 6 -> etc. = 3211000 ... 0123456789 6210001000 = six 0 two 1 one 2 zero 3 zero 4 zero 5 one 6 zero 7 zero 8 zero 9 Now if we add an extra string "10" in the upper line we could perhaps go on in the sequence like this: 012345678910 53110100002 ... meaning that we have in the integer 53110100002: - five (sub)strings "0" - three strings "1" - one string 2 - one string 3 - zero string 4 - one string 5 - zero string 6 - zero string 7 - zero string 8 - zero string 9 - two strings 10 What would be the next integers in the sequence? Best, E. -------------- next part -------------- An HTML attachment was scrubbed... URL: From Eric.Angelini at kntv.be Mon Jul 30 00:45:48 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 30 Jul 2007 00:45:48 +0200 Subject: =?iso-8859-1?Q?RE=A0=3A_Substrings_in_A046043_?= Message-ID: ... > meaning that we have in the integer 53110100002 (...) ... The length of such an integer indicates obviously how many (sub)strings have to be discribed: 53110100002 has 11 digits thus the 11 substrings "0", "1"... to "10" must be described > What would be the next integers in the sequence? ... I don't know if there is something before 62200010001: 012345678910 62200010001 Best, E. -------------- next part -------------- An HTML attachment was scrubbed... URL: From qq-quet at mindspring.com Mon Jul 30 16:23:05 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Mon, 30 Jul 07 08:23:05 -0600 Subject: Do any integers occur in both sequences? In-Reply-To: <46ABCB8B.2090809@dordos.net> References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> <46ABCB8B.2090809@dordos.net> Message-ID: ------=_Part_17373_17766144.1185831725052 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 7bit Content-Disposition: inline On 7/28/07, Peter Pein wrote: > > Each here line contains a pair: > > n k > > such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your > > notations above). > > > > I will let my program to run for a couple more days to reach 10^8 bound. I stopped the program after it reached 7*10^7 as it started to eat too much memory. The results are attached. Please format them and submit to OEIS as you feel appropriate. P.S. Eventually I've defended Ph.D. in Computer Science ;) Regards, Max ------=_Part_17373_17766144.1185831725052 Content-Type: text/plain; name=sigma3.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4rhifo0 Content-Disposition: attachment; filename="sigma3.txt" MTk0MzE1IDE4NDkyNgoyOTUzMDEgMjkxNzQxCjU5MDYwMiA1ODM0ODIKMTE4 MTIwNCAxMTY2OTY0CjE0NzY1MDUgMTQ1ODcwNQoxODg2OTIwIDE4ODA1NzQK MjA2NzEwNyAyMDQyMTg3CjIzNjI0MDggMjMzMzkyOAoyNTI2MDk1IDI0MDQw MzgKMjk1MzAxMCAyOTE3NDEwCjMyNDgzMTEgMzIwOTE1MQozNjkxOTg1IDM1 MTM1OTQKMzgzODkxMyAzNzkyNjMzCjQxMzQyMTQgNDA4NDM3NAo0NDY5MjQ1 IDQyNTMyOTgKNDcyNDgxNiA0NjY3ODU2CjUwMjAxMTcgNDk1OTU5Nwo1NjEw NzE5IDU1NDMwNzkKNTYzNTEzNSA1MzYyODU0CjU5MDYwMjAgNTgzNDgyMAo2 MDIzNzY1IDU3MzI3MDYKNjQ5NjYyMiA2NDE4MzAyCjY3OTE5MjMgNjcxMDA0 Mwo3MzgyNTI1IDcyOTM1MjUKNzY3NzgyNiA3NTg1MjY2Cjc5NjY5MTUgNzU4 MTk2Ngo4MjY4NDI4IDgxNjg3NDgKODM1NTU0NSA3OTUxODE4Cjg1NjM3Mjkg ODQ2MDQ4OQo5MTMyODA1IDg2OTE1MjIKOTQ0OTYzMiA5MzM1NzEyCjEwMDQw MjM0IDk5MTkxOTQKMTAyOTg2OTUgOTgwMTA3OAoxMDMzNTUzNSAxMDIxMDkz NQoxMDkyNjEzNyAxMDc5NDQxNwoxMTIyMTQzOCAxMTA4NjE1OAoxMTQ2NDU4 NSAxMDkxMDYzNAoxMTgxMjA0MCAxMTY2OTY0MAoxMTg1MzIxNSAxMTI4MDQ4 NgoxMjEwNzM0MSAxMTk2MTM4MQoxMjY5Nzk0MyAxMjU0NDg2MwoxMjk5MzI0 NCAxMjgzNjYwNAoxMzAxOTEwNSAxMjM5MDA0MgoxMzU4Mzg0NiAxMzQyMDA4 NgoxMzc5NjM2NSAxMzEyOTc0NgoxNDE4NDk5NSAxMzQ5OTU5OAoxNDQ2OTc0 OSAxNDI5NTMwOQoxNDc2NTA1MCAxNDU4NzA1MAoxNTM1MDg4NSAxNDYwOTE1 NAoxNTM1NTY1MiAxNTE3MDUzMgoxNTY1MDk1MyAxNTQ2MjI3MwoxNjEyODE0 NSAxNTM0ODg1OAoxNjI0MTU1NSAxNjA0NTc1NQoxNjUzNjg1NiAxNjMzNzQ5 NgoxNzEyNzQ1OCAxNjkyMDk3OAoxNzI5NDAzNSAxNjQ1ODQxNAoxNzQyMjc1 OSAxNzIxMjcxOQoxODg0ODU1NSAxNzkzNzgyMgoxODg5OTI2NCAxODY3MTQy NAoxOTE5NDU2NSAxODk2MzE2NQoxOTYyNTgxNSAxODY3NzUyNgoxOTc4NTE2 NyAxOTU0NjY0NwoyMDAxNDQ0NSAxOTA0NzM3OAoyMDA4MDQ2OCAxOTgzODM4 OAoyMDY3MTA3MCAyMDQyMTg3MAoyMDc1NjEyMCAyMDY4NjMxNAoyMDc5MTcw NSAxOTc4NzA4MgoyMDk2NjM3MSAyMDcxMzYxMQoyMTE4MDMzNSAyMDE1Njkz NAoyMTU1Njk3MyAyMTI5NzA5MwoyMTg1MjI3NCAyMTU4ODgzNAoyMTk1NzU5 NSAyMDg5NjYzOAoyMjQ0Mjg3NiAyMjE3MjMxNgoyMjczODE3NyAyMjQ2NDA1 NwoyMzMyODc3OSAyMzA0NzUzOQoyMzYyNDA4MCAyMzMzOTI4MAoyNDIxNDY4 MiAyMzkyMjc2MgoyNDUwOTk4MyAyNDIxNDUwMwoyNDUyOTk2MCAyNDQ0NzQ2 MgoyNDY3ODAwNSAyMzQ4NTYwMgoyNTEwMDU4NSAyNDc5Nzk4NQoyNTM5NTg4 NiAyNTA4OTcyNgoyNTQ1NTI2NSAyNDIyNTMwNgoyNTk4NjQ4OCAyNTY3MzIw OAoyNjI4MTc4OSAyNTk2NDk0OQoyNjYyMTE1NSAyNTMzNDg2MgoyNjg3MjM5 MSAyNjU0ODQzMQoyNzAwOTc4NSAyNTcwNDcxNAoyNzE2NzY5MiAyNjg0MDE3 MgoyODA1MzU5NSAyNzcxNTM5NQoyODY0NDE5NyAyODI5ODg3NwoyODkzOTQ5 OCAyODU5MDYxOAoyODk1MjkzNSAyNzU1Mzk3NAoyOTM0MTU2NSAyNzkyMzgy NgoyOTUzMDEwMCAyOTE3NDEwMAoyOTgyNTQwMSAyOTQ2NTg0MQozMDUwNzQ1 NSAyOTAzMzM4MgozMDcxMTMwNCAzMDM0MTA2NAozMTMwMTkwNiAzMDkyNDU0 NgozMTU5NzIwNyAzMTIxNjI4NwozMTY3MzM0NSAzMDE0MjkzOAozMjE4Nzgw OSAzMTc5OTc2OQozMjQ1MDYwNSAzMDg4MjY0MgozMjQ4MzExMCAzMjA5MTUx MAozMjgzOTIzNSAzMTI1MjQ5NAozMzA3MzcxMiAzMjY3NDk5MgozMzM2OTAx MyAzMjk2NjczMwozMzYxNjQ5NSAzMTk5MjE5OAozMzk1OTYxNSAzMzU1MDIx NQozNDI1NDkxNiAzMzg0MTk1NgozNDc4MjM4NSAzMzEwMTc1NAozNDg0NTUx OCAzNDQyNTQzOAozNTE0MDgxOSAzNDcxNzE3OQozNTE3MTAxNSAzMzQ3MTYw NgozNTczMTQyMSAzNTMwMDY2MQozNTg1MTQ4MCAzNTczMDkwNgozNjkxMjYy NSAzNjQ2NzYyNQozNzExNDE2NSAzNTMyMDg2NgozNzUwMjc5NSAzNTY5MDcx OAozNzUwMzIyNyAzNzA1MTEwNwozNzc5ODUyOCAzNzM0Mjg0OAozODI4MDA1 NSAzNjQzMDQyMgozODM4OTEzMCAzNzkyNjMzMAozODY2ODY4NSAzNjgwMDI3 NAozODY4NDQzMSAzODIxODA3MQozOTI3NTAzMyAzODgwMTU1MwozOTU3MDMz NCAzOTA5MzI5NAo0MDE2MDkzNiAzOTY3Njc3Ngo0MDQ1NjIzNyAzOTk2ODUx Nwo0MTAwMDQ2NSAzOTAxOTM4Ngo0MTA0NjgzOSA0MDU1MTk5OQo0MTM0MjE0 MCA0MDg0Mzc0MAo0MTkzMjc0MiA0MTQyNzIyMgo0MjIyODA0MyA0MTcxODk2 Mwo0MjgxODY0NSA0MjMwMjQ0NQo0MzExMzk0NiA0MjU5NDE4Ngo0MzMzMjI0 NSA0MTIzODQ5OAo0MzcwNDU0OCA0MzE3NzY2OAo0Mzk5OTg0OSA0MzQ2OTQw OQo0NDEwOTUwNSA0MTk3ODIwMgo0NDQ5ODEzNSA0MjM0ODA1NAo0NDU5MDQ1 MSA0NDA1Mjg5MQo0NDg4NTc1MiA0NDM0NDYzMgo0NTI3NTM5NSA0MzA4Nzc1 OAo0NTQ3NjM1NCA0NDkyODExNAo0NjM2MjI1NyA0NTgwMzMzNwo0NjQ0MTI4 NSA0NDE5NzMxNAo0NjY1NzU1OCA0NjA5NTA3OAo0NjgyOTkxNSA0NDU2NzE2 Ngo0NzI0ODE2MCA0NjY3ODU2MAo0NzU0MzQ2MSA0Njk3MDMwMQo0Nzk5NTgw NSA0NTY3NjcyMgo0ODEzNDA2MyA0NzU1Mzc4Mwo0ODQyOTM2NCA0Nzg0NTUy NAo0ODc3MzA2NSA0NjQxNjQyNgo0OTAxOTk2NiA0ODQyOTAwNgo0OTMxNTI2 NyA0ODcyMDc0Nwo0OTkwNTg2OSA0OTMwNDIyOQo0OTkzODk1NSA0NzUyNTk4 Mgo1MDIwMTE3MCA0OTU5NTk3MAo1MDc5MTc3MiA1MDE3OTQ1Mgo1MTA4NzA3 MyA1MDQ3MTE5Mwo1MTEwNDg0NSA0ODYzNTUzOAo1MTY3NzY3NSA1MTA1NDY3 NQo1MTk3Mjk3NiA1MTM0NjQxNgo1MjI3MDczNSA0OTc0NTA5NAo1MjU2MzU3 OCA1MTkyOTg5OAo1MjY1OTM2NSA1MDExNDk0Ngo1Mjg1ODg3OSA1MjIyMTYz OQo1MzQ0OTQ4MSA1MjgwNTEyMQo1Mzc0NDc4MiA1MzA5Njg2Mgo1MzgyNTI1 NSA1MTIyNDUwMgo1NDMzNTM4NCA1MzY4MDM0NAo1NDYwMjUxNSA1MTk2NDIw Ngo1NDYzMDY4NSA1Mzk3MjA4NQo1NDcyMDY4MCA1NDUzNjY0Ngo1NDk5MTE0 NSA1MjMzNDA1OAo1NTIyMTI4NyA1NDU1NTU2Nwo1NjEwNzE5MCA1NTQzMDc5 MAo1NjQwMjQ5MSA1NTcyMjUzMQo1NjkzNDI5NSA1NDE4MzMxOAo1Njk5MzA5 MyA1NjMwNjAxMwo1NzI4ODM5NCA1NjU5Nzc1NAo1Nzg3ODk5NiA1NzE4MTIz Ngo1ODEwMDE4NSA1NTI5Mjg3NAo1ODE3NDI5NyA1NzQ3Mjk3Nwo1ODQ5NDUy MCA1ODI5Nzc5NAo1ODc2NDg5OSA1ODA1NjQ1OQo1OTA2MDIwMCA1ODM0ODIw MAo1OTY1MDgwMiA1ODkzMTY4Mgo1OTY1NDcwNSA1Njc3MjI4Mgo1OTk0NjEw MyA1OTIyMzQyMwo2MDQzMTk2NSA1NzUxMTk4Ngo2MDUzNjcwNSA1OTgwNjkw NQo2MDgyMDU5NSA1Nzg4MTgzOAo2MTQyMjYwOCA2MDY4MjEyOAo2MTU5Nzg1 NSA1ODYyMTU0Mgo2MTcxNzkwOSA2MDk3Mzg2OQo2MjMwODUxMSA2MTU1NzM1 MQo2MjYwMzgxMiA2MTg0OTA5Mgo2MzE5NDQxNCA2MjQzMjU3NAo2MzQ4OTcx NSA2MjcyNDMxNQo2NDMxODI2NSA2MTIxMDUwNgo2NDM3NTYxOCA2MzU5OTUz OAo2NDk2NjIyMCA2NDE4MzAyMAo2NTI2MTUyMSA2NDQ3NDc2MQo2NTQ4NDE1 NSA2MjMyMDA2Mgo2NTg1MjEyMyA2NTA1ODI0Mwo2NjE0NzQyNCA2NTM0OTk4 NAo2NjczODAyNiA2NTkzMzQ2Ngo2NzAzMzMyNyA2NjIyNTIwNwo2NzQyNzMw NSA2NDE2OTMyMgo2NzYyMzkyOSA2NjgwODY4OQo2NzgxNTkzNSA2NDUzOTE3 NAo2NzkxOTIzMCA2NzEwMDQzMAo2ODUwOTgzMiA2NzY4MzkxMgo2ODU5MzE5 NSA2NTI3ODg3OAo2ODgwNTEzMyA2Nzk3NTY1Mwo2OTY5MTAzNiA2ODg1MDg3 Ngo2OTc1OTA4NSA2NjM4ODQzNAo2OTgxNjA0MCA2OTU4MTIzOAo3MDE0Nzcx NSA2Njc1ODI4Ngo3MDI4MTYzOCA2OTQzNDM1OAo3MDU3NjkzOSA2OTcyNjA5 OQo= ------=_Part_17373_17766144.1185831725052-- From petsie at dordos.net Tue Jul 31 04:32:57 2007 From: petsie at dordos.net (Peter Pein) Date: Tue, 31 Jul 2007 04:32:57 +0200 Subject: Do any integers occur in both sequences? In-Reply-To: References: Message-ID: <46AE9F59.9010203@dordos.net> Leroy Quet schrieb: > I have just submitted these two interdependent sequences (So don't look > for them in the database yet): > >> %I A131937 >> %S A131937 1,4,8,14,21,29,38,49,61 >> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131938). >> %e A131937 A131938: 2,5,10,16,23,32,42,53,... >> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >> So A131937(8) = A131937(7) + 11 = 49. >> %Y A131937 A131938 >> %O A131937 1 >> %K A131937 ,more,nonn, > >> %I A131938 >> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131937). >> %e A131938 A131937: 1,4,8,14,21,29,... >> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >> So A131938(8) = A131938(7) + 11 = 53. >> %Y A131938 A131937 >> %O A131938 1 >> %K A131938 ,more,nonn, > > > I have not thought about this too hard; so for all I know, the proof is > quite easy. > > Do any positive integers occur in both A131937 and A131938? > > Thanks, > Leroy Quet > Hello Leroy, let's just do the first step (n=3) to extend these lists: (let A131937=:l1 and A131938=:l2) I get Complement[posint, l2]={1,3,4,6,7,8,9,...} Therefore the third positive integer which is not in l2 is 4 again and l1 starts {1, 4, 4, 6, 8, 10, 12} and l2 begins {2, 5, 5, 7, 9, 11, 13} The Mma-Code and its output: each "grouped output" consists of l1 & l2 so far, n followed by the complement of (the begin of) N w.r.t. l2 and l1 resp.; you can count the elements using the latter. In[26]:= list1={1,4};list2={2,5};n=3; Do[ Print[{list1,list2}]; Print[n," ",Complement[Range[15],#]&/@{list2,list1}]; AppendTo[list1,Part[Complement[Range[n+Length[list2]],list2],n]]; AppendTo[list2,Part[Complement[Range[n+Length[list1]],list1],n]]; n++; ,{5}]; list1 list2 Intersection[%%,%] From In[26]:= {{1,4},{2,5}} From In[26]:= 3 {{1,3,4,6,7,8,9,10,11,12,13,14,15}, {2,3,5,6,7,8,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4},{2,5,5}} From In[26]:= 4 {{1,3,4,6,7,8,9,10,11,12,13,14,15}, {2,3,5,6,7,8,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4,6},{2,5,5,7}} From In[26]:= 5 {{1,3,4,6,8,9,10,11,12,13,14,15}, {2,3,5,7,8,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4,6,8},{2,5,5,7,9}} From In[26]:= 6 {{1,3,4,6,8,10,11,12,13,14,15}, {2,3,5,7,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4,6,8,10},{2,5,5,7,9,11}} From In[26]:= 7 {{1,3,4,6,8,10,12,13,14,15}, {2,3,5,7,9,11,12,13,14,15}} Out[28]= (* A131937 *) {1,4,4,6,8,10,12} Out[29]= (* A131938 *) {2,5,5,7,9,11,13} Out[30]= (* intersection *) {} These are the first elements of l1 and l2 after 100 iterations: {1,4,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,\ 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,\ 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,\ 142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,\ 180,182,184,186,188,190,192,194,196,198,200,202} {2,5,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,\ 55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,\ 105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,\ 143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,\ 181,183,185,187,189,191,193,195,197,199,201,203} and the intersection is empty. Looks like the algorithm separates odd and even numbers. Because the algorithm is very inefficient, I've chosen 10^4 as maximum number of iterations: list1={1,4};list2={2,5};n=3; Do[ AppendTo[list1,Part[Complement[Range[n+Length[list2]],list2],n]]; AppendTo[list2,Part[Complement[Range[n+Length[list1]],list1],n]]; n++; ,{10^4}]; Intersection[list1,list2] --> {} and the lists (almost) are the evens and the odds: Take[#,-5]&/@{list1,list2} {{19994,19996,19998,20000,20002},{19995,19997,19999,20001,20003}} I guess, something went wrong in your definition or in my algorithm. Best regards, Peter From petsie at dordos.net Tue Jul 31 05:11:58 2007 From: petsie at dordos.net (Peter Pein) Date: Tue, 31 Jul 2007 05:11:58 +0200 Subject: Do any integers occur in both sequences? In-Reply-To: References: Message-ID: <46AEA87E.1010709@dordos.net> Leroy Quet schrieb: > I have just submitted these two interdependent sequences (So don't look > for them in the database yet): > >> %I A131937 >> %S A131937 1,4,8,14,21,29,38,49,61 >> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131938). >> %e A131937 A131938: 2,5,10,16,23,32,42,53,... >> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >> So A131937(8) = A131937(7) + 11 = 49. >> %Y A131937 A131938 >> %O A131937 1 >> %K A131937 ,more,nonn, > >> %I A131938 >> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131937). >> %e A131938 A131937: 1,4,8,14,21,29,... >> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >> So A131938(8) = A131938(7) + 11 = 53. >> %Y A131938 A131937 >> %O A131938 1 >> %K A131938 ,more,nonn, > > > I have not thought about this too hard; so for all I know, the proof is > quite easy. > > Do any positive integers occur in both A131937 and A131938? > > Thanks, > Leroy Quet > Hi again, even if you meant "n-th pos. int. which does yet not occur in either l1 or l2" (or does one say "..does yet neither occur in l1 nor in l2"?) I get another result list1={1,4};list2={2,5};n=3; Do[ Print[{list1,list2}]; Print["n= ",n," ",Complement[Range[25],list2]]; AppendTo[list1,Part[Complement[Range[3n ],Union[list1,list2]],n]]; Print["n= ",n," ",Complement[Range[25],list1]]; AppendTo[list2,Part[Complement[Range[3n],Union[list1,list2]],n]]; n++; ,{5}]; list1 list2 Intersection[%%,%] {{1,4},{2,5}} n= 3 {1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} n= 3 {2,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} {{1,4,7},{2,5,8}} n= 4 {1,3,4,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} n= 4 {2,3,5,6,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} {{1,4,7,10},{2,5,8,11}} n= 5 {1,3,4,6,7,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25} n= 5 {2,3,5,6,8,9,11,12,14,15,16,17,18,19,20,21,22,23,24,25} {{1,4,7,10,13},{2,5,8,11,14}} n= 6 {1,3,4,6,7,9,10,12,13,15,16,17,18,19,20,21,22,23,24,25} n= 6 {2,3,5,6,8,9,11,12,14,15,17,18,19,20,21,22,23,24,25} {{1,4,7,10,13,16},{2,5,8,11,14,17}} n= 7 {1,3,4,6,7,9,10,12,13,15,16,18,19,20,21,22,23,24,25} n= 7 {2,3,5,6,8,9,11,12,14,15,17,18,20,21,22,23,24,25} l1: {1,4,7,10,13,16,19} l2: {2,5,8,11,14,17,20} intersection: {} And l1, l2 and intersection for the first 100 iterations are (sorry for weird linewidths): {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304} {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305} {} and after 10^4 iterations (without intersections), lists end : In[121]:= Take[#1, -5]& /@ {list1, list2} Out[121]= {{29992, 29995, 29998, 30001, 30004}, {29993, 29996, 29999, 30002, 30005}} This time we've got {x: x == i mod 3} with i = 1,2. Testing the 10^4 iterations: Union[Mod[#,3]]&/@{list1,list2} --> {{1},{2}} Could you please explain in detail, how you've got your sequences? Peter From maxale at gmail.com Tue Jul 31 05:47:31 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 30 Jul 2007 20:47:31 -0700 Subject: Do any integers occur in both sequences? In-Reply-To: <46AEA87E.1010709@dordos.net> References: <46AEA87E.1010709@dordos.net> Message-ID: On 7/30/07, Peter Pein wrote: > Leroy Quet schrieb: > > I have just submitted these two interdependent sequences (So don't look > > for them in the database yet): > > > >> %I A131937 > >> %S A131937 1,4,8,14,21,29,38,49,61 > >> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which > >> does not occur in sequence A131938). > >> %e A131937 A131938: 2,5,10,16,23,32,42,53,... > >> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... > >> So A131937(8) = A131937(7) + 11 = 49. > >> %Y A131937 A131938 > >> %O A131937 1 > >> %K A131937 ,more,nonn, > > > >> %I A131938 > >> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 > >> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which > >> does not occur in sequence A131937). > >> %e A131938 A131937: 1,4,8,14,21,29,... > >> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... > >> So A131938(8) = A131938(7) + 11 = 53. > >> %Y A131938 A131937 > >> %O A131938 1 > >> %K A131938 ,more,nonn, [...] > Could you please explain in detail, how you've got your sequences? This is my PARI/GP code (for the first 50 terms) that confirms Leroy's values: { A=Set([1,4]); B=Set([2,5]); a=4; na=4; b=5; nb=3; for(n=3,50, until(!setsearch(A,na),na++); until(!setsearch(B,nb),nb++); a+=nb; b+=na; A=setunion(A,[a]); B=setunion(B,[b]); ); print(vecsort(eval(A))); print(vecsort(eval(B))); } Here the sets A and B collect elements (as computed) of A131937 and A131938 respectively; the variables a and b go over elements of A and B; variables na and nb go over non-elements of A and B. The output is: [1, 4, 8, 14, 21, 29, 38, 49, 61, 74, 88, 103, 120, 138, 157, 177, 198, 220, 244, 269, 295, 322, 350, 379, 409, 440, 473, 507, 542, 578, 615, 653, 692, 732, 773, 816, 860, 905, 951, 998, 1046, 1095, 1145, 1196, 1248, 1302, 1357, 1413, 1470, 1528] [2, 5, 10, 16, 23, 32, 42, 53, 65, 78, 93, 109, 126, 144, 163, 183, 205, 228, 252, 277, 303, 330, 358, 388, 419, 451, 484, 518, 553, 589, 626, 665, 705, 746, 788, 831, 875, 920, 966, 1013, 1061, 1111, 1162, 1214, 1267, 1321, 1376, 1432, 1489, 1547] Regards, Max A018892 ("Number of ways to write 1/n as a sum of exactly 2 unit fractions") has a simple formula a(n) = (d(n^2) + 1)/2, as noted in the first comment. There is a simple construction not mentioned there that nicely demonstrates the formula: 1/n = 1/(n+a) + 1/(n+b) implies ab = n^2. The same construction extends to the general case: to write m/n as a sum of 2 unit fractions, find a factorisation n^2 = xy, such that n + x == n + y == 0 (mod m). Then m/n = m/(n+x) + m/(n+y), and the RHS When m = 2, it remains simple: for odd n, any pair of factors of n^2 will both be odd, so n+x, n+y will be even in every case. So given: b(n) = Number of ways to write 2/n as a sum of exactly 2 unit fractions we get: b(n) = { A018892(n/2) if n == 0 (mod 2) For c(n) = Number of ways to write 3/n as a sum of exactly 2 unit fractions, we need to find the number of ways to split n^2 into 2 factors each equivalent either to 1 (mod 3) when n == 2 (mod 3), or vice versa. Writing n = PQ, such that P is a product of primes == 1 (mod 3) and Q a product of primes == 2 (mod 3), I find: c(n) = { A018892(n/3) if n == 0 (mod 3) I have an approach to prove this, by induction on multiplication of prime powers, but I suspect it is overly complex: can anyone suggest a simple proof of c(n)? I think the 2/n and 3/n cases are interesting enough to submit once I've for other m, I don't expect to submit those unless they prove unexpectedly interesting. Hugo From hv at crypt.org Tue Jul 31 14:01:16 2007 From: hv at crypt.org (hv at crypt.org) Date: Tue, 31 Jul 2007 13:01:16 +0100 Subject: A018892 and extensions Message-ID: <200707311201.l6VC1GwJ004230@zen.crypt.org> simplifies to two unit fractions. { A018892(n) if n == 1 (mod 2) { d(P^2) (d(Q^2) - 1) / 4 if n == 1 (mod 3) { d(P^2) (d(Q^2) + 1) / 4 if n == 2 (mod 3) satisfied myself of their correctness; while I plan to investigate m/n Return-Path: X-Ids: 168 Message-ID: <46AF3195.2070803 at dordos.net> Date: Tue, 31 Jul 2007 14:56:53 +0200 From: Peter Pein User-Agent: Thunderbird 1.5.0.12 (X11/20070604) MIME-Version: 1.0 To: Max Alekseyev CC: seqfan at ext.jussieu.fr Subject: Re: a propos divisors... References: <46A50268.3040307 at dordos.net> <46A812CD.60303 at dordos.net> <46ABCB8B.2090809 at dordos.net> In-Reply-To: X-Enigmail-Version: 0.94.2.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 7bit X-Provags-ID: V01U2FsdGVkX1+VNKtH587rPnaVfi40s3YE8ftID31QzFfc18j trNRDsile7wyx+bdbjqmSZ0uoJZRwizXiPofhP1NZDgRVqcQas y1cS+uU/PBrIC9NrqPKL439PjA+y73C X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Tue, 31 Jul 2007 15:01:58 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3834/Tue Jul 31 11:25:17 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46AF32C6.000 on shiva.jussieu.fr : j-chkmail score : X : 0/50 0 0.508 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46AF32C6.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Max Alekseyev schrieb: > On 7/28/07, Peter Pein wrote: > >>> Each here line contains a pair: >>> n k >>> such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your >>> notations above). >>> >>> I will let my program to run for a couple more days to reach 10^8 bound. > > I stopped the program after it reached 7*10^7 as it started to eat too > much memory. > The results are attached. Please format them and submit to OEIS as you > feel appropriate. > > P.S. Eventually I've defended Ph.D. in Computer Science ;) ... if you felt that this has been necessary... ;-) > > Regards, > Max > > Thank you again, Max. As soon as I've got a little bit more time to spare, I'll enter the values Peter From petsie at dordos.net Tue Jul 31 15:18:16 2007 From: petsie at dordos.net (Peter Pein) Date: Tue, 31 Jul 2007 15:18:16 +0200 Subject: Do any integers occur in both sequences? In-Reply-To: <46AEA87E.1010709@dordos.net> References: <46AEA87E.1010709@dordos.net> Message-ID: <46AF3698.6080307@dordos.net> Well, I should not post as early in the morning (at least not before I've got the third cup of coffee). I did not add a(n-1).... Sorry for any inconvenience, trouble and the like Peter P.S.: A131938-A131937 is (seems to be after coffee ;) ): {1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 10, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 21, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 25, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 40, 41, 42, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 46, 47, 48, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 52, 53, 54, 55, 56, 56, 56, 56, 56} Peter Pein schrieb: > Leroy Quet schrieb: >> I have just submitted these two interdependent sequences (So don't look >> for them in the database yet): >> >>> %I A131937 >>> %S A131937 1,4,8,14,21,29,38,49,61 >>> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >>> does not occur in sequence A131938). >>> %e A131937 A131938: 2,5,10,16,23,32,42,53,... >>> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >>> So A131937(8) = A131937(7) + 11 = 49. >>> %Y A131937 A131938 >>> %O A131937 1 >>> %K A131937 ,more,nonn, >>> %I A131938 >>> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >>> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >>> does not occur in sequence A131937). >>> %e A131938 A131937: 1,4,8,14,21,29,... >>> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >>> So A131938(8) = A131938(7) + 11 = 53. >>> %Y A131938 A131937 >>> %O A131938 1 >>> %K A131938 ,more,nonn, >> >> I have not thought about this too hard; so for all I know, the proof is >> quite easy. >> >> Do any positive integers occur in both A131937 and A131938? >> >> Thanks, >> Leroy Quet >> > Hi again, > > even if you meant "n-th pos. int. which does yet not occur in either l1 > or l2" (or does one say "..does yet neither occur in l1 nor in l2"?) I > get another result > > list1={1,4};list2={2,5};n=3; > Do[ > Print[{list1,list2}]; > Print["n= ",n," ",Complement[Range[25],list2]]; > AppendTo[list1,Part[Complement[Range[3n ],Union[list1,list2]],n]]; > Print["n= ",n," ",Complement[Range[25],list1]]; > AppendTo[list2,Part[Complement[Range[3n],Union[list1,list2]],n]]; > n++; > ,{5}]; > list1 > list2 > Intersection[%%,%] > .... I wrote: >I have just submitted these two interdependent sequences (So don't look >for them in the database yet): > >>%I A131937 >>%S A131937 1,4,8,14,21,29,38,49,61 >>%N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >>does not occur in sequence A131938). >>%e A131937 A131938: 2,5,10,16,23,32,42,53,... >>Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >>So A131937(8) = A131937(7) + 11 = 49. >>%Y A131937 A131938 >>%O A131937 1 >>%K A131937 ,more,nonn, > >>%I A131938 >>%S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >>%N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >>does not occur in sequence A131937). >>%e A131938 A131937: 1,4,8,14,21,29,... >>Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >>So A131938(8) = A131938(7) + 11 = 53. >>%Y A131938 A131937 >>%O A131938 1 >>%K A131938 ,more,nonn, > >I have not thought about this too hard; so for all I know, the proof is >quite easy. > >Do any positive integers occur in both A131937 and A131938? > >Thanks, >Leroy Quet I have made no progress towards determining if any particular positive integers occur within both sequences. (In other words: Does A131937(k) = A131938(j) for any j and k {j and k are >= 1}, where j need not equal k?) I conjecture that no particular positive integer occurs in both sequences. Here is a smaller result related to these sequences, which I doubt will help (dis)prove the main conjecture: Let a(n) = A131937(n), b(n) = A131938(n), a(0) = b(0) = 0. Let n = any positive integer. Then n occurs (a(n) - a(n-1) - 1) times in sequence {b(n) - b(n-1) - n + 1}. And n occurs (b(n) - b(n-1) - 1) times in sequence {a(n) - a(n-1) - n + 1}. Not too earth-shattering -- but while we're on the subject... Also, I wonder if anyone can come up with a closed form for {A131937(n)} and {A131938(n)}. They seem like they might be related to Beautty sequences somehow. Thanks, Leroy Quet A comment with seq A001006 http://www.research.att.com/~njas/sequences/A001006 This seems to be wrong, I get the counts Note the starts math, Motzkins start as Someone please verify! From qq-quet at mindspring.com Tue Jul 31 16:18:48 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Tue, 31 Jul 07 08:18:48 -0600 Subject: Do any integers occur in both sequences? Message-ID: says (near top): Number of sequences of length n-1 consisting of positive integers such that the opening and ending elements are 1 or 2, and the absolute difference between any 2 consecutive elements is 0 or 1. A024537 ,1, 2, 4, 9, 21, 50, 120, 289, 697, 1682 (=?= A018905) [1,] 1, 2, 4, 9, 21, 51, 127, 323, Return-Path: X-Ids: 168 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=eTM4iBw1Lnw+heXqYO8NGWJOVgYMGpoGs2s4hikTJbo88kRHfaMa2ZhX2vnMly81mwHE4xpJR6C0Ka82cAUpIMg94YlDZnhtecWVoYAenHs80zWIGNUlZrQriVw6qgGjZrJvPY9lzK7Dm2RN4gKI4FJ1tv5EDmfW2HYAuL+HS8A= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=dLvpK8Vovl94Tqxqr/Fp63Nx+oyMfEEBd077JZwlJsnTX4S6yC1hgY2lNm0mA4feEJ7yDuCXmT5htNfBd7Em3eRmNBf2Cv4p0qmPJfP6vGooaHplKRosADj5xspUYpRiKE7arLf6A1F/hGK4ueQMCCEKo6pTSOU87XNt932u7eo= Message-ID: Date: Tue, 31 Jul 2007 10:50:49 -0700 From: "Max Alekseyev" To: "Joerg Arndt" Subject: Re: possibly wrong comment with Motzkin numbers Cc: seqfan at ext.jussieu.fr In-Reply-To: <20070731152620.GA6791 at amd32.purzl.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <20070731152620.GA6791 at amd32.purzl.net> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Tue, 31 Jul 2007 19:50:51 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3835/Tue Jul 31 15:59:27 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46AF767A.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.510 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46AF767A.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! On 7/31/07, Joerg Arndt wrote: > A comment with seq A001006 > http://www.research.att.com/~njas/sequences/A001006 > says (near top): > Number of sequences of length n-1 consisting of positive integers > such that the opening and ending elements are 1 or 2, and the > absolute difference between any 2 consecutive elements is 0 or 1. > > This seems to be wrong, I get the counts > A024537 ,1, 2, 4, 9, 21, 50, 120, 289, 697, 1682 (=?= A018905) > > Note the starts math, Motzkins start as > [1,] 1, 2, 4, 9, 21, 51, 127, 323, With a simple recurrence formula implementation in PARI/GP, I confirm that the comment in A001006 is correct: { a(n,l) = if(n==1,(l==1)||(l==2),if(l<=0,0,a(n-1,l-1)+a(n-1,l)+a(n-1,l+1))) } { f(n) = a(n,1)+a(n,2) } ? vector(10,n,f(n)) %1 = [2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798] Here a(n,l) counts the number of sequences of positive integers of length n, starting with 1 or 2 and ending with l. Max From diana.mecum at gmail.com Sun Jul 1 05:58:30 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Sat, 30 Jun 2007 22:58:30 -0500 Subject: Question related to sequence A066452 Message-ID: Folks, I am trying to add extension terms for sequence A066452. I have a question. This is the internal text describing the sequence: %I A066452 %S A066452 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12, %T A066452 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23 %N A066452 Anti-phi(n). %H A066452 Jon Perry, Anti-phi function %F A066452 anti-phi(n) = number of integers <= n that are coprime to the anti-divisors of n %e A066452 10 has the anti-divisors 3,4,7. Therefore numbers coprime to 3,4,7 and less than 10 are are 1,2,5, therefore anti-phi(10)=3. %Y A066452 Cf. A058838, A066241. %Y A066452 Sequence in context: A024994 A051953 A079277 this_sequence A007104 A102627 A088296 %Y A066452 Adjacent sequences: A066449 A066450 A066451 this_sequence A066453 A066454 A066455 %K A066452 nonn,more,easy %O A066452 2,3 %A A066452 Jon Perry (perry(AT)globalnet.co.uk), Dec 29 2001 I found a definition for "anti-divisor" as follows: "Non-divisor: a number k which does not divide a given number x." "Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x." I see how Jon gets 3, 4 and 7 as anti-divisors of 10. However, 2 is not coprime to the anti-divisors of 10. He has 1, 2, and 5 as on the anti-phi list. The sequence which I derived for this sequence is: 1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 2, 5, 3, 5, 4, 9, 2, 4, 5, 6, 6, 6, 6, 10, 5, 8, 6, 5, 8, 8, 9, 12, 7, 10, 7, 12, 9, 8, 9, 13, 13, 9, 9, 14, 10 Can someone tell me if I am misunderstanding the definition of the sequence, or if I have found an error? Thanks, Diana M. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From joshua.zucker at gmail.com Sun Jul 1 06:44:41 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Sat, 30 Jun 2007 21:44:41 -0700 Subject: Question related to sequence A066452 In-Reply-To: References: Message-ID: <721e81490706302144v4a71e477jbca73f5e29577eea@mail.gmail.com> I don't understand it either, but at least I could use the wayback machine to track down the URL given, at http://tinyurl.com/2xuvgr And it says The anti-phi function is defined as the numbers wrote: > Folks, > > I am trying to add extension terms for sequence A066452. I have a question. > > This is the internal text describing the sequence: > > %I A066452 > %S A066452 > 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12, > %T A066452 > 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23 > %N A066452 Anti-phi(n). > %H A066452 Jon Perry, href="http://www.users.globalnet.co.uk/~perry/maths/antidivisorother2.htm > "> > Anti-phi function > %F A066452 anti-phi(n) = number of integers <= n that are coprime to the > anti-divisors of n > %e A066452 10 has the anti-divisors 3,4,7. Therefore numbers coprime to > 3,4,7 and less than > 10 are are 1,2,5, therefore anti-phi(10)=3. > %Y A066452 Cf. A058838, A066241. > %Y A066452 Sequence in context: A024994 A051953 A079277 this_sequence > A007104 A102627 A088296 > %Y A066452 Adjacent sequences: A066449 A066450 A066451 this_sequence A066453 > A066454 A066455 > %K A066452 nonn,more,easy > %O A066452 2,3 > %A A066452 Jon Perry (perry(AT)globalnet.co.uk), Dec 29 2001 > > I found a definition for "anti-divisor" as follows: > > "Non-divisor: a number k which does not divide a given number x." > "Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x." > > I see how Jon gets 3, 4 and 7 as anti-divisors of 10. However, 2 is not > coprime to the anti-divisors of 10. He has 1, 2, and 5 as on the anti-phi > list. > > The sequence which I derived for this sequence is: > > 1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 2, 5, 3, 5, 4, 9, 2, 4, 5, 6, 6, 6, 6, 10, 5, > 8, 6, 5, 8, 8, 9, 12, > 7, 10, 7, 12, 9, 8, 9, 13, 13, 9, 9, 14, 10 > > Can someone tell me if I am misunderstanding the definition of the sequence, > or if I have found an error? > > Thanks, > > Diana M. > > -- > "God made the integers, all else is the work of man." > L. Kronecker, Jahresber. DMV 2, S. 19. From zbi74583 at boat.zero.ad.jp Sun Jul 1 06:57:40 2007 From: zbi74583 at boat.zero.ad.jp (koh) Date: Sun, 01 Jul 2007 13:57:40 +0900 Subject: Quiz Message-ID: <20070701045738.zbi74583@boat.zero.ad.jp> Hi, Seqfans What are these sequences? S1 : 1,1,1,0,1,0,1,-1,0,1,2,2.... S2 : 1,2,3,-2,0,3,1,2,1,1.... Hint.... Graph, Euler Number, S1=English, S2=Japanese Yasutoshi From reismann at free.fr Sun Jul 1 11:52:37 2007 From: reismann at free.fr (reismann at free.fr) Date: Sun, 01 Jul 2007 11:52:37 +0200 Subject: =?iso-8859-1?b?Qe5vbg==?= and Chronos Message-ID: <1183283557.468779659d8ca@imp.free.fr> Hi seqfans, A?on and Chronos form the Deleuze's concept of time : Chronos : pulsated time (beats of our heart), the time of the history, the time which passes. A?on : the pure moment of time, the time of the events, of the "ecc??t?s", a time at the same time too late and too early. Ordinal and cardinal function of the numbers : There are apples on the table. 1, 2, 3, 4, 5, 6. I count apples, the numbers have an ordinal function, the action to count is held in the Chronos. There are thus 6 apples. 6 take a cardinal function, we are not located more in the Chronos, we are in another time : the A?on. In our vision of the natural numbers, in the vision of the fundamental theorem of the arithmetic, in the decomposition in weight*level with jump=0, we are in the A?on. To replace the natural numbers in the Chronos, it is enough to consider the decomposition in weight*level+jump with jump=1. We did not see the difference until now because the two decompositions give the same result (with a different offset). I think that it is thus because the jump is constant, the pulsation is regular. In A?on, the prime numbers are primes, they are of level 1, it is all. How to see in a new way prime numbers ? By considering them in the Chronos, by analyzing them by the decomposition in weight*level+jump. In this case the jump is not constant, the pulsation is irregular. There are "prime numbers" and "multiples" among the prime numbers ("prime numbers" and "multiples" remain to be defined in this case). The numbers have only one A?on but several Chronos. It is what I wanted to say by ?Numbers are nothings?. The numbers are nothing if one does not specify in which time one is located. Is the number in the A?on or the Chronos ? And if it is in the Chronos, in which Chronos is it ? 11 in A?on : 11 is prime, is of level 1. 11 in the Chronos of natural numbers : 11 has a weight of 2, 11 = 2*5+1. 11 in the Chronos of prime numbers : 11 has a weight of 3 : 11 = 3*3+2. Good thoughts, R?mi Eismann Deleuze on Wikipedia en : http://en.wikipedia.org/wiki/Deleuze Deleuze on Wikipedia fr : http://fr.wikipedia.org/wiki/Gilles_Deleuze On A?on and chronos (in french) : Le vocabulaire de Deleuze (r?alis? par Rapha?l Bessis) - http://tuxcafe.org/~renee/textes/deleuze/vocabulaire_deleuze.pdf From diana.mecum at gmail.com Sun Jul 1 16:56:15 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Sun, 1 Jul 2007 09:56:15 -0500 Subject: Question related to sequence A066452 In-Reply-To: <721e81490706302144v4a71e477jbca73f5e29577eea@mail.gmail.com> References: <721e81490706302144v4a71e477jbca73f5e29577eea@mail.gmail.com> Message-ID: Joshua, Thanks a bunch. I would never have been able to find this different spin on the definition of anti-phi. I have been able to replicate the original list. Diana M. On 6/30/07, Joshua Zucker wrote: > > I don't understand it either, but at least I could use the wayback > machine to track down the URL given, at > http://tinyurl.com/2xuvgr > > And it says > The anti-phi function is defined as the numbers any anti-divisor as a factor. > > Which may or may not be what they actually mean ... but at least it's > another possible interpretation to try. > > --Joshua Zucker > > > On 6/30/07, Diana Mecum wrote: > > Folks, > > > > I am trying to add extension terms for sequence A066452. I have a > question. > > > > This is the internal text describing the sequence: > > > > %I A066452 > > %S A066452 > > 1,1,2,1,4,1,4,4,3,2,8,3,7,7,9,2,8,5,10,10,8,6,19,6,12,9,9,8,22,9,12, > > %T A066452 > > 12,15,10,31,9,11,14,24,13,23,9,24,17,16,10,35,15,23 > > %N A066452 Anti-phi(n). > > %H A066452 Jon Perry, > href=" > http://www.users.globalnet.co.uk/~perry/maths/antidivisorother2.htm > > "> > > Anti-phi function > > %F A066452 anti-phi(n) = number of integers <= n that are coprime to the > > anti-divisors of n > > %e A066452 10 has the anti-divisors 3,4,7. Therefore numbers coprime to > > 3,4,7 and less than > > 10 are are 1,2,5, therefore anti-phi(10)=3. > > %Y A066452 Cf. A058838, A066241. > > %Y A066452 Sequence in context: A024994 A051953 A079277 this_sequence > > A007104 A102627 A088296 > > %Y A066452 Adjacent sequences: A066449 A066450 A066451 this_sequence > A066453 > > A066454 A066455 > > %K A066452 nonn,more,easy > > %O A066452 2,3 > > %A A066452 Jon Perry (perry(AT)globalnet.co.uk), Dec 29 2001 > > > > I found a definition for "anti-divisor" as follows: > > > > "Non-divisor: a number k which does not divide a given number x." > > "Anti-divisor: a non-divisor k of x with the property that k is an odd > > divisor of 2x-1 or 2x+1, or an even divisor of 2x." > > > > I see how Jon gets 3, 4 and 7 as anti-divisors of 10. However, 2 is not > > coprime to the anti-divisors of 10. He has 1, 2, and 5 as on the > anti-phi > > list. > > > > The sequence which I derived for this sequence is: > > > > 1, 1, 2, 1, 4, 1, 4, 4, 3, 2, 2, 5, 3, 5, 4, 9, 2, 4, 5, 6, 6, 6, 6, 10, > 5, > > 8, 6, 5, 8, 8, 9, 12, > > 7, 10, 7, 12, 9, 8, 9, 13, 13, 9, 9, 14, 10 > > > > Can someone tell me if I am misunderstanding the definition of the > sequence, > > or if I have found an error? > > > > Thanks, > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From jvospost3 at gmail.com Sun Jul 1 18:28:56 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 1 Jul 2007 09:28:56 -0700 Subject: =?WINDOWS-1252?Q?Re:_A=EEon_and_Chronos?= In-Reply-To: <1183283557.468779659d8ca@imp.free.fr> References: <1183283557.468779659d8ca@imp.free.fr> Message-ID: <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> Drifting away from seqfans primary function as I understand it, but directly on your topic, as I understand it: There is profane time, and there is sacred time. According to Eliade, myths describe a time that is fundamentally different from historical time (what modern man would consider "normal" time). "In short," says Eliade, "myths describe ? breakthroughs of the sacred (or the 'supernatural') into the World".[7] The mythical age is the time when the Sacred entered our world, giving it form and meaning: "The manifestation of the sacred ontologically founds the world".[8] Thus, the mythical age is sacred time, the only time that has value for traditional man. [7] Mircea Eliade, Myth and Reality, pg. 6 [8] Mircea Eliade, The Sacred and the Profane, pg. 21 http://en.wikipedia.org/wiki/Eternal_return_(Eliade) From reismann at free.fr Sun Jul 1 19:05:19 2007 From: reismann at free.fr (reismann at free.fr) Date: Sun, 01 Jul 2007 19:05:19 +0200 Subject: =?iso-8859-1?b?Qe5vbg==?= and Chronos In-Reply-To: <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> References: <1183283557.468779659d8ca@imp.free.fr> <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> Message-ID: <1183309519.4687decf17576@imp.free.fr> I agree, it is not the place to speak philosophy but as nobody speaks about my mathematical work... I do not agree on this concept of time. The sacred time, the mythical age, the "jadis', the ?it was once? of the tales are not times. They are "ecc??t?s", they make much more than to define a temporal framework, they create an environment, an atmosphere. The time of these "ecc??t?s" is indeed A?on. But the disctinction between A?on and Chronos is not the same one as between the sacred time and the profane time. Not. A?on is the pure moment of time, it is the point on the arrow of time, it is the time of a photography. In mathematics and sciences in general, one uses A?on, one analyzes photographs. By putting the numbers in their Chronos, their fitting, their otherness, we see them in another manner. With the decomposition of the prime numbers in weight*level+gap, I replace the prime numbers in their Chronos. Best, R?mi Eismann From jvospost3 at gmail.com Sun Jul 1 19:18:16 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 1 Jul 2007 10:18:16 -0700 Subject: =?ISO-8859-1?Q?Re:_A=EEon_and_Chronos?= In-Reply-To: <1183309519.4687decf17576@imp.free.fr> References: <1183283557.468779659d8ca@imp.free.fr> <5542af940707010928h4890e4b4ofa519b20a082694@mail.gmail.com> <1183309519.4687decf17576@imp.free.fr> Message-ID: <5542af940707011018g6dff5435w42ece630acbb0496@mail.gmail.com> I speak of your mathematical work: "It appears self consistent, correct, and, to me, interesting." Regarding Time, I have taught several hundred adult students a course on "Time Travel: Math, Physics, Fiction" using as textbook: Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction, by Paul J. Nahin, Springer-Verlag New York, 1993. There is greater clarity in studing primes, and asymptotic limits of real functions, than in the Philosophy of Time, or, perhaps, any Philosophy. So I shall for some time restrict my seqfans comments to Mathematics and Integers. Classically: "... But the position of these and similar authorities is made clear by Boethius, who says (V De Consolatione prosa 6), "When some people hear that Plato thought this world neither had a beginning in time nor will ever have an end, they mistakenly conclude that the created world is coeternal with the Creator. However, to be led through the endless life Plato attributes to the world is one thing; to embrace simultaneously the whole presence of endless life is quite another, and it is this latter that is proper to the divine mind." [PL 63, 859B] Medieval Sourcebook: Thomas Aquinas: On The Eternity of the World (DE AETERNITATE MUNDI) DE AETERNITATE MUNDI [[1]] Translation (c) 1991, 1997 by Robert T. Miller[[2]] Since people are posting sequence puzzles on seq.fan lately, I thought I would post this sequence puzzle of a different varity. I suspect this 'puzzle' is easy, and I'll probably regret I posted this. --- Let {c(k)} be as defined at sequence A022940. ({c(k)} itself is not in the EIS.) Define sequence {a(k)} as follows: Let b(n) = c(n) - n + 1. a(1) = the number of 1's in {b(k)}. a(2) = the number of 2's in {b(k)}. In general, a(n) = the number of n's in {b(k)}. So, {a(k)} begins: 0,1,1,3,5,6,7,9,... Define {a(k)}. (Define it in a simpler way than by the steps given above.) Thanks, Leroy Quet From qq-quet at mindspring.com Mon Jul 2 00:42:07 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Sun, 1 Jul 07 16:42:07 -0600 Subject: Another kind of sequence puzzle References: <1183283557.468779659d8ca@imp.free.fr> Message-ID: o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o SeqFiends, I can't recall the context, but we have several times over the past few years been discussing several questions about boolean functions B^k -> B and boolean mappings B^k -> B^n. I am finally getting some of the work that I referred to in slightly prettier shape. Here's a link to a paper on Differential Logic: http://www.centiare.com/Differential_Logic_and_Dynamic_Systems Related material can be found by perusing this directory page: http://www.centiare.com/Directory:Jon_Awbrey Some of this work even has a little bit to do with the love that Eternity bears toward the creatures of Time. Many Regards, Jon Awbrey CC: Arisbe Forum: http://stderr.org/pipermail/arisbe/ CC: Inquiry List: http://stderr.org/pipermail/inquiry/ o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o inquiry e-lab: http://stderr.org/pipermail/inquiry/ ?iare: http://www.centiare.com/Directory:Jon_Awbrey getwiki: http://www.getwiki.net/-User_talk:Jon_Awbrey zhongwen wp: http://zh.wikipedia.org/wiki/User:Jon_Awbrey http://www.altheim.com/ceryle/wiki/Wiki.jsp?page=JonAwbrey wp review: http://wikipediareview.com/index.php?showuser=398 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o From Eric.Angelini at kntv.be Mon Jul 2 17:28:54 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 2 Jul 2007 17:28:54 +0200 Subject: Seq and first diff show the same "digit pattern" Message-ID: Hello SeqFan, could someone compute a few more terms of this seq: 1 12 14 155 160 211 271 292 419 548 572 691 ... The principle is: - Seq and first diff show the same "digit pattern". S = 1 12 14 155 160 211 271 292 419 548 572 691 ... d = 11 2 141 5 51 60 21 127 129 24 19 ... Rules: - start S with "1" - add to the last term of S the smallest integer d no yet added and not present in S such that the concatenation of S's terms and the concatenation of all ds are the same string of digits So, never twice the same integer in sequence or first differences. I'm quite sure that all N's will be split between S and d. Best, ?. http://www.research.att.com/~njas/sequences/A110621 has a close Mathematica pgm by Robert G. Wilson. (thanks again to him!) Something is wrong with my email, and I haven't been receiving all emails have. I will post the solution now, even though only a short while has passed Original email as spoiler-space. >Since people are posting sequence puzzles on seq.fan lately, I thought I >would post this sequence puzzle of a different varity. > >I suspect this 'puzzle' is easy, and I'll probably regret I posted this. > >--- > >Let {c(k)} be as defined at sequence A022940. ({c(k)} itself is not in >the EIS.) > >Define sequence {a(k)} as follows: > >Let b(n) = c(n) - n + 1. > >a(1) = the number of 1's in {b(k)}. a(2) = the number of 2's in {b(k)}. >In general, a(n) = the number of n's in {b(k)}. > >So, {a(k)} begins: 0,1,1,3,5,6,7,9,... > >Define {a(k)}. (Define it in a simpler way than by the steps given above.) > >Thanks, >Leroy Quet I get that a(1)=0, a(2)=1. a(n) = c(n-2) -1, for n >= 3. I don't know if there is a "closed form" (nonrecursive representation) for {c(k)}. Thanks, leroy Quet From qq-quet at mindspring.com Mon Jul 2 19:29:58 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Mon, 2 Jul 07 11:29:58 -0600 Subject: Another kind of sequence puzzle Message-ID: sent to me. So I don't know if someone has posted the solution before I since I posted the question. Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:mime-version:content-type; b=bSWl7aVbAs0oQbKU+XGs+hIRBCABvZolGVZSiOQaoA4/29VkR4fyEMOQsyDenI510MzeSIv4B9jlgctY63FiUJyiVnzveXggkdxLfIspQQEGMMOMPkVtla3Mv5agO+29sgn92yhCz9MQ2ygh30g/Ay7fE75p/deamJcomUqhDuE= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:mime-version:content-type; b=R68LxrgxATculV2CXcXwou+Lxjh5z5n8CGCDmCnBL3kJIsFx+OhuTNnS6bosGN3/uY/lO/iwRhl0JtDdioauF6kKhcS6QLjEqzAHtEJQUwMwI7g4HpOUDZEO/dIPdO4Z6yOZTt+4cW8RtvFBVh2bQQPwW8O31axqNab+MKCzoj0= Message-ID: Date: Mon, 2 Jul 2007 20:36:10 -0500 From: xordan To: seqfan at ext.jussieu.fr Subject: relatively primes and prime numbers graphs. MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="----=_Part_104140_14761177.1183426570634" X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Tue, 03 Jul 2007 03:36:12 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3575/Mon Jul 2 21:19:14 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 4689A80C.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.000 -> 1 X-Miltered: at shiva.jussieu.fr with ID 4689A80C.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! ------=_Part_104140_14761177.1183426570634 Content-Type: multipart/alternative; boundary="----=_Part_104141_23199308.1183426570635" ------=_Part_104141_23199308.1183426570635 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline I understand that the attached file and the folloging words that don't coincide with the strict discussion line in seqfan, but they contain some graphic curiosities that I wanted to share with the members of the list. I wait some benevolent comments. Again I notice that the translation of the original in Spanish is made with the help of software: The attached file (coprimes.zip ) contains one book of calculation sheets that has 5 work sheets that give results (to my view) interesting related with the numbers relatively primes. The first sheet shows the numbers (1 to 256) relatively primes to each other that added (arithmetic sum) becomes a prime number as result; the second sheet shows the numbers relatively primes whose absolute difference becomes a prime number as result; the third are the conjunction of the previous two , that is to say the numbers relatively primes whose their algebraic sum gives as result a prime number. The fourth is the same graph that it appears in the current page http://mathworld.wolfram.com/RelativelyPrime.html (RelativelyPrime.gif) and that it shows the primes numbers relatively to each other. The fifth work sheet is the conjunction of RelativelyPrime.gif and the previous sheet "abs(r+-c)=prime". - With this it is shown graphically that all the numbers (r,c) whose algebraic sum is a prime number (p) they are relatively prime to each other. IF r+c=p THEN coprime(r,c)=1.- -- xordan at hotmail.com xordan_co at yahoo.com xordan.tom at gmail.com ------=_Part_104141_23199308.1183426570635 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline
I understand that the attached file and the folloging words that  don't coincide with the strict discussion line in seqfan, but they contain some graphic curiosities that I wanted to share with the members of the list. I wait some benevolent comments. Again I notice that the translation of the original in Spanish is made with the help of software:
 
The attached file (coprimes.zip ) contains one book of calculation sheets that has 5 work sheets that give results (to my view) interesting related with the numbers relatively primes.  
The first sheet shows the numbers (1 to 256) relatively primes to each other  that added (arithmetic sum)   becomes  a prime number as  result; the second sheet shows the numbers relatively primes  whose absolute difference becomes a prime number  as  result; the third are the conjunction of the previous two , that is to say the numbers relatively primes  whose their  algebraic sum  gives as  result a prime  number. The fourth is the same graph that it appears in the current page http://mathworld.wolfram.com/RelativelyPrime.html (RelativelyPrime.gif) and that it shows the primes numbers relatively to each other. The fifth work sheet is the conjunction of RelativelyPrime.gif and the previous sheet "abs(r+-c)=prime". - With this it is shown graphically that all the numbers (r,c) whose algebraic sum is a prime number (p) they are relatively prime to each other.
IF  r+c=p  THEN   coprime(r,c)=1.-
--
xordan at hotmail.com
xordan_co at yahoo.com
xordan.tom at gmail.com
------=_Part_104141_23199308.1183426570635-- ------=_Part_104140_14761177.1183426570634 Content-Type: application/zip; name=coprimes.zip Content-Transfer-Encoding: base64 X-Attachment-Id: f_f3npjtxd Content-Disposition: attachment; filename="coprimes.zip" UEsDBBQAAAAIAGSg4jbfFzBvq8oCAAD8DQAMAAAAY29wcmltZXMueGxz7Np3 VFSHtsfxMwjSpDPM0EcQlCr2imDvDXtFUFQERcFesaaoiYm9995j7733XtI0 iTFYYm+JCW/PYeYbJeO997217np/3Htcv5kP+5Q5zDns2bA8f87t1sKNPreV fEsVpYDyZ669UvCdmrNEY/7CVVHOykor4Z+5ubnmcrLkR0kX2fCOpKtscFfS vYCi5Eh6WCvKfUm6jaI8lPSSY+T+d/l/W/6QnJFrIJdGkcuiyCVRr7mtxE5i L3GQOEoKSZxM94FL3i2guEncJR4ST4lW4iXRSfQSb4mPxFfiJ/GXBEgCJQZJ YUmQJFhSRBIiCZUUlRSThEnCJRGSSEmUJFpSXBIjKSEpKSklKS0pIykrKScp L6kgqSipJKksiVWM97aixEniJVUl1STVJTUkNSW1JLUldSR1JfUk9SUNJA0l jSSNJU0kTSUJkmaS5pIWkpaSVpLWkjaStpJ2kvaSDpKOkkRJJ0mSpLPEeB26 yHOKpKukm6S7JFXSQ5ImSZf0lPSSZEh6S/pIMiVZkr6SfpL+kgGSgZJBksGS IZKhkmGS4ZIRkmzFeO4Z8q+vXIuacty+cizjHv/64iV3jPleMvYCg52VWt+f t9r4VirlR1rr7Pcc05wfpr3nJM8X5AaLD8vboJW8eqZ8d8nqeaRZeIV/vLgr VhrjPWc+h3+6g5LXs4YNdlKdKFermtwFiXI1E+Sq1pP3obpcyUR5bKFe2X+8 BCkajbEnGu9/9w9sk10zPcfpne//3XV5r/5/X+ykI5u/d/sPbNMpcqD6+q4b /sjJ//r2dvJTXNBGeaA9Y3visFAawW15hzZYH1Dfpx8U433b29gDWqX26pIx IMvQuonh379UU88hSWM8h/1yxrEaB+lPNvL9FpDv+JJUd2pcjB2peffUrFYZ mWnJGRlpc2QnZ2k5xp3c1UcP9XG9epjd6mOsrBkoP1b1owrqy8shreRwra3i 1e0mqo9B6qOzumabus9NtVJCGtlxec4dMSnvLTxno6kqN2+q/BCn/5vXLvjg 2gBrP3lbpN0GFQlqbwiODA6OqaSyfZT6RYB1YWnofu+tb5eQ0qXD+xsFScf3 f3ej6Jj3jyNfB1gXlfc/KP9WfzuaummstG1pwIkGdU143uaJhkoUTBu/WwqK ClK/jE80BFhHS+8PMx7g3X3f3y3fHjXlEyI+/0vKyVh41XxVOUxc3F8HKisf NyXeeWnz1n/bPd+et9SPQEV5kWtQ/lr2q3WNuf78X6tb/S/ryn9gXaOOEO/X NXLt1O1f56+HfaAe+YF6+Afq9hbrxkU9n/j825vqdf5J3druA3VXy8c31f++ vdP723cy1fOfp+EDdfP2pvP5e93JMNnKWnHNLpBrfHbLLqg+u2dbq88e2bbq s0wX6rNntk1uJ7WLjpVu3NTWeAhHpVhmROew2N6ZqT1TxsoMEZqQ13KTkrOK ZUb9tUavTC5unEpd89ZEsMowVibKKeOMR/NQElLSk/qm9k9JH9TEuC66W2pX 42sFrrBXX6tzRu/MCHWvrAnS8INkJlynMX6WaKx16udn3nJAYyeR5rZXo7yV TxYrRTG9uUp0rnz+SeezzZuBO9tpJQqL1vS8zDgo532gur73gepoFcPGryRh snNPmR6j5sggkqMom8pplJyxGqXCJY3yJsBKWdrUSgZt4+eP8TS6yLBtPBk3 9dFVTuTtyicXGyY3iUtUtwlX6xHq4yi1kq38dXYhxmuh5CojZc0Ba0/T6Y5W tx6jPi5UB/Bc2c/4z1qxvLSQbR1kfDS+AYpmq5VWvpZtrZzVta/yNpL3ys7K 1WTTLCYf08aaxkLNykKtgIWatYWajYVaQQs1Wws1Ows1ews1Bws1Rwu1QhZq ThZqzhZqLhZqrhZqbhZq7hZqHhZqnhZqWgs1Lws1nYWa3kLN20LNx0LN10LN z0LN30ItwEItMF9NY2W8CwrI+eTJBtkiR+SE3JAH0iF/FIhCUBiKQMVRGVQJ xaLqqDaqixqjZqgNSkIpqBtKQz1RHzQCjUafoPFoKpqO5qLFaDlaizahLWgf OoCOoGPoEvoe/YjuoBz0CD1Bv5tk7GtmFUR2qBByRu7IE+lRADKgUBSOIlEM KosqoyqoBqqD6qEmqDlqi5JRV9QdpaNeKBNlozHoUzQBTUMz0Dy0BK1A69Bm tBXtRwfRUXQcXUa30E/oZ3QPPUZP0VuTrOgMVnQGK/kUMMsJuSAPpEXeKBAV RkVRBIpCJVA5FIviUE1UF9VHTVEL1A51Rt1QKuqJMlAWGonGovFoIpqOZqL5 aClaidajLWgbOoAOoWPoBLqCbqM76C66j56gZ+gPk4yTh1kFkR1yQM7IFXki L+SDDCgIFUORKBqVROVRFRSPaqF6qAFKQC1Re9QFdUc9UC/UG/VFo9A4NAF9 hmagWWgBWoZWoQ1oK9qODqLD6Dg6ia6iH9DP6Bf0AD1Fz9GfJllL5zDLFtkj R+SC3JAW6ZAvKoyCURiKQsVRKVQBxaGqqDaqjxqiZqgV6oBSUCpKQxmoD+qH RqOP0ET0OZqJZqOFaDlajTaibWgHOoSOoBPoFLqGfkR3UQ56iJ6hFyjXJBv6 ho1iheyQAyqEXJE78kJ65IeCUBEUjqJRDCqNKqJ4VA3VQQ1QI9QctUYdUVfU A6Wj3igT9Udj0MfoMzQJzUJz0CK0Aq1BX6HtaCc6jI6ik+g0uo5+Qr+ge+hX 9By9NKkgfcPYTcyyR47ICbkhD6RD3sgfBaMQFIGKoxKoDKqEqqLqqC5qiBqj FqgNSkTdUBrqifqgLDQAjUWfoM/RF2g2mosWo5VoLdqEdqBd6Ag6hk6hM+gG uoNy0H30CL1Ar0yypW/Y0jdsFWvkgAohZ+SOPJEe+aAAVASFokgUg0qisqgy qoZqoHqoEWqCWqK2qBPqjtJRL5SJ+qKBaBz6FE1CX6I5aB5aglahdWgz2ol2 o6PoODqNzqKb6Gd0Dz1Aj9FL9NokOzqIHR3ETrFBjsgJuSAPpEXeyBcFohBU FEWhEqgUKodiUXVUE9VHjVFT1Aq1Q0koFfVEGSgL9UOD0EdoPPoCTUZz0Xy0 FK1G69EWtAvtQcfQCXQGnUNfo7voPnqInqBX6I1J9nQQezqI8T/vmFUIOSNX 5Im8kA/yQwYUioqhaFQSlUblURVUA9VCDVATlIBao/YoGfVAvVBv1Bf1R4PR x2gC+hJNQfPQArQMrUEb0Fa0G+1Fx9FJdBadR9+gX9AD9Ct6il6j30xyoIM4 0EEcFFvkhFyQG9IiHfJF/qgwKorCUHFUCpVBFVAcqolqo4aoKWqG2qAOqDNK QxmoD+qHBqAh6BM0EU1GU9F8tBAtR2vRRrQN7UH70Al0Cp1DF9C3KAc9RI/Q M/QGmf9W6shc4kgvcaSXOCp2yBm5InfkhfTIDwWgIFQMhaMYVBqVRRVRPKqF 6qBGKAE1R21RR9QFpaPeKBP1RwPRUPQp+gxNQdPQArQIrUDr0FdoO9qL9qOT 6DQ6jy6i79A99Ct6jJ6j35D5L6mFmFAK0VUK0VUKKfbIBbkhD6RD3sgfBaJg FIYiUAlUBpVDlVBVVBvVRY1RM9QCtUOJKAX1RH1QFhqABqFhaDz6HE1F09FC tBitROvRJrQD7UMH0Cl0Bl1Al9D36D56hJ6gF+h3ZP47qxP9xYmpxYn+4kR/ cVIckCtyR55Ij3xQADKgIigcRaKSqCwqjyqjaqgOqoeaoOaoJWqPOqGuqBfK RH3RQDQYDUcT0CQ0Dc1Ai9AStAptQJvRTrQfHUSn0Vl0EV1Gt9AD9Bg9RS/R W2T+K6wzncaZScaZTuNMp3FWHJEb8kBa5I18USAqjEJQBIpCpVA5VAHFouqo LqqPmqIWqBXqgJJQN5SBslA/NAgNQSPQRPQFmo5mosVoKVqNNqItaBc6gA6h M+gcuoSuoNvoIXqCnqFX6A9k/hutC53GhZnGhU7jQqcx/pdSs9yRJ/JCPsgP GVAQCkWRKBqVRuVRRVQF1UD1UAOUgFqi1qgjSkbdUW/UF/VHg9FQlI0+Q1+i GWgWWoKWoTXoK7QV7UYH0WF0Fp1Hl9FV9AP6FT1Fz9FrZO40rvQXV2YaV/qL K/3F+P98zPJAWqRDvsgfFUbBqCiKQsVRGVQBVUJxqCaqjxqiZqgVaoMSUWeU ivqgfmgAGoKGoZHoczQZzUSz0VK0HK1Fm9A2tAcdQkfQOXQBXUHX0I/oEXqG XqA3yNxf3Jhp3Ogvbsw0bvQXN/qLm+KMPJEX0iM/FICCUBFUDEWjGFQWVUSV UTyqhRqgRqg5ao3aok6oC+qBMlF/NBANRcPRKDQJTUGz0By0DK1A69BmtB3t RYfRUXQeXURX0XX0E3qMnqOXyPzbkzuTjDv9xZ1Jxp3+4k5/cVdckBbpkDfy R4EoGIWgMFQclUDlUCUUi6qi2qghaoxaoDaoHUpCKSgNZaEBaBAahkag0egL NBXNRnPRcrQSrUdb0A60Dx1Bx9AFdAldQzfQHfQEvUCvkPm3Jw/6iweTjAf9 xYNJxoP+4kF/8VBckRfSIx8UgAyoCApF4SgGlUTlUWVUBVVDdVAj1AS1RG1R e5SMuqJ01BcNRIPRcJSNxqAv0TQ0B81DK9AqtAFtRTvRfnQUHUcX0WV0Hd1E P6On6CV6jcy/PXnSaTyZaTzpNJ7MNJ50Gk86jafihnTIG/miQFQYhaCiKAKV QKVQBRSL4lB1VBc1Rk1RK9QOdUCdUTfUE/VDg9AQNAKNRGPRZDQdzUXz0Uq0 Gm1E29AudAAdQyfQJXQF3UBfo7voGXqF3iDzb09aOo2WmUZLp9Ey02jpNFo6 jVZxR3rkg/yQAQWhUFQMRaKSqDSqiKqgeFQD1UNNUAJqjdqjjqgL6o56of5o MBqKstEoNA5NQTPQPLQArUJr0FdoO9qNDqLj6CS6jK6im+gb9At6jl6j35D5 tycvOo0X040XncaL6caLTuNFp/FSPJA38kX+qDAKRkVRGIpCpVAZVAnFoaqo JqqPmqJmqA3qgBJRCkpFGWgAGoKGoZFoNPoITUUz0Xy0EK1Ga9EmtAPtQYfQ CXQKXUHX0NfoW5SDXqA36Hdk/j1Kx5yjo+fomHN09Bwdc46OnqOj5+gUT+SD /FAACkJFUDEUjqJRaVQWVUbxqBqqhRqgBNQctUUdUSfUFfVAvdFANBQNR6PQ GPQxmoZmoQVoEVqD1qHNaCfaiw6jk+g0uoquo2/Qd+geeol+Q+Y5R8+co6fn 6Jlz9PQcPXOOnp6jp+foFS3yRf4oEAWjEBSGIlBxVAaVQ7GoKqqOaqOGqBlq gdqhRJSEuqE01AcNQsPQCDQajUWfoOloNlqIFqO1aD3agnahfegIOoXOoGvo BvoWfY/uo1fod2Sec7yZc7zpNN7MOd50Gm/mHG86jTedxlvxQn4oABlQERSK wlEkikFlUXlUBVVDNVAd1Ag1Ry1Re9QJJaPuKB1losFoOMpGY9A49Cmageag RWgJWoc2oK1oN9qPjqLT6Cy6jm6i79At9AC9Rm+Rec7xYc7xodP4MOf40Gl8 mHN86DQ+dBofRYf8USAqjEJQURSBolAJVA5VQHGoOqqJ6qLGqAVqhTqgJNQZ paKeKAsNQSPQSDQWfYTGo5loLlqMlqL1aCPahvagA+gYOoPOoRvoa/Q9uo0e ojfoD2Sec3yZbnzpNL5MN750Gl+mG186jS+dxlfRowBkQEEoFP0PH/8BXuV5 oIn7ZzKZcSYTz87OzuzOJnEcx3Fsh7jghjHGGNuAaTbFmGbANs2Aaaabjqmm 995776ACoiMhIRCqCARCQg0J1JBwS3b+R9k592TzO9c/ut7kni+ecs2Fn/M8 73eip+gP9Cy9QK/Sa/QmvUONqRm1og+pA3WlT6kH9aUBNJTG0ASaRFNpOs2i FbSGNtEW2kcHKIJi6DTF0SVKomuURbcol0rpewolzS91ml/Kl1/qNL+UL7/U aX4pX34pX2o+l0J6lB6jx+lJepqeoefoRapL9aghNaIm1JxaU3vqSN2oO/Wk fjSQhtFYmkhf0TSaQbNpJa2lzbSV9tNBiqQTdIYu0GW6QtfpBuXQbSqjHyiU L4/YUY/oNI/Il0d0mkfkyyM6zSPy5RH58kjg5/Rr+g39lp6i39Oz9Dy9RK/R 6/QWNaZ3qQW1oQ7UiT6mHtSLPqdBNJzG0SSaTNPpa5pDq2gdbaFtdIAOURSd pLMUT0mUTFl0k3Ipj8op1Gl+ZT39SpP5lXz5lSbzK/nyK03mV/Kl5jMopF/Q Y/Q4PUFPUy16jmrTy1SP6tPb1ISaUktqSx2pM31CPak39afBNILG01c0hWbQ TJpLq2k9baXtdJAOUzSdonOUQFcohW5QNt2mfKqgUJN5VL48aj09qsk8Kl8e 1WQelS+PajKPypdH5cujgV/Sb+i39Dv6Pf2BnqcX6BV6nd6gd+hdakbv0QfU iT6iT6kXfUYD6AsaSRNoMk2lr2kWzaM1tIG20Q46REfoGJ2m83SRkimVbtIt yqMCqqSaJpMR/P/2L98NBD7/0b/8+eeX//nzu//8eT7481rw5/n//Hntr35C z2t+78uvg38C//p3wTwW5tlvwjx7PMyz34Z59kSYZ78L8+zJMM+eCvPs6TDP fh/mWa0wz/4Q5tkzYZ49G+bZc2GePR/mWe0wz14I8+zFMM9eCvPs5TDPXgnz rE6YZ6+GeVY3zLPXwjyrF+bZ62Ge1Q/z7I0wzxr81bOaP9G/9on5a7cAv9bN f+0T89e6+a99Yv5aN6/pUiH9gh6hx+kJepJq0TNUm16kOlSfGlAjakrN6X1q R52pC3Wn3tSHBtIQGkUTaQpNo5k0m+bTWtpI22knHaajdJzOUCwlUgqlUTbl UD4V0n0KdfPHfGI+5hbgMd38MZ+Yj+nmj/nEfEw3f8wn5mM+MR8L/Ip+S7+j p+gP9Cy9QC/Rq/QGvUmNqRm1oFb0IX1EXakHfUZ9aRANpS9pEk2l6TSL5tAC WkebaAftoiMUQTF0luLoEqVSOt2iXCqgIgq9a/2NfPmNW4Df6Oa/kS+/0c1/ I19+o5v/Rr78Rr78JvAoPUFP0tP0DD1HL9LLVJcaUENqQs2pJbWm9tSFulFP 6kP9aDANo9H0FU2jGTSb5tJCWk+baSftpqMUSSfoHF2gy5RGGZRDt6mQ7lDo DevjUuVx2/9xjfxxqfK4Rv64VHlcI39cqjwuVR4P/Jp+R0/R7+lZep5eolfo NXqT3qJ3qQW9R22oA3Wlj6kX9aXP6QsaTmNoMk2nr2kOzaNFtIG20C7aQxEU RSfpPMVTEqXTVcqlPCqiYgq9Tf2tVPmt7f9b/eW3UuW3+stvpUrNp0xIj9Cj 9Bg9SU9TLXqOatPLVIfqUUN6m5pSS3qf2lJH6kafUG/qR/1pCI2gsTSFZtBM mkvzaTFtpK20m/ZSJEXTKYqlBLpCGZRJtymf7lAJhd6h1qyikP6efkL/RP9C /0r/Tj+nX9Gv6Tf0FP2e/kDP0wv0Cr1Kr9Nb9A41o/eoFX1Anehj+pQ+o89p AA2lkTSOptLXNIvm0QJaQptoG+2hfRRFx+g0xdFFSqardI3yqICK6S6F3qH+ zmb6naT5nc30O03md5Lmd5pMzedNSL+gR+kxepyeplr0DNWmF6kO1aX69DY1 oub0PrWmdtSZPqHu1If600AaRqNoPE2jmTSb5tNCWkqbaTvtpf0UTcfpDF2g REqhTLpO+VRIJXSPQu9Qn7SZnpQ0T9pMT+o0T0qaJ3WaJyXNkzrNk5LmSUnz ZOC39Hv6Az1LL9BL9Cq9Rm/QO9SYWlArakMf0kf0KfWgvjSABtFw+pIm0HSa RXNoAS2iZbSFdtA+OkDHKIbOUjxdolS6RllUQEV0l0op9A71KevpKUnzlPX0 lHbzlKR5Srt5StI8pd08JWmekjRPBZ6gWvQMPUcv0stUl+pRA2pETagltaa2 1J66UHfqSf1oIA2mETSaJtIMmk1zaSEtpuW0lXbSfjpIx+kEnaMEukxpdJ1u UCHdoXtURqG3qU/rOU9bVE/LnKctqqf1nKdlztN6ztMy52k952mZ87TMeTrw O/oDPUvP00v0Cr1Gr9Ob1JjepfeoDX1AHagr9aBe9DkNoi9oJI2hSfQ1zaF5 tIiW0AraRrvoAB2iGDpJ5+kiJVE6ZdFNKqJiKqVyCr1X/b3G83sr6/fS5/dW 1u81nt9Ln5rPoJAeoUfpcXqCnqRn6DmqTS9THapH9akhNaGm9D61pXbUkbpR T+pN/WkwDaFRNJa+opk0l+bTYlpKK2k77aaDdJhO0CmKpUS6Qhl0g7LpDpVQ GVVQ6F1rLTlUSwuqZXnVkkO1LK9aWlAtOVRLC6olh2ppQbXkUC05VCvwFD1L z9ML9Aq9Sq/TG/QWvUvNqBV9QB9SJ/qYetFnNIC+oKH0JY2jyTSL5tECWkLL aBXtoD10iI7QSTpNcXSJkukq3aRbVEx3qZwqKfRNsj9IpD9oRn+wxv4gkf5g jf1BM6r5XArpF/QoPUZP0JP0ND1HtelFqkN1qT41oLepKTWn1tSO2lNn+oR6 Ux8aSENoGI2m8TSFZtN8WkhLaTmtpp20lw7TUTpFZ+gCXaYUyqRsyqESukcV dJ9C77KekUjP6EjPWGjPSKRnLLRndKRnJNIzOtIzEukZHekZifSMRHom8Ht6 nl6gl+hVeo3eoDfpHWpGLagNfUgd6CP6lD6jvjSIhtJwGkMTaCrNoQW0iJbR ClpDu2gfHaEIOk1nKZ6SKJWu0S3KpbtUSpUUer/1rBx6Vkd61lZ7Vg49a6s9 qyM9K4ee1ZGelUPP6kjPyqFn5dCzgVpUm16kl6ku1aMG1JAaUXNqSW2pPXWk LtSd+lA/GkzDaASNpYk0jebSQlpMy2klraXdtJ+OUiSdoXOUQFcoja5TDt2m e1RG9yn0zus5Hek5OfScjvSc1facHHrOantOR3pODj2nIz0nh57TkZ6TQ8/J oecCf6AX6CV6hV6j1+lNeosaUwt6jz6gDtSJulIP6kuf0xc0nEbSOJpE02ke LaIltIJW0TraQwcogqLoLJ2ni5RM6ZRFuZRHpVROVRR6I/a8jvS8RHpeR3re fnteIj1vv9V8GoX0CD1Kj9MT9DTVomfoRXqZ6lA9qk8N6W1qQi3pfWpHHakz daOe1I/60xAaQaNoPH1FM2g+LaaltJJW03raSwcpkqLpHMVSIqVQBt2g25RP ZVRB1RR6X1ZbR6otkWrrSLXtt9oSqbb9VltHqi2RautItSVSbR2ptkSqLZFq B56ll+gVepVepzfoLXqH3qX3qBV9SJ3oI/qYetHnNICG0kj6kibQZPqaFtAS WkaraA1toH10iKLoGJ2nOLpEqXSVblIeFVA5VdIDCr1De0FbekEivaAtvWC/ vSCRXrDfXtCWXpBIL2hLL0ikF7SlFyTSCxLphcBz9DLVobpUnxrQ29SImtL7 1JraU2fqQp9Qb+pPA2kYjaLRNJGm0ExaSEtpOa2mtbSR9tNhiqbjFEsX6DKl USZlUz4VUgXdp28o9F7tRW3pRYn0orb0ov32okR60X57UVt6USK9qC29KJFe 1JZelEgvSqQXA8/TK/QqvUZv0Jv0DjWmZtSK2lAH+oi60qf0GQ2gQTScvqQx NImm0ixaRMtoBa2hdbSJDtAROkYxFEfxlETpdI1uUQEVUSVV0bcUetf2krb0 kkR6SVt6yZJ7SSK9ZMm9pC29JJFe0pZekkgvaUsvSaSXJNJLgdpUh+pSPWpA DakRNaHm1JraUkfqQt2oO/WhgTSYRtBoGktf0TSaTYtpOa2ktbSeNtNBOkrH 6QRdoAS6Qhl0nXKokO7Qfaqm7yj0/u1lm+5lvell2fSy3vSyTfeybHrZpntZ b3pZNr2sN70sm17Wm16WTS/LppcDL9Cr9Bq9Tm/SW9SY3qUW1IY+oE7UlT6m HtSXBtEXNJLG0DiaTNNpDi2hFbSK1tEG2kKHKIJi6CTF00VKpquURblURMVU RQ/oewq9k3vFuntFg3pFSr2iQb1i3b0ipWo+oUJ6lB6nJ+hpqkXPUW16kepS PapPDeltakJNqSW1pXbUmbrRJ9ST+tFgGkKjaCyNpyk0g+bSUlpJq2k9baSt dJgi6QSdogRKpBTKpBt0m+5QCVXTN/QDhd7T1bHz6uhSdaRUHV2qjp1XR0rV sfPq6FJ1pFQdXaqOlKqjS9WRUnWkVJ3AS/QavU5v0Fv0Dr1Lzeg9+oA+pI/o Y/qUetHn9AUNpS9pHE2gqfQ1zaNltIrW0AbaRNvoCEXRSTpNF+kSpdI1ukl5 VEx36QF9S3+k0Bu7Vy2+V7WqV6XUq1rVqxZfzSdUSL+gx+gJepJq0TNUm16k l6ke1acG9DY1oqbUnN6ndtSeutAn1J16U38aQsNoNI2niTSNZtJ8Wk6raS1t pM20nY5SNJ2iM5RIlymNrlM25VMJ3aNv6Dv6E4Xe3dW1/epqVXWlVF2tqq7t V1dK1bX96mpVdaVUXa2qrpSqq1XVlVJ1pVTdwCv0Or1Bb9I71JiaUQtqRR9S B+pKn1IP+owG0FAaTmNoAk2i6TSLFtAKWkPraBNtoR0UQcfoNJ2lS5RE6ZRF t6iA7lIpfUvfUyilXrP9XtOlXpNNr+lSr9l+r8mm12y/13Sp12TTa7rUa7Lp NV3qNdn0mmx6LVCH6lMDakiNqAk1p5bUmtpTR+pG3akn9aGBNIxG0FiaSF/R DJpNC2klraX1tJm20k6KpON0hs7RZbpCGXSDcqiQ7lEZfUc/UCib6tl+9Wy/ erpUPdlUT5eqZ/vVk031bL96ulQ92VRPl6onm+rpUvVkUz3ZVC/wKr1Bb9Jb 1JjepRb0HrWhDtSJPqYe1Iv60iAaTiNpHE2iyfQ1zaFFtIrW0QbaQttoF0VR DJ2l85REyXSVblIuFVEpldP3FOpSr1t8r1t8r2tQr8um1zWo1y2+12XT6xbf 6xrU67LpdQ3qddn0ugb1umx6XTa9HqhLDaghvU1NqCm1pPepLXWkzvQJ9aTe 1I8G0wgaRePpK5pCM2kuLabVtJ420lbaTrspmk7QOYqlK5RCmZRNt+kOlVEF /UChBlVfNtW3+OpbfPU1qPqyqb4GVd/iqy+b6lt89TWo+rKpvgZVXzbV16Dq y6b6sql+4DV6k96id+hdakbvUSv6gDrRR/Qp9aLP6HP6gkbSlzSBJtNUmkXz aAmtoQ20ibbRDtpDx+gknac4SqZUuka3KI+KqZwq6Y8UalBvSKk3LL43LL43 dKk3pNQbulTNp1FIj9Jj9CTVomeoNr1Idagu1aOG9DY1oqbUnN6n1tSOOlMX 6k69qQ/1pyE0ikbTRJpC02g2zaeltJY20mbaTjtpLx2nUxRLFyiF0ug65VA+ lVAF3ac/UahLNZBSDSy+BhZfA12qgZRqoEs1sPgaSKkGFl8DXaqBlGqgSzWQ Ug10qQZSqoGUahB4nd6id6gxNaMW1Ira0If0EXWlHvQZ9aUBNJS+pDE0iabS dJpDC2gZraNNtIV20C7aRzF0muIonlIpnbIolwroLlVSFdWkVM3v7xrZvOb3 d/1/f0fXO8Gf94I/oX8N/XT4z5+//K9rfqfSm2F+z1LDMM/eCvPs7TDP3gnz rFGYZ43DPGsS5tm7YZ41DfOsWZhnzcM8axHmWcswz94L8+z9MM9ahXnWOsyz NmGetQ3z7IMwz9qFefZhmGftwzzrEOZZxzDPOoV51jnMs4/CPOsS5lnXMM+6 /dWzmj/Rb/qMfdPNxZtuLt60Cd70GfumTfCmm4s3fca+6ebiTZvgTZ+xbwae oxfpZapL9ag+vU2NqAk1p5bUmtpSe+pC3agn9aF+NJCG0WgaS1/RNJpBc2kh Laf1tJm20k7aTfvpBJ2hC5RAaZRBN+g2FdI9uk/VFPqMbeiTtaH7iobuKxpa Ag19sja0BBq6r2jok7Wh+4qGlkBDn6wNLYGGPlkbWgINfbI29MnaMPAGvUON 6V1qQe9RG/qAOlBX+ph6UV/6nAbRcBpD42gyTaevaR4tohW0gbbQNtpFe+gA naSzFE8XKZ2u0k3KoyIqpSoKvQV6Sw695ZbiLbcUb2n9b8mhmrYU0iP0OD1B teg5qk0vUx2qR/WpATWiJtSUWtL71JbaUUfqRp9Qb+pH/WkwjaCxNJ6m0Aya SfNpMa2kjbSVttNu2ksH6RSdowRKpAzKpGzKpztURtUUeuNT04xC+nv6Cf0T /Sv9O/2cfkW/pd/RH+h5eoFeoVfpdXqD3qTG9C41o/eoFX1AH1In+pg+pc/o cxpAX9BIGkcTaCp9TbNoAS2hVbSJttEO2kP76BCdpvN0kS7RVbpGt6iAiqmc HlDoPc87biTekUjvuJF4x43EOzpSzWdLSL+gR+kJepKeodr0ItWhulSfGlBD akJNqTm9T62pHbWnzvQJdac+1J8G0hAaReNpIk2jmTSbFtJSWk2baTvtpL20 nw7TGYqlRLpMmXSdcqiQSqiCvqHQe55G7iEaSaRG7iEauYdopCM1kkiNdKRG 7iEaSaRG7iEa6UiNJFIjHamRRGqkIzWSSI0kUqPAW/QuNaMW1Ira0IfUgT6i T6kH9aUBNIiG0pc0gSbRdJpFc2gRLaM1tIV20C7aRwfoCJ2lOLpESXSNsiiX iuguVdK3FHq709h+ayyRGttvje23xtpSY4nUWFtqbL81lkiN7bfG2lJjidRY W2oskRprS40lUmOJ1DjwNjWl5tSSWlNbak8dqQt1p57UjwbSYBpGo2kifUUz aDbNpcW0nNbSVtpJu2k/HaSjdI4u0GW6QtfpBt2mO3SP7tN3FHq700RvamLJ NZFNTSy5JpZcE72piWxqojc1seSayKYmllwTvamJbGqiNzWRTU30piayqYls ahJ4h5pRC3qP2tAH1IE6UVfqQb3ocxpEX9BwGkOTaDJ9TXNoHi2hFbSOttEu 2kMH6BBF0HmKpyRKpiy6SXlUTKVURd9T6O3OuxrUu9bdu1LqXevuXeuu5vMm pEfoUXqcnqZaVJtepjpUj+pTQ3qbGlFzaknvU1tqRx2pM3WjntSb+tNgGkIj aCx9RVNoJs2l+bSUVtJ62k67aS8dpMMUSbGUQFcohW5QNuVTCZVRNf1Aobc7 TeVVU62qqcXXVF41tfiaWnxNtaqm8qqpVtXU4msqr5pafE21qqbyqqlW1VRe NdWqmsqrpvKqaaAxtaD3qBV9QB9SJ/qIPqZe9BkNoC9oKI2kcTSZptIsmkcL aBmtog20g/bQPjpERyiK4ugiJVMq3aRbVEB3qZwe0B8p9Da6meRqpmk1swKb Sa5mVmAzK7CZptVMcjXTtJpZgc0kVzMrsJmm1UxyNdO0mkmuZppWM8nVTHI1 CzShlvQ+taZ21J46Uxf6hHpTHxpIQ2gYjaLxNIWm0WyaTwtpOa2mjbST9tJ+ OkxHKZouUCKlUBplUw4V0j2qoG/oTxS6M28uuZrrXM0tw+aSq7ll2NwybK5z NZdczXWu5pZhc8nV3DJsrnM1l1zNda7mkqu5ztVccjUPNKZ36T1qRW3oQ+pA H1FX+pQ+o740iIbScPqSJtBUmk5zaAEtohW0hjbRLtpHB+gIRdAxiqdLlErp dItyqYhKqZK+pVBytZBXLXSuFjZiC3nVwkZsYSO20LlayKsWOlcLG7GFvGph I7bQuVrIqxY6Vwt51ULnaiGvWsirFoGm9D61prbUnjpSF+pG3akP9aPBNIxG 0GiaSNNoBs2lhbSYVtJa2ky7aT8dpKMUSccpgS5TGmVQDt2mO1RG9+k7CuVV SynVUtNqaSO2lFItbcSWNmJLTaullGqpabW0EVtKqZY2YktNq6WUaqlptZRS LTWtloHG9C41o1bUhj6gDtSJutLH1IP60uf0BQ2nkTSGJtF0+prm0SJaQqto HW2hPXSADlEERVEMXaQkSqerlEt5VEzlVEWhjfiebHpPq3rPMnxPNr1nGdZ8 yoT0KD1OT9DT9BzVpjoUzKaJwSExKXi+Cp7JwTMleKYGz7TgmR48M4Ln6+CZ GTyzgmd28MwJnrnBMy945gfPguBZGDyLgmdx8CwJnqXBsyx4lgfPiuBZGTyr gmd18KwJnrXBsy541gfPhuDZGDybgmdz8GwJnq3Bsy14tgfPjuDZGTy7gmd3 8OwJnr3Bsy949gfPgeA5GDyHgudw8BwJnqPBExE8kcETFTzRwXMseI4HT0zw nAiek8FzKnhOB8+Z4DkbPOeC53zwxAZPXPBcCJ744EkInovBkxg8l4LncvAk Bc+V4EkOnpTgSQ2etOBJD56M4LkaPJnBcy14rgdPVvDcCJ6bwZMdPLeCJyd4 coMnL3j+9B//8R/5wX8tCJ7C4CkKnjvBUxw8JcFzN3juBU9p8JQFT3nwVARP ZfDcD56q4KkOngfB803wfBs83wXP98HzQ/D8seZ/R/D8n+D585dh/qbm/PlP Qn1/JhrS29SEmlJzak1tqR11pM7UjT6hntSP+tMQGkGjaCx9RTNoJs2nxbSU VtN62kp76SAdpkiKphOUSFcogzLpNuVTCVVQNYVuBmq+IRbS39NP6Gf0L/Sv 9HP6Nf2Wfke/p+fpBXqVXqc36C16h96lZtSC2tAH9CF1oo/oY/qUetHnNICG 0kj6ksbRZPqaZtECWkLLaA1toG20jw7REYqiY3SSLlEyXaVrlEcFdJcq6QGF 7gNauQVo5VOqlS7dyi1AK59SrdwCtHIL0EqXbuVTqpUu3cotQCufUq3cArTS pVtJqVa6dCsp1UqXbiWlWkmpVoGW1JbaUXvqTF3oE+pOvak/DaRhNIpG03ia QjNpNi2kpbSc1tJG2k776TAdpWg6TqfoMqVQJl2nfCqke3SfvqHQLUBr27+1 lGqtS7e2/VtLqda2f2vbv7Uu3VpKtdalW9v+raVUa9u/tS7dWkq11qVbS6nW gcbUjFrQe/QBfUgd6CPqSp9SD/qMBtAgGk5f0hiaQFNpFs2hRbSMVtA62kQ7 6AAdoQg6RjF0mpIola5RFhVQEZVSFX1Loe3fxvZvI6XaaNVtbP82UqqN7d/G 9m+jVbeRUm206ja2fxsp1cb2b2Pxt5FSbbSqNlKqjVbVRkq1kVJtAu9TO2pP HakLdaPu1JP60EAaTCNoNI2liTSNZtNcWkzLaSWtp820kw7SUYqk43SCztAV SqPrdIMK6Q6VUTV9R6Ht31a/ausWoK28aqtftXUL0FZetXUL0NYtQFv9qq28 aqtftXUL0FZetXUL0Fa/aiuv2upXbQON6V1qQe9RK/qQOlAn6kofUw/qRX1p EH1BI2kMjaNJNJ3m0DxaQitoFW2gLbSLDlEERVEMnaSzlEzplEU3qYiKqZwe UOgW4AP96gP3AR/Iqw/0qw/cB3wgr2o+b0J6lJ6gp6kWPUcvUx2qTw3pbWpC TaklvU+tqT11pM7UjT6hntSb+tFgGkKjaCyNp69oBs2l+bSUVtJq2khbaTcd pkiKphN0is5RCmXQDcqmO1RCFfQNhfZgO/2qnT3YTkq106/a2YPtpFQ7e7Cd PdhOv2onpdrpV+3swXZSqp092E6/aiel2ulX7aRUO/2qnZRqJ6XaBdpQB+pE H9HH9Cn1os/oc/qChtKXNI4m0GT6mubRAlpGq2gNbaJttIeOUBQdo5N0ms5T Kl2lm3SLiukuVdK3FNqDH+pXH9qDH0qpD/WrD+3Bms+WkH5Bj9GTVIueodpU h+pSA3qbGlFTak7vU2tqSx2pM3WhT6g79aY+1J+G0DAaTeNpIk2hmTSfFtJy Wk1raTNtp710lKLpOJ2iMxRLaZRJ2ZRDJXSP7tN3FNqD7bWq9vZgeynVXqtq bw+2l1Lt7cH29mB7raq9lGqvVbW3B9tLqfb2YHutqr2Uah9oTM2oBbWiNvQB daKPqCt9Sj3oM+pLA2goDacxNIEm0VSaRQtoEa2gNbSOttAO2kcRdIxi6DSd pThKp2t0i3LpLpVSFX1PoT3YQavqYA92kFIdtKoO9mAHKdXBHuxgD3bQqjpI qQ5aVQd7sIOU6mAPdtCqOkipDlpVBynVQavqIKU6SKkOgXbUmbpQN+pOPakP 9aOBNIxG0FiaSF/RNJpNC2kxraS1tJ620k7aT5F0nE7QGTpHFyiDrlMO3aZ7 VEbV9AOF9mBHe7CjftXRHuworzrqVx3twY7yqqM92NEe7KhfdZRXHfWrjvZg R3nV0R7sqF91DDSmd6kFvUdt6AP6kD6irvQx9aBe1Jc+p0E0nEbSOJpEk2k6 zaFFtIRW0TraQNtoFx2gKIqhk3SWzlM8XaUsyqU8KqVyekChftXJHuykX3Wy BzvJq076VSd7sJO86mQPdrIHO+lXneRVJ/2qkz3YSV51sgc76Ved5FUn/aqT vOqkX3WSV53kVadAe+pC3egT6km9qR/1p8E0gkbRePqKptAMmkuLaSmtpvW0 kbbTbjpI0XSCTtE5iqUEyqQbdJvyqYwq6BsK9avO9mBn/aqzPdhZSnXWrzrb g52lVGd7sLM92Fm/6iylOutXne3BzlKqsz3YWb/qLKU661edpVRn/aqzlOos pToHOlBX+pg+pV70GX1OA+gLGklf0gSaTFPpa5pHS2gZraENtIl20B46RMfo JJ2m8xRHF+ka3aQ8KqByqqRvKdSvPrIHP9KvPrIHP5JSH+lXNZ8oIT1Kj9GT 9AzVphepDtWnBtSImlJzep9aUztqTx2pG31C3ak39aH+NJCG0CgaTRNpCk2j mTSfltJyWksbaTPtpL10mI7TKTpDsXSBEuk6ZVM+FVIF3afvKNSvutiDXbSq LvZgFynVRavqYg92kVJd7MEu9mAXraqLlOqiVXWxB7tIqS72YJdAY2pGLagV taEPqQN1oo/pU+pBn1FfGkCDaCh9SWNoEk2l6TSLFtAyWkHraBNtoV20j45Q DJ2msxRH8XSJsugWFVARVVIVhfZgVyuwqy7V1QrsKpu66lJdrcCusqmrFdjV CuyqS3WVTV11qa5WYFfZ1NUK7KpLdZVNXXWprrKpqy7VVTZ1lU1dA53pE+pO PakP9aOBNJiG0WgaS1/RNJpBs2khLaeVtJ4201baTfvpKJ2gM3SOLlACXaYb lEOFdIfuUzWFVmA3i6+bBtXN4usmkbppUN0svm4SqZvF183i66ZBdZNI3TSo bhZfN4nUzeLrpkF1k0jdNKhuEqmbBtVNInWTSN0CH9Gn1IN6UV/6nAbRFzSc xtA4mkzT6WuaQ4toBa2iDbSFttEeOkARdJLO0nmKp4uURDcpl4qomKroAdUs vprfp/eTljW/T+///b15Nb8j79PgT+j35nX4//NT8+/X/I6zj//8hc7/9/ee fRLm2adhnnUP86xHmGc9wzzrFeZZ7zDPPgvzrE+YZ33DPOsX5tnnYZ71D/Ns QJhnA8M8GxTm2eAwz74I82xImGdDwzwbFubZ8DDPRoR5NjLMs1Fhnn0Z5tno MM/GhHk2NsyzcWGejf+rZzV/oj92X/Gx/v+x+4qPfbLWNJ6QHqHH6QmqRbXp ZapD9aghvU1NqSW9T22pHXWkztSFulNP6k39qD8NpiE0gsbSeJpCM2gmzaXF tJJW00baSttpLx2kSDpF5yiWEiiRrlA23aY7VELV9A2F7itqkiukn9A/0b/Q v9PP6Vf0W/od/YFeoFfoVXqd3qJ3qBm9R63oA/qQOtFH1JV6UC/6jD6nAfQF DaWRNI4m0FT6mmbRPFpCq2gNbaJttIP20SGKotN0nuLoIl2iZLpFeVRMd+kB fUuh+4pP3a9+6r7iU0vgU/cVNd0npF/Qo/QEPUnP0ItUh+pSfXqbGlFzep9a UztqT52pC3WjntSb+lB/GkhDaBiNovE0kabRTJpN82kpraa1tJm2007aT4cp ms5QLF2gRLpMKZRD+VRC9+gb+o5C9xXd3a92d1/R3Sbo7r6iu5TqbhN0d1/R XUp1d1/R3X1Fd5ugu5TqbhN0d1/RXUp1DzSmFtSK2tCH1IE+oq70MfWiz6gv DaBBNJSG05c0gSbRdJpFc2gBLaM1tI620A7aRQfoCB2jsxRH8XSJkiiVcqmA 7lIpfUuh+4oeblV7uK/ooUv1cF/RQzb10KV6uK/oIZt6uK/oEXiOXqa6VI8a UCNqQi2pNbWl9tSRulA3+oR6Ux/qRwNpMA2jETSaJtJXNINm01xaSMtpLa2n rbSTdtNBOkrH6RxdoAS6TFcojW5TId2jMvqOQvcVPXWpnm5Ve7q56KlL9XRz 0VM29dSlerq56Cmberq56Onmoqcu1VM29dSlerq56BloTO/Se9SGPqAO1Im6 0sf0KX1GfelzGkRf0HAaSWNoEk2mr2kOzaNFtILW0QbaRrtoDx2iCIqh8xRP FymJkimd8qiISqmcvqfQu+peulQv96u9bL9eulQv26+XlOqlS/Wy/XpJqV62 Xy/br5cu1UtK9dKletl+vaRUL9uvly7VS0r10qV6SaleulQvKdVLSvUKdKc+ 1I/602AaQiNoFI2lr2gKzaS5NJ8W00paTxtpO+2mvXSYIukExVICJdIVSqEM yqc7VEYV9AOFtl9vedVbq+rtzrW3Fdhbq+ptBfaWV721qt5WYG951dsK7G0F 9taqesur3lpVbyuwt7zqbQX21qp6y6veWlVvedVbq+otr3rLq96BHtSXPqcB 9AUNpZH0JY2jyTSVZtE8WkBLaBVtoE20g/bQPjpCUXSS4ugiXaJkSqWrVEDF VE6V9EcKrcDPJNdnmtZn7q8+swc/07RqPkdCepQeoyeoFj1DL1Jdqk8N6G1q Ss2pNbWj9tSZutAn1J16Uj/qTwNpCA2jUTSaxtMUmkazaT4tpKW0mjbSZtpJ e2k/HaVoOkUXKJEuUwqlUSYVUglV0H36E4X2YB/J1Ufn6uMmq49l2Efn6mMZ 9pFcfXSuPpZhH8nVxzLsYxn20bn6SK4+Olcfy7CP5OpjGfbRufpIrj46Vx/J 1Ufn6iO5+kiuPoFe9DkNoEE0lIbTlzSGJtBUmk5zaAEtomW0hjbRFtpF++gA RdAxOk3xdImSKJXS6RoV0V2qpCoKJVdfedVX5+rrJquvjdhX5+prI/aVV311 rr42Yl951ddG7Gsj9tW5+sqrvjpXXxuxr7zqayP21bn6yqu+OldfedVX5+or r/rKq76B3tSfBtJgGkYjaDSNpYk0jWbQXFpIi2k5raXNtJV20346SJF0nM5Q Al2mK5RGGXSd7tA9uk/VFMqrfjpXP3nVT+fq506rn7XYT+fqZy32k1f9dK5+ 1mI/edXPWuxnLfbTufrJq346V79AY2pB79EH1IE6UVf6mHpQL/qMBtAg+oKG 00gaQ+NoEk2nr2keLaIltILW0RbaRnvoAB2iKIqhs3SRkiiZ0ukqZVExlVIV he7gP9e0PpdXn2tan7vd+txarPnMCOkRepyeoKfpOapNdag+NaS3qQm1pPep HXWkztSNPqGe1Jv60EAaTENoBI2isTSevqIZNJPm02JaSitpPW2l7bSXDtJh iqYTdI4S6QqlUAZl0g0qoTKqptAdfH951V/T6i+v+mta/d1z9bcW+2ta/a3F /vKqv6bV31rsL6/6W4v9rcX+mlZ/edVf0+pvLfaXV/2txf6aVn951V/T6i+v +mta/eVVf3nVP9CXBtEXNJRG0pc0jibQZPqaZtECWkLLaBVtoG20g/bRITpC x+gknadLlEypdJWu0U26S+X0gEK38QMk1wCda4DkGqBzDXDjNcBaHKBzDbAW B0iuATrXAGtxgOQaYC0OsBYH6FwDJNcAnWuAtThAcg2wFgfoXAMk1wCda4Dk GqBzDZBcAyTXgEA/GkxDaBiNotE0nibSFJpJs2khLaXltJo20nbaSfvpMB2l 43SKYukypVAaZdJ1yqZ7VEHfUOiGfqDkGqhzDZRcA3WugW68BlqLA3Wugdbi QMk1UOcaaC0OlFwDrcWB1uJAnWug5BoYaEzNqBW1oQ70EXWlT6kHfUZ96XP6 gobScPqSxtAEmkRTaRbNoUW0jFbQGtpEO2gXHaAjFEExdJriKIlSKZ2uURbd olKqpG8pdFc/SHIN0r4GSa5B2tcgN16D7MZB2tcgu3GQ5BqkfQ2yGwdJrkF2 4yC7cZD2NUhyDdK+BtmNgyTXILtxkPY1SHIN0r4GSa5B2tcgyTVIcg0K9Kch NIxG0GgaSxPpK5pGs2kuLabltJLW0mbaSbvpIB2lSDpBZ+gCXaE0yqDrdINy qIzu03cUurUfrIcNlmGD9bDBMmywHjbY3ddgC3KwHjbYghwswwbrYYMtyMEy bLAFOdiCHKyHDQ40pnepBbWhD6gTdaWPqQf1or70OQ2goTScRtIYGkeTaDJN pzk0j5bQClpF62gL7aI9dIgiKIpO0lmKp2RKp6uURTcpl8qpir6n0P39FxrZ F9LsC43sC2n2hUb2hfuwmk+UkB6lx+lpqkXP0ctUh+rT29SEmlJLakvtqDN1 o0+oJ/WmftSfBtIwGkGjaCyNp69oCs2guTSfltJKWk3raSvtpr10mCIpmk7R OUqgFMqgTLpB2XSbKqiafqDQTf4Q3WyINBuimw2RZkN0syFuxobYl0N0syH2 5RBpNkQ3G2JfDpFmQ+zLIfblEN1siDQbopsNsS+HSLMh9uUQ3WyINBuimw2R ZkN0syHSbIg0GxIYRMNpJH1J42gCTaap9DXNowW0jFbRGtpA22gP7aMjFEXH 6DSdp4uUSlfpGt2kW5RHlfSA/kihO/2hWtpQaTZUSxsqzYZqaUPdlg21NIdq aUMtzaHSbKiWNtTSHCrNhlqaQy3NoVraUGk2VEsbamkOlWZDLc2hWtpQaTZU SxsqzYZqaUOl2VBpNjQwmEbQKBpN42kiTaFpNJPm00JaTqtpLW2k7bSX9tNR iqbjdIZiKZHSKJOuUzblUD7dp2/oTxS65x+mpQ2TZsO0tGHSbJiWNsy92TCb c5iWNszmHCbNhmlpw2zOYdJsmM05zOYcFmhMzagFtaIPqQN1pU+pB31GfWkA DaIvaCR9SWNoAk2iqTSdZtECWkQraA2to020g/bRAYqgYxRDZymOLlE6XaMs ukW5VEBV9C2F0my4bjZchg3XzYbLsOG62XD3ZsNtzuG62XCbc7gMG66bDbc5 h8uw4TbncJtzuG42XIYN182G25zDZdhwm3O4bjZchg3XzYbLsOG62XAZNlyG DQ8MoVE0msbSRPqKptEMmk0LaTGtpLW0njbTTtpPBymSjtMJOkcX6DJl0HW6 QTl0mwqpmr6jUIaN0MhGSK4RGtkIyTVCIxvh3myEpTlCIxthaY6QXCM0shGW 5gjJNcLSHGFpjtDIRkiuERrZCEtzhOQaYWmO0MhGSK4RGtkIyTVCIxshuUZI rhGBofQljaFxNIkm03T6mubQIlpCq2gdbaAttIsO0CGKohg6SecpnpLoKmXR TcqlPCqiBxRamiO1r5HyaqT2NVJejdS+RrotG2lVjtS+RlqVI+XVSO1rpFU5 Ul6NtCpHWpUjta+R8mqk9jXSqhwpr0ZalSO1r5HyaqT2NVJejdS+RsqrkfJq ZGAYjaaxNJ6+oik0g2bSXFpMS2k1raeNtJV200E6TNF0gk5RLCXQFcqkG5RN tymf7tA3FFqVozStUVJqlKY1SkqN0rRGuRkbZUGO0rRGWZCjpNQoTWuUBTlK So2yIEdZkKM0rVFSapSmNcqCHCWlRlmQozStUVJqlKY1SkqN0rRGSalRUmpU YDiNoXE0gSbTVPqaZtE8WkLLaA1toE20jfbQITpCx+gknaY4ukjJdI1u0i3K owIqpm8ptCC/1K++lFJf6ldfSqkv9auaT4WQHqMnqRbVphepDtWnBtSImtP7 1JraUWfqQt2pN/Wh/jSQhtAwGkFjaTxNpCk0jWbSbJpPS2k5raWNtJm20146 TEfpOJ2iM3SBEimFrlM25VA+FVIJfUehtThaqxotpUZrVaOl1GitarQbr9GW 4WitarRlOFpKjdaqRluGo6XUaMtwdKAxtaBW1IY+pI+oK/Wgz6gvDaBBNJSG 00gaRxNoEk2l6TSL5tACWkYraB1toi20g/bREYqgGDpNZymeLlEqZdEtyqUC KqK79D2FluEYrWqMlBqjVY2RUmO0qjFut8bYg2O0qjH24BgpNUarGmMPjpFS Y+zBMfbgGK1qjJQao1WNsQfHSKkx9uAYrWqMlBqjVY2RUmO0qjFSaoyUGhMY ReNpIn1F02gGzaa5tJCW00paT5tpK+2k/XSUIukEnaFzlECXKY1uUA7dpkK6 Q/foBwrtwbFa1VgpNVarGiulxmpVY91kjbUCx2pVY63AsVJqrFY11gocK6XG WoFjrcCxWtVYKTVWqxprBY6VUmOtwLFa1VgpNVarGiulxmpVY6XUWCk1NvAl TaBJNJmm09c0h+bRIlpBq2gDbaFttIsOUARF0Uk6S+fpIiVROt2kXMqjIiqm Ugq1qnG61DjZNE6XGiebaj4BQnqEnqBa9By9THWoHjWkt6kpvU9tqR11pG70 CfWmftSfBtMQGkGjaDRNpK9oCs2gmTSX5tNiWkmraSNtpe20mw5SJEXTKTpH sZRIVyiDsuk25dMdKqEyCnWp8b4fMV6XGi+bxutS42XTeF1qvLuq8bbfeF1q vO03XjaN16XG237jZdN422+87Tdelxovm8brUuNtv/GyabztN16XGi+bxutS 42XTeF1qvGwaL5vGB8bQJJpMU+lrmkXzaAEtoVW0hjbRNtpBe+gQRdExOk3n KY4uUTJdpVuURwVUTHepnGq6VM1vjSv9z98a95e/IS70G+NCrvn5/D9//vLf +8vfGjchzG/3mhjm2aQwz74K82xymGdTwjybGubZtDDPpod5NiPMs6/DPJsZ 5tmsMM9mh3k2J8yzuWGezQvzbH6YZwvCPFsY5tmiMM8Wh3m2JMyzpWGeLQvz bHmYZyvCPFsZ5tmqMM9Wh3m2JsyztX/1rOZP9ATf6ZlgE0zwaTvBJqjpLyH9 gh6lJ+kZqk11qC7Vp7epETWn1tSO2lNn+oS6Ux/qTwNpCA2jUTSaxtJXNIWm 0UyaTfNpIS2l1bSWNtN22kl76TBF03E6Q7F0gS5TCmVSDuVTIZXQPaqg0CaY 6Ps7E22CiT5tJ9oEE33aTrQJJrpznegOY6JNMNEdxkSfthNtgonuMCb6tJ0Y aEwtqA19SB3oI/qUelBfGkCDaCgNpy9pDI2jyTSVptMsmkMLaBEtozW0jrbQ DtpF++gIHaMYOktxFE9JlErXKJcKqIjuUimFvr8zyTd0JtkEk2TTJJtgkmya ZBNMctM6yc3FpMBz9CLVpXrUgBpRE2pJbak9daQu1J16Uj8aSINpGI2g0TSW xtMUmkYzaDbNpYW0mJbTWlpPW2kn7ab9dJSO0wk6Rxcoga5QGl2n21RId+ge lVHoGzo1vSmkH9O/0P+kf6df0q/oN/R7ep5eotfodXqTGtO79B59QB2oE3Wl HtSLPqdB9AUNp5E0hsbRBJpK0+lrmkPzaBEtoRW0jjbQNtpFe+gARVAMnaTz FE8XKZnSKYvyqIiKqZTKKfRtnMm61GTfwZmsS02WUjVpH9Ij9Cg9TrWoNr1M 9ag+NaQm1JTep3bUkTpTN+pJvak/DaYhNIJG0VgaTxNpGs2gmTSX5tNiWkor aT1tpO20m/bSQYqkE3SKYimBEimFMugG5dMdKqEyqqDQd3Cm6FJTfPNmii41 RUpN0aWmSKkputQUN61T3GFM0aWmuMOYIqWm6FJT3GFMkVJT3GFMCbSiD6kT fUQfUy/6jAbQFzSURtKXNI4m0CSaTl/TLJpHC2gJLaNVtIE20Q7aQ/voEEXR STpNcXSRLlEqXaWbVEDFdJfKqZJC37yZqlVN9c2bqVpVTdqH9At6lB6jJ+gZ epHqUH1qQG9TU2pOrak9daYu9An1pj40kIbQMBpFo2k8TaSvaAbNpNk0nxbS UlpOq2kjbaadtJf202GKplN0hi5QIl2mNMqkbCqkErpHFXSfQt+8maZVTfPN m2la1TQpNU2rmialpmlV09y5TrP9pmlV02y/aVJqmlY1zfabJqWm2X7TbL9p WtU0KTVNq5pm+02TUtNsv2la1TQpNU2rmialpmlV06TUNCk1LTCZvqZZNIcW 0CJaRitoDW2iLbSL9tEBOkLH6DSdpXi6REmUTtfoFhXRXSqlSqqi0DdvpmtV 033zZrpWNV1KTdeqpkup6VrVdHdV063A6VrVdCtwupSarlVNtwKnS6npVuB0 K3C6VjVdSk3XqqZbgdOl1HQrcLpWNV1KTdeqpkup6VrVdCk1XUpND0yhmTSb 5tJCWkzLaSWtpc20lXbTfjpIR+k4naFzlECX6Qpl0HXKoTt0j8roPlVT6Js3 M+zBGfrVDN/BmaFfzZBXM/SrGfJqhn41w63VDHtwhn41wx6cIa9m6FczAo2p Bb1HH1An6kofUw/qS5/TFzScRtIYGkeTaDJNpVk0h+bRIlpCK2gVraMttI32 0AE6RBEUQ2fpPF2kJEqmq5RFuVRMpVROVfSAQt/B+doy/FrT+tq3cWpyP6RH 6FF6nJ6gp6k21aF61JDepibUkt6ndtSZutEn1JP6UX8aQiNoFI2l8fQVTaFp NJvm0nxaTEtpJa2m9bSVttNeOkiHKZJO0DmKpUS6QimUSTfoNpVQGVVQNX1D oW/jzJRhM63FmdrXTN/Qmal9zZRhM7WvmTJspvY10+3WTGtxpvY101qcKcNm al8zrcWZMmymtTjTWpypfc2UYTO1r5nW4kwZNtNanKl9zZRhM7WvmTJspvY1 U4bNlGEzA9NpDs2jBbSEltEqWkMbaBvtoH10iI5QFJ2k8xRHlyiZUuka3aQ8 ukvlVEkP6FsKfUNnljSbZUHO0shm+f7OLI1sljSbpZHNkmazNLJZbrxmWZCz NLJZFuQsaTZLI5tlQc6SZrMsyFkW5CyNbJY0m6WRzbIgZ0mzWRbkLI1sljSb pZHNkmazNLJZ0myWNJsVmEFzaT4tpKW0nFbTWtpI22kn7afDdJSi6RTF0gW6 TCmURtcpm/LpHlXQffqGvqPQ93dmS7PZVuVs3Wy27/TM1s1mS7PZutlsaTZb N5vtFmy2VTlbN5ttVc6WZrMDjakZtaI21IG60qfUgz6jATSIhtOXNIYm0CSa StPpa5pHC2gRLaMVtIbW0SbaQbvoAB2hCDpGpymO4imJUimdsugWFVApVVIV fUvf0//5T82RZnMszTla2hzfj5ijpc2RZnO0tDnSbI6WNsfN2BxLc46WNsfS nCPN5mhpcyzNOdJsjqU5x9Kco6XNkWZztLQ5luYcaTbH0pyjpc2RZnO0tDnS bI6WNkeazZFmcwIzaT4tpMW0nFbSWlpPm2kn7aaDdJQi6TidoQuUQFcojTLo BuVQIZXRfaqm7+gHCn0/Yq40m2tzztXS5vrOxFwtba40m6ulzZVmc7W0uW7L 5tqcc7W0uTbn3EBjepdaUBv6gDrRx9SDelFfGkRf0EgaQ+NoEk2m6fQ1zaIF tIiW0ApaRetoA22hXbSHDlEERVEMnaV4ukjJlE5X6SblUhGVUxU9oO8p1NLm ybB5Nuc83Wye71HM083mybB5utk8GTZPN5vn3myezTlPN5tnc86TYfN0s3k2 5zwZNs/mnGdzztPN5smwebrZPJtzngybZ3PO083mybB5utk8GTZPN5snw+bJ sHmB2bSQFtNSWkmraT1tpK20m/bSYYqkaDpB5yiBEimFMiiTsuk23aEKqqZv 6AcKdbP5kmu+pTlfI5vvGxXzNbL5kmu+RjZfcs3XyOa7N5tvac7XyOZbmvMl 13yNbL6lOV9yzbc051ua8zWy+ZJrvkY239KcL7nmW5rzNbL5kmu+RjZfcs3X yOZLrvmSa35gDi2iJbSMVtEa2kCbaBvtoX10hKLoGJ2k83SRLlEqXaVrdIvy qJgq6QF9S3+kUCNbILkW2JcL9LAFvluxQA9bILkW6GELJNcCPWyBe7MF9uUC PWyBfblAci3QwxbYlwsk1wL7coF9uUAPWyC5FuhhC+zLBZJrgX25QA9bILkW 6GELJNcCPWyB5FoguRYE5tJiWkrLaTWtpY20mbbTXtpPRymajtMpiqVEukxp lEnXKYfyqYTu0zf0Hf2JQj1soeRaaFUu1L4W+pbFQu1roeRaqH0tlFwLta+F bssWWpULta+FVuVCybVQ+1poVS6UXAutyoVW5ULta6HkWqh9LbQqF0quhVbl Qu1roeRaqH0tlFwLta+Fkmuh5FoYmEdLaBmtoDW0jjbRFtpB++gARdAxiqHT FEeXKInS6RplUS4V0F2qom/pewol1yJ5tciCXKRzLfIti0U61yJ5tUjnWiSv Fulci9yMLbIgF+lciyzIRfJqkc61yIJcJK8WWZCLLMhFOtciebVI51pkQS6S V4ssyEU61yJ5tUjnWiSvFulci+TVInm1KDCfltJyWklraT1tpq20k/bTQYqk 43SCztAFukxXKIOu0w26TYV0j6rpO/qBQnm12D3/Ynm12G5crHMt9n2LxTrX Ynm1WOdaLK8W61yL3YctthsX61yLA42pBb1HbagDdaKPqRf1pc9pEA2nkTSO JtFkmk5f0xyaRwtoGa2gVbSONtAW2ka76AAdoiiKoZN0luIpiZLpKmXRTcqj IiqlB/Q9hTrXEnf6S+TVEmtxiaa1xPctlmhaS+TVEk1ribxaomktcfe1xFpc omktsRaXyKslmtYSa3GJvFpiLS6xFpdoWkvk1RJNa4m1uEReLbEWl2haS+TV Ek1ribxaomktkVdL5NWSwEJaTitpNa2njbSVttNuOkiHKZpO0Ck6Rwl0hVIo k25QNuXTHSqjb+gHCjWtpfJqqZv8pfJqqbW4VNNa6vsWSzWtpfJqqaa1VF4t 1bSWuvFaai0u1bSWWotL5dVSTWuptbhUXi21Fpdai0s1raXyaqmmtdRaXCqv llqLSzWtpfJqqaa1VF4t1bSWyqul8mppYBGtoFW0hjbQJtpGO2gPHaIjdIxO 0mk6TxcpmVLpGt2kW1RAxVRO39IfKdS0lkmuZe7vl0muZdbiMp2rJu1DepJq 0TNUm16kOtSAGlFTep9aUzvqTF2oO/Wh/jSQhtAoGk0TaQpNo5k0m+bTQlpM K2k1raWNtJm2007aS4fpKB2nU3SGYimRUiiNrlM25VAhlVAFfUd/olDnWi65 lru1Xy65lluLy3Wu5b5lsVznWi65lutcyyXXcp1ruRuv5dbi8kBjakatqA19 SB9RV+pBfWkADaKh9CWNoUk0labTLJpDC2gRLaFVtIbW0SbaQjtoF+2jIxRB MXSazlIcXaJUSqcsukW5VER3qZK+p1ByrZBXK9zVr5BXK6zFFTrXCt+oWKFz rZBXK3SuFfJqhc61wj3XCmtxhc61wlpcIa9W6FwrrMUV8mqFtbjCWlyhc62Q Vyt0rhXW4gp5tcJaXKFzrZBXK3SuFfJqhc61Ql6tkFcrAktpNa2l9bSZttJO 2k376ShF0gk6Q+foAl2mNMqgG5RDt+kO3aP79AOF8mqllFrphn6llFppI67U tFb69sRKTWullFqpaa2UUis1rZVut1baiCs1rZU24koptVLTWmkjrpRSK23E lTbiSk1rpZRaqWmttBFXSqmVNuJKTWullFqpaa2UUis1rZVSaqWUWhlYRmto HW2gLbSNdtEeOkARFEUn6Sydp3hKonS6Sjcpl/KomEqpikJNa5VsWuU2fpVs WmUZ1qR4SI9QLXqOatPLVIfq0dvUlFpSW2pHHakbfUK9qT8NpiE0gsbSeJpC M2gmzaX5tJiW0nJaS+tpI22l7bSb9tJBiqRoOkXnKJYS6AplUCZl023KpxIq o2oKtarV9uBq2bTaHfxq2bTaHlytS632XYjVutRq2bRal1otm1brUqvdZK22 B1frUqvtwdWyabUutdoeXC2bVtuDq+3B1brUatm0WpdabQ+ulk2r7cHVutRq 2bRal1otm1brUqtl02rZtDqwgtbRBtpE22gH7aF9dIii6BidpvMURxcpma7S NbpFeVRAd6mcHlCoS62xAtdIqTXu4NdIqTVW4Bpdao1vQKzRpdZIqTW61Bop tUaXWuMma40VuEaXWmMFrpFSa3SpNVbgGim1xgpcYwWu0aXWSKk1utQaK3CN lFpjBa7RpdZIqTW61BoptUaXWiOl1kipNYGVtJ420mbaTjtpL+2nwxRNx+kM xdIFSqQUyqTrlEP5VEj3qIK+oVCXWmv7rZVSa928r5VSa22/tbrUWt97WKtL rZVSa3WptVJqrS611v3V2kBjakGt6EPqQB/Rp9SD+tIgGkrD6UuaQJNoOs2i ObSAFtEyWkGraANtoi20g3bRPjpAR+gYxdBZiqN4ukSpdI2yKJcKqIhKqZJq 7q/+67fG/ddvjPvL3xb3l78p7q9/k9xf/pa5mt/ktS7Mb/daH+bZhjDPNoZ5 tinMs81hnm0J82xrmGfbwjzbHubZjjDPdoZ5tivMs91hnu0J82xvmGf7wjzb H+bZgTDPDoZ5dijMs8Nhnh0J8+xomGcRYZ5FhnkWFeZZdJhnx8I8Ox7mWUyY Zyf+6lnNn+h1bi7W+Yxd573ROp+x69xcrLMJ1vmuzrrAc/QivUx1qR41oCbU klpTe+pIXag79aR+NJiG0QgaTRPpK5pBs2kuLaTFtJxW0mraSJtpK+2k3bSf DtJROk4n6BxdoAS6TGl0nW7QbSqkO1RG9yl057refcV6n6zrvSNa75N1vfuK 9ZbAet/LWW8JrPfJut4SWO+Tdb0lsN796nr3FestgfXuK9b7ZF1vCax3X7He J+t69xXr3VestwTW+2Rdbwmsd1+x3ifrevcV6y2B9T5Z11sC632yrrcE1vtk Xe+TdX1gDW2iLbSNdtEeOkCHKIJi6CSdp3i6SEmUTll0k/KoiIqpnKoodL+6 wX3FBom0wfugDRKppm+E9Cg9TrXpZapD9ag+NaSm9D61pY7UmbpRT+pN/WkI jaBRNJa+oik0k+bSfFpMS2klraa1tJm20nbaTXvpIB2mSDpBpyiWEiiRrlAG 3aBsyqc7VEIVVE2hW9WathTS39PP6J/o3+nn9Gv6Lb1Ar9Cr9Dq9QW9RM2pF H1An+og+pl70GQ2goTSSvqRxNJmm0iyaRwtoCS2jVbSG1tEW2kY7aA/to0N0 hKLoJJ2mOLpIlyiZrtJNukUFVEx3qZIeUOhWdZP7ik3uKzZJqU3eAtUkdki/ oMfoCXqR6lBdqk8N6G1qTq2pHXWmLvQJ9aY+NJCG0SgaTeNpCk2j2TSfFtJS Wk6raS2tp620nXbSXtpPh+koRdMpOkMXKJEuUwplUjblUCGV0D26T99Q6H51 s/uKze4rNkupzd4CbZZSm91XbNalNvvmzWZdarOU2qxLbZZSm3Wpze5XN7uv 2KxLbXZfsVlKbdalNruv2CylNruv2Oy+YrMutVlKbdalNruv2CylNruv2KxL bZZSm3WpzVJqsy61WUptllKbAxtoG+2gXbSPDtARiqBjdJrOUjxdoiRKpWt0 i3KpiO5SKVXRtxS6X91i8W2x+LZIqS3eB22RUlssvi1a1Rbft9miVW2RUlu0 qi1SaotWtcX96haLb4tWtcXi2yKltmhVWyy+LVJqi8W3xeLbolVtkVJbtKot Ft8WKbXF4tuiVW2RUlu0qi1SaotWtUVKbZFSWwIbaTvtpN20nw7SUYqk43SG zlECXaYrlEbXKYdu0x26R2VUTd9R6H51q3611QrcagVulVdbvRnaKq+2WoFb 9autvm+zVb/aKq+26ldb5dVW/WproDG9Rx9QB+pKH1MP6kuf0xc0ksbQOJpE 0+lrmkeLaAmtoFW0jjbQJtpBu2gPHaBDFEFRFENn6TxdpCRKpnTKolzKo2Iq pXJ6QKEVuE2/2mYPbrMHt8mrbd4MbZNX2+zBbfrVNt+32aZfbZNX2/SrbfJq m361zV3VNntwm361zR7cJq+26Vfb7MFt8mqbPbjNHtymX22TV9v0q2324DZ5 tc0e3KZfbZNX2/SrbfJqm361TV5tk1fbAptpJ+2mvXSQDlMkRdMJOkexlEhX KIUy6AbdpnwqoTKqoG8otAe361fb7cHt9uB2KbXdm6HtUmq7Pbhdv9ru+zbb 9avtUmq7frVdSm3Xr7a7tdpuD27Xr7bbg9ul1Hb9ars9uF1KbbcHt9uD2/Wr 7VJqu3613R7cLqW224Pb9avtUmq7frVdSm3Xr7ZLqe1SantgC+2iPbSPDtER iqJjdJLOUxxdomRKpat0k/KogO5SOVXStxTagzv0qx324A57cIeU2uFufYeU 2mEP7tCvdvjmzQ79aoeU2qFf7ZBSO/SrHe6vdtiDO/SrHfbgDim1Q7/aYQ/u kFI77MEd9uAO/WqHlNqhX+2wB3dIqR324A79aoeU2qFf7ZBSO/SrHVJqh5Ta EdhKu2kv7afDdJSi6Tidoli6QJcphdIok7IpnwrpHlXQffqOQntwp1a10x7c aQ/ulFI73bLvlFI77cGdWtVO37zZqVXtlFI7taqdUmpnoDE1ozbUgT6iT6kH fUYDaBANpzE0gSbRVJpFc2gRLaMVtIbW0SbaQttoD+2jA3SEIugYxdBpiqN4 SqJUSqdrdIsKqIhKqZKq6HsK7cFdWtUue3CXPbhLSu1y375LSu2yB3dpVbt8 82aXVrVLSu3SqnZJqV1a1S73V7vswV1a1S57cJeU2qVV7bIHd0mpXfbgLntw l1a1S0rt0qp22YO7pNQue3CXVrVLSu3SqnZJqV1a1S4ptUtK7Qpsp720nw7S UYqk43SCztAFSqArlEYZdJ1yqJDuUBndp2r6gUJ7cLc9uFu/2m0P7rYHd8ur 3W7ed8ur3fbgbv1qt+/g7Navdsur3frV7kBjepda0AfUibpSD+pFfWkQfUEj aRxNosk0nebQPFpCK2gVraMNtIW20Q7aRwfoEEVQFMXQSTpL8XSRkimdrlIW 5VIRFVM5VdEDCvWrPfbgHv1qjz24xx7cI69qsjukx+kJqkXPUX1qSG9TE2pK LakddaZu1JN6Uz8aTENoFI2nr2gKzaC5NJ+W0kpaTetpI22l7bST9tNBOkyR FE0n6BSdowRKpBTKoEy6QbfpDpVQBVXTNxTqV3vtwb361V57cK89uFdK7XXz vldK7bUH9+pXe32fYa9+tVdK7dWv9kqpvfrVXvdXe+3BvfrVXntwr5Taq1/t tQf3Sqm99uBee3CvfrVXSu3Vr/bag3ul1F57cK9+tVdK7dWv9kqpvfrVXim1 V0rtDeyiA3SIjlAUHaOTdJrO00W6RKl0la7RTcqjYrpLlfSAvqVQv9pnD+7T r/bZg/vswZqcDukX9AQ9Sc9QbWpAb1MjakrN6X1qT13oE+pNfag/DaFhNJom 0hSaRjNpPi2k5bSa1tJG2kzbaSftpoN0mI5SNB2nU3SGYimRLlMaZdJ1yqZ8 KqF7dJ++oe8o1K/224P7tar99uB+e3C/lNrvvn2/lNpvD+7Xqvb7ZsN+rWq/ lNofaEzNqAW1og7UlT6lz6gvDaChNJzG0CSaStNpFi2gRbSC1tA62kRbaAft oj10iI5QBB2jGDpNZymOLlESpdM1yqJbVEB3qZSq6FsK7cEDVuABXeqAFXjA Cjwgmw64ZT8gmw5YgQd0qQO+z3BAlzogmw7oUgdk0wFd6oBbqwNW4AFd6oAV eEA2HdClDliBB2TTASvwgBV4QJc6IJsO6FIHrMADsumAFXhAlzogmw7oUgdk 0wFd6oBsOiCbDgT20mE6SpF0nE7QGTpHF+gyXaEMuk43KIcK6R6VUTV9R6EV eND2O2j7HdSlDtp+B22/g7LpoFv2g7LpoO13UJc66PsMB3Wpg4HG9C61oPeo DXWij6kH9aXPaRANp5E0jibTdPqa5tAiWkKraB1toC20jXbRHtpHRyiCoiiG TtJZOk/xlETJdJWy6CblUhGVUjk9oO8ptP0O2X6HbL9DutQh2++Q7XdISh1y y35ISh2y/Q7pUod8n+GQLnVISh3SpQ5JqUO61CG3Vodsv0O61CHb75CUOqRL HbL9DkmpQ7bfIdvvkC51SEod0qUO2X6HpNQh2++QLnVISh3SpQ5JqUO61CEp dUhKHQrsp6MUSdF0gk7ROYqlBLpCKZRJNyibbtMdKqMK+oZ+oND2OyyvDluB h63Aw1rVYSvwsBV4WF4ddt9+WF4dtgIPa1WHfZ/hsFZ1WF4d1qoOy6vDWtVh t1aHrcDDWtVhK/CwvDqsVR22Ag/Lq8NW4GEr8LBWdVheHdaqDluBh+XVYSvw sFZ1WF4d1qoOy6vDWtVheXVYXh0OHKAIiqJjdJJO03mKo4uUTKl0jW7SLcqj YiqnSvqW/kihFXhEch2xB4/Yg0c0rSP2YE1ih/QoPUa16Bl6kepQI2pKzel9 ak3tqAt1p97UnwbSEBpFo2kiTaOZNJvm01JaTmtpI22m7bST9tJ+OkiRFE3H 6RSdoVi6QImUQml0nbIph/KphCroPn1Hf6LQHjwquY5ahkctw6M611HL8Khl eFRyHXXzflRyHbUMj+pcR33H4WigMTWjFtSK2tCH1JV60Gc0gAbRUPqSxtAk mk6zaA4toGW0gtbRJtpCO2gXBZPrb/4mEPhR8Pxt8Pw4eP4ueP4+eB4Knp8E zz8Ez0+D5x+D52fB83Dw/FPw/Lfg+efg+e/B8y/B8z+C51+D59+C538Gz/8K nn8Pnv8dPD8Pnl8Ezy+D55Hg+VXwPBo8vw6ex4LnN8HzePD8NnieCJ7fBc+T wfNU8DwdPL8PnlrB84fgeSZ4ng2e54Ln+eCpHTwvBM+LwfNS8LwcPK8ET53g eTV46gbPa8FTL3heD576wfNG8DQInjeDp2HwvBU8bwfPO8HTKHgaB0+T4Hk3 eJoGT7PgaR48LYKnZfC8FzzvB0+r4GkdPG2Cp23wfBA87YLnw+BpHzwdgqdj 8HQKns7B81HwdAmersHTLXg+Dp5PgufT4OkePD2D50//8R//0Sv4r72D57Pg 6RM8fYOnX/B8Hjz9g2dA8AwMnkHBMzh4vgieIcEzNHiGBc/w4BkRPCODZ1Tw fBk8o4NnTPCMDZ5xwTM+eCb8Tc1/pPLPfxIO+DNxiKLoGMXQaTpLcRRPlyiV 0imLblEuFdBdqqQq+p5Cn1wRPq8i3BFEuCOI0Lkj3BFEuCOI8HkV4c1LhM+r CHcEETp3hO+4ROjcET6vInTuCJ9XETp3hJvMCHcEETp3hDuCCJ9XETp3hDuC CJ9XEe4IItwRROjcET6vInTuCHcEET6vItwRROjcET6vInTuCJ9XETp3hM+r CJ9XEYHDFE3H6QSdoXN0gRLoMqVRBt2gHLpNhXSP7lM1/UChz6tIn1KR7ggi 3RFEatqR7ggi3RFE+pSK9OYl0qdUpDuCSE070ndcIjXtSJ9SkZp2pE+pSE07 0k1mpDuCSE070h1BpE+pSE070h1BpE+pSHcEke4IIjXtSJ9SkZp2pDuCSJ9S ke4IIjXtSJ9SkZp2pE+pSE07UkpFSqnIwBE6RjF0ks7SeYqni5RE6XSVblIu 5VERlVIVPaBQ046STVFuBqLcDERp1VFuBqLcDETJpijvW6JkU5SbgSitOso3 W6K06ijZFKVVR8mmKK06yk1mlJuBKK06ys1AlGyK0qqj3AxEyaYoNwNRbgai tOoo2RSlVUe5GYiSTVFuBqK06ijZFKVVR8mmKK06SjZFyaaowFE6TifoFJ2j WEqgRLpCGZRJ2XSb8ukOlVE1fUOhVh0tkaLdAkS7BYjWoKPdAkS7BYiWSNHe skRLpGi3ANEadLRvsURr0NESKVqDjpZI0Rp0tPvLaLcA0Rp0tFuAaIkUrUFH uwWIlkjRbgGi3QJEa9DREilag452CxAtkaLdAkRr0NESKVqDjpZI0bZ/tESK lkjRgQiKoZN0ms5THF2kS5RMV+ka3aI8KqBiKqcH9C2FGtQxiXTM4j9m8R/T m2pSN6RH6Ql6kmrTi1SX6lNzep9aUztqT52pO/Wh/jSEhtEoGk8TaRrNpvm0 kJbSalpLm2k77aS9tJ8O01GKpBN0is5QLF2gRLpMKZRJ1ymH8qmQSqiCvqHv KNSbjkuk49b9cev+uLZ03Lo/Hvg1/Y6eohfoJXqN3qAW1Ira0IfUgT6iHtSX BtBQGk5f0gSaRNNpDi2gRbSM1tA62kI7aBftowN0hCIoik7SaTpLcRRPlyiJ UukaZVEuFVAR3aVK+pZC6y5GDsVYcjGWXIyOFGPJxVhyMXIoxnuUGDkUY8nF 6Egxvp0SoyPFyKEYHSlGDsXoSDHuIGMsuRgdKcaSi5FDMTpSjCUXI4diLLkY Sy5GR4qRQzE6UowlFyOHYiy5GB0pRg7F6EgxcihGR4qRQzFyKCYQTafoDJ2j C5RAl+kKpdF1ukG3qZDu0D26T99RaMmd8M7khBw6Yb+dsN9O6Egn7LcT9tsJ OXTCO5MTcuiE/XZCRzrhOykndKQTcuiEjnRCDp3QkU64bzxhv53QkU7Ybyfk 0Akd6YT9dkIOnbDfTthvJ3SkE3LohI50wn47IYdO2G8ndKQTcuiEjnRCDp3Q kU7IoRNy6ETgGJ2ms3Se4ukiJVEypVMW3aQ8KqJiKqUq+p5q9lvN79P7yZ9/ n957/5/fp/fXP6F//y9/l17NzzvBn5rfcXYyzO89OxXm2ekwz86EeXY2zLNz YZ6dD/MsNsyzuDDPLoR5Fh/mWUKYZxfDPEsM8+xSmGeXwzxLCvPsSphnyWGe pYR5lhrmWVqYZ+lhnmWEeXY1zLPMMM+uhXl2PcyzrDDPboR5djPMs+y/elbz J/qk93wnfbKedA9x0j1ETVMI6RF6nJ6mWvQy1aH61JDep7bUjjpSZ+pGvak/ DaYRNIrG0lc0hWbSfFpMS2klraeNtJ120146SIcpkqLpOJ2hcxRLCZRIVyiF MugGZVM+3aESKqNq+oFC9xA1yRXSj+hn9E/0r/Rz+hX9ln5Pf6BX6FV6g96i VvQBfUid6CP6mD6jAfQFjaQvaRxNpqk0ixbQElpGq2gDbaIdtIf20SE6QlF0 jGLoLJ2nOLpIlyiZUukq3aRbVEDFdJfK6QH9kUI3Eqel1Glvd05LqdPuJk67 mzhtCZx2N3Ha3cRpKXXa253TUuq0u4nTlsBp3606bQmcllKnLYHTUuq0JXDa velpdxOnLYHT7iZOS6nTlsBpdxOnpdRpdxOn3U2ctgROS6nTlsBpdxOnpdRp dxOnLYHTUuq0JXBaSp22BE5LqdNS6nTgBJ2jWLpAiXSZUiiNMimbcqiQSuge VdA39CcK3U2ckVJnvN05I6XOuKU445bijE1wxi3FGbcUZ6TUGW93zkipM24p ztgEZ3yj6oxNcEZKnbEJzkipMzbBGTeoZ9xSnLEJzrilOCOlztgEZ9xSnJFS Z9xSnHFLccYmOCOlztgEZ9xSnJFSZ9xSnLEJzkipMzbBGSl1xiY4I6XOSKkz gZN0nuIoni5REqVSOl2jW5RLRXSXSqmSvqVQSp2VTWe93Tkrm866rzjrvuKs LnXWfcVZ9xVnZdPZwHNUl+pRQ2pEbak9daQu1I26Uz8aTMNoNI2liTSNZtBc WkzLaSWtpc20lXbTfjpIRymSjtMJOkWxdIES6DJdoTTKoOuUQ7fpDt2jMrpP 31Eom87pUudk0znvec7JpnNuLs65uTinS51zc3HOzcU52XTOe55zsumcm4tz utS5QGP6gDpQJ+pKH1MP+py+oOE0hsbRJJpOX9M8WkIraBWtoy20jfbQATpE ERRFMXSSTlMcxdNFSqJkSqerlEW5lEfFVErlVEWhm4vzGtR52XTee57zsum8 xVeTtSE9So/T0/Qc1aZ6VJ/epibUjjpSZ+pGn1BP6k9DaASNpfH0Fc2gmTSf ltJKWk3raSttp710kA5TJEXTCTpFZ+gCJVAiXaEUyqBMukG3KZ9KqIwqqJpC iy9WNsVqULGyKdYbn1jZFGvxxVp8sRpUrMUXa/HFyqZYb3xiZVOsxRerQcX6 pkysBhUrm2I1qFjZFKtBxbpfjbX4YjWoWIsvVjbFalCxFl+sbIq1+GItvlgN KlY2xWpQsRZfrGyKtfhiNahY2RSrQcXKplgNKlY2xcqm2MBZiqeLdImSKZWu 0jW6SXlUQHepnCrpAYUWX5yUitOl4qRUnLdAcVIqzuKLs/jidKk4iy/O4ouT UnHeAsVJqTiLL06XivOdmThdKk5KxelScVIqTpeKc0MVZ/HF6VJxFl+clIrT peIsvjgpFWfxxVl8cbpUnJSK06XiLL44KRVn8cXpUnFSKk6XipNScbpUnJSK k1JxgXOUQIl0mVIojTLpOmVTPhXSPaqg+/QNhRbfBSl1QZe6IKUueB90QUpd sPguWHwXdKkLFt8Fi++ClLrgfdAFKXXB4rsQaEzNqAN9RF3pU+pBn9EgGk5f 0gSaRFNpFs2hRbSC1tA62kQ7aBcdoCMUQccohk7TWTpPF+kSJVEqpdM1yqJb VEBFVEqVVEXfUmjxxUupeK0qXkrFu1GPl1Lxtl+87RevVcXbfvG2X7yUinej Hi+l4m2/eK0q3vdo4rWqeCkVr1XFS6l4rSreDVW87RevVcXbfvFSKl6rirf9 4qVUvO0Xb/vFa1XxUipeq4q3/eKlVLztF69VxUupeK0qXkrFa1XxUipeSsUH YimRLtMVSqMMuk43KIcK6Q6V0X2qpu8otP0SpFSCVpUgpRLcqCdIqQTbL8H2 S9CqEmy/BNsvQUoluFFPkFIJtl+CVpXgGzUJWlWClErQqhKkVIJWleCGKsH2 S9CqEmy/BCmVoFUl2H4JUirB9kuw/RK0qgQplaBVJdh+CVIqwfZL0KoSpFSC VpUgpRK0qgQplSClEgJxdImSKJnS6Spl0U3KpSIqpnKqogcU2n4XZdNFXeqi bLroHv2ibKrJ2pAepSfoaXqOXqY61JDepqbUkjpTN/qEelJv6kdDaBSNpa9o Cs2guTSfltJqWk8baSvtpr10mCIpmk7QKTpHsXSBLtMVSqEMyqQblE236Q6V UAVV0zcU2n6JEilRg0qUSIluzxMlUqLFl2jxJWpQiRZfosWXKJES3Z4nSqRE iy9Rg0r03ZpEDSpRIiVqUIkSKVGDSnQvlWjxJWpQiRZfokRK1KASLb5EiZRo 8SVafIkaVKJEStSgEi2+RImUaPElalCJEilRg0qUSIkaVKJESpRIiYF4SqJk SqWrdI1u0i3Ko2K6S5X0gL6l0OK7JJEu6U2XJNIlt+c1aRrSL+gxepJqUW2q Q3XpbWpEzel96kKfUHfqTX2oPw2j0TSeptA0mknzaSEtp7W0kTbTdtpL++ko RdNxOkVnKJYuUAJdoRRKo0y6TtmUQ/lUQvfoPn1D31Fo512WSJe1pcsS6bI7 88sS6bJ1d9m6u6wtXbbuLlt3lyXSZXfmlyXS5UBjakGtqCt9Sj3oM+pLA2g4 jaEJNJWm0yxaQItoBa2jTbSFdtA+OkARdIxi6DSdpTiKp4uUTKmUTtcoi25R LhXQXSqlKvqWvqfQukuSSEnaUpJESnJnniSRkmy6JJsuSVtKsumSbLokiZTk zjxJIiXZdEnaUpLvHyRpS0kSKUlbSpJISdpSkjuoJJsuSVtKsumSJFKStpRk 0yVJpCSbLsmmS9KWkiRSkraUZNMlSaQkmy5JW0qSSEnaUpJEStKWkiRSkkRK CiRSCqVRBl2nG5RDt6mQ7lEZVdN39AOFNt0ViXRFW7oika64Kb8ika5Yclcs uSva0hVL7oold0UiXXFTfiXQmN6l96gNfUw9qBf1pc9pEI2kcTSJptPXNIcW 0RJaRRtoC22jXXSADlEUxdBJOkvnKZ4u0iVKpXS6Sll0k3Ipj4qolMrpAX1P obaULIeSdaRkOZTsVjxZDiXbb8n2W7KOlGy/JdtvyXIo2a14shxKtt+SdaRk 3zVI1pGS5VCyjpQsh5J1pGS3TMn2W7KOlGy/JcuhZB0p2X5LlkPJ9luy/Zas IyXLoWQdKdl+S5ZDyfZbso6ULIeSdaRkOZSsIyXLoWQ5lBy4TGmUQZl0g7Lp NuXTHSqjCvqGfqBQR0rx7i5FDqXoSClyKMVdeIocSrHfUuy3FB0pxX5Lsd9S 5FCKu/AUOZRiv6XoSCm+YZCiI6XIoRQdKUUOpehIKe6WUuy3FB0pxX5LkUMp OlKK/ZYih1LstxT7LUVHSpFDKTpSiv2WIodS7LcUHSlFDqXoSClyKEVHSpFD KXIoJZBE6XSVrtFNukV5VEDFVE6V9C39kUIdKdUbu1SJlKojpUqkVDfgqRIp 1X5Ltd9SdaRU+y3VfkuVSKluwFMlUqr9lqojpfqGQaqOlCqRUnWkVImUqiOl ultKtd9SdaRU+y1VIqXqSKn2W6pESrXfUu23VB0pVSKl6kip9luqREq131J1 pFSJlKojpUqkVB0pVSKlSqTUwBXKoEy6TtmUQ/lUSCVUQffpO/oThTpSmvd0 aRIpTUdKk0hp7r3TJFKa/ZZmv6XpSGn2W5r9liaR0tx7p0mkNPstTUdK872C NB0pTSKl6UhpEilNR0pzt5Rmv6XpSGn2W5pEStOR0uy3NImUZr+l2W9pOlKa RErTkdLstzSJlGa/pelIaRIpTUdKk0hpOlKaREqTSGmBZLpK1yiLblEuFVAR 3aVKqqLvKZRI6d7JpcuhdB0pXQ6lu+1Ol0PpVlu61ZauI6VbbelWW7ocSnfb nS6H0q22dB0p3XcI0nWkdDmUriOly6F0HSndjVK61ZauI6VbbelyKF1HSrfa 0uVQutWWbrWl60jpcihdR0q32tLlULrVlq4jpcuhdB0pXQ6l60jpcihdDqUH UiiTrtMNyqHbVEh36B7dp2r6gUI5lOH9W4b0ydCMMqRPhjvuDOmTYatl2GoZ mlGGrZZhq2VInwx33BnSJ8NWy9CMMnxfIEMzypA+GZpRhvTJ0Iwy3CNl2GoZ mlGGrZYhfTI0owxbLUP6ZNhqGbZahmaUIX0yNKMMWy1D+mTYahmaUYb0ydCM MqRPhmaUIX0ypE9GIJWuURbdpFzKoyIqplKqogcUakZXvWu7KnOuakFXZU5N Nob0OD1Btag2vUz1qCG9TS3pfWpHHak39aP+NJiG0AgaT1NoBs2l+bSYVtJq 2kjbaTftpYMUSdF0is5RLCVQIl2hFEqj63SDsuk25dMdKqEyqqZvKNSCMr1X y5Q0mRpPpqTJdHedKWkyrbFMayxT48m0xjKtsUxJk+nuOlPSZFpjmRpPpnf+ mRpPpqTJ1HgyJU2mxpPpfijTGsvUeDKtsUxJk6nxZFpjmZIm0xrLtMYyNZ5M SZOp8WRaY5mSJtMay9R4MiVNpsaTKWkyNZ5MSZMpaTID6ZRFN+kW5VEBFdNd KqcH9C2FGs8179CuSZprek5N+oX0C3qCnqRn6EWqQ/XpbWpE71Nrak+dqQ/1 p4E0hIbRKJpI02gmzaeFtJRW01raTDtpL+2nwxRNx+kMxdIFSqTLlEJplEE3 KJtyKJ8KqYTuUQV9Q99RqOdc977suqS5rt1clzTX3UlflzTXrazrVtZ17ea6 lXXdyrouaa4HGlMrakMd6CPqSwNoEA2l4fQlTaLpNIsW0CJaRmtoHW2hXbSP DtAROkYxdJbiKJ4uURKlUjpdpZt0i3KpgIroLpVSJX1LoZWV5Y1YlnzJ0mmy 5EuW++cs+ZJlUWVZVFk6TZZFlWVRZcmXLPfPWfIly6LK0mmyvK3P0mmy5EuW TpMlX7J0mix3PFkWVZZOk2VRZcmXLJ0my6LKki9ZFlWWRZWl02TJlyydJsui ypIvWRZVlk6TJV+ydJos+ZKl02TJlyz5khXIpGzKodtUSHfoHpXRffqOQovq hndeN6TKDU3mhlS54Yb5hlS5YT3dsJ5uaDI3rKcb1tONQGN6l9rQB9SJutLn NIi+oOE0ksbQZPqa5tAiWkIraB1toG20hw7QIYqgGDpJ5ymeLlISJVM6XaVr dItyKY+KqJhKqZyq6HsKraeb3m/dlCo1qRbSI/QoPU21qDbVoXrUkJpQU2pL 7agzdaP+NJiG0AgaRWNpCs2kubSYltJKWk8baTvtpYN0mCLpBJ2iWEqgRLpC KZRBmXSdcug25dMdKqEyqqBq+oFCmynbu6xs77Ky5Uu2/pItX7LdF2fLl2yb KdtmytZfsm2mbJspW75kuy/Oli/ZNlO2/pLt7Xq2/pItX7L1l2z5kq2/ZLun ybaZsvWXbJspW75k6y/ZNlO2fMm2mbJtpmz9JVu+ZOsv2TZTtnzJtpmy9Zds +ZKtv2TLl2z9JVu+ZMuX7EAW5VIeFVAx3aVyqqQH9Eeq2Uw1v79rZPP/+/u7 /vJ3cv3l7+z6y9/TFfrX1/7z5/n//Kn5nUq3wvyepZwwz3LDPLsd5llemGf5 YZ4VhHlWGOZZUZhnd8I8Kw7zrCTMs7thnt0L86w0zLOyMM/KwzyrCPOsMsyz +2GeVYV5Vh3m2YO/elbzp+OWd5m3vMus+cwL6Rf0KD1GtegZepHqUn16m5pS c2pH7akLfUIDaQgNo1E0msbTNJpN82kpLafVtJE2007aT4fpKEXTKTpDFyiR LlMKpVEmXacbdJvyqZBK6B5V0H36hv5EoR2d471ljveWOT59cvTcHJ8+Od4X 5Pj0ybGjc+zoHD03x47OsaNzfPrkeF+Q49Mnx47O0XNzfKciR8/N8emTo+fm +PTJ0XNz3N3l2NE5em6OHZ3j0ydHz82xo3N8+uTY0Tl2dI6em+PTJ0fPzbGj c3z65NjROXpujk+fHD03x6dPjp6b49Mnx6dPTuAm5VEBFdFdKqVKqqJvKXRj l+sdZa53lLnyJVfPzZUvud4S5MqXXDs6147O1XNz7ehcOzpXvuR6S5ArX3Lt 6Fw9N9e3JnL13Fz5kqvn5sqXXD03141drh2dq+fm2tG58iVXz821o3PlS64d nWtH5+q5ufIlV8/NtaNz5UuuHZ2r5+bKl1w9N1e+5Oq5ufIlV77kBrIpnwrp Dt2jMrpP1fQdhfKlpimE9GP6Z/ol/Yp+Q7+lZ+l5eoVepzepMbWg96gDdaKP qQd9QcNpJI2hcTSJvqZ5tIhW0CpaR1toG+2hQxRBURRDZ+k8XaQkSqZ0ukpZ dJNuUQEVUTGVUjlV0QMKLeo8TSbP+8g87yPz5EueJpMnX/K8G8iTL3kWdZ5F nafJ5FnUeRZ1nnzJ824gT77kWdR5mkyeb0PkaTJ58iVPk8mTL3maTJ4buzyL Ok+TybOo8+RLniaTZ1HnyZc8izrPos7TZPLkS54mk2dR58mXvEAsJdIVSqEM yqQblE05VEh3qITKqIKq6RsKLep8+ZKvyeR7H5nvfWS+fMnXZPLlS753A/ny Jd+izreo8zWZfIs636LOly/53g3ky5d8izpfk8n3HYh8TSZfvuRrMvnyJV+T yXd3l29R52sy+RZ1vnzJ12TyLep8+ZJvUedb1PmaTL58yddk8i3qfPmSb1Hn azL58iVfk8mXL/maTL58yZcv+YFcKqJiukvlVEkP6FsKLeoCSVOg0xR4H1ng fWSBpCnQaQokTYG3BAWSpsB6KrCeCnSaAuupwHoqkDQF3hIUSJoC66lApynw HYgCnaZA0hToNAWSpkCnKXCLV2A9Feg0BdZTgaQp0GkKrKcCSVNgPRVYTwU6 TYGkKdBpCqynAklTYD0V6DQFkqZApymQNAU6TYGkKZA0BYHbdIdK6B5V0H36 hr6j0HoqlDSFOk2h95GF3kcWSppCnaZQ0hR6X1AoaQqtp0LrqVCnKbSeCq2n QklT6H1BoaQptJ4KdZpC34Eo1GkKJU2hTlMoaQp1mkK3eIXWU6FOU2g9FUqa Qp2m0HoqlDSF1lOh9VSo0xRKmkKdptB6KpQ0hdZToU5TKGkKdZpCSVOo0xRK mkJJUxjIo2K6S6VUSVX0LX1PofVUJGmKtJsibyaLvJkskjRF2k2RpCny5qBI 0hTZUUV2VJF2U2RHFdlRRZKmyJuDIklTZEcVaTdFvgNRpN0USZoi7aZI0hRp N0VubIrsqCLtpsiOKpI0RdpNkR1VJGmK7KgiO6pIuymSNEXaTZEdVSRpiuyo Iu2mSNIUaTdFkqZIuymSNEWSpiiQTyV0j8roPlXTd/QDhXbUHT3njsy5o+fc 8bbyjreVd2TOHT3njsy54x3CHZlzx6K6Y1Hd0XPuBBpTC2pDH1BX+ph6UV8a SWNoHE2iyTSd5tESWkHraANtoV20hw5RFMXQSTpL8XSRkimdrlIW3aRcyqMC ukulVE5V9IC+p1DPKdZzimVOsZ5T7L1lsfeWxTKnWM8pljnF7ouLZU6xbVVs WxXrOcW2VbFtVSxzit0XF8ucYtuqWM8p9r2IYj2nWOYU6znFMqdYzyl2i1Ns WxXrOcW2VbHMKdZzim2rYplTbFsV21bFek6xzCnWc4ptq2KZU2xbFes5xTKn WM8pljnFek6xzCmWOcWBQrpHZVRB1fQN/UChnlOi55RImhI9p8R7yxLvLUsk TYmeUyJpStwXl0iaEtuqxLYq0XNKbKsS26pE0pS4Ly6RNCW2VYmeU+IbEiV6 TomkKdFzSiRNiZ5T4hanxLYq0XNKbKsSSVOi55TYViWSpsS2KrGtSvScEklT oueU2FYlkqbEtirRc0okTYmeUyJpSvScEklTImlKAkVUSuVUSQ/oW/ojhXrO XT3nrqS5q+fc9Y6qJt9CeoKepFr0DNWhutSAGlFTep/aUXv6hLpTH+pPo2k8 TaQpNI1m0kJaTqtpI22m7bSX9tNROk6n6AzFUiJdpjTKpOuUTTmUT4V0h8qo gu7TN/Qd/YlCPeeednNP0tzTbu55R3XPO6p7kuaednNP0txzc3xP0tyzre7Z VvcCjakZtaIPqQN9Sj2oLw2gMTSBJtFUmk6zaBGtoDW0ibbQDtpHByiCYug0 naU4ukRJlE7XKItuUS4VUBEVUzlVUhV9S99TKGlKdZpS+VKq05R6R1XqHVWp fCnVaUrlS6mb41L5UmpRlVpUpTpNqUVValGVypdSN8el8qXUoirVaUq9DS/V aUrlS6lOUypfSnWaUrc4pRZVqU5TalGVypdSnabUoiqVL6UWValFVarTlMqX Up2m1KIqlS+lFlWpTlMqX0p1mlL5UqrTlMqXUvlSGiihCrpP1fQd/UChfCmz o8p0mjL5UqbTlHlHVeYdVZl8KdNpyuRLmZvjMvlSZkeV2VFlOk2ZHVVmR5XJ lzI3x2XypcyOKtNpyrwNL9NpyuRLmU5TJl/KdJoytzhldlSZTlNmR5XJlzKd psyOKpMvZXZUmR1VptOUyZcynabMjiqTL2V2VJlOUyZfynSaMvlSptOUyZcy +VIWuEuVVEUP6HsKdZpy66lckymXL+WaTLl3VOXeUZXLl3JNply+lLsvLpcv 5dZTufVUrsmUW0/l1lO5fCl3X1wuX8qtp3JNptzb8HJNply+lGsy5fKlXJMp d3dTbj2VazLl1lO5fCnXZMqtp3L5Um49lVtP5ZpMuXwp12TKrady+VJuPZVr MuXypVyTKZcv5ZpMuXwply/lgXt0n6rpG/qBQk2mQr5UWE8VmkyFfKnQZCq8 o6rwjqpCvlRoMhXypcJ9cYV8qbCeKqynCk2mwnqqsJ4q5EuF++IK+VJhPVVo MhXehldoMhXypUKTqZAvFZpMhRubCuupQpOpsJ4q5EuFJlNhPVXIlwrrqcJ6 qtBkKuRLhSZTYT1VyJcK66lCk6mQLxWaTIV8qdBkKuRLhXypCJRSFT2gb+mP FGoylZKm0nqq1GkqJU2lTlPpHVWld1SVkqZSp6mUNJXuiyslTaX1VGk9Veo0 ldZTpfVUKWkq3RdXSppK66lSp6n0XrxSp6mUNJU6TaWkqdRpKt3YVFpPlTpN pfVUKWkqdZpK66lS0lRaT5XWU6VOUylpKnWaSuupUtJUWk+VOk2lpKnUaSol TaVOUylpKiVNZaCMqukb+o7+RKFOc1/S3Lee7us09yXNfZ3mvndU972jui9p 7us09yXNfbfE9yXNfevpfqAxtaBW9CF9RF3pM+pLg2goTaKpNJ1m0RxaQCto HW2iHbSL9tERiqAYOktxFE+XKJXSKYtuUS4VUBHdpVIqpwf0LX1PoaSpki9V 1lOVTlMlX6p0mipvpqq8maqSL1U6TZV8qXI3XCVfqqynKuupSqepsp6qrKcq +VLlbrhKvlRZT1U6TZW34VU6TZV8qdJpquRLlU5T5Z6mynqq0mmqrKcq+VKl 01RZT1Xypcp6qrKeqnSaKvlSpdNUWU9V8qXKeqrSaarkS5VOUyVfqnSaKvlS JV+qAhX0DX1HP1AoX6qlSrXNVK3JVEuVak2m2luoam+hqqVKtSZTLVWq3QhX S5Vqm6naZqrWZKptpmqbqVqqVLsRrpYq1TZTtSZT7R14tSZTLVWqNZlqqVKt yVS7nam2mao1mWqbqVqqVGsy1TZTtVSptpmqbaZqTaZaqlRrMtU2U7VUqbaZ qjWZaqlSrclUS5VqTaZaqlRLlepAJX1L31OoyTyQJQ/+vJQygp8dPV4IBCL+ 5r/+cyev/dXPXz6v+dff/eiNH/1LMG9r/vFm4L/+sS74J/Bvgp9ojwSz6W// 8z/58J//Vs2M/7tAnaCi/uYnQQXeHdj3k5d+Gvyv/+En/xwI/P0/B+7+W+JD F84GGfzv/McfPf9f/1OD/yP+T5sfBSoX/yjQOO1HgTf++98GFjT/28CAKX8b +FXM3wYePAj+Nzz342Dx+lHwL/1Z8J97BP/X/yj43/jf//zP/xys9X/cXpHc 8tNWDbr9+a/5/Z+f1/rzP0/685MJwb8m9I8nfvTj4D//R7AA/Shw6sf/GvS/ Bc9Xf/6rJ//5n9cH/2ap+Sv+5s8/Pw6E/0e74F/708DY4P9FwX/8zZEf1fzf FPxrf/RP//ff/pvQP9f8h0X+r//f/wDJ34R59qMwz/42zLMfh3n2d2Ge/X2Y Zw+FefaTMM/+Icyzn4Z59o9hnv0szLOHwzz7pzDP/luYZ/8c5tl/D/PsX8I8 +x9hnv1rmGf/FubZ/wzz7H+FefbvYZ797zDPfh7m2S/CPPtlmGePhHn2qzDP Hv2rZzVREDBqAkpHQFAEzJuA+hFQPwLqR0D9CLjGDbhmCXhdHXC1G3D1ElBT AspJwNVuwNVLQDkJmEEBNSWgpgTUlICaElBOAi55Ay5hAgpLQGEJmEYB170B 0yigsAQUloByEnDJG1BTAmpKQE0JqCkB5STg6iVg/ASUk4AZFFBTAq5ZAupH QP0IqB8B9SOgdASUjoCCEVAranIopB/Rj+kn9FP6J/pn+lf6Of2SfkO/o6fo D/QCvUqv0Zv0DjWmFtSKPqSu9Cn1oM+oLw2gMTSBptJ0WkCLaAWto020g/bR ATpGMXSazlISZdEtyqUCukul9C2FJkrNZ2dIf0sP0T/Qw/Tf6H/Q/6Zf0GP0 BD1Jtag21aG61IDepkbUnN6ndtSFPqHu1Jv6UH8aTeNpCk2j+bSQltNa2kjb aS/tp2g6TqfoDF2m65RNOZRPJXSPvqHQdcffSou/DfyI/p5+Qj+jf6J/oX+n n9Ov6bf0O/o9PU+v0Kv0Br1F71Azeo8+oI/oY/qUetFn9Dl9SeNoMk2lebSA ltEa2kDbaA/toyg6RifpNF2ia3STblEeFdNdekChwfFjGfFjjeLHMuLHGsWP ZcSPNYof+7JbzedNSI/S4/QEPU3P0ctUh+pTQ3qbmlJLakudqRt9Qj2pN/Wj UTSWvqIpNJfm01JaTetpK+2mvRRJ0XSCTlEiZdINyqbbdIdKqJpCFxV/Jxn+ LvBj+nv6Kf2M/pn+J/07/Yp+Q7+lp+hZeoleodfpTXqL3qUW1IY6UVf6mHpQ L+pLI2kMTaLJNIfm0RJaRetoC+2iPRRBURRDJ+kiXaUsukm5VETFVEWhq4ia bAjp7+gf6B/pv9G/0f+iR+gxepyepGfoRXqZ6lEDakhNqDm1po7UhbpRd+pJ fWgEjaaJ9BXNprm0mFbSWtpMO2k3HaVIOk4nKIEy6DrdoBwqpDt0n76j0K54 SD94SB48pB88JA8e0g8esiEekgcP2RAP6QcPyYOH9IOHbIiHbIiH5MFDNsRD +sFD8uChQGNqRq2oA31EXelT6kGf0XD6kibQJJpFc2gRraA1tIl20C46QhF0 jGIontLpGmXRLSqgIqqkbym0IX6iH/xEMvwk8BD9Az1M/4P+jX5Bj9Jj9ATV otr0ItWl+tSAGlFTep/aU2fqQp9Qd+pNw2gUjaeJNJNm00JaTqtpI22nnXSY jlI0HacLlEaZdJ2yKZ8KqYK+odBy+Af94B8kwz8E/p5+Qj+jf6F/pZ/Tr+jX 9Fv6PT1PL9Cr9Dq9Qe/Qu/QefUid6CP6mD6lXjSURtI4mkBf0yxaQMtoFW2g bbSDDtERiqJjFEepdJWu0U3KowIqpwcU2gs/lQc/1Q9+Kg9+qh/81Er4qTyo +cwI6RF6lB6np+k5qk11qB7Vp7epCbWkdtSROlM3+oR60hAaQWNpPM2gmTSf ltJKWk9baTsdpMMUSdEUSymUQZl0g25TPpVRNYVWwj9KgX/UCv5RCvxj4Kf0 z/Qv9O/0S/oV/YaeomfpeXqFXqPX6S1qTC3oA+pAnagrfUw96AsaTmNoHE2n r2keLaEVtI620DY6QIcogqLoPCVTOl2lLMqlPCqlKgptg59pAD/z9/7PAv9A /43+O/0v+gU9Qo/Rk/QMPUcvU12qRw2pETWnttSeOlIX6kbdaTANo9E0lqbR DJpLi2k5raXNtJX200E6SpF0jq5QGmXQdcqh23SP7tN3FFoED/vcf9jf+w/7 3H/YDnjY3/sP2wEP+9x/2N/7D/vcf9gOeNgOeNjf+w/bAQ/73H/Y3/sP2wEP +9x/2A542G3Awz73H/b3/sM+9x/29/7DPvcf9vWph33uP/z/4+tP4LMuz7Tx +27H1s48ta2dltZapVbBamoRLSJLREWWiAgIyL4KRPZ9M7LIKlsWVtmRiOw7 BNkJO7LvWyCQAFkgIRAIIDD873Tm/k6nn/t9y+dqv3PVp31mxiPncZ2/oXoH PCH7T9gOPiH7T3gHPOEd8IS5/4R3wBPeAU/I/hO2g0/I/hPm/hOy/4QvCE/4 gvCEuf+E7D9h7j/hHfCE7D9hO/iEd8AT3gFPeAf8wtz/hZ8CvzD3fxF4gn5J v6Wn6GkqSsUogl6h16k0laEKVJGiqBbVpXrUiJpQC+pM3akvxdBQGk5jaBxN oumUSHNoKS2n1bSGttFBOkrH6TSl0kW6SjfoDj2k0E+BX2oAv/Tz4JcawC8D P6df0G/o9/QHepZeoJfpr/QavUFv0lv0LlWlmlSHPqaG1JiaUyfqRn3oMxpC w2g0jaWJNI1m0ze0hJbRKkqirXSAjtAxOkXn6QJlUx4V0AMK/Tz4lZ8Hv9IF Cv+vSUJ6gv6TfkdP0TP0PL1EEVSSSlFpiqR3qArVoNpUlxpQI2pGHakr9aa+ NJiG0ihKoAk0lb6mRFpMS2klraZk2k+H6SidpHOUSll0nW7TfQr9PHjST4En dYEntf8n/RR4Uvt/Uhd40k+BJ3WBJ7X/J7X/J/0UeFL7f1IXeNJPgSe1/yd1 gScDlelD+ojqUH1qSE2pA3WhXtSHBtEQGknxNJ6m0CyaTYtoCa2gVbSF9tEh OkInKIXOUybl0i36gUI/BX6tAfxa+/+17P868CT9ln5HT9Nz9CK9RCXodSpF 5agCVaLqVItqUz1qQE2oPXWmntSbvqDBNILiaBxNppn0NS2kxbScVtJm2ksH 6TAdp7N0jjIoh/LpHoWy/5+m/X/q/P8p8f8Z+BX9horQH+hPVJz+Qn+j1+jv VJbeovfoA6pJH9HHVJ8aUzvqRD2oFw2kQfQlxdJY+opm0CxaQItoGa2gTfQ9 HaBDdIzOUApdoWt0k+5SKPG/MeN/o+n/RuJ/E/gl/Sf9lp6iolSMXqRXqCS9 TmUokipSNapBtagu1aNG1JY6UnfqSQPoCxpOYyiBJtF0mknzaSEtpeW0kfbQ fjpIR+k0naXLdJVu0B26R6Gm/1sz/rf6/W9l/7f6/W8Dv6bf0O/pWXqBitNf 6VV6jd6k8vQuvU8fUk2qQx9TQ/qUOlA36kH9aSANo9EUTxNpGs2gebSAltAy 2kC7aR8doCN0is7QJcqmPCqguxTq90W0+iKyX0SrL2LGF5H9ImZ8Ea2+iFZf RPaLaPVFzPgisl9Eqy9ixhfR6ot42xcx44vIfhEzvojsFzHji/ieV8SML6LV F5H9IvZ6RWS/iFZfRKsvYsYX0eqLaPVFZL+IvV4R2S9ixheR/SI2+UVs8ouY 8UVkv4gZX0SrLyL7Rez1imj1RbT6Ilp9EdkvotX/Tpf/ncT/Tpf/nRn/O4n/ XaAI/ZH+TC/Qy/Q3epXeoLL0NlWlD+hD+ojqUH1qQ+2oC3Wjz6k/DaGRFEvj aQpNo29pHi2iJbSOdtL3tI8O0Qk6RWmUSbl0iwoo1OV/r8v/XuJ/r8v/3oz/ vcT/PvBbepqeo+fpJXqFSlApKkMVqApVo+pUi2pTPWpNbakzdaUY6keDaQSN oXE0mabSHJpLC2kxraUdtIf20kE6TifpImVQDuXTbbpPoRn/lFb/lOw/pdU/ ZcY/JftPmfFPafVPafVPyf5TWv1TZvxTsv+UVv+UGf+UVv9UoDK9Tx9QTfqI PqZW9Cl1oi70GX1Og+hLGk1j6SuaQt/Qt7SAFtF3tJ120/d0gI7RCbpAV+ga 3aRb9AOFZvwf9Ps/+CnwB/3+D6b9H/wU+INpX/i/+5CK0nP0IkXQK/Q6laZI qkRRVI1qUC2qS59QNHWkztSXYugLGk6jKIEm0WRKpDk0nxbSGtpGu2gP7aej dJxS6TJdpRuUT/foIYV+Cjyt6T/t58HTmv7TGsDTfh48rQE8Hfg9PUt/ouL0 Mv2VXqM3qDy9R1XpffqQalIdakltqAN1oj70GQ2kYTSS4mkifUWz6RuaRwso ibbSTtpN++gIHaPzdImyKY9u0l16QKGfB3/08+CPOv8fdYE/+nnwR13gj4Hf 0TNUlIrRSxRBJakUlaOKVIWiqDrVoNrUglpTe+pIvakvDaChNILiaAJNoq8p kebSfFpNybSDdtFeOkxH6RylUxZdpxt0h+5T6OfBM34KPKP9P6MLPOOnwDO6 wDPa/zOBP9Kz9AL9hV6mV+nvVJbepcpUlT6gD+kjak6tqB11oF7Uh/rTEPqS Ymk8TaRZNJu+pXm0irbQdtpJ39MhOkIplEaZlEt5VEA/UOinwLPa/7MawLOy /6wG8Kz2/2zgaXqGnqcX6SUqQa9TGXqHKlEVqkbVqRY1o0+oLbWnntSb+tFg Gk5jaBxNoJn0Nc2hubSSNtM22kF76CAdprN0kTIoh67TbbpHoewX1fmLmvZF Jb6oaV9U5y8a+AP9kf5Mxekv9Dd6jd6kt+k9qkzv0wdUk5pSS/qU2lEP6kWf 0yAaRqNpLI2nGTSLvqFvaQVtoq20nXbTATpEZ+gCXaFrlEu36C4VJr7wL3y7 793Cv/DtH4O/fh389bN/+vVfP/rvXyHfCv7653/83/vC/5yCPwWnxb/+Zxc8 F+buz2Hung9z90KYu2Jh7oqHuXsxzN1fwty9FObu5TB3EWHu/hrm7pUwd38L c1cizN2rYe5Khrl7Lczd62Hu/h7mrlSYuzfC3JUOc/dmmLsyYe7KhrkrF+au fJi7yDB3b4W5q/Avd4V/Rv/Ji/VPuuqfTK4/6ap/8mItfJOE9DQ9R8XoRXqF SlJpqkAVqRJFUTWqQU2oBUVTW+pOPSmGvqChNIoSaBxNp5mUSHNoOW2kZNpG u2g/HaTTlEqX6SrlUD7dodDkes7r9DkN9TmT6zkN9Tmv0+e8Tp8zuZ4L/Ile oOL0V3qV3qC36F16j6rS+/QhNabm1IY+pW7Ugz6jgTSERlI8jaVpNINm0ze0 jDbQFtpKO2kfHaBTdJ4uUTZdo5tUQKHJ9Wdv0j9rqH+W+D9rqH/2Jv2zN2lh LwmpKD1PxSiCSlApiqR3qCJVoSiqTo2oGbWmaOpK3akvDaDBNILiKIGm0nT6 mhJpKa2nzZRMO2gv7aeTdI7SKYuu0g26TaHEF/aDkB6jn9J/0K+oCP2enqU/ 0wv0Mv2N/k7l6W16lypTVfqAGlJTakVtqAt1oz7UnwbRlxRL8TSFptEsmk1L aB1toi20nb6nfXSCUiiNMimb8ugWhRL/gnn+gpy/YJ6/4P35gvfnC3L+gvfn C4Hn6Hl6iV6h16kcVaB3qBJVoWrUgJrQJ9SaOlNX6k396AsaTmMojibTVJpJ X9NiWksbaTNtoz20l47TWbpIGZRF1ymfblNo71zMPC8m58XM82Len8W8P4vJ eTHvz2LmeTE5L+b9Wcw8L+b9WcyeqZh5XkzOi5nnxQKV6X2qT42pJbWiTtSF etHnNJCG0WiKpa9oCs2gWbSIvqMNtIm20m76no7RGbpAVyiTcukm3aLQjrm4 eV5c4oub58X19uJ6e3GJL663FzfPi0t8cb29uHleXG8vbs9U3DwvLvHFzfPi El/cPC/u23Jx87y43l5c4ovbLBeX+OJ6e3G9vbh5XlxvL663F5f44jbLxSW+ uHleXOKL+75U3Pel4uZ5cYkvbp4X19uLS3xxm+Xientxvb243l5c4ovr7cXN 8+ISX9xm+UXz/EWJf9E8f1Fvf1Fvf1HiX9TbXzTPX5T4FwPF6WV6ld6k8vQW vUvvUVX6mBpSc2pJHagT9aDPqD8NoZE0mibSVzSNZtACSqJ1tIG20E7aTUfo FJ2nS3SFrlEe3aTQPvkvcv4X8/wv2vpftPW/yHnhT+yQnqGiVIxeohJUmspR JL1DFakK1aUG1IxaUHvqSN2pL/WjwTSCRtEEmkRTaTrNp9W0ltbTZtpBu+gw naRzlE6X6SpdpxsU2iK/JN0vmeIv6egv6egvSfdLOvpLpvhL0v1S4AX6C/2N 3qCyVJ7epnepMtWh+tSUmlM76kDdqA99ToPoSxpJ42kiTaFpNI9W0Xe0jjbR dtpJh+gEpVAaXaJsyqU8Cn0tetnEflkzf1kzf1mmX9bMXzaxX5bplzXzlwMv 0itUispQOapA71Alqk31qAk1o7bUnrpSb4qhL2g4jaBxNIEm01SaSytpDa2l jbSNdtBBOk5n6SKlUxbl0HUK7dciTOcILTxCC4+Q5AgtPMJ0jpDkCC08wnSO 0MIjvLEjTOcISY4wnSMkOcJ0jvCNN8J0jtDCIyQ5wi4tQpIjtPAILTzCdI7Q wiO08AhJjrBLi5DkCNM5QpIjfPuJ8O0nwnSOkOQI0zlCC4+Q5Ai7tAgtPEIL j9DCIyQ5QguPMJ0jJDnCLu2vZvJfNe6/atx/leS/atyF/1sL6Wl6jopRBL1O pakMRVIFqki1qC41oiYUTW2pM/WkvjSAhtJwSqBxNIkm0xxaTqtpDa2nZNpG ++konaZUukgZdJVyKLQ3e8UkfkW7fkW7fkWSX9GuXzGJX5HkV7TrV0ziVwIv 02v0Br1J5ektepdqUh1qSI2pDX1KnagH9aH+NISGUTyNpYn0FX1Dy2gVJdE6 2kJbaR8doVN0ni7QFcqmaxTakf1Nk/6bJv03+f2bJv0387ewNYVUlJ6nl6gk laLSVI4i6R2qQbWpATWi1hRNHak79aZ+NJiGUhwl0ASaRIm0lFbSalpLmymZ 9tJhOknnKJUuUxZdpdA+rITWXEJrLiG1JbTmEqZuCaktoTWXMHVLaM0lvIRL mLolpLaEqVtCakuYuiV8typh6pbQmktIbQkbrxJSW0JrLqE1lzB1S2jNJbTm ElJbwsarhNSWMHVLSG0J++wS9tklTN0SUlvC1C2hNZeQ2hI2XiW05hJacwmt uYTUltCaS5i6JaS2hI3Xq7ryq7ryq1L7qq78qln7qtS+qiu/ata+qiu/GihB r1MpKkPlqAJVp1pUjxrQJ9Sa2lNX6kkx9AUNpjEUR+NoAn1Ni2k5raQ1tJE2 0x46SMfpLJ2jdMqgLArttEpqyCU15JJSW1JDLmnClpTakhpySRO2pIZcMvA3 eo3+Tm9SWXqLPqCa9DHVp5bUitpRF+pBn9FAGkSjKZbG0niaRYtoGa2gJNpA m2g3HaBjdIZSKI2uUCaFtlav6cWv6cWvSe1revFrJuxrUvuaXvyaCfuaXvxa 4BUqSa9TaSpDkVSNalBdqkct6BNqS52pO/WlAfQFjaIxlEDjaCYtpKW0nFbT etpIu2g/HaXTdJYu0mXKoBsU+s70ul78ul78uvy+rhe/bta+Lr+v68Wvm7Wv 68WvB/5Kr9Jr9Aa9SeXpffqQ6tDH1Jxa0qfUibpRH+pPA2kkjaZ4GkszaAEt oWW0itbRBtpJ++gInaIzdIEu0RXKo9A3pb/rxX+X37/rxX83a/8uv4U/V0N6 hp6nCCpBJakUlaZyFEXVqTbVpWbUgqKpI3Wl3tSPBtAIGkVxlEChvfIXPwoE BgXP4OAZEjxDg2dY8AwPni+DZ0TwjAyeUcEzOnjGBE9s8MQFT3zwJATP2OAZ Fzzjg2dC8EwMnknB81XwTA6eKcEzNXimBc/04JkRPDODZ1bwfB08s4MnMXi+ CZ45wfNt8MwNnnnBMz94FgTPwuBZFDyLg2dJ8CwNnmXBszx4VgTPyuBZFTyr gycpeNb8qPAvlxcIrP1R4V/NLhBYHzwbgmdj8GwKns3BsyV4koNna/BsC57t wbMjeHYGz67g2R08e4Ln++DZGzz7gmd/8BwInoPBcyh4DgfPkeA5GjzHgud4 8JwInpPBcyp4TgfPmeA5GzwpwXMueM4HT2rwXAiei8GTFjzpwXMpeK4Ez8NH jx5lBP8xM3iygic7eK4Gz7XgyQme3OC5Hjx5wXMjeG4GT37w3Aqe28FTEDx3 gudu8NwLnh+C537wPCj81w6e/wqeR8ETrDHBPxPm+3NiMS2llbSW1tMO2kuH 6SSdplRKp8t0nUJfDUt5F5XyU7uUd1EpXauUn9qlvItK6VqlvItK2WGU0rVK +aldKvB3eoPKUlX6gD6iOtSUmlMb6kBdqBd9Tv3pSxpJsRRP02geLaIltIK+ o3W0nb6nQ3SCTtF5SqNLlEuh74JveBe94af2G95Fb+hab/ip/YZ30Ru61hve RW/YYbyha73hp/YbgdepFJWhKlSNalFtakLNqDW1p87Uk2KoHw2nETSG4mgq zaWFtJiW0xpaS9toDx2k43SSztFFSqccuk+hrlXaC6m0/Jb2Qiqta5WW39Je SKV1rdKBP9Ff6K/0N3qN/k5vUmV6n2rSR9SYmlIrakedqAd9Rp/TMPqSRlMs TaFvaQEtomWURN/RVtpNB+gYnaAUukBpdI1+oFDXetNb6U1JftNb6U2t601J ftNbqfB/LyEVpRcpgl6hkvQ6laZKFEU1qBY1oib0CbWljtSd+lIMDaXhNIrG 0GSaQ/NpIS2l1bSGkmkX7aejdJzOUipdpKt0jx5SKMllvJrKyHQZr6YyJnEZ mS7j1VTGJC7j1VTGrqOMSVxGpsuYxGVkukzgDXqPqtKHVJMaUmNqSZ9SB+pG fegzGkLDaCSNpq/oG5pHC2gJraIk2kI7aR8doWN0hs7TBcqmu/SAQpkuK9Nl vZ/KmsllZbqs91NZM7ms91NZW4+yZnJZmS5rJpeV6bJmclnfAMuayWW9n8rK dFkbyrIyXdb7qaz3U1kzuaz3U1nvp7IyXdaGsqxMlzWTy8p0WV8TyvqaUNZM LivTZc3ksvpzWZkua0NZVn8uqz+X1Z/LynRZ/bmsmVxWpsvaUJb1DbCsmVxW pstJcjlNupyZXE6Sy2nS5czkcpp0OVuPcmZyOUkuZyaXk+RyZnI53wDLBSrT B/Qh1aeG1JzaUDvqQr2oDw2iIfQljaSJNJu+pXm0iFbQKtpE2+l7OkRH6BSl 0HnKpAL6gUJJLq9JlzeJy8tveU26vElcXpMub+tR3iQuL7/lTeLy8lveJC7v G2B5k7i8Jl1efsvbVZaX3/KadHlNurxJXF6TLq9Jl5ff8naV5eW3vElcXn7L +65Q3neF8iZxefktbxKX16TLy295u8rymnR5Tbq8Jl1efstr0uVN4vLyW96u srxvgOVN4vLyW94kjtSkI83fSPmN1KQjzd9ITTrS+zfS/I2U30jzN1J+I83f SF8DI83fSE06Un4j7Soj5TdSk47UpCPN30hNOlKTjpTfSLvKSPmNNH8j5TfS F4ZIXxgizd9I+Y00fyM16Uj5jbSrjNSkIzXpSE06Un4jNelI8zdSfiPtKiN9 DYw0fyPlN9L8fUuTfsv8fUuS39Kk3zJ/C7/8hPQcFaMXKYJeoZJUgSpSFFWj ulSPmtAnFE0dqTv1pAH0BQ2l4TSOZlIizaH5tJSW03pKpl20nw7ScTpNZ+ky 5dMdukeh+VtBf65g/laQ5Ar6cwXzt4L+XMFLuIL5W0GSK5i/FSS5gvlbIfAW vUtV6X2qQx9TY2pJbagDdaMe1J8G0hAaRmNpBs2mb2geLaFltI620E7aRwfo GJ2iM3SJblIB3aXC+Vv4n6nw8wqF/5kKt370f39lB39d+J9fJ/7nV8iF//jP //yFf/xnKrwd5ve+vxPm7t0wdxXD3L0X5q5SmLvKYe6qhLmrGuYuKszd+2Hu qoW5+yDMXfUwdx+GuasR5q5mmLtaYe4+CnNXO8xdnTB3dcPcfRzmrl6Yu/ph 7hqEuWsY5q5RmLvGYe6ahLlrGuau2b/cFf4Z/bZ34Nsa5dsm0tvegW9rlG97 B75to/O2Rvm2ifS2Rvm2ifR2oARF0jtUhaKoNtWlRtSCWlN76krdqR8NoME0 lBJoOn1NiTSXFtNSWkubaQftpf10lE7SaUqnG3Sb7lCoURb+LAnpMfop/Zx+ RUXoWfozvUB/oZfpb1Se3qbKVJU+ojrUkJpTK2pHXagbfU79aRANoXiaRrNo Nn1Li2gJfUebaDt9T/voCJ2gU5RGeXSLCijUKN/VI9+V33e9A9/VI9/1DnzX 9uZdPfJd+X1Xj3xXft/VI98NlKMKVImqUC2qTQ2oGX1CbakzdaUY6kdf0GCK o6k0k76mObSQFtMa2kjbaA/tpcN0nE7SRbpO+XSbQj2yovZYUWorev1V1B4r ev1VtLOpqD1WlNqK2mNFqa2oPVYMlKW36D2qTDXpI6pPTaklfUqdqAt9Rp/T QBpEsTSFZtAs+oYW0CJKog20lXbT93SIjtEJukC5dJNuUag9vmfWvie173nz vWfWvufN956dzXtm7XtS+55Z+57UvmfWvhcoQ5FUkSpRDapF9agJtaBo6kid qS/F0AD6gsbQZJpOMymR5tNCWk3rKZl20R46SEfpOKVSDt2gfArN2kombCWp reSlV8mEreSlV8mmppIJW0lqK5mwlaS2kglbKfAmlad36T36kGrSx9SYmlMb 6kCdqA99Rv1pII2mr2gazaDZNI8W0CpaR1toJ+2mA3SEjtF5ukZ5dJNCE7ay rFbWhiubq5W14cKfjSE9Q0XpeSpGL1FpKkfvUEWqTjWoLjWiZtSa2lNH6k19 qR8NoFE0iabSdPqa5tJ8WklraTPtoF20nw7TUTpHV+k63aDQXK0ioVU03yqm aRXNt4oNTBXTtIqEVjFNq0hoFdO0iu+WVUzTKppvFQmtYoNaRUKraL5VNN8q pmkVzbeK5ltFQqvYoFaR0CqmaRUJreK7RxXfPaqYplUktIppWkXzrSKhVWxQ q2i+VTTfKppvFQmtovlWMU2rSGgVG9QqvltWMU2rSGgV07SqllvV5Kyq5Vb1 Nq1qclaVy6omZ1W5rGpyVvVlsqrJWVXLrSqXVe1Iq8plVS23qpZb1eSsquVW 1XKrymVVO9KqclnV5Kwql1V946jqG0dVk7OqXFY1OatquVXlsqodaVUtt6qW W1XLrSqXVbXcqiZnVbmsakda1ZfJqiZnVbmsanJGabRRpmSURhvl9RllSkZJ Y5QpGSWNUaZklG+PUaZklEYbJY1RtqBR0hil0UZptFGmZJRGG6XRRkljlC1o lDRGmZJR0hjlK0aUrxhRpmSUNEaZklEabZQ0RtmCRmm0URptlEYbJY1RGm2U KRkljVG2oFG+PUaZklHSGGVKvq+9vm82vq+9vu+lWfg/5ZCepqL0HBWj16k0 RVIFiqJqVIvqUSNqQdHUlrpTT+pLMTScxtEkmkzTKZHm0FJaTespmbbRHtpP B+k0ZdBVyqEbFPrOWE1nrWY2VtNZq3lfVjMbq8llNbOxmlxWMxur+aZYzWys prNWk8tqgar0PtWkj6khNac29Cl1ox7Uhz6jYTSWJtJXNI1m0ze0hFbROtpC W2k37aMDdIquUDZdozwKfVP8QGf9wJT8QGf9wKvyA1Oy8KdfSM9QUXqeSlIp KkeRVIWiqAbVpQbUjFpTNHWl7tSb+tJQSqAJNImm0teUSItpJa2lzZRMu2gv 7aeTdJmy6Cpdp9D3w+o6a3XzsrrOWt1bsrp5WV1Cq5uX1SW0unlZ3bfC6uZl dZ21uoRWD1SmqvQh1aH61JRaURvqQt2oF/WhIRRP42kiTaFZNJsW0Qr6jjbR FtpJ39M+OkGXKJOyKZdC/7c6H5qXH+qsH3pBfmhefiiXH5qXH8rlh+blh76i fGhefqizfiiXHwYqURWqTrWpHjWhT6g1daau1JN602CKo3E0gSbTTPqaFtJy WkMbaTPtoD20l45TOmVQFuVQ6CtKDVOyhs5aw7uxhilZQxprmJI1pLGGKVnD d5IapmQNnbWGNNawz6kRqEwf0Ef0MTWmltSKOlEX6kG9aBDF0lgaT1/RDJpF C2gZJdEG2kTbaTd9T8coja5QJl2j0HeSmmZjTZ21pndjTbOxpjQWNpCQnqai 9AqVpNJUhipSJapGtaguNaIW9Al1pM7UnXrSFzSGEmgcTaLpNJPm01JaTetp I22jXbSHjtJFukwZdJXuUaiz1jIba+mstbwga5mNteSyltlYSy5rmY21fAmp ZTbW0llryWUtW5xacllLZ60VqEl1qCE1p5bUgTpRN+pBA2k0xdNYmkjTaAbN oyW0itbRBtpKO2k3HaELdImuUDbdpVBn/UhT/cgL8iOz8SO5/MhsLPyZF9Iz FEElqBSVpneoIkVRDapNDagZtaD21JG6UncaQKMojhJoAk2l6TSXFtNKWkvr KZl20C46TKmUTpcpi+5QqKnW1k9rezfWNhtrS2Nts7G2NNY2G2v7wlHbbKyt n9aWxtq2OLWlsbZ+WjvwIX1E9akpNad21IG6UDfqTyMpluJpPE2hafQtLaIV 9B2toy20nXbSITpPaXSJMqmAQv20jn5ax2uxjtlYRxrrmI11pLGO2VjHd406 ZmMd/bSONNaxxakjjXX00zr6aZ1ALapHTagZtaX21Jm6Uj8aQWMojsbRZJpK c2ghLac1tJY20zbaQQfpHF2kdMqg2xTqp3X107reiHVNxLrSWNdErCuNdU3E ur5m1DUR6+qndaWxrt1NXWmsG6hMH1BN+pgaU1P6lNpRJ+pCn9OXNJpiaSx9 RVPoG1pAyyiJvqNNtJW20wFKoQuURlfoFoX66cf66cfeiB+biB9L48cm4sfS WPg/25BepAgqSa9TJFWgSlSNalBdakRNKJraUkfqTDE0nEbRGEqgSTSZEmk+ LaXVtIY2UjJto/10llLpIl2mfAr103paaT1vxHomYj1prGci1pPGeiZiPV8z 6pmI9bTSetJYz56mnjTW00rraaX1TMR6gTrUkBpTG/qUOlAn+oyG0UgaTfE0 kb6i2TSPltAqSqINtIW20j46Q+fpAl2imxRqpfW9DOubg/VlsL45WF8G65uD 9X3DqG8O1tdF68tgfduZ+jJYXxetr4vWNwfrB2pTA2pErSma2lNH6ktDaQSN ojiaQJPoa5pLi2klrab1tJmSaS+dpnOUSul0g0JdtIFXYAPTr4HkNTD9Gkhe A9Ovge8VDUy/BhpoA8lrYCfTQPIaaKANNNAGpl8DDbRBoD41pFbUhtpRB+pD Q+hLGkmxNJ4m0iz6lhbRClpF62gTbaHv6RSl0HlKozwKNdCG3n4NzbyGktfQ zGsoeQ3NvIa+TTQ08xrqnQ0lr6FNTEPJa6h3NtQ7G5p5DfXOhoF61IA+odbU ltpTbxpMw2kEjaFxNIFm0hxaSMtpJa2ljbSZ9tBJOkvn6CJdp9sU2sQ08vZr ZOY1ksFGZl4jGWxk5jXyRaKRmddI72wkg43sXxrJYCO9s1GgMr1PNeljqk8t qRV9Su2oFw2iYfQljaaxNJ5m0De0gJbRCvqONtAm2k0n6Ayl0AXKpVsU2r80 9vZrbPo1lsbGpl9jaWxs+jX2RaKx6ddY72wsjY3tXxpLY2O9s7He2dj0a6x3 NtY7G0tjY/uXxtLY2PRrLI2NbUMb24Y2Nv0aS2Nj06+x3tlYGhvbvzTWOxvr nY31zsbS2FjvbGz6NZbGxvYvjX2RaGz6NZbGxqZfY18kGuudje1fGktjE6/A JiZiE7lsYiI2kcsmJmIT3yaamIhNNNAmctnEJqaJXDbRQJtooE1MxCYaaBMN tIlcNrGJaSKXTUzEJnLZxDa0iW1oExOxiVw2MRGbaKBN5LKJTUwTDbSJBtpE A20il0000CYmYhO5bGIT08S3iSYmYhO5bGIiNvFtookG2sQmpolcNvUebGpK NpXQpqZkUwltako29ZWiqSnZVCttKqFN7WSaSmhTrbSpVtrUlGyqlTbVSptK aFM7maYS2tSUbCqhTe1Fm9qLNjUlm0poU1OyqVbaVEKb2sk01UqbaqVNtdKm EtpUK21qSjaV0KZ2Mk19pWhqSjaV0KamZFNfKZpqpU3tZJpKaDMvw2bmZTMJ bWZeNpPQZuZlM18pmpmXzTTVZhLazHammYQ201SbaarNApXpA/qI6lBTak6t qA11o/40iIbQlxRL8TSFZtG3tIiW0Cr6jtbRdjpCJ+gUpVA25dEPVJjQwt/3 u6xc4e/7/eff37sv+Gtr8Ne+//kV8tZ/+vVd8Nf//jGFvxezeZjfn9kizF3L MHefhLlrFeaudZi7NmHuosPcfRrmrm2Yu3Zh7tqHuesQ5q5jmLtOYe46h7nr Euaua5i7bmHuuoe56xHmrmeYu15h7nqHuesT5q5vmLvPwtzFhLn7PMxdvzB3 /cPcDfiXu8I/o5vrfc3Nl+Z6X3Pzpbne19zXtuZ6X3Nvr+bmS3NbxubmS3Nv r+beXs31vubeXs29vZqbL80DTagZfUKtqSv1oy9oMA2nMRRHk2kmzaGFtJhW 0hpaS9voMB2nk3SWsug63aP7FOp9LfS+FuZLC72vhfnSQu9r4btbC72vhVdY C/OlhX1jC/OlhVdYC6+wFnpfC6+wFoGa9BE1pqbUklpRF/qcBtIgGkajKZa+ ohn0DS2gRbSCkug72kqH6BidoDOUSbl0l36gUO9rqfe1lNCWel9LCW2p97X0 Ba6l3tfSe6ylhLa0g2wpoS29x1p6j7XU+1p6j7X0HmspoS0DjagJtaBPqDPF 0AD6gobSKBpDk2g6JdJ8WkjLaTWtoWQ6SEfpOJ2mDMqhO3SPQr3vk0CAfkw/ pZ/Rz+kP9Cy9QMXpVXqN3qS36F2qSh9STWpIjak5taRO9Bn1p4E0hEbSaJpI 02g2zaMFtIxWURJtoQN0hI7RKbpC16iA7lLoZdZKLluZl63kspV5WfgTLKRn 6HkqRiWoJJWmSHqHqlB1qkENqBE1oxbUkfpSPxpAg2kEjaIJNJW+prk0n5bS SlpNm2k/HaajdJIu01W6TXcoNC9bS2NrU7K1NLY2JVv7FtfalGzt7dVaGlvb ULaWxtbeXq29vVqbkq0DlekD+pDqU0NqSs2pA/Whz6k/DaIvaSSNpyk0i76l ebSEVtAq2kT76BAdoRN0ibLpFhVQaEq2MRHbyGAbE7GNb3FtTMQ2mmobGWxj L9lGBttoqm001TYmYhtNtY2m2kYG29hLtpHBNiZiGxls49tAG98G2piIbWSw jYnYRlNtI4Nt7CXbaKptNNU2mmobGWyjqbYxEdvIYBt7yTa+xbUxEdvIYBsT sY1vcW001Tb2km1ksI2J2EZTjTYHo2Uw2hyM9lUu2hyM1k+jZTDaNjJaBqP1 02j9NNocjNZPo/XTaBmMto2MlsFoczBaBqN9G4j2bSDaHIyWwWhzMFo/jZbB aNvIaP00Wj+N1k+jZTBaP402B6NlMNo2MtpXuWhzMFoGo83BaF/lovXTaNvI aBmMNgej9dNPzcFPpfFTc/BT3+cK97YhFaXnKIJeodepDEVSRYqialSX6lEj akJtqSf1pRgaQENpOCXQJJpOiTSHFtJSWk7raQ/tp4N0lC5SBt2gfLpDoVba 1hxsK41tzcG2vs+1NQfb6qJtpbGtzWNbaWyri7bVRduag2110ba6aFtpbGvz 2FYa25qDbaWxbeBT6kF96DPqT0NoGMXTRJpGs+kbWkBLaBmto920jw7QEbpA VyiPblIBhbpoOxlsZw6281WunTnYTgNtJ4Pt7GnayWA7DbSdBtrOHGyngbbT QNvJYDt7mnYy2M4cbCeD7QLR1J16U1/qR4NpKMXRBJpKX1MizafFtJTW0i7a S/vpMKXSZbpON+g2hRpoe8lrb/q19wWuvenXXu9sL3nt7WTaS157vbO93tne 9Guvd7YPVKaq9BHVofrUkNpQN+pFfehzGkRDKJbG0xSaRbNpHi2iJfQd7aTv aR8dovN0iXIpj25RqHd2MOk6+MbWwaTroG12kLcOti4d5K2DttlB2+xg0nXQ Njtomx3krYOtSwd562DSdZC3DoHW1JV6Um+KoS9oMI2hcTSZZtLXNJcW0mJa QztoD+2lg3SO0imHrlM+hdpmR1Oto69oHU21jpplRynraK/SUco6apYdNcuO plpHzbKjZtkxUJlq0kf0MdWnVtSFelAv+owG0iAaTWPpK5pBs+hbWkCLKIm2 0276ng5QCqXRNcqlmxRqlp3Msk6+NHQyywq3TSE9TcXoRXqFXqfSFEkVqRLV oFpUl+rRJ9SZulNP6ksD6AsaRQk0iabTTJpD82khraZttIv20H46SxfpKuXQ DbpDoZdcZ7Oss68Knc2yzrpjZ3nrbHPSWd46646ddcfOZlln3bGz7thZ3jrb nHSWt85mWWd562x72TnQibpRD+pD/WkgjaR4mkjTaAZ9Q/NoAa2irbSTdtM+ OkMXKJuuUR4VUOj91sV3gy5mWReNsfCnUEjPUzGKoJJUisrRO1SRqlMNqk11 qQV1pK7UnXpTPxpAIyiOJtBUmk6JNJfm00pKph20i/bSaUqlLLpK1+k2hd5q XX0Z6GqWddUTu0pZV7uRrlLWVU/sqid2Ncu66old9cSuUtbVbqSrlHU1y7pK WVdbya6BDtSFulEv+pz605cUS+NpCk2j2fQtzaMVtIW20076nk7RecqkbMql WxR6l3XzFaCbWdZNT+wmZd3sQbpJWTc9sZue2M0s66YndtMTu0lZN3uQblLW zSzrJmXd7CK7BdpTZ+pKPSmG+tFwGkPjaDJNpa9pDs2l5bSZttEO2kMn6Rxl UBblUD6FXmPdbfy7m2Dd9cTuUtbdzqO7lHXXE7vrid1NsO56Ync9sbuUdbfz 6C5l3U2w7lLW3d6xe6AddaIu1IM+o89pGI2msfQVTaFZ9A19S8toE22l7bSb TlAKXaFMukY3KfQG62HP38ME66En9pCyHjYdPaSsh57YQ0/sYYL10BN76Ik9 pKyHTUcPKethgvWQsh52jD0Cbakjdabu1JdiaCiNogSaRJNpJiXSHFpKGymZ ttEuOk5n6TJl0FW6Qfco1BN72u73NMt66ok95a2nTUdPeeupJ/bUE3uaZT31 xJ56Yk9562nT0VPeepplPeWtp81iT5vFnmZZT3nrGehGfegzGkIjKZ4m0lc0 g2bTN7SENtAW2ko76RidoUt0hbIpj+5SqCf2stPvZar10hh7SV4vO49ektdL Y+ylMfYy1XppjL00xl6S18vOo5fk9TLVekleL5vFXjaLvUy1XpLXy1TrpTH2 krxedh69NMZeGmMvjbGX5PXSGHuZar0kr5edRy87/V6mWi/J62Wq9bLT76Ux 9rLz6CV5vUy1XhpjL++yXhpjb5v83uZbb92xt+T1tv3oLXm9dcfeumNv8623 7thbd+wteb0DlakqfUAfUkNqQ+2oA3WhXtSHBtGXFEvjaSJNo1k0mxbROtpE W2g7HaFTlEaXKJNyqYBC3bGPTX4fk66PFtlH8vrYg/SRvD5aZB8tso9J10eL 7KNF9pG8PvYgfSSvj0nXR/L62DH2sWPsY9L1kbw+Jl2fQE/qTV/QcBpD42gC TaWZ9DUtpLW0kTbTNjpMJ+kipVMG5dBtCrXIvjb5fU26vvpkX8nraw/SV/L6 6pN99cm+Jl1ffbKvPtlX8vrag/QNVKb36QOqT63oU2pHnagH9aKBNIxG01ga T1NoBs2iBfQdbaBNtJUO0Qm6QGl0ha7RLQr1yc/s9D8z6T7TLD+TvMIJH9LT 9By9SBFUkkpTGapIlSiKqlE9+oSiqS11pO7UkwbQUBpFCTSOJtN0mknzaQ2t p42UTAfpOKXSRbpMVymf7lGoWcbY88eYeTE6ZowMxtiSxMhgjI4Zo2PGmHkx OmaMjhkjgzG2JDEyGGPmxchgjA1kjA1kjJkXI4MxZl6MjhkjgzG2JDE6ZoyO GaNjxshgjI4ZY+bFyGCMLUmMPX+MmRcjgzFmXow9f4yOGWNLEiODMWZejI4Z 4yUXo2PG6Jif2/1/bvp9rm1+Lo2f25wUvmpDKkrF6CUqQaWoNL1DFakKRVFd akGtKZraU1fqTv1oMI2gOEqgSTSVptNcWk1raT1tpv10lM5RKqVTFt2gOxRq m/18BehnDvbTO/tJYz/blH7S2E/v7Kd39jMH++md/fTOftLYzzalnzT2C1Sm qlSHmlMrakPtqAt1o89pEH1JsRRPE2kKTaNvaRV9R+toE+2jI5RC5ymNMimP CijUO/ubg/31zv4y2N9epb8M9tc7++ud/c3B/npnf72zvwz2t1fpL4P9zcH+ MtjfzrK/nWV/c7C/DPY3B/vrnf1lsH8ghr6g4TSG4mgCTaapNIdW0hpaSxtp Lx2ms3SOLlIGXafbdJ9Cc3CAOThAAx0ggwNsWAbI4AANdIAGOsAcHKCBDtBA B8jgABuWATI4wBwcEKhMH1FTakmt6FPqRF3oMxpIw2g0xdJ4+oqm0De0gpLo O9pA39MhOkMpdIGuUC7doh+ocA7+468lW7bw95T+8+8f/effN7ok+Cv0jyGH fv3vH1n4+/wGhvm9f1+EuRsU5m5wmLshYe6GhrkbFuZueJi7L8PcjQhzNzLM 3agwd6PD3I0Jcxcb5i4uzF18mLuEMHdjw9yNC3M3PszdhDB3E8PcTQpz91WY u8lh7qaEuZsa5m5amLvpYe5mhLmb+S93hX9GD9TnBnpTDTRVBtoZDjRVBnpT DfSmGqjPDfSmGuhNNdBUGWhnONBUGajPDTRVBtrRD7SjH6jPDTRVBupzA72p BpoqAwN9aQANpVE0hsbRJJpMibScVtMaWk976CCdprOUSpcph/LpHoX6XOFP i5B+Sj+jX9Nv6A/0J3qBXqZX6TUqT2/Ru/Qe1aTG1JxaUhvqQJ2oD/WnITSS RtNYmkhf0WxaRqsoidbRbjpAp+gMnadLdI1u0l0K9blBXlKDZHCQ7eEgGSzs sSEVpefpJSpBJakcRdI7VJFqUCNqRi2oNbWnjtSb+tFgGkGjKIEm0CT6mpbS SlpNa2kX7aeTdJrOUTpdpRt0h0J9brD302DJG2x7OFjyBns/DfZ+GqzFDfZ+ Guz9NFjyBtseDpa8wVrcYMkbbFs/2LZ+sBY3WPIGa3GDvZ8GS95g28PB3k+D A4PoSxpJ8TSeJtIsWkIraBV9RztpH52gU5RCaZRNeVRAoRY3xPtpiOQNsT0c InlDvJ+GeD8NMfOGeD8N8X4aInlDbA+HSN4QM2+I5A2xrR9iWz/EzBsieUPM vCHeT0Mkb4jt4RDvpyGBL2g4jaA4GkcTaCYtpuW0ktbQDtpLx+kknaWLlEXX 6Tbdo9D7aaj301AZHGp7OFQGh3o/DfV+GmrmDfV+Gur9NFQGh9oeDpXBoWbe UBkcam8/1N5+qJk3VAaHmnlDvZ+GyuBQ28Oh3k9DAwNpGH1JsTSWxtMMWkTL aAUl0Xb6no7RCTpDFyiTcukW3aXQHnGY3jlMGofZHg6TxmF65zC9c5jpN0zv HKZ3DpPGYbaHw6RxmOk3TBqH2eAPs8EfZvoNk8Zhpt8wvXOYNA6zPRymdw7T O4cFhtJwGkMJNI6m00JaSstpNW2jPXSUjtNpSqUMyqF8ukOh3jlc7xwujcNt D4dL43C9c7jeOdwcHK53Dtc7h0vjcNvD4dI43BwcLo3DbfCH2+APNweHS+Nw c3C43jlcGofbHg7XO4frncMDQ2gYjaZ4GkvTaAEtoWW0irbSbjpCx+gUnacr dI1uUgGFeueXMvil7eGXMvil3ln4EyekZ+h5eokiqBSVpnIUSVFUlxpQI2pG rSmaulJv6keDaSiNojhKoKk0nxbTUlpJybSLDtNROknn6DJdpRt0m0K9c4Tk jbAzHCF5I/TOEXrnCNNvhN45Qu8cIXkj7AxHSN4I02+E5I2wrR9hWz/C9Bsh eSNMvxF65wjJG2FnOELvHKF3jtA7R0jeCL1zhOk3QvJG2BmO8MVshOk3QvJG mH4jfDEboXeOsDMcIXkjTL8ReucI77wReucIvXOE6TdC7xxprzJS3kZqmyO1 zZEm3Uhtc6S2OVLeRtqrjJS3kSbdSHkbaUc/0o5+pEk3Ut5GmnQjtc2R8jbS XmWktjlS2xypbY6Ut5GBETSG4mgyzaWFtJiW02baQQfpMB2ns5ROWXSd8inU NkfZoYySslGa5SjNcpSpNkqzHKVZjpKyUXYoo6RslKk2SspGBSrTR/Qx1afG 1JJaUSfqQZ/RQBpEX9JoiqWv6FtaQItoGW2i7XSADtExOkNplEm5dJNCzXK0 zcloKRutRY7WIgv/OwupKBWjF6kkvU6lqQxVolpUl+pRI2pBn1BH6k59aQB9 QcNpFI2hSTSH5tNCWkobaRvtp4N0lE7TRcqgHLpBdyj0khtjczJG3sbojmN0 xzFm2RjdcYzuOEbexticjJG3MWbZGHkbY1M5xqZyjFk2Rt7GmGVjdMcx8jbG 5mSM7jhGdxyjO46RtzG645jASBpNE+kbmkcLaAltoK20jw7QETpFF+gKXaM8 KqDQ+y3W5iRW8mJ1x1jdMdZUi9UdY3XHWMmLtTmJlbxYUy1W8mJtKmNtKmNN tVjJizXVYnXHWMmLtTmJ1R1jdcdY3TFW8mJ1x1hTLVbyYm1OYn0jiDXVYiUv 1lSL9Y0gVneMtTmJlbxYUy1Wd4z1aovVHWN1x1hTLVZ3jPVqi7MviZO8ON0x TneMM9/idMc43TFO8uLsS+IkL858i5O8OJvKOJvKOPMtTvLizLc43TFO8uLs S+J0xzjdMU53jJO8ON0xznyLk7w4+5I4XwbizLc4yYsz3+J8GYjTHePsS+Ik L858i9Md47zV4nTHON0xznyL0x3jvNXibUniJS9ei4zXIuNNungtMl6LjJe8 eFuSeMmLN+niJS/epjLepjLepIuXvHiTLl6LjJe8eFuSeC0yXouM1yLjJS9e i4w36eIlL96WJN6XgXiTLl7y4k26eF8G4rXIeFuSeMmLN+nitch4b7V4LTJe i4w36eK1yHhvtXiTLsGWJEEGEzTLBM0ywcxL0CwTNMsEGUywJUmQwQQzL0EG E2wqE2wqE8y8BBlMMPMSNMsEGUywJUnQLBM0ywTNMkEGEzTLBDMvQQYTbEkS fCNIMPMSZDDBzEvwjSBBs0ywJUmQwQQzL0GzTPBqS9AsEzTLBDMvQbNM8GpL MPPG2peMlcax2uZYbXOs6Vf432NIRek5iqBXqCS9ThWoGtWgWlSXGlETiqaO 1J36Ugx9QUNpOCXQTEqkOTSf1tBG2kV7aD8dpbN0kTLoKt2gexSafuNsTsZJ 4zi9c5zeOc4cHKd3jtM7x0njOJuTcdI4zhwcJ43jbCrH2VSOMwfHSeM4c3Cc 3jlOGsfZnIzTO8fpneP0znHSOE7vHGcOjpPGcYF4mkGz6RuaR0m0gXbSbtpH R+gMXaArlE15dJdCc3C8DI7XO8frnePNwfF653i9c7wMjrdDGS+D483B8TI4 3qZyvE3leHNwvAyONwfH653jZXC8Hcp4vXO83jle7xwvg+P1zvHm4HgZHB+I o+n0NSXSXFpN62kH7aK9dJhOUypdpiy6TncoNAcnSN4EvXOC3jnB9Jugd07Q OydI3gTblAmSN8H0myB5E2wqJ9hUTjD9JkjeBNNvgt45QfIm2KZM0Dsn6J0T 9M4JkjdB75xg+k2QvAmBWJpGs2g2fUuraB1tp530PR2iU3SeLlEm5VIBhabf RG1zorY50aSbqG1O1DYnyttE25SJ8jbRpJsobxNtKifaVE406SbK20STbqK2 OVHeJtqmTNQ2J2qbE7XNifI2UducaNJNlLeJgTE0lWbS1zSHVtJa2kY7aA8d pJN0jtIpg3LoNoUm3STNcpJmOclUm6RZTtIsJ0nZJDuUSVI2yVSbJGWTbCon BSrT+/QB1aSPqT61pE+pE/WgXvQ5DaRBNJqm0AyaRd/QCvqOttJ22k0H6ASl UBpdoWt0i0JT7Sst8ist8iuz7CstsnDzGtLTVIxepAh6hcpQJYqialSD6lI9 akHR1JG6U0+KoQH0BY2iyTSdZlIiLac1lEzbaBftp+N0li7SZbpK+XSHQi+5 ybrjZN1xslk2WXecrDtOlrfJNieT5W2yWTZZ3ibbVE62qZxslk2Wt8lm2WTd cbK8TbY5maw7TtYdJ+uOk+Vtsu442SybLG+TbU4mB76iaTSDZtMySqIttJV2 0j46RmfoAl2ibLpJBRR6v03RHafojlNMtSm64xTdsfAnSUjPUzF6iSKoNFWk KhRF1ak21aVm1JraU1fqTn2pHw2gETSJptJ0+pqW0mraTMm0g/bSUTpNqZRO WXSDblPo1TZVd5yqO04136bqjlN1x6mSN9W+ZKrkTTXfpkreVJvKqTaVUwOV qSp9QB9RHWpKragddaFu1Ic+p/70JU2kKTSNZtESWkWbaAttp+/pCJ2i85RG mZRHtyj0VpumO04z36bpjtN0x2nyNs1uZJq8TTPfpsnbNPvJafaT08y3afI2 zXybpjtOk7dpdiPTdMdpuuM03XGavE3THaeZb9PkbZrdyLTABJpMU2kmLaaV tJE20zbaQ4fpJJ2ji5RB1ymfQi+06brjdFNtuu44XXecLmXT7UGmS9l0U226 lE23i5xuFzndVJseqEzvU036iBpTS/qUOlEX6kWf0ec0jMbTVzSFZtAiWkEb aBNtpd10iE5QCl2gK5RLNyn0LpuhO84wy2bojjN0xxlSNsP2Y4aUzTDLZkjZ DHvHGfaOM8yyGVI2wyyboTvOkLIZth8zdMcZuuMM3XGGlM3QHWeYZTOkbIbt x4zAOJpEk2k6LaTltJ42UjLtooN0nM5SKl2mHLpBoXfZTI1xpgk2U2OcqTHO lLKZdh4zpWymCTZTymbaMc60Y5xpgs2Uspkm2EyNcaaUzbTzmKkxztQYZ2qM M6VspsY40wSbKWUz7TxmBsbSRPqKptECWkbraANtoZ10gI7RGTpPl+ga5VHh u6zw93aOL1P4ezv/+a8B+q+/r/P/3/1//47Pwt9vNyvM78H7Oszd7DB3iWHu vglzNyfM3bdh7uaGuZsX5m5+mLsFYe4WhrlbFOZucZi7JWHuloa5WxbmbnmY uxVh7laGuVsV5m51mLukMHdrwtx9F+ZubZi7dWHu1oe52xDmbmOYu01h7jb/ y13hn9GzvHdmaWKzvHdmee/MMi1m2d3NMi1maWKzTItZNuSzbMhnaWKzTItZ mtgs751ZpsUsu7tZ3juzvHdmee/MMi1mee/M0sRmmRaz7O5m+TY1SxObZVrM 0sRm+TY1y3tnlt3dLNNiliY2K7CD9tNROk3nKJ2u0nUK7RcKfzKE9Bj9B/2K fk1/pGfpz/QCvUrl6W16lyrTB/Qh1aem1IraUQfqRr2oDw2ieBpPE2kKzaMl 9B2to020nfbRETpFKZRG2ZRLoa3CbP1rtrfNbG+b2bI128ZutmzN1r9my9bs QAkqRxXoHapE1ag61aMm9Am1pfbUlXpSb/qC4mgcTaDJNJcW0xpaSxtpG+2l w3SSztJFyqIcuk2hjV2i/pXobZPobZMoW4n2dImylah/JcpWom14om14ov6V KFuJ+leit02ibCXa0yV62yR62yR62yTKVqK3TaL+lShbifZ0ib40JepfibKV qH8l+tKU6G2TaE+XKFuJ+leit02ivUGit02it02i/pXobZNob5CofyXaGyTa 031jbn3jbfONt803Ula4yQ/paSpKz9ErVIYiqQJVpCiqRnWpEbWgaGpLnak7 9aQBNIYSaBxNojm0kFbTGlpPybSHDtJxOk2plEFXKZ8eUihlc0ywOV45c7xy 5sjbHNu5OfI2xwSbI29zbMPn2IbPMcHmyNscE2yOV84ceZtjOzfHK2eOV84c r5w58jbHK2eOCTZH3ubYzs3xzWmOCTZH3uaYYHMC39ACWkVJtI620G46QMfo FJ2nK5RNN+kBhfL2rXb4rXb4rbx9aztX+LMipGeoKEVQaSpHkfQOVaEoqk0N qBm1pmjqSF2pO/WjURRHCTSBEmk+raTVtJY20y7aT0fpJJ2jy5RFN+g+hfI2 Vzucqx3OlbK5tnNzpWyuWTZXyubafM+1+Z5rls2Vsrlm2dxAZapKH1F9akqt qA11oC7UjT6nkRRL8TSeZtM8WkGr6DvaRDtpHx2hE5RClyiT8ugHCqVsnp44 T0+cJ2XzbOfmSdk8s2yelM2z+Z5n8z3PLJsnZfPMsnl64jwpm2c7N09PnKcn ztMT50nZPD1xnlk2T8rm2c7N831pnlk2T8rmmWXzAl/TXFpOK2kNbaQdtJcO 03E6S+mUQdfpHoVSNl9PnK8nzpey+bZz86Vsvgk2X8rm23zPt/meb4LNl7L5 Jth8PXF+oDLVpI+pMbWkVtSOOlEX+oy+pNEUS2NpFn1Ly2gFJdEG2k7f0yE6 Rmcoja5QLt2lUMoW6IkL9MQFUrbAVmOBlBVO35CephfpdSpNZSiSKlIlqkF1 qRG1oE+oLXWkztSXhtMoGkMJNJPm0FJaTqtpPW2jPXSQjtJpukiXKYfuUChl C7XDhdrhQilbaKuxUMoWmmALpWyhzfdCm++FJthCKVtogi3UDhdK2UJbjYXa 4ULtcKF2uFDKFmqHC02whVK20FZjoa9KC02whVK20ARbGJhB39ASWkaraB1t pd10gI7QKbpAl+gaFVAoZYt0wkWytchWY5FsLTK3Ct+PIRWjklSKSlM5eocq UnWqTQ2oGbWgaGpPHak3DaURNIriaDol0mJaSitpLSXTLtpPh+kkpVI6XaXb FMrWYk1wsUQttstYLFGLTavFErXYdnCx7eBi02qxRC02rRZrgoslarFdxmJN cLEmuFgTXCxRizXBxabVYolabJex2BekxabVYolabFot9gVpsSa4OLCIltAK +o620E7aR4foBJ2nNMqmWxRK1BL9b4lELbHBWCJRS8yoJRK1xHZwie3gEjNq iUQtMaOW6H9LJGqJDcYS/W+J/rdE/1siUUv0vyVm1BKJWmKDscS+fYkZtUSi lphRS+zbl+h/SwILaTEtpzW0mXbQXjpIx+kcXaQsyqfbFNpgLNX/lsrWUnuL pbK11IxaKltLbQeX2g4uNaOWytZSM2qp/rdUtpbaWyzV/5bqf0v1v6WytVT/ W2pGLZWtpfYWS+3bl5pRS2VrqRm11L59qf63NLCAFtEySqJNtJ2+pwN0jFLo AmXSTbpFob3FMv1vmZQts7dYJmXLTKtlUrbMdnCZ7eAy02qZlC0zrZbpf8uk bJm9xTL9b5n+t0z/WyZly/S/ZabVMilbZm+xzOZ9mWm1TMqWmVbLbN6X6X/L AvNpIS2l1bSRttEe2k9H6SylUgbdoHx6SKGULdcEl8vbchuM5fK23ARbLm/L bQeX2w4uN8GWy9tyE2y5Jrhc3pbbYCzXBJdrgss1weXytlwTXG6CLZe35TYY y+3gl5tgy+VtuQm23A5+uSa4PDCPFtASWkUbaCvtpn10hM7QebpCeXSTHlAo byvkbYUNxgp5W2GWrZC3FbaDK2wHV5hlK+RthVm2QidcIW8rbDBW6IQrdMIV OuEKeVuhE64wy1bI2wobjBV28CvMshXytsIsW2EHv0InXGGDsULeVphlK3TC FV5ZK3TCFTrhCrNshU64witrhVm2witrhQ3GCnlbYYOxQt5WStlKG4yVUrbS LFspZSttB1faDq40y1ZK2UqzbKV2uFLKVgYq0wf0EdWnhtScWlEb6kL9aRAN oS9pIk2jb2keLaIVtI620E76ng7RKUqhS5RLefQDhVK2yt5ilWytMsFWydYq O8FVdoKrTLBVsrXKBFulHa6SrVX2Fqu0w1Xa4SrtcJVsrdIOV5lgq2Rrlb3F Kvv2VSbYKtlaZYKtsm9fpR2usrdYJVurTLBVgeW0ljbTDtpDB+kknaV0yqHr dI9C2VptW7FaolabVqslarVN4GqbwNWm1WqJWm1ardYJV0vUatuK1Trhap1w tU64WqJW64SrTavVErXatmK1Lftq02q1RK02rVbbsq/WCVfbVqyWqNWm1erA MvqONtF22k0H6ASdoTS6Rrl0l0KJSrKtSJKoJDMqSaKS7P+S7P+SzKgkiUoy o5I0wSSJSrKtSNIEkzTBJE0wSaKSNMEkMypJopJsK5Ls1pPMqCSJSjKjkuzW kzTBJNuKJIlKMqOSNMEkr6wkTTBJE0wyo5I0wSSvrCQzKskrK8m2Ikmikmwr kiQqSRNcY2+xRrbWmFFrZGuN/d8a+781ZtQa2VpjRq3R/9bI1hp7izX63xr9 b43+t0a21uh/a8yoNbK1xt5ijd36GjNqjWytMaPW2K2v0f/W2Fuska01ZtQa /W9NIIk20FbaSfvoGJ2iC5RN16iA7lKo/31ng/GdlH1nWn0nZYXJD6kYvUQR VIJKUWl6h6pQdapNdakRNaMW1J76Uj8aQIMpgSbR15RIc2kxrab1lEw7aC8d pZOUSll0lW7THQr1v7U2GGulbK25tVbK1toJrrUTXGturZWytebWWv1vrZSt tcFYG6hMH9BHVIcaUlNqTu2oD31O/WkQxdNEmkWz6VtaRKtoHW2h7fQ9HaET dJ4yKZtuUQGF+t86G4x1UrbOBFsnZetsB9fZDq4zwdZJ2ToTbJ0muE7K1tlg rNME12mC6zTBdVK2ThNcZ4Ktk7J1NhjrbNnXmWDrpGydCbbOln2dJrjOBmOd lK0zwdZpgusCK2ktbaZttIcO03E6RxmURfl0m+5TaIKtt8FYL2/rzbL18rbe nnC9PeF6s2y9vK03y9Zrh+vlbb0NxnrtcL12uF47XC9v67XD9WbZenlbb4Ox 3uZ9vVm2Xt7Wm2Xrbd7Xa4frbTDWy9t6s2y9drjeK2t94DvaRFtpNx2iY5RC VyiTbtIt+oFCs2yDXcYGydtgqm2QvA02hhtsDDeYahskb4OptkFj3CB5G+wy NmiMGzTGDRrjBsnboDFuMNU2SN4Gu4wNtvEbTLUNkrfBVNtgG79BY9xgl7FB 8jaYahs0xg1eXhsCa2gjJdMuOkhH6Sxdpgy6Qfl0j0JTbaOtxkbJ22i+bZS8 jTaGG20MN5pvGyVvo/m2UXfcKHkbbTU26o4bdceNuuNGyduoO2403zZK3kZb jY328hvNt42St9F822gvv1F33GirsVHyNppvG3XHjV5jG3XHjYENtIV20gE6 QmfoEl2hPLpJdyk03zbJ2ybzbZO8bbIx3GRjuMl82yRvm8y3TbrjJnnbZL+x SXfcpDtu0h03ydsm3XGT+bZJ3jbZb2yyl99kvm2St03m2yZ7+U264yb7jU3y tsl826Q7bvIu26Q7bgqsp820g/bTYTpN6XSZrtMNukOh+bZZyjabapulbLON 4WYbw82m2mYp22yqbdYdN0vZZpuOzbrj5kBl+oA+pDpUnxpSK+pGvagPfU4j KZ6m0DSaRd/SElpF62gTbad9dIhOURpdolzKowIqnGqFv1/x0zcLf7/iP/+1 Jpf8069vgr/++T70X//f37NY+HvItoT5fWXJYe62hrnbFuZue5i7HWHudoa5 2xXmbneYuz1h7r4Pc7c3zN2+MHf7w9wdCHN3MMzdoTB3h8PcHQlzdzTM3bF/ +Ec/DgR+HDz/FjyPBc9PguenwfN48PwseP49eP4jeP5f8Pw8eJ4Inl8Ezy+D 51fB82Tw/Dp4/jN4fhM8vw2eIsHzu+D5ffA8FTx/CJ6ng+ePwfNM8DwbPEWD 50/B81zw/Dl4ng+eF4KnWPAUD54Xg+cvwfNS8LwcPBHB89fgeSV4/hY8JYLn 1eApGTyvBc/rwfP34CkVPG8ET+ngeTN4ygRP2eApFzzlgycyeN4KngrB83bw vBM87wZPxeB5L3gqBU/l4KkSPFWDJyp43g+easHzQfBUD54Pg6dG8NQMnlrB 81Hw1A6eOsFTN3g+Dp56wVM/eBoET8PgaRQ8jYOnSfA0DZ5mwdM8eFoET8vg +SR4WgVP6+CJDp6Hjx49+jT4j22Dp13wtP9xYQoDgY7B0yl4OgdPl+DpGjzd gqd78PQInp7B0yt4egdPn+DpGzyfBU9M8HwePP2Cp3/wDAiegcHzf/+cOB7m z5MTYe5Ohrk7FebudJi7M2Huzoa5Swlzdy7M3fkwd6n/clf4E22LJr5FR9ji y8cWXz62aOJbdIQtmvgWL98tgRJUhipQJapG1ak21aMG9Al1pZ7Um2JoBMXR ZJpKM2kOLaaVtJY20jbaSwfpJF2kdMqh63Sb7lHo5ZusfyfrCMm+gST7BpKs fyfrCMn6d7L3brKOkGxjm+y9m+y9m+y9m6wjJHvvJuvfyTpCso1tsm+Jyfp3 so6QrH8n+5aY7L2bbGObrCMk69/J3rvJtkrJ3rvJ3rvJ+ney926yrVKy/p1s q5RsY5usIyTb2CbrCMneu8n6d7L37lb9e6uUbfU1ZKuvIVv1761StlX/3uqV u1XKttrYbvXK3eqVu9Urd6uUbfXK3ap/b5WyrTa2W31V3Kp/b5Wyrfr3Vl8V t3rlbrWx3SplW/XvrV65W22VtnrlbvXK3ap/bw0k0x7aT8cplS7SVcqhfLpD oVduYZsK6cf0C/oDPUt/ohfoZforvUHl6V2qSu9TTapDH1Nz6kTdqAf1oWE0 mibSVzSNZtMCWkZJtI620G7aR8foPF2gbLpGN6mAQm/b7bK13TeQwtYf0jNU lJ6nlyiCSlE5eoeqUBTVoNpUl5pRR+pK3ak3DaVRNIEm0VT6mubTUlpNa2kz 7aK9dJTOUSpl0VW6Qbcp9KLdIVE7fPnY4cvHDtNqh0TtMK12eMfukKgddrI7 vGN3BN6mylSVPqSPqA41pQ7UhbpRLxpCI2k8TaQpNIvm0RJaRd/RJtpJ39MR SqHzlEnZlEe3KLSd3ekrx05fOXaaTDvlaKfJtFPr2ylHO21dd2p9O7W+nVrf TjnaqfXtNJl2ytFOW9edviDuNJl2ytFOk2mnL4g7tb6dtq475WinybRT69tp H7RT69up9e00mXZqfTsDO2gPHaazdI4yKIuuUz6FWt8u3zF2+Y6xyxTaJT27 TKFdGt4u6dllr7pLw9ul4e3S8HYFKtMHVJM+osbUjjpRF+pBg+hLGkvj6Sua Qd/SIlpBSbSBttNuOkRnKIWuUCbl0k0KNbzdvlTs9qWi8N8rpKepKBWjF6kk laZIqkiVqBrVoFrUiNpSR+pM3ekLGk4JNI4m0XSaQwtpOa2m9bSNdtFBOk1n 6TJlUA7doDsUeint8VVij68Se8yePXK0x+zZo8PtkaM9Nqd7dLg9OtweHW6P HO3R4faYPXvkaI/N6R5fAfeYPXvkaI/Zs8dXwD063B6b0z1ytMfs2aPD7fE+ 2qPD7dHh9pg9e3S4PYGttJMO0Ck6Q5foCl2jPCqg0Pvoe98ivvct4ntTqHDi hfQMPU/FqASVonL0DlWkKKpONagBRVN76khdaQANpThKoAk0lRJpPi2llbSW kmkH7aeTdJrS6TJdpet0m0Kvor2+QOz1BWKvebRXovaaR3t1uL0StdeeYa8O t1eH26vD7ZWovTrcXvNor0TttWfY6+veXvNor0TtNY/2+rq3V4fba8+wV6L2 mkd7dbi93kJ7dbi9Otxe82ivDrfXW2ivebTXW2ivPcNeidprz7BXovbqcHvN o7063F5voX02d/ts7vaZTPskap/JtE+b2ydR+2wX9mlz+7S5fdrcPonap83t M5n2SdQ+24V9vuntM5n2SdQ+k2mfb3r7tLl9tgv7JGqfybRPm9vnLbRPm9un ze0zmfZpc/u8hfaZTPsCe+k4naSLlE5ZlEP5dJ9Ck2m/zd1+m7v9ZtR+2dpv Ru3X8PbL1n7bhf0a3n4Nb7+Gt1+29gcq0/v0AX1MrehTaked6HMaRKMplsbS VzSLvqVFtIySaBNtpe/pGJ2gC5RGmXSNbtIPFJpRB2zuDtjcHTCtDkhZ4YwM qSg9RxFUkkpTJFWgShRF1agufULR1JY6Ugx9QaNoDCXQJJpJc2ghLaXVtJGS aQ8dpeOUShcpg67SDbpHDymUsoN2eAft8A6aYAfl7aAJdlATPChvB+0eDmqC BzXBg5rgQXk7qAkeNMEOyttBu4eD9uMHTbCD8nbQBDtoP35QEzxo93BQ3g6a YAc1wYPeUQc1wYOa4EET7KAmeNA76qAJdjCwm47QMTpPF+gKZVMe3aUHFMrb IXu9Q/Z6h0y1Q5J3yFQ7pB0ekrxDNhOHtMND2uEh7fCQ5B3SDg+Zaock75DN xCGb8kOm2iHJO2SqHbIpP6QdHrKZOCR5h0y1Q9rhIa+sQ9rhIe3wkKl2SDs8 5JV1yFQ75JV1yGbikOQdspk4JHmHtMNDptoh7fCQV9YhU+2Q5B226zts13fY fDsseYfNt8Ma42HJO2xvcVhjPKwxHtYYD0veYY3xcKAyVaWPqDm1ojbUjvpQ f/qSRlIsjadpNJvm0SJaQetoE+2kQ3SEUug8XaJMyqUC+oFCyTti/3fEfDsi b0fMtyO64xF5O2KXcUR3PKI7HtEdj8jbEd3xiPl2RN6O2GUcsT0/Yr4dkbcj 5tsR2/MjuuMRu4wj8nbEfDuiOx7xBjuiOx7RHY+Yb0d0xyPeYEfMtyPeYEcC B+kwnaVzlE4ZlEO36R7dp9B8O2o7eNR8OypvR823o1rkUXk7ar9xVIs8qkUe 1SKPyttRLfKo+XY0UJlqUlNqSa3oU+pFn9Mw+pJG01iaQrPoW1pAy+g72kDb 6QAdojOUQml0ha7RLbpLP1Bovh2zOzxmvh2TvGPmW+F8DelpKkYRVJJKUxmq QBWpEtWgJtSCPqFo6kkxNJSG0yhKoMk0k+bQfFpKa2g9baP9dJBO01m6SJfp KuXTHbpHofl23D7xuPl2XPKOm2/H9cnjknfcHuS4PnlcnzyuTx6XvOP65HHz 7bjkHbcHOW4bf9x8Oy55x82347bxx/XJ4/YgxyXvuPl2XJ887tV2XJ88rk8e N9+O65PHvdqOm2/HvdqOB/bRATpFZ+gCXaJsukkFdJdC8+2EHeMJk+6E5J0w 6U7ok4Xvx5Cep5eoBJWi0hRJ71BFqk6NqBm1oNbUnfrSYBpKIyiOJtF0SqS5 tJhW01pKpr20n07SaUqldMqiG3Sb7lBo0p20dzxp0p2UvJMm3Ul98qTknbQl OalPntQnT+qTJyXvpD550qQ7KXknbUlO2t+fNOlOSt5Jk+6k/f1JffKkLclJ yTtp0p3UJ096v53UJ0/qkydNupP65Envt5Mm3Unvt5O2JCcl72TgBJ2i85RG mZRHt6iAQpPulF3kKZPulOSdMulOaZanJO+UfckpzfKUZnlKszwleac0y1Mm 3SnJO2VfcspO/5RJd0ryTpl0p+z0T2mWp+xLTkneKZPulGZ5yvvtlGZ5SrM8 ZdKd0ixPeb+dMulOeb+dsi85JXmnAsfpJJ2ji5RB1ymfblNo0p22lTxt0p2W vNMm3WnN8rTknbYvOa1ZntYsT2uWpyXvtGZ52qQ7LXmn7UtO2/OfNulOS95p k+60Pf9pzfK0fclpyTtt0p3WLE97v53WLE9rlqdNutOa5Wnvt9Mm3Wnvt9P2 Jacl73TgGJ2gFLpAVyiXbtItCk26M/aTZ0y6M5J3xqQ7o1mekbwz9iVnNMsz muUZzfKM5J3RLM+YdGck74x9yRm7/zMm3RnJO2PSnbH7P6NZnrEvOSN5Z0y6 M5rlGS+5M5rlGc3yjEl3RrM84yV3xqQ74yV3xr7kjOSdCRyl43SWUuky5dAN yqfQpDtrP3nWpDsreWdNurOa5VnJO2tfclazPKtZntUsz0reWc3yrEl3VvLO 2pec9RXgrEl3VvLOmnRnfQU4q1metS85K3lnTbqzmuVZL7mzmuVZzfKsSXdW szzrJXfWpDvrJXfWvuSs5J0NHKFjdIbO0yW6Rnl0k0KTLsV+MsWkS5G8FJMu RbNMkbwUm5MUzTJFs0zRLFMkL0WzTDHpUiQvxeYkxfeAFJMuRfJSTLoU3wNS NMsUm5MUyUsx6VI0yxQvuRTNMkWzTDHpUjTLFC+5FJMuxUsuxeYkRfJSbE5S JC8lcJrOUTpdpet0g0KT7pz95DmT7pzknTPpzmmW5yTvnM3JOc3ynGZ5TrM8 J3nnNMtzJt05yTsXqEx1qD41pKbUgbrR59SfBtGXFE8TaRrNom9pCa2gdbSd dtIhOkKnKIXSKJtyKY9Ck+68+XZe3s6bb+f1yfPydt6+5Lw+eV6fPK9Pnpe3 8/rkefPtvLydty857yvAefPtvLydN9/O+wpwXp88b19yXt7Om2/n9cnz3m/n 9cnz+uR58+28Pnne++28+Xbe++28fcl5eTtvX3Je3s7rk+cDZ+kiZVEOXad8 Cu0nU823VHlLNd9S9clUeUu1L0nVJ1P1yVR9MlXeUvXJVPMtVd5S7UtSfQVI Nd9S5S3VfEv1FSBVn0y1L0mVt1TzLVWfTPV+S9UnU/XJVPMtVZ9M9X5LNd9S vd9S7UtS5S3VviRV3lL1yVTzLVWfTPV+SzXfUuUt1XxL/cd+svD3tcb/n9/X Wvj7VqcEf33zP7/++fev/v/+Vfh7zS6E+f1nF8PcpYW5Sw9zdynM3eUwd1fC 3GWEucsMc5cV5i47zN3VMHfXwtzlhLnLDXN3PcxdXpi7G2Huboa5yw9zdyvM 3e0wdwVh7u6Eubsb5u5emLsfwtzdD3P3IMzdwzB3/xXm7tG/3BX+GX1BT7tg glzQ0y54F10wQQozE1JRKkYR9Aq9TqWpDFWkWlSX6lEjakudqS/F0AAaSmNo HE2m6ZRIC2kpraFk2kb76SAdp9OUShl0lXLoBoX27IU/I0L6Mf2Ufk6/oN/T s/QCvUx/pdfoDXqT3qWaVIc+pob0KXWiPvQZ9achNJrG0lc0jWbTAlpCSbSF ttI+OkDH6BSdpyuUTdcoj0J79jR5S9PT0ryG0uQtzbYvzWsozWsozWsoTd7S vIbS9LQ0eUuz7UvzNStNT0uTtzQ9Lc3XrDSvoTTbvjR5S9PT0ryG0mwf0ryG 0ryG0vS0NK+hNNuHND0tzfYhzbYvTd7SbPvS5C3NayhNT0sLnKPLlEVX6TqF tuvpUpaunaV7A6VLWbodX7o3ULo3ULo3ULqUpXsDpWtn6VKWbseX7htWunaW LmXp2lm6b1jp3kDpdnzpUpaunaV7A6XbOaR7A6V7A6VrZ+neQOl2DunaWbqd Q7odX7qUpdvxpUtZujdQunaW7g2UbueQrp2lS1m6dpZup37JBLvk5XNJti7Z 513y8rnk5XPJy+eSbF0KlKDXqRRVoOpUi2pTPWpN7akn9aYY+oJGUBxNoMk0 k+bSQlpJG2kz7aG9dJiO01lKpwzKohwK7c8vm1aXvXIuS9Rlu7vLXjmXvXIu e+VclqjLXjmXTavLEnXZ7u6yb1OXTavLEnXZtLrs29Rlr5zLdneXJeqyaXXZ K+eyXcJlr5zLXjmXTavLXjmX7RIum1aX7RIu291dlqjLdneXJeqyV85l0+qy V87lQBpdoUy6RqFd+RUz6oomeEWirtjTFf6rhVSUitGL9AqVpNcpkqpRDapF dekTakvdqSf1pQE0nMbQOJpE02kOzafltJ420i7aQwfpKJ2mi3SZMugq3aHQ BiHDjMrQ/zJkK8N2LkP/y9D/MvS/DNnK0P8yzKgM2cqwncvw9SnDjMqQrQwz KsPXpwz9L8N2LkO2MsyoDP0vw94gQ//L0P8yzKgM/S/D3iDDjMqwN8iwncuQ rQzbuQzZytD/MsyoDP0vI3CBLtEVyqYCCv3fNWVqfZmylWknl6n1ZWp9mVpf pmxlan2ZZlSmbGXayWX60pRpRmXKVqYZlelLU6bWl2knlylbmWZUptaX6W2V qfVlan2ZZlSm1pfpbZVpRmV6W2XayWXKVqadXKZsZWp9mWZUptaX6W2VaUZl ylamGZVp853pbZWl62VJVJb9W5aul6XrZel6WRKVpetlmVFZEpVl/5blq1KW GZUlUVlmVJavSlm6Xpb9W5ZEZZlRWbpelndUlq6XpetlmVFZul6Wd1SWGZXl HZVl/5YlUVn2b1kSlaXrZZlRWbpelndUlhmVJVFZgUy6RaF3VLauly1R2XYU 2bpetq6XretlS1S2rpdtRmVLVLYdRbYvSNlmVLZEZZtR2b4gZet62XYU2RKV bUZl63rZXk/Zul62rpdtRmXretleT9lmVLbXU7YdRbZEZdtRZEtUtq6XbUZl 63rZXk/ZZlS2RGUHMiif7lNoRl3V+q7K1lWbiata31Wt76rWd1W2rmp9V82o q7J11WbiaqAyvU8fUE1qSq2oE3WhHvQZDaIvKZbG0lc0i76hRZRE39FW2k7f 0wE6Ril0gdLoCt2kHyg0o67pf9ek7JrNxDX9r7A5hlSUnqMXKYJeodJUiaKo GtWgJvQJdaTO1J360hc0nMZQAk2imZRIC2k1raFk2kZ7aD8dpbOUShfpMt2g exSaVjn6X46U5dhM5Oh/Ofpfjv6XI2U5+l+OuZUjZTk2Ezm+FuWYWzlSlmNu 5fhalKP/5dhM5EhZjrmVo//leFHl6H85+l+OuZWj/+V4UeWYWzleVDk2EzlS lmMzkSNlOfpfjrmVo//leFHlmFs5UpZjbuXY+uV4UeWYW7mylWszkav/5ep/ ufpfrmzl6n+55laubOXaTOTaqOeaW7mylWtu5dqo5+p/uTYTubKVa27l6n+5 XlS5+l+u/pdrbuXqf7leVLnmVq4XVa7NRK5s5dpM5MpWrv6Xa27l6n+5XlS5 5laubOWaW7l2fbleVLnm1nWJum4zcV3/u67/Xdf/rkvUdf3vuml1XaKu20xc tz2/HqhMVekDakjNqR11oC7Ui/rTEBpJsTSeptEsmkcraBVtoi20k76nQ3SK Uug8pVEuFVBoWuXZR+RpfXlaX57WlydHeVpfnsmUJ0d59hF5NuV5JlOeHOWZ THk25XlaX559RJ4c5ZlMeVpfntdTntaXp/XlmUx5Wl+e11OeyZTn9ZRnH5En R3n2EXlylKf15ZlMeVpfntdTnsmUJ0d5JlNeIIduU2gy3bB7uKHh3dDwbmh4 N6TnhoZ3wxS6IT037B5u2IrfMIVuBCrT+1SfmtKn1I46UQ/6nAbRlzSaxtIU mkHf0jJaQRtoE22n3XSATtAZSqELdI1uUWgK3bRxuKnN3dTmChthSE/Tc1SM XqSSVIEqUiWKonrUhKKpLXWk7hRDX9BwGkUJNJmm0xxaSstpPW2kbbSL9tNx Ok1nKZWuUj7dodBLKd/GIV+Hy9fh8nW4fDnK1+HyzZ58Ocq3cci3C883e/Ll KN/sybcLz9fh8m0c8uUo3+zJ1+HyvY/ydbh8HS7f7MnX4fK9j/LNnnzvo3wb h3w5yrdxyJejfB0u3+zJ1+HyvY/yzZ58Oco3e/ID2XSTCij0Prpl43BLh7ul w93S4QoTGFJRep6KUQmKpHeoIlWhutSIWlM0taeu1JcG0FAaQXE0iaZSIi2m pbSW1lMy7aC9dJRO0mk6R1l0g25T6FV0257htg53W4e7rcPdlqjbOtxt8+i2 RN22Z7htA37bPLotUbcDlakONaRW1IbaURfqQ/1pCH1JsTSRptBsWkRL6Dta R1toO31PR+gEnaIUyqQ8ukWht1CB7UKBNlegzRVocwUSVaDNFZhMBRJVYLtQ YANeYDIVSFSByVRgA16gzRXYLhRIVIHJVKDNFXgLFWhzBdpcgclUoM0VeAsV mEwF3kIFtgsFElVgu1AgUQXaXIHJVKDNFXgLFZhMBRJVYDIV2NwVBK5TPt2n 0GS6Y7twR8O7o+Hd0fDuyNYdDe+OGXVHtu7YLtyxC79jRt2RrTtm1B278Dsa 3h3bhTuydceMuqPh3fEquqPh3dHw7phRdzS8O15Fd8yoO15Fd2wX7sjWHduF O7J1R8O7Y0bd0fDueBXdMaPuyNYdM+qOzd0dr6I7ZtQdr6I7ZtRde4a7Wt9d re+u1ndXyu5qfXdNq7tSdtee4a6t+F3T6q6U3TWt7tqK39X67toz3JWyu6bV Xa3vrpfSXa3vrtZ317S6q/Xd9VK6a1rd9VK6a89wV8ru2jPclbK7Wt9d0+qu 1nfXS+muaXVXyu6aVndt7u56Kd01re56Kd01re7ZONzT/+7pf/f0v3tSdk// u2du3ZOyezYO92zF75lb96Tsnrl1z1b8nv53z8bhnpTdM7fu6X/3vJ7u6X/3 9L975tY9/e+e19M9c+ue19M9G4d7UnbPxuGelN3T/+6ZW/f0v3teT/fMrXtS ds/cumdzd8/r6Z65dS9wl0Jz6wf97wf97wf97wfZKkxlSM9QUXqJSlM5iqR3 qAbVpWbUglpTe+pOfWkADaYRlEATaDrNpfm0klbTetpMO2g/HaajdJLS6Spd pzsUmlv39b/7+t99/e++RN3X/+6bVvcl6r4txH0b8Pum1X2Jum9a3bcBv6// 3beFuC9R902r+/rffe+o+/rfff3vvml1X/+77x1137S67x113xbivkTdt4W4 L1H39b/7ptV9/e++d9R90+q+RN03re7b3N33jrpvWt0PFFBoWj3Q/x7ofw/0 vwcS9UD/e2BGPZCoB/YRD2zAH5hRDyTqgRn1wAb8gf73wD7igUQ9MKMe6H8P vKMe6H8P9L8HZtQD/e+Bd9QDM+qBd9QD+4gHEvXAPuKBRD3Q/x6YUQ/0vwfe UQ/MqAcS9cCMemCH98A76oEZ9SBwm+5RqP891P8e6n8P9b+HsvVQ/3toRj2U rYc2Ew/twh+aUQ9l66EZ9dAu/KH+99Bm4qFsPTSjHup/D72oHup/D/W/h2bU Q/3voRfVQzPqoRfVQ5uJh7L10GbioWw91P8emlEP9b+HXlQPzaiHsvXQjHpo r/fQi+qhGfXQi+qhGfVQ//sv/e+/9L//0v/+S8r+S/8r/H8Z0tNUjF6n0lSG Iqka1aJG1IRaUDR1pp4UQwNoKI2hBJpMiTSHltJyWkPrKZn20H46SEcplTLo KuXTHQr1v0f63yP975H+90jKHul/j8ytR1L2yLbikZ35I3PrkZQ9Mrce2Zk/ 0v8e2VY8krJH5tYj/e+Rt9Uj/e+R/vfI3Hqk/z3ytnpkbj3ytnpkW/FIyh7Z VjySskf63yNz65H+98jb6pG59UjKHplbj2z9HnlbPTK3HnlbPTK3HgUK+9/D YJt4FPz1y3/8JqrC3wm4tXTh7wT817+C5T//lSzD/e7A//vHvPXjXwf/uyr8 29uB//3brGCH+VHw3++Z4L/bv/3P79r6n3/qevBPk58EgxgIrPvRz4IKVO3c rkWp/wj+1//+s18FAj/9VeDab/c/vmd7kP9W+JdffPV//1WD/xLtX30s8Lvp jwWq//tPAgd7/CQw5sJPAj/54KeB15N+Gjhe9PHAj4Y9HvxR8ePgH/rz4N+3 Cv7b/zj4//DJf/z9r4I//B/Mv3GkesuaFZr94495+R/3Ef/4+0H/uBkY/GNC fyv248cChX+hwC+C/0zyY78J+rfBM/gff/SQf/z914E//+OP+NE/fj0WCP+3 usE/9j+Cg/bnhf/Fj5J+XPj/p+Af++Nf/Pc//aPQ3xf+Rrf/9n//RreBP/rt P+5+FObux2Hu/i3M3WNh7n4S5u6nYe4eD3P3szB3/x7m7j/C3P2/MHc/D3P3 RJi7X4S5+2WYu1+FuXsyzN2vw9z9Z5i734S5+22YuyJh7n4X5u73Ye6eCnP3 hzB3T4e5+2OYu2fC3D0b5q7ov9wV/qgIGL4BFTfg0RgwkANqb8BDMmBIBwzp gCoc8LgMGNwB9ThgcAfU44AHZ8CiNGCsB5TngOdowKonYKEa8IkioAgEAqWo DJWjSHqHKlIlqkJRVJ1qUC2qTfWoATWjFvQJtaZoakvtqSN1pq7UjwbQFzSY htMIGkXjaAJNoqk0nb6mRJpDc2khLabltJJW00baTMm0jXbQLjpMR+kcpdJF SqfLlEFZlEPX6Qbdo/sUeq4U/rwP6cf0GP2Ufkb/QT+nX9Cv6Nf0G/o9/YH+ SM/Sn+jPVJz+Qi/TX+lVeo3eoDepLJWnt+hteo8qU1V6nz6gmlSHPqaG1JRa UitqQ59SO+pAnagbfU4DaQgNoy9pJI2msTSeJtJXNIVm0Cz6hubRAlpCy2gF raIk2kCbaAttpe20k3bTITpGKXSB0ugSXaFsuka5lEc36S49oNBztLAVhvRv 9BN6nP6dnqBf0n/Sb+kpepqK0nNUjF6kCHqFSlJpKkORVIEqUiWKompUg2pR XWpETagFfULR1JY6UmfqTjE0gL6goTScRtEYSqBxNIkm00xKpDk0n5bSclpN a2g9baRk2ka7aA8dpON0llLpIl2mDLpKOXSD8ukOhR72/2YK/Vvgx/RT+hn9 B/2cfkG/ol/Tb6gI/Z7+QH+iP9MLVJz+Qi/TX+lv9Cq9Rm/Qm/QWvU3v0ntU md6nD+hD+ojq0MfUmJpTS2pFbehTakcdqBN1oR70GfWnQTSEhtFoiqV4Gktf 0RSaQbNoNn1L82gBLaFllETf0TraQFtoK22n3fQ9HaATdIbO0wVKo0t0hTIp m67RTbpFBfSAQlPoMVPoMbPnMbPnMbPnMa+xx0yhx0yhx7zGHjOFHvMGK2yY IT1NRek5ep6K0Uv0CpWg16kUlaYyFEkV6B2qSFUoiqpRdapN9agRNaFm1IJa UzS1pfbUmbpST+pL/WgwDaXhNIbiKIEm0WSaStPpa5pLC2kxLaXltIbW0nra TMm0jXbQHtpL++kknaZzlErplEFZdJVyKJ9u030KvbJ+Yr79xHz7SeAx+in9 jP6Dfk6/ol9TEfo9/ZGepT/TC/QXepn+Rq/S3+kNKkvl6W16l6rSB/QhfUR1 qD41pKbUnFpRG2pHHagLdaNe1Ic+p0E0hL6kWIqniTSFptEsmk3f0jxaREto BX1H62gTbaHttJO+p310ilLoPKXRJcqkbMqlW1RAoY/YPzVTCidNSD+hf6f/ R0/QL+lJ+k/6Lf2OnqJn6Dl6norRixRBr1AJKkmvUykqRxXoHapIVSiKqlF1 qkG1qC41oCbUjD6h1hRNbak9daSu1J16Uwx9QYNpKI2gMRRHCTSBptJ0mkmJ NIfm00JaTCtpDa2l9bSRNtMO2kV7aT+dpNN0ls7RRbpMGZRFV+k65dNtukP3 KDRxHjdxHjdxHjdxHjdnHjdnHjdnHveietycedw76nET53ET53HvqMfNnsfN nse9rR43hR43hR73tnrcO+pxs+dxr6fHTaHHTaHHTaHHTaHHvageN48eN48e 96J6PFCZ3qcPqSZ9TPWpITWmptScWlIr+pQ6UCfqRj2oF/Whz2ggDaJhNJJG UyzF01gaT1NoGs2gb2gB/X882vf/zfX/x/H3T59vxgsH73He64RkZYVkJcnK 3nuHbNmyRWQk2SsrW/aeadh7ZUsaIiJbuVy+l34419+uf8C5XG7P++O8VtFq 2kibaSttp520m/bRATpER+gYnaOLdJl+ot/oJt2iP+ke/U2P6SlF19NLSveS 0r2kdC/F/B+loXQUUEbKQrEUpiSKUDbKSbkoH+WnwlSEilMJKkNlqTxVoCpU lWpSbWpITak5taa21IE6UlfqTr2oDw2goTScRtM4mkCTaDLNpLk0jxbRYlpO K2kNbaIttIN20X46SEfpOJ2lC3SJrtGv9Dvdpjt0n57QM4pe89JoTxrtSaM9 aWL+Ry9RespAmSgzZaU4SqRkSqWX6RV6lXJTXipAheh1KkpvUml6i96lilSZ qlENqkV1qAE1oibUjFpRG2pPnagb9aDe1Jf600c0hIbRGBpL4+kLmkIzaA59 SfNpIS2hZbSCVtFa2kibaTvtpN10gA7RMTpBZ+g8XaTLdJV+od/oJv1Jd+ke /U2P6Sk9p+gNL632pNWetNqTVnvSKk5axUmrOGmtrLTak1Z70lpZ/70co0qi FIpQNspBuSgPFaTCVISKUXEqQaWoDJWl8lSBKlF1qk11qT41pqbUnFpSa2pL 7agzdacPqRf1oX40kAbTUPqUxtEEmkSTaSpNp9k0jxbQUlpOX9M62kCbaAtt ox20i/bQfjpIh+k4naTT9CNdoCt0g36lP+gO/UUP6BE9o+jVL536pdO8dJqX TvPSxaSlDJSJMlMcJVAypVJ2yk15qQAVoqL0BpWk0vQ2vUMVqTJVoxpUh+pR I2pCLagVvU9dqAf1pL7UnwbREBpDY+kz+pym0DSaRfNpIS2hZbSa1tNG2krb aTd9Q/voEB2hE3SKztF5ukxX6Wf6hW7RXbpHD+k5RduTXnvSa0967UmvPelj 0lBGClEWiqcwJVEKRSgb5aBclIfyUX4qSIWpGBWnElSKylEFqkRVqCrVpLpU nxpSY2pKzakltaV21JU+pF7Uh/rRABpIg2k0fUrjaCJNpek0k+bRAlpEi2kp Lac1tI420BbaRntoL/1Ah+konaTTdJZ+pEt0ja7TDbpNd+gvuk8P6BE9o3/o BUVvfYHiBPZWoD2B9gTaE2hPoD2B9gTaE9hbgQoFKhRYXoEeBXoUWF6B5RVY XoEyBa5+gUYF9lagUYFGBZZXoFaBWgVqFahVYI0FahW4+gWWV6BWgVoFNlig W4HlFehWoFuBDRbYYIHlFShYoGCBDRYoWGB5BVoWaFngwheoWmB5BaoWqFqg aoGqBdZYYIMFqha48AX6Flhegb0V6Fugb4HlFShdoHSBvgW+mQj8bxXoW2CD BUoXKF1gjQWaF1hjgVtfoHSBvRWoWmBlBVZWYGUF+ha48GVQugxKl0HfMuhb hph0FFBGClEWiqUwJVGEslFOykf5qQgVpxJUhspSeapCVak21aeG1JSaU2vq QN2pF/WhATSQhtIoGk0TaBJNpuk0k+bSIlpMK2kNraNNtIV20F76jo7ScTpN Z+kCXaPrdJvu0H16QE/oBUVbkVErMmpFRq3IqBUZtSKjVmSMSU8ZKDNlpThK oERKplR6mbLTK/Qq5aXXqAC9TkXpDXqTStJb9A69S5XpPapGtagO1aMG1Iia UDNqQa2oDX1A3agH9aTe1Jf600c0iIbRSPqExtNn9AVNoxk0i+bQQvqKltAq Wk1raT1tpM20k76l7+kYnaBTdIbO0Xm6Sj/Rz3SL7tI9+pse0mN6Sv9StCmZ NCWTpmSynjJpSiZNyaQpmfQjk35ksp7+e9VFlUQplI1yUC7KQ/koPxWkwlSM ilMJKkVlqCyVowpUiapSdapJdak+NaTG1JRaUlvqSF3pQ+pD/WgADaTBNJw+ plE0jibSJJpMU2kmzaYFtIgW01L6mtbQBtpEW2gX7aXv6Ac6SsfpJJ2ms/Qj XaFrdIP+oL/oAT2iZ/QPvaBo/ULqF9K8kOaFlC6kdCGlCyldSOlCShdSupC+ hfQtpGohVQu50oVULaRlIVe6kJaFtCykYCG7J2T3hGIqUjWqQXWoHjWiJtSC WtH71Im6UA/qSX2pPw2iITSCRtJY+pym0CyaQ/NpIS2hZbSKVtN62khbaTd9 Q9/TPjpCJ+gUnaPzdJmu0i90k+7SPXpIj+k5RTuTWV0yq0tmdclsu2TWmcw6 k1lnMsdkpBDFUjyFKYlSKELZKAflpFyUhwpSYSpCxag4laIyVJbKUQWqRNWp JtWmulSfGlJjakrNqTW1o87UnXpRH+pHA2gwDaXh9DF9ShNpEk2mqTSTZtNc mkcLaCktp5X0Na2hdbSBNtE22kM/0H46TMfpJJ2ms/QjXaBLdIV+pd/pDt2n B/SIntAzijYqix5lscay6FEWGyyLMmVRpizKlCUmE2WlOEqgREqll+kVepVy U14qQIXodSpKb1JJKk1v0Tv0LlWmalSDalEdakCNqAk1ozbUnjpRF+pGvakv 9aePaAgNoxE0ksbQZ/QFTaMZNIe+pPm0jFbQKlpL62kzbafd9A3towN0iI7R CTpFZ+g8XaTL9Bv9SX/TY3pKzynat6z6llXfsqpaVlXLqmVZtSyrlmWNyUKx FE9hSqIIZaOclIvyUX4qTEWoBJWhslSeqlBVqkm1qT41pKbUnNpSB+pIXakX 9aEBNJCG0nAaRaNpAk2iyTSd5tI8Wk4raQ2toy20g3bRXtpPB+koHafTdJYu 0CX6lX6n23SfHtATekYvKLpiYlUjVjVi7ZlY/YjVj1j9iFWNWNWIjclMWSmB EimZUullyk6v0KuUm16jQvQ6FaU3qSSVprfobXqH3qX3qAbVojpUjxpQI2pC zagFvU8fUBfqRj2pN/Wlj2gQDaFhNII+ofH0OU2haTSD5tCXNJ+W0QpaRatp La2nrbSTvqUDdIiO0DE6RWfoHJ2ni3SZfqGbdIvu0UN6TE/pOUWvdHHqEmc9 xelMnM7EWU9xihOnOHGKE6c4cTrz37stqiRKoWyUg3JSLspD+Sg/FaTCVISK UXEqRWWpHFWgKlSVqlNNqk11qT41pubUktpRB+pInak7fUi9qB8NpME0lIbT xzSKRtM4mkhTaSbNprk0jxbQUlpOK+lrWkMbaBvtoF30He2ng3SYjtJJOks/ 0gW6RFfoBv1Bf9EjekLP6B96QdEOxutgvPrFq1+85sXbTPGaF6958ZoXHxNH iZRMqZSdXqHclJcKUCEqSm9QSSpNb9M7VJEqUzWqQXWoHjWiJtSCWlF76kQ9 qCf1p0E0hEbQSBpDY+kzmkLTaBbNofm0kJbQMlpFq2kjbafd9D3to0N0hE7Q OTpPl+kq/Uw36RbdpYf0mJ5TdO0kWDsJepSgRwl6lKBCCSqUoEIJKpSgQgkx sZREKRShbJSDclIeykf5qSAVo+JUgspQWSpH5akSVaXqVJvqUn1qSE2pJbWm dtSBOlJn6k4f0gAaSINpKH1Mo+hTmkCTaTrNpNm0gBbRYlpKK+lrWkObaBvt oD30Ax2kw3SUjtNZ+pEu0BW6Rtfpd7pNd+gBPaIn9A+9oGhTwhZVWFPCmhK2 qMLqElaXsG0V1pmwzoR1JqwzYZ0J60xYZ8K2VVhxwooTtq3C2hPWnrCVFVah sAqFVSisQmF7K2xbhbUnbFGFYypSZXqPqlENqkV1qB41oGbUitrQ+/QBdaFu 1IN60kc0iIbQMBpBI+kTGkNjaTx9QTNoFs2hhfQVLaEVtIpW01raTFtpJ31D 39M+OkCH6AgdozN0js7TRbpKP9Fv9Cf9TQ/pKT2nfym6vBI1L1HzEpUu0fJK VLpEpUvUt0R9S4yJpzClUISyUU7KRfkoPxWmIlScSlAZKkvlqQJVoapUk2pT fWpIzak1taUO1JG6UnfqRQNoIA2l4TSKRtM4mkTTaSbNpUW0mJbTSlpD62gL 7aK99B3tp4N0lI7TaTpLF+gSXaPr9Cvdpjt0nx7QM3pB0UYl2T1JapWkVkka laRRSRqVpFFJGpWkUUkalaRRSTEJlEovU3Z6lXJTXnqNCtDr9Aa9SSWpNL1N 71JFqkzvUQ2qRfWoATWiFtSG3qf21Im6UDfqTf3pIxpEw2gEfUJjaCyNp89p Gs2gWfQlLaSvaAktoxW0ltbTZtpKu+lb2kcH6AgdoxN0is7QRbpMV+kn+pl+ oVt0l+7R3/SUntO/FK1Qsgol21vJKpSsQsmWV7IeJetRsuWVrEfJevTfOzCq FIpQNspBOSkX5aF8lJ8KUmEqQsWoBJWiclSeKlAlqkJVqTrVpNpUlxpSY2pJ rakttaPO1JW6Ux/qRwNoMA2l4fQxjaLR9ClNoIk0labTbJpHC2gRLaaltJzW 0QbaRNtoD+2l7+gH2k8H6TAdp5N0mi7RFbpON+gP+ovu0xP6h15QtIMpOphi oaVoXormpShditKl6FuKvqXEJFIypdLLlJ1eodyUlwpQISpKJak0vUMVqTJV oxpUhxpRE2pF71N76kRdqAf1pf40hEbQSBpDY+kzmkLTaA7Np4W0hJbRetpI 2+kb+p720SE6QafoMl2ln+kXukl36R49pucULUmqfqTqR6p+pOpHqn6k6keq fqTqR6plk6okqUry3y83qiRKoWyUg3JSLspD+aggFaYiVIxKUCkqQ+WoPFWg SlSFqlJ1qk11qTE1pZbUmtpSO+pAHakzdaUPqQ/1o8E0lD6mUTSaPqVxNIEm 0mSaSnNpHi2gxbSUltMG2kQ7aA/tpe/oBzpIh+k4naTTdImu0DW6TjfoV/qd 7tBfdJ8e0TP6h6JNiShJxKKKWFQRiyqiLhF1iVhUEXWJ2FERdYmoS0RdIkoS UZKIHRXRlIimROyoiLpE1CViUUUsqohFFdGZiAtfxKKKWFSRmIpUmd6jalSD alE9akLNqAW1ofb0AXWibtSTelNf6k+DaBiNoJH0CY2l8fQ5fUFT6EuaTwvp K1pCy2gFraeNtJl20m76lr6nfXSAjtAxOkGn6Axd/H+27ivW6jJfA/COTCYn k8nJZHIymRyGoe3FZrHYde1NR5ogCNIEQZogCIIgTZAmgoD03jv2Qkd6RzqC INJReu/NOuccz7cv1nMxWRevPn4xXmHe3/tnJ9A5ukBX6BrdoXv0iJ7QL/Qb 5S+q/D8WbnjX/D8WbniBCQV+eWpCgcYFnirQo8CA8NcBBYaHlwHhnzY/NatA x+BZBWoXuBde8v/NVgVmFfhzgXyvCu/5f75UkfB/8L//mVNFk7wVS/JWPMlb apK3SJK3Ekne0pK8lUzyFk3yVirJWyzJW+kkb+lJ3jKSvGUmectK8pad5C0n yVs8yVtukre8JG9lkryVTfJWLslb+SRvFZK8VUzyVinJW+Ukb08neavyb2/5 v6KLuOyK+D5dxGVXxGVXxD1XxD1XxBVXxBWXvzUSKkiFqCgVpwilUYzSKZvi VJYqUxWqQTWpDtWlBtSUWlJrakftqRN1pu7Um/pQfxpIQ2kEjaSxNJ4m01Sa TwvpQ/qYPqfFtJLW0DraQjtoJ+2lQ3SYvqPjdJrO00W6StfpNt2lx/Qz/UqJ vV3UbVQ05Q/0R/oP+hP9mf6T/kJ/pf+iv9Hf6b/pH/RPKkKpVIJKUmnKoCzK oVwqQ+XoaapK1ekZqkW16TmqR/WpIb1IragNtaUO1JFeoy7Ug3rRmzSAhtC7 NJzeo1E0hsbRBJpEU2geLaBF9AF9RF/QElpBa2k9baattJ2+ol20h/bRQfqG jtEJOkXn6AJdoit0jW7QLbpDj+gJ/USJu6qY7imme4r5vlBMCxXzVaGY7inm W0Ix3VPMF4T8dZJQQSpEhak4RSiNohSjdMqkOOVReapMVaga1aBnqQ7Vpeep ETWjltSaXqZXqRN1ptepJ/WmPtSfBtI7NIxG0mgaTxNpMk2luTSf3qcP6WNa TEtpOa2jDbSJttEO2k376Ws6RIfpOJ2kH+giXabrdJNu00P6kRL9ln/zJ/QH +iP9if5Mf6G/0t/o7/QP+icVoWKUSiWoJJWiDMqiXCpDFagSVaXqVItqUz2q T42pObWgNtSWOlBH6kJdqQf1or7UjwbRYHqXhtMoGkMTaBJNozk0jxbRB/QJ LaFltJ420lbaTrtoDx2gg3SETtAp+p4u0RW6QbfoAT2hRH+k6opUXZGqK1It llSLJVVrpGqNVNslVX+k6o/8X+EJFaLCVJSKUxpFKUbplEnZFKc8KksVqQpV oxpUk56lOlSXnqcG9AK9RK3pZWpH7elV6kSvUzfqTj2pN71Fb9NQGkEjaTSN pfE0kSbTdJpNc2khvU8f0qe0lJbTBtpEW2gb7aCdtJf209f0LR2nk3SaztJF ukxX6TrdpNt0nx7Tj/QzJbZVRB9FrKyIZopopoiVFbGoIvooYkdFNFNEM0Xs qIiOiuioiI6K6KiIPoroo4gdFdFHEespoo8iNlNEM0U0U8SOiuioiI6K2FGR lFr0HNWnhtSEmlMLakVt6RXqQK9RV3qDetCb1Jf60SAaTEPoPRpD42gCTaIp NINm0RxaQIvoI/qMltAyWkHraSNtpq30Fe2jA3SQjtIxOkVn6AJdoWt0g27R HbpHj+gJ/UKJn+QpYTOV0IMltF8J7VdC+5XQfiV0Xgmdl3/BJVSQClNRKk5p FKUYpVM2xakslafKVIVqUE2qQ3WpATWiptSMWlI7ak+dqRt1pz7UnwbSOzSC RtJYGk+TaSrNpNk0nxbSx/Q5LabltJLW0SbaQjtoJ+2l/XSIvqPTdJbO01W6 TrfpLj2kx/QrJX6nM03PpOmZNO2Spl3SLKA0CyjNAkrTOGkaJ03jpOmZND2T pmfS9EyanklLSaUSVIpKUwZlUQ7lUjmqQJXoaapOz1Atqk31qCE1phepBbWi tvQKdaAu1JXeoB70JvWlATSYhtBwGkVjaBxNoCk0jWbQLJpHC+gT+oJW0Cpa SxtpM22l7bSL9tA+OkDf0FE6RqfoDH1P5+gKXaMbdIfu0QN6RL9R4md/Smqc khqnpOVVUuOU9JWupJVVUuOU1Dglraz8Gy2hglSIClNRKk4RilKM0imT4pRH Zak8VaTKVIWqUQ2qSc/S89SIXqCm1Ixeotb0MrWj9vQqvU7dqDv1pN70FvWn gfQ2DaVhNJrG0niaSFNpOs2k2TSX5tOn9DktppX0Ja2hDbSJttA22k176Ws6 TN/ScTpJZ+kHukxX6TrdpNt0l+7TQ0r87E9UD0atrKjOi+q8qM6L6ryopova VlFNF9V0Uf0W1W9R/RZNKUmlKYOyKJfKUAWqRFWpOtWi2lSfGlMTak5tqC11 oI7UhbpSD+pF/WgQvUujaAxNoEk0jWbQHJpHn9ESWkWraT1tpK20nXbRHjpI R+gEJdolOvSplJR3Q4aFDA8ZEfJeyMiQUSGjQ8aEjA0ZFzI+ZELIxJBJIZND poRMDZkWMj1kRsjMkFkhs0PmhMwNmRcyP2RByMKQRSHvh3wQ8mHIRyEfh3wS 8mnIZyGfh3wRsjhkScjSkGUhy0NWhKwMWRXyZcjqkDUha0PWhawP2RCyMWRT yOaQLSFbQ7aFbA/ZEfJVyM6QXSG7Q/aE7A3ZF7I/5EDI1yEHQw6FfBNyOORI yLchR0O+CzkWcjzkRMjJkFMhp0POhJwN+T7kh5BzIedDLoRcDLkUcjnkSsjV kGshN0L+9/fff78Z/n4r5HbInZC7IfdC7oc8CHkY8ijkcciTkB9Dfgr5OeSX kF9Dfgv5V8j/5P83Q/4v5PeQ0PUprouoL7dRd0bUdRG1bKOui6jrIuqmiLop SrkpSrkpSrkpSrkpSrkpStmzpezZUu6MUu6MUq6L/Cs8oYJUiApTcYpQGqVT JmVTHpWl8lSRKlMVqkY16VmqQw3oBWpKzeglak0v06vUiTrT69SNelJveov6 00B6m4bSMBpJo2ksTaTJNJWm00yaTXPpU/qcltKXtIbW0QbaQttoB+2k3bSX DtFh+paO00k6Sz/QebpIl+km3aa7dJ8e0q+UWNQxl0TMoo5Z1DGLOuamiPly G3NdxOzomOsi5rqIWdQxd0bMnRGzqGMujpiLI+biiLk4Yi6OmIsj5uKIWdQx t0fM7RGzrWOukJgrJGZbx1KqUnV6hmrTc9SQGlMTepFaUCtqQ22pI71GXegN 6kG96E3qSwNoMA2h4fQejaJxNImm0DSaQbNoDs2jT+gLWkaraDWtpfW0mbbT V7SL9tE3dJSO0Sk6Q+foAl2iG3SL7tA9ekCP6BdKfNctrRFLa8TSvuuW1n6l tV9pizr//4mEClJhKkoRSqMoxSiTsilOZak8VaYqVIPqUF1qRE2pGbWk1tSO OlFn6k69qQ/1p4H0Do2gkTSeJtNUmkmzaT59TItpOa2kNbSONtEO2kn76RAd pu/oNJ2ni3SdbtNdekiP6WdK/M5fuv5I1x/pNmm6JknXJOmaJF2TpGuSdE2S rknSNUm6JknXJOn6I11/pOuPdP2Rrj/SU0pRFuVQLpWhclSBKtHTVJWq0zP0 HNWjhtSYmtCL1JxaUCt6hTrSa9SF3qAe9Cb1pX40iAbTEBpO79EEmkRTaBrN oFk0hxbQR7SEVtBqWkvraSNtp69oFx2gg3SEjtIxOkVn6BxdoEt0jW7RHbpH j+gJJX7uJUMvZFhKGZZShqWUoSsydEWGpZRhKWVYSvmXVEIFqRAVpqJUnNIo SjHKpjjlUVkqTxWpMlWhalST6tLz1IBeoGb0ErWk1tSeXqVO1Jlep27Uk3pT H3qL3qahNIxG0EiaSJNpKk2nmTSb5tJC+pCW0nJaSV/SGlpHG2gb7aCdtJu+ pm/pOJ2ks/QDnaeLdJmu0k26TXfpPj2mxM+4ZGq1TF2WqcsyfWnN1GWZGizT l9ZMDZapwTL1VqYFlKm3MvVWprbK1FaZKaUpi3Iol8pQBapEVak61aJ6VJ8a UxNqTi2oDXWgjtSFulIv6kv9aBANpndpOI2iCTSJptEMmkPzaBF9QMtoFa2m 9bSRttJ22kV76AAdpCN0lE7Q93SOLtEVukG36B49oCeUaJcs+yNLz2TpmSxL JEvjZGmcLO2SpV2yrJMsPZP/KzehQlSYilJxilAaRSlG6ZRJccqjslSeKlJl qkLVqAY9S89TA2pETakZvUQt6WVqT6/S69SNelJv6kNvUX8aSO/QUBpGo2k8 TaTJNJWm00yaS/PpfVpKy2klfUnraANtoi20jXbTXtpPh+gwfUfH6SSdpR/o Ml2l63ST7tNDekw/UmJbZdtR2Ron23rK1j3Zuidb92Trnmw7KlsLZVtP2Voo Wwtl21HZWijbesrWQtlaKDslg3Iol8pQOapAlehpqk7PUG2qR/WpIb1IzakF taK29Ap1oI7UhbrSG9SD3qR+NICG0Ls0nMbQOJpAU2gazaBZNI8W0CL6gJbQ ClpFq2ktbaTNtJX20D76ho7RKTpD39M5ukRX6BrdoAf0iH6ixFe1HF2Wo8ty NFiOBsuxlHIspRwNlqPBcqyiHG2Vo61ydFSOjsrRTDmaKUcz5aRkU5zyqCyV p8pUhWpQTapDdakBNaKm1IxaUmtqR+2pE3WmbtSdelMf6k8D6R0aSiNoLI2n yTSVZtJsmk8L6UNaTMtpJa2hTbSF9tJ+OkSH6Ts6TqfpLJ2ni3SVrtNDekw/ 06+U+EoXt2fi9kxcu8S1S1y7xH2bi+uUuE6J65S4TonrlLhOieuUuI0T1y5x 7RK3duLaJa5d4ilZlENlqBxVoEr0NFWlZ6gWPUf1qSE1pib0IjWnVtSG2tIr 9Bq9QT2oF/WlfjSABtFgGkLv0ns0hsbRJJpC02gWzaEFtIg+oi9oGa2gVbSa 1tJG2kxbaQ/towN0kI7QUTpBp+gMXaArdI1u0AN6RE/oF/qNEr+3k2tH5Wqh XC2Ua0fl6qNcfZRrW+VqplzNlGtb5d9eCRWiolSc0ihKMUqnTMqmPCpL5aki VaFqVJOepTpUl56nRvQCNaWXqDW9TO2oPXWiztSNulNPeosG0tv0Dg2jkTSa xtJ4mkiTaTrNprk0nxbS+/QxfU5LaTl9SetoA22iLbSNdtN++pq+pZN0ms7S ebpIl+kqXaebdJ8e04/0K/2LEj/tkKcH8/Rgnh7M0355tlWebZWnB/O0X57v ennaL0/75em8PJ2Xp+nyLKo8TZen6fI0XV5KLpWhclSBKlFVqk61qDbVo8bU hFpQG2pLHagjdaGu1IN6UV/qR4NoMA2nUTSGJtAkmkFzaB4tog/oE/qMltAy WkWraT1tpK20nXbRATpIR+gonaBT9D2do0t0hW7QLbpHT+gn+o0SP5tXxnoq Yz2V0WBlNFgZvfX/bN1XrNR1n8dxIpu9ei42e7HZhHUJj0tYH8K6xAeH+c8M M5w5c/5nzpyhN+lNkN6RJk2qUkRRivTeiw27FKVJU4qCSBMrgigK1s16zM7r YjMxMS9/1ye+/58vJOcB3XpAtx7QrQc0qupnuKAaVJNq0T1Um+6lulSP7qP6 dD81oCjFKEGNKU0hZSlHeWpOLak1daBO1IW60UPUjwbREBpGI2g0jaVHaQJN pek0k2bTXFpAz9FSWkmraT1tpq20k16iXfQqvU17aB8dovfoKB2nk3SaPqSz 9Aldpk/pK7pG1+lHukO/0u9U2GURt76IHkWssYgeRfQoYpdFlCmiTBFliihT xEKLWGMRPYrYYBFliihTxBqLaFREoyIaFdGoiDJFlCmiTBFrLKJMEWssUq2M yqmCmlAzakGtqA11pM7UlbpTT+pFfak/DaShNJzG0DgaTxNpGs2gx2kWzaEn aSEtpiW0jFbRGlpHG2gTbaEd9DK9Qq/RbtpLB+kIHaNTdIbO0Xm6QJfoCl2l r+kbuk0/0S/0GxV2WUOla6h0De2yhqrWUNUa2mANbbCqn/qCalBNqkW1qQ7V pXpUn+6nBhShGCUoSWnKUJZy1JSaU2tqSx2oE3WjHtSb+tAAGkYjaDSNpQk0 iabSdHqCZtM8WkRLaTmtprW0kTbTdnqJdtHrtIf20QE6SsfpJJ2mj+kiXabP 6Bpdpzv0M/1OhfZEbaGoCkVVKKpCURWKqlBUhaIqFHUdjGpPVHui9lHUPora R1EViqpQVIWiKhRVoagKRVUoqkLRag9QnBpRikqpjMqpgiqpCTWjNtSO2lNH 6kzdqSc9TP1pIA2l4TSSRtEYGkcTaTJNoWk0gx6nWfQULaTFtIxW0BpaRxto E22jF+lleoXeoN20l96h/XSEjtEJ+oBO0Rk6R+fpAl2iz+lr+oZu0E/0C/1G hR4FehTYW4G9FdhbgTIFyhTYW4FGBRoV2GCBRgXuhIG9FWhUoFGB5RWoVaBW geUV6FagW4FuBboVqFWgVoHlFehWoFuBDRboVmB5BQoWKFigW4E7YaBggeUV KFigYIENFmhZoGWBXRbYZYFdFqha4HYY6FtgjQWqFrgdBvoWWGOBvgX6Fvgz r8AuC+yyQN8CuyxQukDpAgst0LxA8wJbLXAxDNQvsNACd8LAVgvUL3AxDCy0 QP0CF8NABwO7LLDLArssUMRAEQN3wsBCCxQxcDEMtDHQxsBCC1QyUMmYSsbc CWOKGFPEmA7GrLGYNRZTv5j6xWywmObFNC+mdDGli+lbTN9i1RpSI0pRCZVR OVVSE2pB7ag9daWe1Iv60mAaSaNoPE2mKTSDHqc5NJ+epSW0glbROtpAW+h5 epFeo7foHdpPh+kEfUAf0Xm6QFfoS7pBN+k2/UKFasS1Iq4Vca2IWzFx1Yir Rlwr4loR14q4VsS1Iq4Vccsmrhpx1YirRlw14qoRV424asRVI64acdWIq0a8 WpSS1JjSlKGQspSjPDWlltSWHqQO1IW60UPUm/pQPxpEQ2gEPUKjaQJNosdo Kk2nmfQEzaVnaCmtpNW0ltbTRtpMW2knvUCv05v0Nu2jd+kAHaLj9D6dpA/p LH1Mn9BF+pS+oK/oW/qOfqSf6Vf6nQr9SOhHwspKWFkJKyuhKQnbKqEpCU1J WFkJKythZSXUJeHWl7CyElZWQnESipOwshLak9CehJWV0J6E9iSqBZSiEiql cqqgSmpCzagVtaF21J46UmfqTj2pFz1M/WkgDaXhNJJG0RiaSJNpCk2jGTSL nqT59CwtoxW0itbQOtpAm2gb7aDn6Q3aTXtpPx2kY3SCPqBTdIbO0Xm6RFfp c/qabtL39AP9RL/Qb1TYVo30spFbXyO9bKSXjSyqRtrYSBurvrMKqkm1qDbV obpUj+rT/RShKMUoSY0pTRnKUo6aUnNqTW2pA3WiHtSb+tAAGkYjaDSNpQk0 iabSdJpN8+hpWkDLaTWtpY20mbbTTnqd3qQ9dIAO0VE6TifpNJ2lj+kyfUbX 6Du6RXfoZ/qdCsVJ6kxSZ5K2S1JxkoqTVJyk4iQVJ6k4SXsmqT1J7UkqTlJx kjZOUnuS2pPUnqT2JLUnqT1J7UlaQEntSWpPslqcGlEJlVIZlVMFVVIzakGt qA11pM7UnXpSL3qY+lJ/GkhDaTiNoXE0nibSZJpC02gGzaGnaCEtoxW0itbQ OtpAm2gLbaMd9Bq9RbtpL+2ng3SYjtAxOkVn6CM6R+fpCl2lz+kb+p5+oNv0 E/1GVRWq+q1xN/pV/da4q3ctrP736ndVn1N98J+/K25O9f1//ia55+8a/Odv jJtSvbz6X6pP+eOfv/3x31P+/B1yc6ovu2vVH/++elfVb/JKFfntXo2LvJUU eUsXeSst8pYp8lZW5C0s8lZe5C1b5K2iyFuuyFtlkbd8kbcmRd6aFnlrVuSt eZG3FkXeWhZ5a1XkrXWRtzZF3toWeWtX5O3BIm/ti7x1KPLWschbpyJvnYu8 dfl/b1U/0SlfUylfUyl3iJTvqpTrQ8r1IeX6kPJdlXJzSLk5pHxhpXxhpdwc Ur61Ui4NKd9aKd9aKZeGlG+tVLUGFKUYJagxpSlDIWUpR3lqTi2pNbWlDtSJ ulA3eoj6UD8aRENoGI2gsfQoTaDHaCpNp5k0l+bR07SIltJKWk1raT1tpq20 nXbSq/Q27aN36RC9R0fpJJ2mD+ksfUKf0hd0nb6jW/Qj3aFfqfAVV/X/8YL+ gf6R/kL/RP9M/0L/Sv9G/05/pf+g/6S/0X/Rf9Pf6QEKKE6NKEWlVEblVElN qAW1onbUnjpTV+pJvagv9afBNJRG0jgaT5NpCs2gx+lJmk+LaQmtoFW0jjbQ FtpGz9Mr9BbtpnfoMB2hD+gMfUQX6ApdpS/pBt2kH+g2FbZ6iX6U6EeJfpTo R4l+lFjoJRZ6iZKUKEnV139Bd1MtuodqUx26l+pSPbqP6lMDilCMEpSkDIWU pTw1pebUklrTg9SFulEP6k19qB8NoEE0hB6hsfQoTaBJ9BhNpZn0BM2lefQM PUfLaSWtprW0njbSZtpK2+kF2kVv0h7aR+/SIXqPjtL7dJo+pLN0kS7TZ/QV fUu36Ee6Q4VrQVpT0m4EaXVJq0vajSDtRpB2I0i7B6TVJe0KkNaZtM6kXQbS ipNWnLTLQFp70u4BacVJuwKkFSftCpDWnrT2pLUnrT1p7UlXK6NyqqAm1Ixa UCtqQ+2oPXWmrtSdHqb+NJAG01AaRWNoHI2niTSZptHjNIvm0FP0LC2mJbSM VtAa2kCbaAttox30Ir1Mb9Be2k8H6TAdoWN0gk7RGfqIztEl+py+pht0k76n H+g2Fe4BpTZTqeaVKl2pC3Sp0pUqXanSlSpd1U9zQTWoJtWi2lSH6lI9qk/3 U4SilKAkNaY0ZSikLOWoKTWn1tSWOlAn6kY9qDf1oQE0iIbRaBpLE2gSTacn aDY9TQtoES2l5bSa1tJG2kzbaSe9RK/THtpHB+gQHaXjdJJO01n6mC7SZfqC rtF1+o5u0R0qNCqjURmNyuhRRo8yFlDGAspYQBkLKKNMGWXKKFNGmTJ6lNGj jB5lbKGMLZTRo4wtlNGjjB5l9CijRxk9ylQroVIqpwqqpCbUjFpQG2pHHakr daee1Iv6Un8aSINpOI2iMTSeJtJkmkGzaA7Np4W0hJbRKlpHG2gTbaEd9Dy9 SC/Ta7Sb3qH9dJCO0Qn6gE7ROTpPF+gKfUnf0E36nm7TT1TYVmWKU6Y4ZYpT pjhlVlaZ21yZHVX1rVRQDbqbalItuodqUx26l+6j+6kBRShKMUpSY0pTlnKU p6bUnFpSa2pLD1IH6kRdqAc9RP1oAA2iITSCHqHRNJYepQk0iR6jmfQEzaa5 9AwtoEX0HC2l5bSS1tNG2kxbaSe9QLvoVXqb3qUDdIiO0nF6n07Sx/QJfUpf 0TW6Tt/Sd3SLfqSfqXDXC1UttLdCeytUtVDVQlULVS20t0ItC7UstK1CLQsV LFSw0KIKdSu0qELdCnUrVKtQrUK1CjUq1KhQo0JlCm2mUJlCSym0lEI9CvUo 1KNQj0IVCu2j0L0u1KPQPgr1KFSh0OUutIpCFQpd7kJbKLSFQj0KLaBQhUIV CrUntHtC7Qm1J3S5C13uQsUJFSe0dkJrJ1ScUHFCdQnVJXSvC+2Z0J4J1SW0 YkIlCf1ZZrmmlLvXlStJuZKUWzHlVky5FVOuLlXfOwXVoLupJtWie6gO3Ut1 qT41oAhFKUYJSlJjSlOGcpSnptSSWtOD1IE6URfqQQ9Rb+pD/WgADaFhNIIe obH0KD1GU2kmPUFzaR49QwtoET1Hy2klraX1tJG20nbaSS/QS7SLXqU3aR+9 SwfoPTpO79NJ+pg+oYv0GX1F1+g6fUu36Ef6lQp/4yerKVlLKasuWXXJWk9Z dcm65mVd87I2U9ZmyupMVmeyNlNWcbKKk7WesoqTdc3L2kxZ7clqT9Z6ympP 1mbKqlBWhbIqlK1WRhVUSU2oGbWgVtSG2lF76khdqTv1ooepLw2koTScRtIo GkPjaDxNoWk0g2bRk/QUzaeFtJiW0DJaRWtoHW2ibbSDXqSX6TV6g/bSO3SQ DtMROkYn6AM6RefoAl2iz+lL+oZu0E36nm7Tb/Q//6cKlaywvCosrwptrNDG Cne9qp/hgmpQTapFtaku1aP7KUJRSlCS0pShkLKUozw1pebUmtpSB+pE3ag3 9aFBNIxG0GgaSxNoKk2n2TSPnqYFtIiW0mpaS5tpO+2kl2gXvU57aB8doqN0 nE7SaTpLF+kyfUHX6Dp9R3fodyr8nYSczuR0JqczOZ3J6UxOZ3L2TE5xcoqT s2xy2pPTnpz25LQnpz057clpT05xcu51Oe3JaU9Oe3Lak7OAciqUU6GcCuW0 J1etjMqpgppQM2pBbagdtaeO1Jm6UnfqRQ9TXxpMQ2k4jaRRNIYm0jSaQXPo KZpPz9JCWkxLaBmtojW0hbbRDnqeXqSX6RV6jd6g3bSXDtJhOkLH6BSdoY/o El2hz+lL+pq+oRt0k76nn6jQmUqdqdSZSrus0i6rtMsqFafSra/SLqu0y6q+ nwq6m2pSLbqH6lA9uo/qUwOKUowSlKTGlKGQstSUmlNLak1t6UHqRF2oBz1E vakP9aMhNIxG0CM0msbSJJpK02kmzaV59DQ9QwvoOVpOK2k1raWttJNeoF30 Kr1Jb9MeOkDv0VE6TqfpQ7pMn9Jn9BVdo2/pFv1Mv1Ohb3mLKq9veX3Lu9Ll tSzvNpfXsryW5RUsr2B53crrVt6VLq9WeVe6vFrl1SqvUXmNyitT3j7KVyuj cqqgJtSMWlArakftqTN1pZ7Ui/pSfxpMQ2kkjaJxNJmm0Ax6nJ6k/2XrzoKk Lvc7Dk9JLlKpVC5ylYoxHssQYhnLIhxDPIZDDAHZnJ6enp5+u3u6e5ieZt83 ZV8E2Xdkk00QZJNNNtkE2XHDBQVFVARBUdxAlhOr4pyqfi5SfYNPvddTfP7f H1bNXJpHi2gxLacVtJo20EbaSttoF+2m/XSAjtJJepNO0Yd0hi7QRbpC39A1 +oGu0x0qLpZy1ShXjXI7pVw/yvWjXDXKVaPcdinXj4afr6LupnvoXrqP7qfG 9AA9TE2pGTWnR+kxakGPUytqTU9QO+pAT1KUYhSnBCUpTRnKUSfKU4F6UC/q Q/1oAA2ip2gIjaBnaBJNoRk0i+bQczSfFtISWkYv0Eu0njbRFnqFttNOepX2 0D56jY7QCXqD3qJ36TR9RGfpS7pEl+lrukrf0Y90g4oXvogKReytiApFrKyI lRXRo4geRaysiDJFbKuIMkUsqogeReyoiBteRJkiyhSxqCLWU0SZIsoUsZ4i yhSxniJlbagttaeOVElVVE0pqqFaqqN66kw9qTf1pYE0mJ6moTSSxtI4mkxT aTrNprk0jxbQUlpOK2gNraPNtI120G7aS/vpAB2m43SS3qb36AM6Qx/TBbpI X9EV+pZ+ol/oDhVbVmELVShYhYJVuLlVWEAVClahYA1fQ0XdTffSfdSYmtCD 9BA1pWbUnB6lFtSSWlFrakcd6EmKUozilKA0ZagT5akL9aI+NIAG0RAaRqNo DI2nKTSNZtEcmk8LaQkto5W0ljbRFtpOO2kP7aODdIiO0Ql6h96ns/QJfUGX 6DJdpe/oZ7pJt+lXKu6ZqJJElSSqJFEliVo2Ufe6qJJElSSqJFEbJ6opUU2J WjtRayeqKVFrJ+pKF9WUqKZE7Z6o3RPVmajORNUlagFFdSaqM9GyNtSeOlI5 VVAVVVOgFNVQlmqpjuqpK/Wk3tSX+tNAGkxDaTiNpmdpKk2nmTSb5tI8WkCL aDEtpeX0Iq2hdbSRttI22kG7aDftpf30Oh2l43SK3qMP6GM6R5/TRfqKrtA3 dI2u0y0qXukqraxKK6tSmSptq0qNqtSoSnurUq0q1arS3mr4QirqHrqfmtAD 9CA9RA9TM3qEmtNj1JIep1bUmp6gdtSBnqQIxShOCUpShnLUifJUoG7Ug3pR H+pHA+gpGkYjaBSNoQk0habRDJpFz9FCep6W0Au0il6i9fQyvUI76VXaQ/vo NTpIh+gIHaN36TR9Qp/SZ/QlXaLL9DV9TzfoJt2mX6lYxJgixlz4YuoXs6hi FlVMB2PqF1O/mObFNC9mR8WULmZHxeyomL7F9C1mM8W0LKZlsbI21JY6UjlV UCVVU6AUZamW6qkzdaee1Jf609M0nEbSWJpIk2k6zaS5NI8W0WJaQatpA22l bbSLdtN+OkCH6SidovfoQzpH5+kCXaQr9A39QL/QHSqunSprp0pdqtSlSlOq NKVKU6o0pUpJqpSk4cunqLvpXmpMD9CD9BA9TM3oEWpOLaglPU6t6AlqR09S hKKUoCSlKUM56kQF6kLdqAf1oX40gIbQCBpFz9AkmkYzaBbNofm0kJ6nJbSS VtFLtJ5epi20nXbSq7SHXqODdIiO0Dv0Pn1En9Jn9AV9SZfpa7pKP9INuknF S1vcKopbRXE1iKtB3CqK60JcF+L2UVwh4goRt4/iLm1xWyiuEHGFiFtFcaso bhXFVSOuGnGrKG4LxfUjrh9xWyhe1obaUnvqSOVUQZVUTYFSVENZqqU66kxd qTv1pN7Ul/rTQBpKw2kkjaZxNJEm01SaTjNpNi2gRbSYltKLtIbW0UbaTDto F+2mvbSfDtDrdJiO0tv0AZ2hc3SePqcL9BV9Q9/ST3SdbtEdKrasWsuqtaza Da/aUqrWsmotq7aKqrWs4WezqLvpPmpCD9JD1JSaUXN6lFpQS2pFrakddaAI RSlGcUpSmjLUifLUhbpRL+pDA2gQDaNRNIbG0wSaQtNoFs2h+bSQltAyWkmr aC1tou20k/bQPjpIh+gYvUWn6Sx9Qp/RF3SJrtJ39DPdpuImSVgiCUsk4SKX 0J6E9iS0J6E9Ce1JKE5CcRLWScIdLqE9Ce1JaE9CexJ2SkKFEiqUUJyEO1zC dkmoUEKFEtqTKGtD7akjlVMFVVIVpaiGslRH9dSZulJ36km9aSANpqE0nEbT WHqWJtNUmkmzaS7NowW0iJbSclpBq2kNraONtJm20Q7aRXtpPx2g1+kwHac3 6UP6mM7T53SBLtK3dI1+out0i+5Q8foWrKKgKUFTgqUU1CWoS7CUgs4EnQk2 U9CZ4PoWXN+CzRRspqA4wVIK2hO0JyhOcHML2hMspaA9QXuCzRRUKKhQsJ6C CgUVCioUVCioUFChYD0FFQrWU9CjoEfBegrKFJQp6FFwaQt2VLCjgjIFOypo VNCoYFsFtQpqFaysoFbB9S3oVrCtgloF17dgUQWLKlhUwaIKrm9BwYJFFRQs KFiwrYKWBS0LtlXwr1DB/9kQbKugakHVgr0V9C3oW7C3gqoF17dgZQUrK1hZ wcoKrm9JzUvaW0l7K6l5SaVLKl3StkqqWtLNLenmllS1pKoltSypZUk7Kqlg SQVL2kzJsjbUljpSOVVSFVVToBTVUJZqqZ46U3fqSX1pMD1NI2ksjaOJNJmm 01yaR4tpOa2g1bSGNtBW2ka7aT8doMN0lE7SGTpH5+kCXaRr9AP9QsUlkrJE UqqRUo2UaqRUI6UVKa1IaUVKK1JakVKIlKtaSitSWpGyU1J2Sko1UqqRUo2U +1pKNVKqkVKNlGqkVCOlFSmtSGlFSitStktKNVKqkVKNVFmCkpShHHWiPBWo C3WjHtSL+tFTNIRG0TM0nibQJJpGM2gOPUfzaQktoxdoJa2itbSeXqYt9Aq9 SntoH71GB+kIHaMT9AZ9RGfpE/qUvqAv6RJ9Tz/SDbpJv1KxEGkXubRVlLaK 0lqR1oq0fZRWjbRqpO2jtH2UVo20i1zaPkrbR2lbKK0faf1I20Jpd7i0VZTW lLSmpK2itFWUtorSZW2oLbWncqqgKqqmQFmqpTqqp87UlbpTT+pN/WkwPU1D aTSNpXH0LE2kyTSVZtJsmkvzaAEtpRX0Iq2jjbSZttI22kV7aT8doNfpKB2n N+lD+pjO0Xn6nC7SV3SNfqCf6DrdouIWqnFfq1G1GlWrsYBqVK1Gy2q0rOHr pah76T5qTE3oQXqImlIzak6PUgtqSa2pHXWgCEUpTglKUo46UZ66UDfqRX1o AA2iITSMxtB4mkBTaBbNofm0kJbQMlpJq2gtradNtIW2007aQ/voIB2iY3SC 3qLTdJY+oc/oEl2m7+hH+plu069UrEtGXTLqkrFEMjqT0ZmMzmR0JqMuGXXJ WCcZ17eMumTUJWOnZOyUjJ2SUZyM4mR0JmOxZBQnozgZdcmoS0ZdMmVtqC21 p45UThVUSVVUTYFSVEt1VE+dqSt1p97UlwbSUBpOo2ksjaNnaSJNpqk0k2bT AlpEi2k5raAXaTWtoQ20kTbTDtpNe2k/vU6H6Sgdp5P0Nn1AZ+hjOkfn6XP6 iq7Qt/QTXac79L9UrFDWyspaWVk9ytpWWT3K6lHWysrqUda2yrrDZZUpq0xZ KyvrDpdVpqxFldWjrEWVVaasMmWVKatMWdsqa1tlbausRmUtqqxGZe2orFpl 1SqrVtmyNOWoE+WpQF2oG/WgPtSPBtAgGkYjaBQ9Q+NpAk2iaTSDZtEcWkjP 0wu0il6il2kTbaHttJNepT30Gh2iI3SC3qB36H36iM7Sp/QFXaav6Sr9SD/T DfoTFZuXc2nLKV1O6XL6ltO3nPWU07KczZRzc8tZTzlVy6laTtVyqpazmXIK llOwnKWUs5RyCpZzh8uVtaG21JHKqZKqKFCKaihLtVRH9dSZulNP6kv9aTAN p5E0lsbRRJpM02kmzaVFtJiW0wpaTWtoA22krbSNdtFuOkCH6SidpDfpFL1H H9IZOkfn6QJdoW/oB7pOv9AdaqhQw2/g+sOffwNXTaNrdzX8Zq3fNar87c9T d41rtOK3Pxc0atvo1l3TG/2x0V83mv7n9z/+9t9rd/X9zWvuGvrn3801vVFN o4bfilRb4jcldSrxVlfiLV/irb7EW6HEW+cSb11KvHUt8datxFv3Em89Srz1 LPHWq8Rb7xJvfUq89S3x1q/EW/8SbwNKvA0s8TaoxNvgEm9PlXh7usTbkBJv Q0u8DSvxNrzE24gSbyNLvI36f28NP9G1lnytb6ha31C1Nn2tr6laX1O1vqZq fU3V+oZq+JuwqHvoPrqfGlMTeoAepKbUjB6h5vQYPU6tqDW1ow70JEUoSjGK U5LSlKEc5alAXagH9aJ+NICeohE0isbQMzSeJtAkmkLTaAY9RwvpeVpCy2gl raKXaC2tp5dpE71CO+lVOkiH6AgdozfoLXqXTtNH9Al9Rl/S13SVvqcbdJNu 05/oVypeFRr+vi/qLvoL+kv6K/ob+lv6O/p7+gf6R/od/RP9M/0L/Sv9G/2e /p3+g/5A/0n/Rf9N/0PtqZwqqJKqqJpSVENZqqN66kxdqSf1pr7UnwbS0zSc RtJoGkvP0mSaStNpJs2jBbSYltKLtIbW0QbaTFtpG+2gXbSbXqejdJzepLfp FL1HH9CH9DF9ThfpCn1D39I1+oVu0R0qXgvqXAvqNK9O6eqUrk7f6vStzvW6 4aeqqLvpXmpMTeghakrNqDk9Si2oJbWi1tSOOlCEohSnBKUpQznqRHkqUBfq Rr2oDw2gQTSEhtEoGkPjaQJNoWk0i+bTElpGK2kVraX1tIW2007aQwfpEB2j E/QWvUPv02k6S1/QJbpMV+k7ukm36VcqdiavM3mdydv0eZ3J60zeus9b93k3 67zO5HUmrzN5ncnrTF5n8jqTd6nO2/l5xckrTl5n8jqTd7POq0teXfJlbagt daRyqqBKqqZAKaqhLNVSHXWmrtSdelNfGkiDaSiNpNE0lsbRRJpMU2k6zaZ5 tIAW01JaTitoNa2hdbSBNtNW2kY7aC8doMN0nE7S23SK3qMP6AxdoK/oW7pG v9AtukPFq3S9utSrS71FVa8z9XZUvc1U7wLd8KVS1N10D91H91NjakIP0MPU lB6h5vQoPUYtqCU9Tq3pCXqSIhSlGCUoSWnKUI46URfqRj2oF/WhfjSInqIh NIxG0CgaQ8/QJJpC02gGzaHnaCE9T8voBXqJ1tJ6epk20Su0nXbSPnqNjtAJ eoPeonfoXXqfTtNH9CVdost0lb6j7+kG3aTbVFxUBVUr2EwFVStoWUHLCjZT waW6YD0VtKygZQWX6oKWFRSs4FJd0LKClhUspYJuFeyjgn1UKGtDbanj//Fo 72FTz38ex+9de/7t+bxrrbXWWmuttdZa+1trbSshUURCSGbumbnnnnvuz8x3 vnPP3VEppZTSSSelVFIk5JQSISJRRETOOZVy/rnspz/m8cf78vjfdc3z8/re UR/qRxfTABpIg+hqGkytlKc26qBOSiilbhpGo2g0jaPxNIkm0zSaTQtoIS2h pbSCVtJqWkNraR1tos30PG2lbbSD3qOPaC99TvvoIH1N31OzKRlNyWhKRlMy FkvGYsnYKRnf4TJKklGSjMWS0ZSMpmT0I+PrW8aKyWhKRlMympLRlIySZJQk oyQZJckoSUZJMpZNxrLJqEtGXTKakrFxMuqSUZeMumTUJaMuGXXJtFxLOSpQ kcoUqEZ1atBQGknX0xgaSzfSBLqZptBUupVm0W00n26nRbSY7qRldDetonvp PrqfHqLH6HF6mp6jLfQivUQv03Z6ld6l9+lj+oL20wH6ir6jH+hHau6orOJk 7ais9mS1J2tRZX2vy1pPWe3Jak/WospqT9aOyqpQVoWy2pP1vS6rQlk7KmtH Ze2orB5l9ShrUWUtqqxFlVWmrC93WY3K2lFZZcraUVmNympU1o7KqlVWrbJq lW0ZQnlqo3bqpAollFIXddMwGkGj6QYaRzfRZLqFptNMmkPzaCHdQUtoOa2g lXQPraYH6GF6lNbTM7SZnqcXaCtto1foNdpDH9BHtJf20Zd0kL6lX1DzG16r IrYqYqtt1ep7XatFdeiV09SRdBQdQ8fTCXQynUan0xnUg86h86gv9adL6XK6 kq6ha+k6ylGBilSiQFWqU4OG0xgaSxNpCk2lGTSXFtFiuotW0b30ID1CG+hZ 2kIv0su0nXbSO/QhfUL76QB9Qz9S85c/55c/55c/55c/55c/55c/57tZzi9/ zi9/zi9/zi9/zi9/zi9/zi9/zhe0nF/+nF/+nF/+nF/+nF/+nF/+nF/+nF/+ nF/+nE2S04CcBuQ0IKcBOQ3IWSc5DchpQE4DchqQ04CcBuT88uf88udaMtRK bdROHVShhFLqom4aRiNoNN1A42gSTaZbaBpNp5k0h+bRQrqDltByWkEr6R5a TWvpYXqUnqBnaDM9Ty/QVtpGr9AOep3epg/oI/qU9tGXdJC+pl9Qswt5Xcjr Qt5SyltKed/c8pZS3lLKW0p5SymvGnnVyFtKed/c8jZTXknySpK3mfI2U95m yttMeZspry55SylvKeUtpbzi5BUnbynl7aO89uS1J28f5VUor0J5+yivQnkV yrdkqUglKlOgKtWoTg0aSiPpehpDY+lGupmm0q00i26j+XQ7LaLFdCcto7tp Fd1L99FD9BhtpKfpOdpCL9JLtJ1epTdoN71PH9Nn9AXtpwP0Ff1AzQ4WdLCg fgX1K/jmVvClraB5Bc0r+NJW0LyC0hVsnIIvbQXNKyhdwZe2gi9tBX0r6FtB 1QqqVmjpSb2oN/WhfnQxDaCBNIiupiGUoVZqpw7qpIRS6qZhNIpG0zgaT5No Mk2j6TSbFtBCWkJLaQWtpNW0htbSw7SOnqRNtJmep620jXbQa7SL3qL3aC99 TvvoIH1Nza90bYrTpjhtitNmk7T5e0+b9rRpT5udcugd09ThdAQdTcfQsXQc nUgn0Sl0Kp1Gp9MZdCb1oLPobDqfLqC+dBH1p0vpMrqcrqJr6DrKUo5KVKZA VapRnRo0lIbTSLqebqQJNJGm0FS6lWbQLLqN5tPtdCcto7voblpF99H99CA9 Qo/TU/QsPUdb6EV6iV6mV2knvUnv0if0GX1BB+gr+oaa3+aK2lO0wYraU7S8 iv7eU7TBijZY0d4qqlBRhYraU7S3iipUVKGiChVVqGh5FS2vouVVtLKKKlS0 rYotPakX9aELqR9dQgNoIF1BV9NgGkIZaqU8dVAnVSihlLpoGI2gUTSaxtNN dAtNp5k0h+bRAlpIS2gpLacVdA+toQfoUVpPT9ImeoY20wu0jV6h1+h12kVv 0R76lD6nffQlfU3Nr2rtutWuW+1q1W4ptfubUruvau261a5bh14vTR1OR9Ix dCwdTyfQSXQynUqn0el0BvWgs+gcuoD6Un+6lC6nK+kaupaylKMClahMgapU pwYNp5E0hibQRJpCU2kGzaK5NJ8W0WJaRnfRvXQ/PUiP0QbaSE/Ts7SFXqSX aTvtpDdoN71Dn9BntJ++oe+ouWJKSlJSkpI9U1KSkj1T8neckmVTsmxKlk1J XUrqUvI1r6QuJXUpqUvJ17ySkpSUpGTjlGycko1TsnFK6lJSl1JLTzqX+tCF 1I8upktoAF1Bg2gwDaFWylMbtVMnVSihlLqom4bRCBpFN9B4uokm0WSaRtNp Js2mOTSP7qCltJxW0GpaQw/QWlpHT9Ameoaep630Cu2g12kXvU176VP6nPbR l/Q1fUvfU/MrXYfidFhKHYrTYSl1aE+H9nRYTx2+1x16lTR1BB1FR9MxdCwd R8fTCXQSnUyn0M/pTOpBZ9HZdB6dTxdQX7qI+tNldCVdRdfQtXQd5ahARSpT oCrVqEFDaTiNpOtpLN1IE+lmupVm0W00l+bTIlpMd9IyuovupvvoQXqIHqcN tJGeoqfpWXqOXqLt9CrtpDfoTdpN79DH9Al9QQfoK/qOfqDm37LKmldWurL1 VFa6svVUtp7KSldWurLNVPblrqxvZVUr20xlm6lsM5X1raxvZX0r61tZ38r6 Vm7pSb2oN/WhfnQxDaRBdDUNoQzlqY3aqYM6qUIJpdRNw2gUjaZxNIkm0zSa TrNpDi2ghbSEltIKWkmraQ2tpYdpPT1Jm2gzbaMd9BrtordoD31Ee+lz2kcH 6Xtq/v2o0xbq1KNOW6hTjzr1qFOPOvWo0xbqVKZD/++bOpKOoqPpODqeTqST 6RQ6lU6j0+kMOpN60Nl0Dp1H51Nfuoj60+V0FV1D11GWClSkEpWpSjWqU4OG 0nC6nsbQWLqRJtLNNIWm0gyaRbfRXLqdFtOddDetonvpfnqIHqHHaQNtpKfo WXqOXqZXaSe9SbvpXfqQPqbPaD8doK/oB2oWJ9hWQWeCbRUUJyhOsLKClRV8 uQsqFKysYFsFFQoqFFQoqFCwsoIeBT0KllfQo+AbXvANL+hRsLKCCgUrK+hR 0KNgbwVlCsoU7K1gZQWNChoV7K2gUcHeCmoV1CqoVVCroFFBo4JGBXsrqFVQ q2BvBbUK9lawt4K9FXQr+MIXbKugW0G3gm0VFCwoWLC3gpYFLQsKFnzhC1ZW 0K3gC1+wt4K9FbQsaFmwvILlFeytoGpB1YLlFfQt6FuwwYK/UQX/ZiJoXrDL gg0WbLCgdEHpgg1WscEqSlexwSpKV1G6iq9+FaWr+NZX0beKvlXsrYq9VdG3 ipVVsbIqqlZRtYqqVVStYltVFKyiYBWLqqJgFd2q+NZXsaMqulWxniq6VbGe KrpV0a2KblVaAtWoTg0aTiNpDI2lCTSFptIMmkVzaT4tosW0jFbRvfQgPUKP 0QbaSE/TFtpOO+kN2k3v0Pv0IX1C++kAfUPf0Y/U/MJXtXGqilNVnKriVBWn au1UtaeqPVVf86p2T1V7qtpT9V2vqjNVnanqTFVnqjpT1ZmqBVS1gKraU9We aktP6kXnUm/qQxfSJTSArqBBNJiGUCvlqY3aqYM6KaUu6qYRNIpG0w00jsbT TTSZbqFpNJ1m0myaRwtoId1By2kl3UOraS09SutoPT1BT9ImeoZeoFdoB71O u+ht2kPv0Qe0l/bRQfqWmk1JrKdEUxJNSVp+9kuHtbT8crzD4v1KvF+N92vx fj3eb8T7zXi/Fe9n8X473u/E+914vxfv9+P9Qbw/jPdH8f443p/E+9N4fxbv z+P9Rby/jHd4vL+Kd0S8v453ZLy/iXdUvL+Nd3S8v4t3TLy/j3dsvH+Id1y8 f4x3fLx/indCvH+Od2K8f4l3Urx/jXdyvH+Ld0q8f493arz/iHdavP+M9/N4 /xXv9Hj/He+MeP8T78x4/xuvR7z/i3dWvJ7xzo7XK9458c6Nd1683vHOj9cn 3gXxLozXN16/eBfFuzhe/3iXxLs03oB4l8UbGO/yeFfEuzLeoHhXxbs63jXx Bse7Nt6QeNfFy8TLxsvF+/Gnn37Kx/8W4rXFK8Zrj1eK1xGvHK8zXohXiVeN l8SrxUvj1eN1xWvE6443NN6weMPjjTjMF6fEmyKxnhOvi8TrIvE1N/G6SGzm xOsi8bpIvC4Sr4vEjk7s6MSOTrwzEl9zEy+OxHpObObEiyPx4khs5sTbI/H2 SLw4Et9wE+s5sZ4Tb4/Eek68QhKvkMSOTrxHEu+RxHsk8R5JvEcS75HEeySx oxPvkcSOTrxHEus5sZ4T6znxMkl8zU28URKbOfFGSbxREus58VpJvFYS33AT OzrxWkl8zU2s58S7JfFuSezoxAsmsZ4T6znx98jEek6s58RbJvGWSezoxFsm saMTr5rEqyaxqBPfcBPrOfGqSbxqEq+axKumZkfXvGVq3jI1L5iaF0zNZq55 wdS8YGqWcs1SrlnKNe+WmndLzffamjdKzRul5ttsraUn9aLe1If60QAaSFfT EMpQntqogzqpQgml1EXdNIxG0WgaR+NpEk2j6TSHFtBCWkIraDWtoYdpHa2n J2kTbaattI1eo130Fu2h9+gj+py+pu+puT9TL4TUCyH1Qkh9aU3tz1QrUq1I tSL1pTW1RFPVSFUjVY1UNVLfXFOtSLUitUlT1UhVI1WNVDVS1Uh9aU3t1FQ/ Uv1I9SPVj1Q/Ut9cU9VIVSO1WFOtSLUi1YpUK1KtSLUi1YpUK9KWKtWoQUNp OI2k62kMjaUbaQJNpJtpKt1KM+g2mkvz6XZaRHfSXXQ33Uf300P0CD1Gj9MG 2khP03P0Er1KO+lN2k3v0Lv0Pn1IH9Nn9BV9Q80vsnVbuG4L11WjbgHX9aOu H3ULuO4vf3VfX+uaUreF67Zw3Rauq0tdXer2cV1d6lZx3SquW8V1xakrTt0q rvsOW2/pSedSb+pDF9LFNIAG0hU0mIZQhlopT23UTp1UoYS6aRiNoNF0A42n m2gy3ULTaDrNpNk0jxbQQrqDltJyWklr6AFaS4/SOlpPT9Az9DxtpW20g16n t+ht2kPv0Qe0lz6lg/QtfU/N0nX5vtqldF1K16VvXfrWpWpdFtCht0hTh9NR dCwdTyfRyXQqnUan0xnUg86ic+g8uoD6Un+6lC6nK+laylKOilSiQFWq0VAa TiNpDI2lCTSRptBUmkGzaC7Np0W0mJbRKrqfHqRH6DHaQBvpWdpCL9LLtJ3e oN30Dr1PH9IndIC+ox+puT8a/qLXsEQalkhDUxqa0tCUhpI0bJKGpjQ0paEk DSVpKElDSRpK0lCShpI0lKRhsTQ0paEpDf1o+KrasGIamtJo6Um96FzqTRdS P7qErqBBNJiGUIZaKU9t1E4d1EkVSiilYTSCRtFouoHG0Xi6iSbRZLqFZtJs mkPzaAHdQUtoKS2ne+gBWksP06O0jtbTE/QkbaYX6BXaRW/R27SH3qMP6CPa S5/Sl/QtfU/Nr6/d/hVLt5XVbVF1K0634nRbVN2K021RHXp3NHU4HUlH0zF0 HJ1AJ9L/s3WnMVLXe77HOzKZ3NzMg8nJzcnkehyv4xjnjHE8juPlchwv43BF OCoqgiCCoiAcEBRFkK1ptj9F0/S/q6h/V290ddtN0dU0u+w7su8IguwIgiCb IAoux+SKSb0eTConIa/84qOD8V2fb3XSj9Cj1JraUFt6gtrRU9SRnqUX6EXq St2oF71Gr9Ob1J8G0Fv0Dr1LQ2kYfUAjqZCKaDxNpBgVUymVUYKSVEFVVEO1 9CFlqIlaaCEtoWW0glbROtpIm2kn7aa9dIAO0gk6RafpCzpPX9EVuk636Cf6 mXKlK3S7LrSeCpWuUOkK9a3QZirUt0J9K7SUCl3fCl3fClWtUNUKXd8KFaxQ wQptoULdKtStwoL21IE6UWfqQt3pVepNfakfDaRBNITeo+E0gkbRGBpHE2gS TaGpFFKcIkpRNc2gBppFWZpDi2gxLaeVtJbW0ybaQrtoH+2nQ3ScTtIZOksX 6CJdpWt0k3KLZazFMtZOGasfY/VjrGqMtVjG6sdY/bj9eSKnu+heuo/upwfo QXqIHqFHqTU9Rm3pCWpHT9JT1JGeoxepK71Mr9Hr1IfepP40gN6iwfQOvUtD 6QMaSaNpPE2kgGJUTCVUSmWUoHKqohqqpUbKUBM101z6iJbRClpFa2gDbaat tJN20yf0GR2jE3SKTtMXdI7O01d0ib6m7+gn+plyTSnSlCI7qshFrkhdiqyn Ik0psp6K1KVIXYqspyKdKdKZIjuqyI4qspmKbKYim6lIcYoUp8hmKnJ9K7Ke ilSoSIWKrKeigvb0J3qeOlMXeol60KvUm96gvvRnGkRv0xB6j96nETSKxtA4 mkCTaDJNpWkUUpymU0QpqqRqmkFpmklZmk3zaBEtpqW0nFbSavqYttA22kF7 aB/tp8N0lI7T53SWvqSLdJmu0jX6ln6k25vp9m9vG/7rb2+b1Kpfqzta9Ww1 qtXROyp/+XPcL38O+eVl1K+/ue32b2v7m1/+ifDX3/E2pNWiX//5s7/+5raz dwz59be3jcvzW7bG53mbkOdtYp63SXnegjxvk/O8xfK8TcnzVpznbWqet5I8 b9PyvJXmeQvzvJXleYvneUvkeZue5y2Z5y3K81ae5y2V560iz1tlnreqPG/V ed5q8rzNyPNWm+ctneet7r+83f43epztP861eZxPceMs/nE+sY3zie32f8Ny upPupnvoPrqfHqAH6WF6hFpTG3qc2lI7epKepheoK3WjV6gXvU59qD8NoMH0 Dg2lYTSSRlMhFdFECihGJVRKCUpSBVVRLdVRI2WomVpoPi2kJbSMVtEa2khb aTvtpQN0hI7RKTpN5+g8XaIrdJ1u0A/0M+U+Yd3+L3BOd9Bf03+jv6Xf0P+g 39L/pN/R/6J/pH+if6Z/oT/Qv9L/oT/Sv9P/pf+k/0ft6Rl6njrTS9SdelJv eoP6Uj8aSIPobRpC79NwGkGjaAyNpUk0mabQVJpGIU2niFJUSWmqpwaaRbNp Di2gxbSUVtJqWkubaBvtoD20jz6lw3SUTtIZOktf0gW6TFfpG/qecpeBCS4D E1yWJ+jMBPeACeoyQV0muAfc/oSc0510F91N99C99Ht6iB6mR6gNPUaPU1t6 gtrRk/QUPUvP0YvUjV6mV6gXvUavUx96k96iwfQOvUvD6AMaTYVURBMpoBgV UwmVUhklKEnlVEFVVEcfUhO10FyaTwvpI1pCy2gFraF1tJm20nbaSbvpEzpI n9EROkYn6As6T1/RJbpCX9N1ukG3KHdLmKhqEwv+iv6a/pZ+Q7+lv6Pf0d/T P9A/0T/Tv9Af6N/oj/Tv9B/0n9SeOlAn6kLdqQe9Sr2pL/WjgTSIhtB7NJxG 0BgaS+NoAk2mKTSVQopTRCmqpnpqoCzNoXm0iBbTclpL62kL7aBdtJ8O0WE6 TmfoLF2gi3SVrtG3dJNyu3ySFTNJcSYpziQrZpLiTFKcSTpz+7NDTnfR3XQP 3Uv30wP0ID1ED9Oj1IYeo8epLT1BT1FHepaeo670Mr1Cveg16kNvUn8aQG/R YHqXhtIw+oBG0mgqpCIaTzEqphIqowQlqZwqqIbq6ENqpGaaS/NpIX1Ey2gF raMNtJm20k7aTQfoIH1Gx+gEnaZz9BVdoq/pOn1HP1BuCwUWUKAagWoEbsyB fgQWUKAfgX4EtlCgJIGSBFZRYBUFrs2Ba3OgKYEtFLgxB1ZRoC6BugRWUaAz gc4E6hK4MQf2UWAfBVZRoDiB4gT2UaA9gfYEllKgPYFrc6BCgX0UaE9gHwXa E1hFgfYE2hNoT6A9gfYE2hNYRYEKBSoU2EeBHgV6FNhHgctyYCkFyhS4MQf2 UaBRgUYFllKgVoFaBTZTYDMFahW4MQc2U2AzBQoWKFhgPQU2U6BlgZYF1lNg PQWuzYHNFKhaoGqB9RToW6BvgR0VKF2gdIFtFfipncmaN1nzJttWk33rOln9 JttWt/8tyOlOupvuofvoAXqQHqHW1IYep7bUjjrS0/QCdaNXqBe9Tv1pAL1D Q2kYjaTRVETjaSIFFKNiKqFSSlCSKqiKaqmRMtRC82khLaFVtIE20nbaTXvp AB2kI3SKztMlukLX6Qbdotx9LWZ/xDQlpikxV7WYn4qJqUtMU2KaElOSmJLE lCSmJDHrJKYpMU2J2SkxdYmpS8xOialLTF1imhLTlJimxFzaYkoSU5KY+1pM SWJKElOSmJLElCSmJDEliSlJTEliShKzYmJKElOSmD0T05SYpsQsm5i6xNQl pi6xgkk0mabSNAopTtMpokqqphmUppk0i2bTHJpHC2gRLaaltJo+pk20jXbQ HtpH++lTOkSH6SidpM/pS7pAl+kqfUPf0k36nnJXuilKMsVmmuI7oCl+kmeK pkyxnqZYT7c/T+R0J91F99C9dD/9nh6gh+hRak1t6DF6nNrSE/QkdaSn6Vl6 kbrSy/QK9aLXqA+9Sf1pAL1F79Iw+oBGUyGNp4kUUAmVUhklKEnlVEU1VEcZ aqJmmkvzaSF9RMtoDW2gjbSZttJO2kuf0AH6jI7RCTpN5+grukRX6Gu6Tjfo O/qBcje3Ys0rtpmK/YROsdIVu7kVW0rFqlasasVaVqxlxW5uxVpW7NJWrGDF ClZsFRUrWLFuFdtCxQXtqQM9Q52oC3WnHvQq9aa+1I8G0iAaQu/RcBpBY2gs TaBJNJmm0jQKKU4RpaiaZlA9zaIszaF5tIgW03JaS+tpE22hXbSP9tMhOkzH 6QydpYt0la7Rt3STcne4qUoy1RKZqiRTlWSqO9xU/bj9t5HTnXQX3U330L10 H91Pv6eH6RF6lFpTG3qMnqB29BQ9S8/Ri9SVutHL9Ar1otfodepDb9JbNJje oaE0jD6gkTSaCqmIxtNECihGxVRKZZSgcqqgKqqhWvqQmqiZWmguzaeF9BEt oRW0jjbTVtpNe+kTOkAH6QgdoxP0BX1Fl+hruk436Du6RT9QrjglilNiZZXY ViXaU6I9JS53JbZViW1Voj0lFlWJ9pTYUSUqVKJCJW5zJSpUYj2VqFCJCpVo T4n1VFLQnjpQJ3qeOtNL1J16Um96g/pSPxpEb9P7NIJG0VgaRxNoEk2mKTSN QorTdEpRJc2gNDXQLMrSbJpDC2gxLaWVtJbW0ybaQttoD+2j/fQpHaWTdIbO 0gW6TFfpGn1DN+l7yi2gabo1zS1tmoJNU7BpFtA0V7Vprmq3//5yupPupnvo PrqfHqCH6RFqTW3ocWpHT1JHeo5eoK7UjV6hXvQ69aH+NJjeoaE0jEbSaCqi 8RRQjIqphEqpjBKUpAqqolqqo0bKUDO10HxaSEtoGa2iNbSBNtJW2k67aS8d oIN0hI7RKTpN5+g8XaHrdINu0Q/0M+W+FypVl1I3vFIbp1RxShWn1DWv1DWv 1NoptXZKFadUcUrtnlLtKdWeUu0pdcMrtYBKVahUhUptoVI9KtWjUte8UhUq LWhPf6LnqTN1oZeoO/WgV6k3vUF96c80iN6mIfQeDacRNIrG0FgaRxNoMk2h qTSN4jSdIkpRJVVTmuppJmVpNs2hebSIltJyWk0f0zbaQbtoD+2j/fQpHaLD dJw+py/pMl2la/QNfUs36Xv6kXLfBoW6FbrhhQoWWl6hgoUKFrrmhdZYaHmF uhXaW6GChQoW2luhb4hCN7xQ1ULLK1S10N4KXe5CVQtVLbS8Qpe7UN9CfQtt sFDpQssrtLJCfQv1LbSyQve60N4KlS50uQttq1DfQosqVLpQ6UKLKtS8UPNC zQs1L9S3UN9CiyrUt9COCvUttKNCpQuVLrStQs0LNS+0rUI7KlS60I4KNS/U vFDzQs0LlS50zQs1L7StQqULXfNCOypUulDpQqULlS60rULbKlS60KIKlS60 o0LNCzWvTOnKlK7Mjiqzo8pc88osqjJ9K9O3MlUrU7UyLSuzo8p8H1WmamVa VqZlZXZUmWtemUVVVtCeOtAz1Ik6UxfqTj3oVepNfakfDaQh9B4NpxE0hsbS BJpEU2gqTaPpFFGKqmkG1VMDzaIszaF5tJiW00paS+tpE+2gXbSP9tMhOkwn 6QydpQt0ka7SNfqWbtKPlFtKcZ2J60xcZ+I6E9eZuFtf3FKK20dx+yiuM3Gd ietMXF3illJcZ+I6E7eZ4joT15m4zRR314trStxmirvrxTUlrilxTYlbT3Hr KW49xXUmrjNxdYnbUXGdietMXGfiOhO3reK2Vdy2imtPXHvi2hNXnLjixBUn rjhxxYkXlFKSyqmCaqiWPqRGylATtdBcmk9LaAWtonW0mbbTTtpNe+kAHaTP 6AidoFP0BX1FV+g63aDv6Bb9RD9TrjMJ2yqhOAnFSdhWCdsqYVslVCihQgl7 K+Gul7CtEiqUUKGEbZVQoYRtldCjhB4lrKyEMiVsq4RFlVCmhDIl9ChhWyWU KaFMCXsroVEJjUrYWwm3voRGJWyrhDIlbKuEbZWwrRIalXD1S9hRCY1KaFTC jkqoVUKtEhZVQrcSupXQrURBSNMpohRV0gxKUz010EyaRVmaTfNoAS2l5bSS VtNaWk9baBvtoF20hz6lw3SUjtPndIbO0gW6SJfpG7pJ39OP9BfK7a3pLobT FXG6Dk53MZxuZU23sm7/neZ0N91D99H99AA9SA/TI9SG2lI76khP03P0AnWl bvQK9aI+1J8G0GAaSsNoJI2mIhpPAcWohEqpjBJUThVURbVUR42UoWaaTwtp Ga2iNbSBttJ22k176QAdpCN0jE7TOTpPl+g63aBb9AP9TLkKJX2TlNSjpPYk tSepPUntSWpPUnuSbn1JCyipQkkVSmpP0hZKqlBShZIqlFShpAolXfOS2pPU nqS7XlJxkoqTVJyk4iR1JqkzSasoaRUltSepPUmrKKk9Se1J2kdJFUqqUFKF kiqUtJmSNlNSmZLKlNSjpB4l9SipR0k9SqpQUoWSBXFKUSVVU5rqqYFm0izK 0mxaQItoKS2n1bSWPqYttI120R7aR/vpEB2l4/Q5naEv6SJdpmv0LX1PP9Jf KNeZSGcidYnUJbK3Insrsrcieyty14vc9SLtieytSHEieyvSnkh7InsrUqFI hSLXvMjeiuytyDUv0qNIjyLLK1KmSJkiGyxSpshdL9KoyPKK7K1ImSIrK7Ky Iisr0qjIXS9Sq8i2itQqUqvIyop0K9KtyMqKdCvSrUi3IrWK1CqysiLdinQr srciBYsULLK3InsrUrDIXS+ytyJ7K1K1SNUiyyty14tssEjpIqWLrLFI6SK3 vsjyipQuUrrIBotssMgGi9QvUr/ILovsssj9L7LGIh2MdDCyyyIdLNfBchus XP3K3f/K1a9c/crd/8rd/8rVr9zeKle6cqUr17dyfSu3rcrd+srtqPKC9tSB nqFO1Jm6Uw/qTX2pHw2kQTSEhtMIGksTaBJNoakUUpymUyVV0wyqpwaaRVma Q4toMa2ktbSeNtEW2kH7aD8dpuN0ks7SBbpKN+lHyrUipRApF7mULqR0IWWJ pCyRlEKkFCLlNpfSipRNklKIlEKkFCKlECmFSClEykUupRAphUjZKSkXuZQu pHQhpQspXUjpQkoXUrqQ0oWUO1zKdknZLimFSClEyopJaUVKK1JakdKKlFak tCKlFSmtSGlFSitSCpGycVJakdKKlFakCpJURTVUS3X0ITVShpqomebSR7SE VtAqWkcbaCNtpu20k/bSJ3SAPqMjdIJO0Rd0js7TV3SFvqbv6Bb9QD9RbjNV KESFpVThclehFRVaUWEzVdhHFfZRhStdhWpUWEUVWlGhFRVWUYVqVKhGhVVU 4buiCvuowj6qsIoqCtpTB/oTPUOd6HnqQi9Rd+pBPekN+jMNorfpPXqfhtMI GkVjaBxNoEk0mabSNIrTdIqommZQmuqpgWZSlmbTPFpEi2kpLafVtJ4+pk20 hbbRLtpD++lTOkRH6TidpM/pDH1JF+kyXaNv6Xv6C+VWUaXmVbq+VVpFlZpX qXmVmlepebc/ReR0J91H99MD9CA9TI9Qa2pDbelJ6khP03P0AnWlbvQK9aLX qQ/1pwE0mN6hoTSMRtJoKqLxFFCMSqiUEpSkcqqiGqqlOmqkDDVTC82nhbSE ltEa2kAbaSvtpgN0kI7RKTpN5+g8XaLrdINu0Q/0M+U2SZXOVOlMldtclc5U 6UyVdVJlnVRZJ1XaU6U9VdZJlfZUaU+V9lRpT5X2VClOlcVS5dugKne4KsWp KmhPHehP1Imep87UhV6invQq9aa+1I8G0iB6m4bQe/Q+jaIxNJbG0QSaTFNo Kk2jkKZTRCmqpBmUpnpqoJk0i2bTHFpAS2k5raX19DFtoi20jXbRHvqUDtFR Ok6f0xk6SxfoIl2mb+gm/Ui5zlTrTLXOVFtZ1S5y1fZWteJUu8NV21a3Pyfk dCfdS/fR7+kBepAeokfoUWpNbegJakdPUUd6mp6lF+hF6krdqBe9Rm/SW/QO vUtDaRiNpNFUSEU0kWJUTKVURkkqpwqqoVqqow8pQ03UQnNpPi2kJbSMVtA6 2kAbaTNtp520lw7QQfqMjtAJOkWn6Qv6iq7QdbpB39FP9DPlClZjM9UoWI37 Wo3NVKNbNbpVo1s1ulVjKdX4JqlGwWp0q0a3atSqxlKqUasaS6nGUqpxaasp aE8d6BnqTF2oO71Kvakv9aOBNIiG0Hs0nEbQGBpLk2gKTaWQ4hRRiiqpmmZQ muqpgWZRlubQPFpEi2k5raS1tJ420RbaQftoPx2iw3SSztBZukAX6Spdo28p t2Jm6McM/Zhhu8zQjxn6McN2mWG7zNCU2//P53QX3UP30v30e3qAHqKH6VFq TY/RE9SOnqSnqCM9Tc/SC/QidaWXqRe9Rq9TH+pPA2gwvUPv0lD6gEZTIRVR QDEqphIqowSVUwVVUQ3V0YfUSE3UTHNpPn1EK2gVraF1tIE20mbaSttpJ31C n9EROkGn6DR9QefoPF2ir+kGfUc/Ua44tTpTqzO1OlNrM9VaSrU6U+s2V6s4 tfZRre9xav0UQ6321NpMtdpTaynVKk6tpVSrPbXaU2sz1fq+p9Z6qrWeagva 05+oEz1PnakLvUQ9qCf1pjfoz/Q2DaH36H0aTiNoFI2hsTSOJtNUmkZxmk4R paiSqilN9dRAMylLs2kOzaMFtIgW00paTWvpY9pC22gX7aP9dIgO01E6Tp/T WfqSLtNVukbf0E36kXKbKW0zpW2mtNKllS7tSpfWt7S+pe2jtJ9TSKta2lJK q1raPkorWNo+SitY2ipK++4p7UqX1rK0lqUVLK1gafe6tIKldSttFaXd69Jq lVartFql1SqtVmm1SmtU2j5K20dptUprVNqVLq1WabVKa1TaPkprVNo+SmtU WqPSGpUuqKUPqZEy1EwtNJ8W0hJaRWtoA22krbSddtNeOkAH6Qgdo1N0ms7R ebpC1+kW/UC5tVPnXlenPXXaU2ft1Lnc1alQnQrVqVCdtVOnQnUqVGf31KlQ nbVTpzh1ilOnM3XWTp3vhersnjrFqStoTx3oGepEz9NL1J16UE/qTW9QX+pH A2kQvU1D6H0aTiNoFI2jCTSJptA0Cmk6RZSiSqqmGdRAM2kWzaY5tIAW0VJa SatpLa2nTbSFttEO2kOf0lE6TifpDJ2lL+kCXaardI2+odvfBt3+vVt/+PX3 bv22VYdWYaujd/RsVdlq0R2VrXq2unrHpFb/9sv/wl9/I1e/Vg2tzv7yMqlV +pc/h/z60rPV93cM+cW//fX3btXn+f1IH+Z5a8jz1pjnbWaet0yet1l53pry vGXzvDXneZud560lz9ucPG9z87zNy/M2P8/bgjxvC/O8Lcrz9lGet8V53pbk eVua521Znrfled5W5HlbmedtVZ631Xne1uR5W5vnbd1/ebv9b3S9T0n1PiXV uwzU+5RU77Jc7x5Q7/NSvc9L9e4B9a4A9T451fvkVO8eUO8zVL3tX++TU71P TvUFj1Ibeowep7b0BLWjp+hZeo5eoG70MvWi16gPvUlv0WB6l4bSMPqARtJo Gk8TqZhKqYwSlKRyqqAqqqFaaqQMNVEztdBcmk8L6SNaRitoFa2hdbSZttNO 2k176QAdpCN0jE7QF3SevqJL9DXdoFuU+9R1+7/jOf0V/Xf6G/pb+g39lv6O fkd/T/9A/0h/oH+j/01/pH+n/6D/pPbUgZ6hTtSZulMPepX6Uj8aSIPoPRpO I2gMTaBJNJVCilNEKaqmGZSmmTSLsjSH5tEiWkzLaSWtpfW0ibbQDtpF+2g/ HaLDdJxO0hk6SxfoIl2la/Qt3aTc8m7Qjwb9aNCPBv1osLcb3JgbNKVBP25/ Fs3pTrqL7qZ76F56iB6mR6k1PUaPU1t6gp6kjvQ0PUvP0YvUjV6mV6gXvUZ9 6E3qTwPoLRpM79JQGkYf0EgqpPE0kQIqoTJKUJLKqYKqqIZqqY4y1ETNNJfm 00e0hJbRClpD62gDbaSttJN20yf0GR2jE3SKTtM5+oou0RW6Tt/RT5Rb8o3q 0mjTN9r0jTZ9o840uiw3Kk6jujS6JzfqTKMl36gzjTrTaMk3WvKNOtNoyTcq TqPiNNr0jdrTqD2N1n2jK3Kj9jQWPE9d6CXqQT2pN71B/ejPNJDepiH0Pg2n ETSKxtI4mkSTaRqFFKfpFFGKKmkGpameZlGWZtMcmkcLaDEtpeW0klbTevqY ttEO2kV7aB/tp0N0mI7SSfqcvqQLdJEu0zf0Ld2kv1DunjzTUprpijxTy2Zq 2e1PDDndSXfTPXQfPUiPUGtqQ49TW2pHHelpeoG60ivUi16n/jSA3qGhNIxG 0mgqooBiVEoJSlIFVVEt1dGHlKEmaqYWmk8LaQkto1W0gTbSdtpNe+kAHaQj dIpO03m6RFfoBt2inylXg4waZNQgowYZNcioQUYNMmqQUYOMGmTUIGN1ZHQh owsZF96Mbxcz9kdGDTJqkFGDjBpk1CCjBhk1yFgiGV3I6ELGEsnoQkYXMrqQ 0YWMdZJRiIxCZBQioxAZhcgoREYhMrZLRisyWpFRiIwVk9GKjFZkFCLj1pvR ioxWZLQioxUZrchoRUYrMtZORisyWpEpaKCZlKXZNIcW0CJaTEtpOa2k1bSe PqZNtI120B7aR5/SYTpKJ+lzOkNf0gW6SJfpKn1D39L39BfK9WOWfTTLPppl H82yj2ZpyixNmWUfzbKPbnc9pzvpLrqb7qX76QF6lFpTG3qMHqe29AQ9SU9R R3qWXqRu9DL1oteoD71J/WkAvUWD6V0aSh/QaCqk8RSjYiqhMkpQksqpimqo jj6kRmqmFppLC+kjWkLLaAWtoXW0kTbTVtpJu2kvfUIH6CB9RsfoBJ2mL+gc fUVX6Gu6Tt/RD/QT/Uy5NjZpY5M7XJM7XJMiNulgkztckztckzY2KWKTIjZZ RU1+yqbJT3g2WUVN6tekfk2a16R5TQXtqQN1os7UhbrTq9Sb+lI/GkiDaAi9 RyNoDI2lCTSFplJIcYooRdU0g+qpgWZSlmbTHJpHi2gxLaeVtJY20RbaRfto Px2i43SGztIFukhX6RrdpB8p15SsJZLVlKymZDUlqylZ/cj6zibrO5uspmSV JKskWSXJWixZP7mZ1Y+sfmT1I6sfWf3I6kdWP7JWTFZJskqSdVXL2jNZeyar JFklySpJVkmyNk5WU7KaktWPrH5k7Z6skmSVJGv3ZJUkqyRZCyjrlpZVkqyS ZG2hrKZkNSWrKVlNydpHWU3J2kdZTclqSrYgQ03UQnNpPi2kj2gJLaMVtIrW 0DraTFtpJ+2mT+gAHaTP6BidoC/oHJ2nS/Q1Xadb9APlmtJsUTVbVM0WVbOS NCtJs340+5mZZiVptq2alaRZSZptq2aLqllTmjWl2bZqtq2a1aVZXZptq2Z1 abaomgvaUwd6nl6iHtSTetMb1Jf60UAaRG/TEHqfRtFYGkeTaApNpWkU0nRK USXNoDTVUwPNpFk0h+bRAlpEi2kpraTVtJ420RbaRjtoD+2j/fQpHaajdJLO 0Fn6ki7TVbpG39D39CPlujVbt2br1my3tNm6NdsCmq1Ws9XqdutzupPupnvo fnqAHqHW1IYep7bUjp6kjvQcvUBdqRu9Qq9TH+pPA2gwvUPDaCSNpiIaTwHF qIRKKUFJqqAqqqU6aqQMNdFcmk8LaQkto1W0hjbQRtpK22kvHaCDdIRO0Wk6 R+fpCl2nG3SLfqDc/mixOlqsjhb9aNGPFne4FtVoUY0W1WixP1r0o0UrWtzh WlSjRTVaXORafFPTYpO06EeLfrToR4t+tNgpLUrSoiQtBe3pT9SJOlMX6k49 qCf1pjeoL/2ZBtHbNISG0wgaQ+NoAk2mqTSNQopTRJVUTWmqp5k0i7I0jxbQ IlpMS2k5raTVtJY+pm20g/bQPtpPn9IhOkxH6fP/z9adBslR33cc3kJ5mUry InkTkjgKIZRDiIuiCKFSmCIEDJYAIyMLg7kM5sbmMBgEBiOEuQ8B5hCXkJCQ YGdb09O9s9O93bO67xtd6EL3hYSEhC6skP+mMs+L1Lz42U81Lr+gKD76/qWq pS20jXbQF7SXvqKDdIiO0DFqva91WkCdmtKpKZ3e0jptoU516VSXTluov+st DaST6GT6Lp1Gp9OZdBb9B51L59H5dAH9gAbRJfRj+ildQ9fRDXQj/YJuodvo DrqLfkX30G/ot/Q4PUFP0lP0DD1HL9BL9Ad6i96md+l9+oDG0Xj6iCZRhSKq Uo3q1KCCmjSFptEsmkPzaAEtoeW0ktbQBtpIm2k77aTd9CUdoK/pMH1DrVe1 ir5V9K2ibxWrqOJVraJvFVWrqFpFwSre0irWTsWfNaj4020VC6iiZRUFqyhY RbcqulXpuJAuosE0hK6gK+kqupaup5voZrqd7qS76V56gB6kR2kEjaSn6Vl6 kV6m12k0vUNjaCxNoIn0MXVSF02mmBLqoYxK6qPpNJPm0nxaTEtpBa2itbSe NtEO2kX76CAdotae6bJnuuyZLhXqUqEu73BdKtSlQl3a06U9/X9HWzqJTqZT 6Xt0Bp1JZ9M5dC6dR+fTD+hiGkSX0OU0lIbR1XQNXUe/oFvoNrqD7qH76H56 iB6jJ+hJeoqeoRfoJRpFb9Db9C59QOPoI5pEn1CFqlSjlOrUoJyaNIVm0Dxa QItoGS2nlbSa1tFG2kw7aTftpwP0NR2m49TqR+RVLdKPyCqKvKVF9lGkJJGS RJZSpCmRpkSWUqQukbpEllJkH0U6E+lMZDNFihPZTJF9FOlMpDORfRTpTGQf RfZR5M0t8uYW2UKRzkQ6E+lMpDORVRQpTqQ4kc5EXtoiL22RLRTpTKQzkVUU KU6kOJF9FClO5M0tsooi7Ym0J7KPIhWKVCiylCIVilQoUqFIeyLtibQnspQi 7Ynso0iFIhWKLKVIjyI9ivQo0qPIeoospUiFIvso0qNIjyKbKbKZImWKlCmy mSJLKdKoSKMiSymyjyar1WS1mmwfTfbmNlmjJttHkzWq/+9ySyfSQDqZTqHT 6HQ6g86ic+hcOp8uoItpEF1GQ2kYXU3X0A10I91Ct9FddB/dTw/T4/QkPUXP 0Sh6ld6id+l9GkfjaRJ9QhWKqEYp1SmngqbQNJpFc2gBLaJltJxW0xraQFtp O+2mPbSfDtBhOkrHqdWZqp1SVZyq4lTtlKriVBWnqjNVnalqStXv3lS9w1U1 per1raouVXWpqktVXapWTNV2qapLVV2qmlLtuJAuoh/SYLqUfkRX0JV0Ff2M rqWf0810K91Ov6R76df0AD1Cv6MRNJJ+T0/Ts/Q8vUKv0Zs0mt6jMfQhTaCJ 9DF1Uhcl1E091EslTaXpNJvm00JaTEtpBX1Ga2k9fU7b6AvaS/voKzpIR+gY /ZFanYl1JraFYgso1plYZ2JbKFacWHFinYn9mYTY7/fEOhN7h4vto9g+irUn 1p7YUoq9yMUqFNtHsfbE9lGsPbFVFFtFsRe52ItcrEKxLRSrUKxCsX0U61Gs R7F9FHuHiy2lWJliL3KxF7nYUootpVitYrWKLaXYUorVKvYOF1tKsaUUK1is YLHNFCtYbDPFWhZrWaxlsZbFWhZrWaxlsc0Uq1qsarH1FOtbrG+xHRUrXax0 sW0VK13sbS62o2Kli5UutqhiiyrWvFjzYqWLvcjFmhdbVLHSxV7kYs2rKV3N O1xN32r6VrOjavpWs55qqlbzZxJqWlbzIlfTspqW1eyjmne4mpbVrKJax4V0 EQ2mS2kIXUlX0fV0E91Mt9OddDc9QA/SozSCRtLT9Cy9SK/R6/QOjaGxNIEm Uid10WSKqZt6KKOS+mg6zaS5tJiW0ipaS+tpE22hHbSX9tEhOkatfiSqkXg3 S6yTRD8S/Uj0I9GPxAtaohWJViQKkShEYp0kWpFoRaIViVYkXtUS1UjslEQr Eq1ILJZENRLVSGyXRD8S/UismERJEiVJlCRRkkRJEiVJVCOxZxL9SPQjUY3E +1qiH4l+JNZOoiSJkiRKkihJYgEl3twSJUmUJFGSREkS/UhsoURJEiVJlCRR kkRJEiVJOqpUpwbl1KQpNINm0RyaR4toCS2jlbSa1tA62kCbaSftoS9pPx2m o/QNtaqRqkZqH6Xe4VL9SK2iVD9S/Ui9uaX6kepHah+lSpIqSWofpZqSWkWp VZR6c0vVJbWFUiVJLaBUSVK7J7V7Ui9tqbqkdk9q96R2T6ozqc6k6pLaPand k6pL6qUttXtSuydVnNTaSXUmtXFS72up4qSKk1o7qbWTWjup9qTWTqpCqQql 1k6qQqkKpSqUak+qPam1k6pQqkKp3ZPqUapHqQWUWkCpBZQqU+p9LbWAUgso 1ajU7knVKlWr1KtaagulupXqVmoLpRZQqmCpgqUWULeWdXtp61a1blXr1rJu Leu2gPoL39KJ9B0aSKfQqXQanU5n0Fl0Np1PF9DFNIguo8tpKA2ja+gGupFu obvoV3QfPUQP02P0OD1JT9Fz9AKNolfpDXqL3qdxNJ4m0ScUUZVqVKcG5VTQ FJpGs2gOLaBltJxW0xraQBtpK+2mPbSfDtBhOkrHqfXmVleSupe2uk1SV5e6 utStk7rO1HWm7vWt7vWtril1v7dT9/pWV5e6utTVpW6x1C2Wus7UdaZusdQ7 LqSL6Ic0mC6lH9EQuoJ+Qj+ja+l6+jndRLfSnfRLupt+TcPpEXqUfkcjaCQ9 Tc/Ti/QKvUmjaQyNpQ9pAk2kj6mTumgyxZRQN2XUSyVNpek0k2bTXJpPC+lT WkGraC19TptoG+2iL+grOkiH6Agdo1Z7ehSnx+tbj/b02FE92tNjPfV4c+vv eksn0kA6iU6m79KpdBp9j86ks+hsOo9+QIPoErqcfkxDaRhdTdfRDfQLuo3u oF/RPXQ/PUQP02/pMXqCnqEX6CUaRa/SG/QWvU0f0DgaTx/RJ1ShKtUopZwK atIUmkYzaA7No0W0jJbTSlpHG2gjbabttJN20x46QF/TYfqGjlOrYA3dauhW Q60aatWwgBpe0Bq2UMMWamhUw58/aNhCDbVqaFRDoxoa1dCohgXU8PtCjY4L 6SIaTJfSELqCrqSr6Fq6nm6m2+luupceoAfpEXqURtBIepZepJfpNXqdRtM7 NIbG0gSaSJ3URTEl1E0Z9VJJfTSdZtJcmk+LaSmtoFW0njbRFtpBu2gvHaRD 1NoumWpkqpGpRmaxZPqR6UdmsWRe3zKvb5lWZFqRWSyZamRakWlFZrtktkum H5l+ZN7hMn9yILNiMismU5JMSTJ7JtOUTFMyTcm8vmWWTaYpmaZklk2mKZmm ZEqS2TiZN7dMSTIlyZQks3YyayezcTIlyZQk876WqUbmVS2zcTIlyZQkU5JM STK7J9OUTFMyCyjTlExTso46NaigJk2haTSDZtEcmkcLaAktp5W0mtbRBtpM W2k77aQv6QB9TYfpGzpOrc7kllKuOLni5JZSrj25fZRbRbn25NqTe33LtSfX ntxSylUot5Ry7cm9w+UqlNtHud/byf05hdyLXG4f5dqTW0W5CuUqlFtFuR7l epRbSrky5fZRbhXlVlGuR7ktlCtTrky5fZRrVK5RuX2Ue5vLbaFco3KNyq2i XK1ytco1Kvc2l6tVbh/lGpVbRblG5bZQrla5WuVqlXf0UEl9NJVm0myaTwtp MS2lT2kVfUZr6XPaQttoB+2iffQVHaRDdISOUWsV9XqR61W6Xn3r1bde73C9 tlB/4Vv6Dg2kk+kUOpVOpzPobDqHzqeLaRBdRpfTUBpGV9M1dCPdQrfRXXQf 3U8P0cP0GD1OT9ELNIpepTfoXXqfxtF4mkSfUERVSqlODSqoSVNoGs2iObSA FtEyWk1raCNtpe20m/bTATpMR+k4tapR+D2bQj8K1ShUo1CNwltaoRqFahRe 1QqvaoVWFFpRaEVhsRRaUWhFoRWFnVJoRaEVhfe1wmIpLJZCNQrVKFSj0IpC KwqtKLSi8G5W2C6F7VJ4NysUolCIQiEKhSh0odCFwoopvJYVClEoRKELhS4U 3s0KXSh0odCFwooprJhCIQqFKOyZQiEKhSh0odCFoiOjXuqjqTSdZtJsmksL aTEtpU/pM1pLm2gLbaMd9AXto6/oCB2j1top1aC0dko1KNWgtHZKb2SltVNa O6U3slIhSoUoLaBSK0qtKC2g0u4pVaNUjdLuKa2d0topvZuV3s1KG6fUj1I/ ShunVJJSSUprp9SUUlNK72alZVN6LSuVpFSS0sYpNaXUlNLaKTWl9G5Wejcr rZ3S2il1ptSZ0u4pvZuVFlCpPaX2lBZQae2UilPaOKX2lNpTWjulCpUqVKpQ 2ZFTk6bQNJpBc2geLaBFtISW02paQ+toM22l7bST9tCXtJ8O0GE6Sq3d01Sr po3TVKumRjW9qjW9qjXtmaa3tKZl07RsmmrV1KimRjW9qjXVqqlRTa9qTbVq qlXT+1qz40IaTJfSELqCrqSr6Fq6iW6mO+luupceoAfpERpBI+lZepleo9dp NL1DY2gsTaCJ1EldFFNCPZRRL5U0labTTJpL82kxLaUVtIrW0nraRFtoB+2i vbSPDtIhOkb9xen/aVHbbuv/aVH9Px2q/yc/vXfC2AHDBywOvuj/vpww4Pvh P/t/LtTwAb0nDB8wJHwZ/r9/dfiAm8P/sv+v9v8En742P9VnSptvU9t8m9bm 2/Q232a0+TazzbdZbb7NbvNtTptvc9t8m9fm2/w23xa0+bawzbdFbb4tbvNt SZtvS9t8W9bm26dtvi1v821Fm28r23xb1ebb6jbfPmvzbU2bb2vbfFvX5tv6 Nt82/L9v/f9E9/mVU58d3efXUH1+vdTndbjPr5z6/Mqp/1eWLf0tDaST6BT6 Lp1Kp9H36Ew6i86mc+hcOo8uoEF0CV1GP6ahNIx+SlfTdXQj3UJ30T10P/2G HqKH6bf0BD1Jz9Bz9BKNoj/QG/QWvU3v0wc0jsbTJKpQRDVKqUE5FTSNZtAs mkcLaBEtoWW0ktbRBtpIm2kr7aTdtIe+pK/pKH1Dx6m16fv/Pd7SCfQn9Kf0 Z/QX9Jf01/Q39Hf09/QP9I/0T/TP9C/0r/Rv9O/0ffpP+i/6IQ2mH9EQuoJ+ QlfSVfQzup5+TrfSL+luupd+TQ/QgzScHqWR9Ht6mp6nF+kVep3epNH0Dr1H Y+lD+pg6qYsmU0wJdVMPZdRLJU2l6TSTZtNcmk8LaSl9SitoFa2nz2kTbaNd 9AXtpX10kA7REfojtd6Jp+rbVH2bqmVTO/788QEdHSPCPRFuZLgnw/0+3FPh ng73TLhnwz0X7vlwL4R7MdxL4V4ONyrcK+FeDfdauD+Eez3cG+HeDPdWuNHh 3g73Trh3w70X7v1wY8J9EG5suHHhPgw3PtyEcB+FmxhuUriPw30SrjNcJVxX uCjc5HDVcHG4WrgkXBquO1w9XE+4RrgsXB6uN1wRrgzXDNcXbkq4qeGmhZse bka4meFmhZsdbk64ueHmhZsfbkG4heEWhVscbkm4peGWhfs03PJwK8KtDLcq 3Opwn4VbE25tuHXh1ofbEO7zcBvDbQq3OdyWcFvDbQu3PdyOcLvCHf/22293 h//+ItyecHvDfRluX7j94b4KdyDcwXBfhzsU7nC4I+GOhjsW7ptwf+z//wr3 3+G+DRf+Xdzhn4S/ohPpOzSQTqZT6TQ6i86mc+hcOp8upkF0OQ2lYXQ1XUM3 0P+wdzdwVVTpA8cndYt1zVwzIa4v5BqZkRmJkhm6RmRkSmZkRmZoZq6Za+aa uWZm5rpmZv7NXNfMyjVzzVwzM2NNCV/whVBEFMEI5Ip6xTdQkuV/5s6ZH3Mu cwFTy5fb/Rz8znPOnBlomOeeM8PcZ9Hz6AX0InoJvYxeQa+jN9Cb6B30LnoP /RN9iD5Gn6LP0OfoC/Ql+hp9g/6LvkXfoXVoA9qMtqJtKA1loGz0A8pHB9Ah dAQdQ8WoFJnvENZy/K3lHcJa3iGs5X3BWt4XrGWGfy3vC9byvmAt7wvW8r5g Le8G1vJuYC3vBtbybmAt7wbW8m5gLe8G1jKPspZ5lLXMo6zlHcJa3iGsZf5/ Le8V1vIOYS3vENbyDmEt7xDW8g5hLe8L1jLLslbri+LRIDQEDUXD0HA0Eo1C o9FYNAFNRJPRFDQdzUAz0Sw0G81B89BHaD5aiBahJWgpWo5WoJVoFUpAq1ES Wo82ok1oC0pB29EOtAtlob0oBzlRATqIXOgoKkIn0WlkZv5EMn8imT+RkW0i 7wESuUKcyMg2kSsB+nskU41RU3QD+gO6Cd2MbkG3ottQGLoT3YX+iO5F96H7 UXf0MHoEPYoeQ0+gJ1E/9Cf0HPozegG9iP6CXkZ/Ra+i19Eb6G/o7+gt9H/o XfQe+gd6H32APkb/Qp+gf6PP0OfoP+gL9CX6Cn2D/ou+RevQBpSMtqLv0TaU htLRbrQHZaMf0I9oPzqADqHD6Ag6hk6gU+gnZOay78hl35HBvuOawHeMdr8j l33HNYHvuCbwHbnsO3LZd4xsv+NKwHdksO/IW99xJeA7rgR8R976jrz1HXnr O/LWd1oU6oK6oR6oJ+qFeqM+qC/qjwajoWgYGoFGozFoHBqPJqJJaCqajmag WWg2movmowVoMVqKlqEVaCVKQKvRGpSE1qONaBNKQaloB9qJMlEWykG5yIkK kAsVouPInPVPIpMkkT+SuLqcxBxpEvkjiZnRJDKJ/n2bcqDGqCm6Af0B3YRu Rreh29Ed6E50F7obdUT3oHvRfehB9BB6GD2CHkOPoyfQk+gp9DT6E3oOPY/+ jF5AL6K/oL+iV9Br6G/o7+ht9A76P/Queg/9A/0TvY8+QP9Cn6B/o8/Qf9AX 6Ev0FfoafYP+i75Fa9F3aANKRpvR92gbSkcZaDfag35EeSgf7UcH0GF0BB1D J9ApZOaZdWSXdYyU1pFd1nF/1DquPa8ju6xjLnUdo6d1jJ7WkXHWMWZax5hp HWOmdeSedeSedWScddwptY4x0zoyzjrmUtcxPlqnRaEuqCuKQT1QLOqN4lBf FI8GoEFoCBqKhqORaAwai8ah8WgimoQmo2loOpqJZqM5aB6ajxaghWgRWoKW omVoOVqJVqHVaA1KROvRRrQJbUEpKBVtRzvRLpSJslAu2oec6CByoUJ0FBWh k8gcH60nl61nVLSeXLaeO6XWk8HWMzOm/yxMOVBTdAO6Ed2EbkG3oztQO3Q3 6ojuQfei+9EDqDt6CD2KHkdPoKdQP/QMehY9h55HL6AX0UvoFfQqeh29gf6O 3kRvo3fQu+g99E/0PvoQfYw+QZ+iz9EX6Ev0NfoGfYvWou/QOpSMNqOtaBtK QxloN8pGeSgfHUJH0DFUjEqROU7ZQP7YwDhlA/ljA/ljA1ljA1ljA+OUDeSP DeSPDYxYNjBi2UAm2UAm2cCc2wbyxwbyxwbGLhuYh9tAJtlAJtnAKGYDo5gN ZJcNWhSKRt1QDOqFeqM41AfFo/5oIBqMhqChaBgagUahsWgcmoAmoyloKpqG pqMZaBaajeaguegjtBAtQkvQUrQMLUcr0Eq0CiWgNSgRJaFNaAtKQdvRDrQT 7UKZaC/KRfuQEx1ELlSIjqLjqAidRObs20ayy0bGTBvJMxvJMxsZPW0k42wk 42xk9KRnX1ON0R/QjegmdCu6Dd2BwtBdqCP6I7oH3YfuRw+gB1F39Bh6Aj2J +qGn0TPoWfQn9Bz6M/oLehm9gl5Fr6HX0RvoTfQWehv9H/oHeh99gD5EH6NP 0Kfo3+gz9B/0JfoKfYP+i75Fa9F3aB3ajLai71EaSkcZaDfag35AP6I8lI/2 owPoMDqGTqBTqBSZeSuZbJXMuCeZbJXM/Foy455k8lYyeSuZbJVMtkomWyWT rZIZ7SQzv5ZMZkomMyUzv5ZMPkomHyUzsklmZJNMFkom9ySTe5LJOMmMZ5LJ OMmMZ5IZzySTe5LJOMlknGTGM8nMqiUzskkm4yQznklmPJNMxkkm4ySTZ5LJ M8nkmWTyTDLZJZnxTDLjmWTGM8nkmWRm2pLJM8nkmWSySzLZJZmckswoJpmc kkxOSdbWo01oC0pBqWgH2okyURbKQbnIiQqQCxWi46gIlSBzxLKJ/LGJ/LGJ rLGJ6zibmH3bRP7YRP7Qv29TDtQU3YD+gG5EN6Nb0W3oDhSG2qE7UUf0R3QP ug/djx5AD6JH0ePoSfQUeho9g55Ff0LPoxfQS+iv6DX0OvobehO9hd5G76B3 0Xvon+gD9CH6F/o3+gx9jr5AX6Kv0Nfov+hbtBZ9h9ahDSgZbUXfo20oDaWj DLQHZaMf0I9oPzqADqEj6Bg6gYrRT8jMJJvJJJvJJJsZAW0mk2zm/oPNXLPZ zKhoM9llM9llM6OizcylbSa7bGYEtJkZtM2MhTYzFtrMWGgzeWYzs2qbGQFt JuNsJuNsZgS0WYtC0agr6oZiURzqi+JRfzQADUSD0GA0BA1Ho9BoNAaNQ+PR BDQJTUZT0FQ0Dc1Ec9BcNA99hOajBWgRWoyWoOVoJVqFEtBqtAYlofVoI0pB qWg72oF2ol0oC+1FOSgXOVEBOoiOoiJ0EpWg08gcAW1hBLSFvLWFcc8W8tYW 7j/YwghoCxlMz9KmHKgpugHdhG5Bt6N26E50N+qI7kH3ovvRA6g7egQ9gZ5C /dAz6Fn0HHoRvYxeQa+i19Eb6O/oTfQ2ege9i95D76MP0cfoE/Qp+gx9jr5A X6Kv0TfoW7QWrUMbUDL6Hm1DaSgD7UbZ6AeUh/LRAXQIHUHHUDE6hUqRmVO2 Mqu2lUyyldHJVjLJVjLJVsYpW8kpW8kkW8kkWxmxbGXEspXsspXsspURy1ay y1ayy1ayy1ayy1ayy1ayy1bGM1uZc9tKxtlKdtmqRaEuKBp1RTGoJ+qD4lF/ NAANRIPQYDQEjUCj0Gg0Fk1AE9EkNBlNRdPQdDQDzUJz0Fz0EZqPFqLFaAla ipahFWgVSkCr0RqUiNajjWgTSkXb0Q60C2WiLLQX5aB9qAAdRC5UiI6jk6gE nUZmTknh6k0KmSSFsVAKOSWFnJLCqCiF7JLCqCiFnJLCrFoK2SWFsVAKI6AU RkApjIBSGAGlMAJKIc+kML+WQsZJIc+kkGdSGAGlkHFSGPekcEUnhfsPUhj3 pJBxUsg4KYyAUsg9KeSeFEZAKYyAUphLS2EElMIIKIV8lEI+SiELpTAWSiEf pZCPUhgVpZCPUphVS2FWLYWxUApjoRQyUwqZKYVRUQo5KoUclcJIKYUclcL8 WgqjohRyVAo5KoXxUQo5KoVRUQrZKoVslUK2StE2o+/RNpSG0tFutAdlox/Q jygP5aP96BA6jE6gYnQK/YRKkZnVvueug+/JZd8zPvqeXPY9uex7RkXfk7e+ J299z/za92Sr78lW3zPT9j0zbd+Tj74nH33PaOd7LQp1Qd1QD9QX9UcD0CA0 GA1FI9EYNA5NRJPQFDQdzUCz0Tw0Hy1Ai9BStAytRAloNUpESWgj2oS2oBSU irajHWgnykRZKAflIidyoUJUhEqQeeZP5dyeyrk9lXN7Kuf2VM7tqYwcUjm3 p3JuT+XcnsrsViojh1RGDqmc5VM5y6dylk/lLJ/KWT6Vs3wqZ/lU5rlSOcun cpZP5SyfymgilbN8Kmf5VM7yqZzlUznLp3KWT+Usn8pZPpWzfCpjjVSunaRy vk/lfJ/K+T6V830qc1+pnO9TOd+ncr5P5Xyfyvk+lfN9Kuf7VEYiqZz5Uznz p3LmT+XMn8r5PpXzfSrn+1TO96mc71M536cyOknlzJ/KmT+VM38qZ/5Uximp nPlTOfOncr5P5Xyfqm1F36M0lI4y0G60B2WjH1Eeykf70SF0GB1BJ1AxOoV+ QqXIPPNv48y/jTP/Ns782xjPbCMHbCMHbGM8s41RzDaywTaywTZGMduYGdvG iGUbI5ZtjFi2MWLZxohlGxliGxliGyOWbcyRbWPssk2LQl1QNIpBPVEfFI/6 owFoIBqMhqBhaAQahUajsWg8moAmokloMpqKpqEZaCaaheaguegjNB8tQAvR YrQELUPL0Qq0Cq1Ga1AiSkLr0Sa0BaWgHWgn2oUyURbai3JQLtqHCtBBVIiO ouPoJCpBp5E5ntnOeGY745ntZLrtZLrt5Lft5Dc9N5tyoKboBnQjugndgm5F t6N26E50N+qI7kH3ovvRA6g7egg9gp5AT6F+6Bn0LHoOPY9eQC+il9Gr6HX0 Bvo7ehO9jd5F76H30cfoE/Qp+gx9gb5EX6Nv0LdoLVqHNqDNaCv6HqWjDLQb ZaMfUB7KRwfQEXQMFaNTqBSZmSSNmbE0ZsbSyCRpZJI0MkkamSSNTJLGuCKN ObI0sksamSSN+bA0xhppjDXSGGukMdZII8+kkWfSyDNp5Jk0ckoaOSWNkUga 2SWNTJLGLFgaY5I0xiRpXHdJ47pLGuOUNPJMGnkmjTyTRp5JY+ySRp5JY+yS xnWXNPJMGnkmjVFMGnkmjTyTRnZJI7ukMbJJI8+kkWfSyC5pZJc0sksa2SWN 7JJGdkkju6SRXdIYAaWRZ9LIM2lklzSySxqjojRGRWlklzSySxo5JY1RURrZ JY3skkZ2SdNS0U60C2WivSgH5aJ9yIkK0EF0FB1HRegkKkGnkZlddnAFZgdX YHYwotpBntlBntnBiGoHeWYHs2V6fjV1A/oDuhndhu5AYagduhPdjTqiP6J7 0APoQfQwehQ9jp5ET6Gn0bPoT+h59Gf0AnoRvYT+il5Dr6M30N/Qm+gt9A56 F72H/oH+iT5AH6J/oU/Rv9Hn6Av0JfoK/Rd9i9ai79AGlIw2o63oe7QNpaMM tBvtQdnoB/Qjykf70SF0BB1DJ1Ax+gmZeSuduwTSuUsgnbFQOhksnbyVTt5K J1ulk63SyUzpZKZ0MlM6mSmdzJROZkpnPiydzJTOuCedcU86mSmdzJROFkon C6UzsknnHrR07kFLZ7STTj5KJwulk4XSyT3pjHbSyT3pjHbSGe2kM5eWzlxa OlkonSyUzhgnnYyTTsZJZ1YtnZFNOhknnfm1dObX0skz6eSZdLJLOtklnZm2 dEYx6WSXdLJLOmOXdHJKOiOWdHJKOjklnUySTiZJ17ajHWgn2oUyURbKQbnI iQqQCxWi46gIlSAzk+zkzrOdjE52kj92kjV2kjV2Mk7ZSf7YSf7QvzNTN6A/ oBvRTegWdCu6Hd2BwtBdqCP6I7oHPYAeRN3RI+gx9AR6EvVDz6A/oefQn9EL 6C/oFfQqeg29jt5Af0NvorfQ2+j/0D/QP9EH6EP0MfoEfYr+jT5D/0Ffoq/Q 1+i/6Fv0HVqHNqBktBl9j7ahNJSOdqM9KBv9gH5EeSgf7UcH0GF0DJ1AxegU MkdFGeSUDHJKBqOiDLJLBqOiDHJKBmOhDLJLBtklg7FQBmOhDPJMBvNrGcyv ZTDaySC7ZJBdMsguGWSXDEZAGeSZDPJMBiOgDEZAGWScDGbVMhj3ZJB7Msg9 GYyFMshCGYyFMhj3ZJBxMhj3ZJB7Msg9GYyAMshCGWShDGbaMshCGYyAMhgB ZTACyiALZTDuySAfZZCPMshHGeSjDMZCGYyFMhgLZTDuySAfZTDaySAzZZCZ MhgBZZCZMphfy2AElMEIKIMclcEIKINslUG2ymAElEG2yiBbZZCtMshMGWSm DEZAGWSmDMY9GWSmDEY7GeSoDHJUBiOgDLJVBtkqgxFQBqOdXYx2djHa2UXe 2sVoZxc5ahc5Ss+0phyoKboR3YRuQbei29EdqB26E92NOqJ70L3oftQdPYQe RY+jJ9BT6Fn0HHoevYBeRC+hV9Cr6HX0Bvo7ehu9g95F76F/ovfRh+hj9An6 FH2GPkdfoK/RN2gtWoc2oM1oK9qG0lA62o32oGz0A8pD+egAOoSOoGOoGJ1C 5uhkN7Nqu8kku8kkuxmd7CZ/7CZ/7CZ/7CZr7Ob6zG6uz+wmf+wmf+xmxLKb EctuRiy7GbHsJrvsJrvsZi5tNzllNzllN/ljtxaFuqAY1APFol6oN4pDfdEg NAQNRcPRCDQKjUFj0Tg0Hk1Ek9BkNA1NRzPRHDQXzUPz0QK0CC1BS9EytByt QgkoESWh9Wgj2oJSUCrajnagnWgXykJ7UQ7KRfuQEx1ELlSIjqIidBKZY5xM rrtkMsbJJGtkkjUyGe1kMsbJJH9kkj8yGeNkkj8yuesgkzFOJvkjk9myTGbL MskfmYxnMskfmeSPTMY4mWSSTDJJJvkjk3sNMskamcyWZTLGyWSMk0kmySST ZDLayWRkk0kmySSTZDLGySSnZJJTMhntZHJVJpN5s0zyTCbjnkzGOJmMcTLJ Lplkl0zGOJnkmUzyTCZ5JpM8k8m4J5PZskxGNplkl0yySyZjnEzGOJnkmUzy TCZjnExGNplknEwyTiYjm0wyTiYjm0xyTya5J5Pck6lloD0oG/2AfkT5aD86 gA6hw+gIOoZOoFPInDfbw/0Cexjj7CEz7WFks4fZsj1kpj3koz2MZ/aQj/aQ j/Ywg7aHLLSHLLSHLLSHLLSH8cwexjN7yD17GMXs0aJQF9QD9US9UG/UBw1G Q9EwNAKNRKPRGDQOjUcT0SQ0BU1F09EMNAvNRnPRPDQfLUCL0VK0DK1AK1EC Wo0SURLaiDahFJSKdqCdaBfKRHtRDspFTlSAXKgQHUclyJwPy2KEkUXWyCJX ZJErspgZyyJrZJEh9NxnyoEao6boBnQTuhndgm5Ft6HbURhqh+5Ed6E/onvR feh+9DB6BD2KHkOPoyfQk+hP6Dn0Z/QC+gt6Cb2M/opeRa+jN9Df0Vvo/9C7 6B/offQB+hB9jD5B/0afoc/Rf9AX6Cv0X/QtWou+Q+tQMtqMtqLv0TaUjjLQ bvQD+hHlof3oADqEDqMj6Bg6gX5Cpcgcz2STP7IZ2WSTSbIZ2WQzsslmjiyb nJJN/shmZJNN/shmZiyb8Uw2+SObmbFsMkk2o5hsRjHZjGKyySnZ5JRs5sOy Gc9kk1OymRnLJrtkk12yGc9kk2eyGcVkM4rJZhSTzSgmm4yTTcbJZjyTTcbJ ZjyTTe7JJvdkM7LJZhYsm7FLNhknm4yTTcbJJuNkM57JJvdkk3uyGeNkk3uy mQXLZhYsm5FNNiObbHJPNuOZbLJQNlkom9yTzdxXNlkom5FNNrknm5FNNlko myyUzcgmm3yUTT7KJh9lk4+yyUfZ5KNs8lE2I5tsMlM2mSmbMU42OSqbHJXN GCebMU42OSrbPR+mf0JXb/kJXeNrzhFfh9bcVWN8zS41a9QcULNHzZM1eoh/ XTUGiPhY9ydy5YqvEaK2R039M70ixL+5Yi39U5P22nyS0g82sRyb2I82sVyb WJ5NbJ9NLN8m5rSJ7beJFdjEDtjEDtrEDtnEXDaxwzaxQpvYEZvYUZvYMZvY cZvYCZtYkU2s2CZ20iZ2yiZWYhP7ySZ22iZWahP7n02szCOmH9F7Gavv5f3X Xsbqe5nX3cu7Lv03z5QDNUU3oBvRLehWdAdqh+5Ed6N70P3oAfQQegQ9ih5H T6Cn0LPoefQCehG9hF5Gr6DX0RvoTfQ2ege9i95D/0Qfoo/Rp+gz9Dn6An2J vkbforVoA9qMtqJtKA1loN1oD8pGP6I8lI8OoEPoCDqGilEpMt/L6GdHUzXQ lagOqosCUCBqhJqgINQMNUctUQhqhUJRG9QWhaP2KAJ1RpEoGnVFMagnikW9 UG/UB8WjgWgIGoqGoxFoJBqFRqMxaCwajyaiyWgKmoZmolloNpqD5qGP0Hy0 EC1Ci9FStBytQKvQarQGJaKNaBPaglLQdrQD7US7UCbKQrloH3KiAnQQuVAh OoqOo5PoNDKv8uWQDXLIBjmMxnMYg+eQF3LICzmMwXPICzmMvHPICznM1+Yw 3s4hQ+SQIXIYb+cw3s7RwlA7dBfqiP6I7kUPoAdRd/QwegQ9ih5DT6J+6Bn0 HPozehH9Bb2EXkZ/Ra+i19Df0N/RW+ht9A56F72H/oHeRx+gj9G/0Cfo3+g/ 6Av0JfoKfYP+i75Fa9F3KBltRlvR92gbSkPpaDfag7JRHspH+9EBdAgdRsfQ CXQK/YTMbPUj2epHrRaqjeqgeqghaoSaoGaoOWqBWqJWqDVqg9qiDqgTikJd UTfUA/VEvVBv1Bf1RwPQYDQMjUAj0Wg0Bo1Dk9BUNB3NQLPQbDQXzUcL0CK0 GC1DK9BKlIBWo0SUhDaiTSgFpaIdaCfKRFloL8pF+5ATFSAXKkTHUREyZ2lz yQu55IVc8kIus7S5ZIhc5mZzuY6XS17IJS/kMnLIJUPkkiFyGUPkMkubS9bI JUPkkiFyGVfkkityyRW5jCtyyRW55IpcZmRzyRC5ZIhcxhq55IpcMkQuGSKX UUcuY41c7onPZW42l7FGLhkilwyRS4bIJUPkkiFyGX/kkityyRW55IpcckUu uSKXXJHLLG0uGSKXDJHLmCSXXJFLrsglQ+SSIXIZp+QyTsklV+SSK3LJELmM U3LJFbnkilzyQq62Dm1AyWgz+h5tQ2koHWWg3WgPykY/oB9RPtqPDqBD6DA6 gk6gYnQKmfkjj6yRxxgnjzFOHvO1eWSSPK735XEnSh6jnTzyRx5jnDzyRx7z tXlkkjzyRx75I48xTh6ZJI+RTR7jmTzGM3nMzeaRSfLIJHmMZ/LIKXmMZ/LI JHnM0uYxiskjp+SRU/KYuc1jFJNHTskjp+Qxiskjp+Qxdslj7JLH2CWPsUse Y5c8xi55ZJw8Mk4e45k8Mk4eo5g8RjF55J48ck8eo5g85mbzGLvkMXbJI/fk MXbJIwvlkYXyyD15zM3mkYXyGLvkkYXyyEJ5jGLyyEJ5jF3yyEJ5ZKE8LQft Q05UgA6iQnQUFaGTyByx7CMf7SMf7WPWah/5aB93k+h7YqopugHdiG5Ct6Lb 0R3oTnQ36ojuQfejB1B39BB6BD2OnkD90DPoWfQCehG9hF5Gr6BX0evoDfQm ege9i/6J3kcfoo/RJ+hT9Dn6En2NvkHfonVoA9qKtqE0lIF2o2z0A/oR5aF8 tB8dQIfQEXQMFaNTqBSZI4J8zu35nNvzGRvkc5bP5yyfz7k9n3N7PnNa+Zzb 8zm35zNKyOcsn89ZPp+zfD4zWfmc5fM5y+dzls9n1iqf8UI+44V8Zq3ymbXK 5yyfz1k+n7N8PiOHfM7t+cxV5XOWz+csn8+sVT7jhXzO8vmc5fM5y+dzls9n DJHP+T6f830+o4l8rsrlc77P53yfz/k+n/N9Puf7fM73+Zzv8znf5zPWyGfW Kp/zfT7n+3xGHfmc+fM58+cz6sjnzJ/PmT+fM38+s1b5nPnzOfPnc+bP58yf z5k/nzN/Pmf+fEYi+eSAfHJAPmOSfHJAPjkgX8tF+1ABOohc6Cg6jorQSVSC zPkrJ9nAyejESV5wkhecjE6cjE6czF85GZ04yRBOxiROcoWTXOFkTOJkJsvJ 6MRJ/nCSP5yMTpzMXzkZiTiZtXKSP5zkDyejEyeZxEkmcTI6cZI/nMxaORmT OBmTOMkpTnKKk/krJ9nFyejESU5xMiZxklOcjEScZBcn2cXJmMTJmMTJmMTJ mMTJmMTJmMRJxnEyEnGSe5zkHiejEye5x8n8lZPRiZPRiZMxiZN85CQfORmT OJm1cjI6cZKjnOQoJ6MTJ6MTJ6MTJ9nKyZjESbZyMhJxkrec5C0nectJ3nKS rZxkKyfZyslIxEm2cjIScZKtnIw/nOQtJ3lrP3lrP9lqP9lqPyOR/cxk7Wcm az8zWfvJTPvJTPvJR/uZv9rP+GM/mWk/+Wg/81f7yUz7yUz7GX/s16JQF9QV dUM9UE/UB/VFA9AgNBQNQyPQSDQajUHj0Hg0EU1CU9F0NAPNQnPRPDQfLUKL 0TK0Aq1ECWg1SkRJaCPahFJQKtqBdqJMlIVyUC7ah5zoIHKhQnQcFaESZI4m ChhNFJA/CsgfBeSPAma3CrjqUUD+KCB/FDDPVUD+KCB/FJA/CsgaBWSNAkYd BeSPAnJFATNZBYw/Chh/FDDqKGAmq4CsUUDWKCBXFJArChh/FJArCsgVBeSK AnJFATNZBVw/LyBrFDASKWAkUkDWKCBrFDAmKSBrFJA1CpjJKiBXFJArChid FDA6KSBrFJA1CsgVBeSKAnJFAbmigAxRQIYoYNaqgBFLAbmigFxRQIYoYOxS QK4oIFcUkBcKyAsFjGcKGM8UkCEKyBAFjGwKyBAFZIgCMkQBGaKADFGg5aND 6DA6go6hE6gY/YRKkZkhDjCeOUCGOECGOMB45gBXPQ5wjf4AI5sDjGwOMH91 gJHNAfLHAfLHAUY2B8gkB8gkBxjjHCCnHCB/HGD+6gDzVwcYzxzQolAXFI26 om4oBvVEsagP6oviUX80EA1GQ9BQNByNQmPQWDQOjUcT0EQ0CU1B09BMNBvN RfPQR2gBWoQWoyVoOVqBVqHVaA1KREloI9qEtqDtaCfahTJRFtqLclAu2oec yIUK0VFUhE6iEnQameOZg2Smg2Smg+Sjg4xnDnI9/iAzXnpmNNUU3YBuRDeh W9CtqB26E3VE96L70QOoO3oEPYqeQE+hfuhZ9Bx6Hr2AXkIvo1fQq+h19Ab6 O3oTvY3eQe+i99A/0fvoQ/Qx+gR9ij5Dn6Mv0JfoG/QtWovWoQ1oM9qKtqE0 lIF2o2z0A8pD+Wg/OoyOoGOoGJ1CpcjMGocYVxwifxwifxwiaxxihHGI/HGI /HGIObJD5I9D5I9DzJEdIpMcImscImscImscImscImscImscImscYvxxiPmw Q+SPQ1oU6oKiUTcUg2JRLxSH4lF/NAgNRkPQMDQSjUZj0Tg0AU1Ek9FUNB3N QLPQHDQPfYTmo4VoCVqKlqHlaAVKQKvRGpSI1qNNaAtKQaloB9qFMlEW2oty UC7ah5yoABWio+g4OolK0GlkZggXGcLFiMVFXnAxYnExYnEx9+VixOJixOJi 7stF1nCRK1zkChdjFxdZw0XWcDF2cTF2cZE/XMx4uZjxcjF2cTF2cZFTXOQU F6MYF6MYFznFxVV4F1dRXGQXF9nFxXjGxSjGRZ5xkWdcjGdczH25GLu4yDMu 8oyLUYyLjOMi47gYz7jIPS5yj4sxjotZMBejGBcZx0XGcTGycZFxXIxnXOQe F7nHRcZxMfflIve4GNm4GM+4yD0uco+L8YyLLOQiC7kY47jIQi7mvlyMZ1xk IRdZyMXIxkU+cpGPXIxsXOQjF/nIpR1Ah9ERdAydQMXoFPoJmTnqMDnqMOOZ w+Sjw+Sjw8x9HWbu6zBzX4fJQocZuxwm9xwm9xwm4xxm7uswc1+HyTiHmfE6 zIzXYS0KdUFdUQ/UC/VGfVF/NAANQoPRUDQCjUHj0Hg0EU1CU9B0NAPNRnPR fLQALUJL0TK0EiWg1SgRJaGNKAWlop0oE2WhHJSLnKgAHUQudBQdR0WoBJnZ oJAcUMjYoJAcUEgOKGSUUEg2KCQbFDKTVUg2KCQbFDJ/VUgOKCQHFJIDCjnz F3LVo5CrHoWc+QuZtSokBxSSAwoZVxSSDQrJBoVkg0KyQSEzWYXkgEJyQCFz WoWc+QuZySpkrFFINigkGxSSDQrJBoXMbhWSDQrJBoXkgEJyQCFn/kLO/IWc +Qs58xcy6ihk1FFIDigkBxSSAwrJAYWc+Qs58xcyp1XImb+QM38hZ/5CZrIK GXUUkgMKyQGFnPkLOfMXcuYv5MxfyJm/kDN/ISORQnJAITmgkBxQSA4oJAcU kgMKyQGFjE4KyQGF5IBC7RA6hk6gYnQK/YTMccoRzvxHGJ0cYUxyhDP/EUYi RxiJHGFO6wgjkSNkgyNkgyPMaR1hTHKEvHCEvHCEMckR8sIRrtYfIRscYSbr CGOSI4xJjmhRKBp1Qz1RL9QbxaE+aAAaiAahIWgYGo5Go7FoHBqPJqCJaBKa jKaiaWgmmoXmoHloPlqAFqLFaAlaipah5WgVSkBrUCJKQuvRJrQFpaLtaAfa hTJRFtqLctE+VIAOIhc6jorQSXQamWOSo+Sjo8xaHSUzHSUzHSUfHSUfHWX+ Ss+CphyoKboB3YhuQregW9Ht6A50N+qI7kH3ovvRA6g7egQ9ih5HT6Bn0LPo OfQ8egG9jF5Fr6M30N/Rm+ht9B76J3offYg+Rp+gT9Fn6HP0BfoSfY2+QWvR OrQBbUbbUBrKQLtRNvoB5aF8dAAdQofRMXQCFaNTqBSZI4JjZINjzFUdY2xw jLHBMTLEMTLEMUYJx8gVx8gVx5i/OkbWOMas1TFGDsfIFcfIC8cYORwjQxwj QxxjDHGMDHGMDHGMMcQxcsUxLQp1QV1RDIpFcagPGoAGokFoMBqKhqHhaBQa i8ahCWgimoQmoyloKpqGZqJZaDaaiz5CC9EitBgtQcvRCrQSrUIJaA1KRElo PdqINqEtaDvagXaiXSgTZaG9KAftQ05UgA4iFypER1EROolKkJlJjpM/jjO7 dZzxzHGyxnFGMccZxRxndkvPX6aaohvQH9CN6FZ0G7oDhaG7UUf0R3QPug89 iB5Cj6BH0ePoCfQkeho9g55Ff0J/Ri+il9Ar6DX0OnoD/Q29id5C76B30T/Q B+hD9DH6FP0bfYY+R1+ir9DX6L/oW/Qd2oCS0Va0DaWhdJSB9qAf0I8oH+1H h9BhdASdQMXoFPoJlSIz95wg45wg45wg45wg45wgz5wgz5xgXuoEeeYEI5ET jEROkGdOkFNOkFNOkElOcE3kBOOPE+SUE+SUE1oU6oK6oR6oJ+qFeqM+qC/q jwagQWgwGoqGoRFoJBqDxqOJaBKagqai6WgGmoVmo3loPlqEFqOlaAVaiVaj RJSENqJNKAWloh1oJ8pEWSgH5SInKkAuVIiOouPoJCpB5miiiDN/EWf+IsYQ RYwhihhDFJENisgGRYwmisgLReSFIma3isgGRWSDInJAETmgiDFEETmgiCvk RcxuFZENisgGRWSDIsYVRYwrihhNFDGTVcRMVhFn/iKuZhRxNaOIbFBEDigi BxQxwihihFHECKOI6xpFzGQVkQ2KyAZFZIMiskERo44i8kIReaGI8UcRVzOK GIkUMRIpIkMUkSGKmMkqIkMUkSGKyBBFzGQVkSGKyBBFZIgiMkQRGaKIMUkR Y5IickURuaKI0UkRM1lF5IoickURuaKIcUoR45QickUR45QiskYRWaOIEUsR WaOIrFGkHUOn0E+oFJm5ophxSjG5opj5q2LGJMVkiGJGIsXkimJyRTHzV8WM SYrJGsVkjWLGJMVkjWJGIsVkjWKupBdzXaOY0UkxmaSYTFLM6KSY+atiRiLF ZJJiMkkxmaSYTFJM/ijmmnoxmaSYcUox+aOYmaxixiTF5I9i8kcxc1rFjE6K GZ0Ukz+KGZMUkz+KGYkUk0mKySTFjE6Kmb8qZkxSzJikmPmrYkYnxWSXYrJL MaOTYuavihmnFJNxisk4xYxTihmnFDNOKWZMUkzGKWYkUkzuKSb3FDM6KSYL FZOFihmdFDMSKSb3FDMSKSb3FDP+KCYLFZOFislCxWShYnJPMbmnmPHHSWay TpJ7TpJ7TpJ7TpJ7TpJxTpJx9DxnyoGaohvQjegWdDu6A7VDd6K7UUd0D7oX PYAeQo+gR9Hj6CnUDz2DnkPPoxfRS+hl9Cp6Hb2B/o7eRG+jd9C76H30MfoE fYo+Q5+jL9CX6Gv0DfoWrUXr0Aa0GW1F21AaykC70Q8oD+WjA+gQOoKOoRPo FPoJlSIzQ5ziCscpMsQpMsQpxhWnGFecYlxxiqxxiqxxiqxxivmrU4wwTpE1 TjF/dYorHKfIEKcYYZwiQ5wiQ5xirHGKXHGKDHGKDHFKi0JdUQzqgWJRHOqL 4lF/NAANRkPQUDQcjUCj0Fg0Hk1Ek9BkNAVNQ9PRDDQTzUFz0Xy0AC1ES9BS tAwtR6tQAlqNElES2oi2oBSUirajnWgXykQ5KBftQ050ELlQITqKjqMidBKd RmaGKGF0UkJeKGGGqoSRSAl5oYS8UMJIRM9BphyoMWqKbkI3oztQGGqH7kR3 obvRH9G96D70IOqOHkaPoEfRE+hJ9BTqh55Gf0LPoz+jF9Bf0EvoZfQKeg39 Db2J3kJvo3fQ/6H30D/RB+hf6BP0Kfoc/Qd9gb5EX6Nv0H/RdygZbUZb0fdo G0pD6Wg32oN+RPloPzqADqHD6Bg6gYrRT6gUmRnnJzLOT8xk/USe+Yk88xN5 5ifyzE9kl58Yk/zEmOQn8sxPXD//iUzyE6OOn8gkP5FJfmKs8ZMWhbqgbqgn 6oX6oL6oPxqABqGhaBgaiUajMWgcmogmoSloKpqOZqBZaDaah+ajBWgRWoqW oRVoJUpAq1EiSkKbUApKRTtQJspCOSgXOVEBcqFCdBwVoZOoBJln+dOMA04z L3Wa8/1pzvenGRGcZkRwmhxwmhxwmjO/nlFMOVBjdBO6GYWhduhOdBe6G3VE 96H70YOoO3oYPYIeQ0+gJ1E/9DR6Bj2L/oxeQH9BL6G/olfRG+jv6C30NnoH /R96F/0DfYg+Rv9Cn6B/o8/Rf9AX6Cv0Dfov+hatRetQMtqMtqLv0TaUhtLR HpSNfkB5aD86gA6hw+gIOoGK0SlknttLmW8qZQxRyhm9lPmmUs7tpYwcSjm3 l3JuL2UMUcpZvpSzfCljiFLGEKWc70s535cyhijlzF/Kmb+UMUQp5/tS5pZK GTmUMnIoZeRQysihlLmlUsYQpeSFUvJCKaOJUvJCKfNNpeSFUvJCKWOIUsYQ pYwhSskVpeSKUsYVpcw8lTKGKCVXlJIrShlNlJIrShlDlJI1Sskapcw3lZI1 ShlDlDLLVMpoopT8UUr+KGU0UUomKSWTlDLCKCWTlDLfVMp8UynjilLGFaXk lFJySinjilLGFaXklFJmmUoZQ5SSU0rJKaWMJkrJKaWMIUrJLqVkl1KySynZ pZTs8j+yy//ILv9jvul/5JT/kVP+xxhC78OUAzVFN6Jb0B2oHboT3Y06ovvR A+gh9Ch6HD2BnkLPoGfR8+gF9CJ6Gb2CXkdvorfRO+hd9B76J/oQfYw+RZ+h z9EX6Ev0NfoWrUUb0Ga0FW1DaSgDZaMfUD46gA6hI+gYKkan0E/IfGdexvvx Mt6PlzEXVMbZu4yzdxln7zLO3mWcvcs4e5dx9i7j7F3GDFAZVwvKuFpQxgxQ GWfvMs7eZZy9yzh7l3H2LuMdfBln7zLO3mWcvcs4e5fxDr6Ms3cZZ+8yztll nLPLOGeXcc4u4119GTNAZZyzyzhnl3HOLuOcXcY5u4xzdhlzQWWcs8s4Z5dx zi7jnF3GO/0yztllnLPLmAEq451+GWfvMs7eZbzTL+PsXcbZu4wzdRln6jLO 1GWcqcs4U5dxpi7j3X8Z5+wyztlljAPKOHuXcfYu4+xdxtm7jLFBGbNCZZzH yziPlzFKKOOMXsYZvYwzehln9DLGC2Wc0cs4o5dxRi/jjF7GGb1M09/Nl4qR bJl4Xef+nA39s2Jyn9Y/K2ZpjbiaPWom1RhaM6jmKuG4mrtqdHF/EkxEzQHu T5FpIzygZkPxtUvNCHe8Tc2lNVqKr2NrRNSoL37+7USPnbTy/+aK39crxPYa i8xQc5B4q66JxUHi9cgj+h8q/ca9wsor/IS0Ls8PeqptbbH8W796mnZlPe3g dZuv2pAoWFPTflejdXmvV4jdfeMqrWfyVVrcNX5a/4f9tMHv+mnDd/tpo5v+ Vhvf77fa5H/9VqSlGqJpHfG1v9h8DbHi791f64k3fqc/OZL6YHxMxyfdbVq6 47e4v45zR8aKNuZ/N9aoJb6Wibf5NbRvazUQ1n90r7lbj3d//UBr5m5xhfsl Wj/yyCNahf8eEW1ri2FDHX3hiuU1Goll0bZGXaP6CvOr/lEohsvkv9e4Y1fY xGrYxGraxGrZxH5jE7vSJnaVTczPJvZbm1htm9jvbGJ1bGJX28Tq2sSusYnV s4n93iZW3yZ2rU2sgU3sOptYQ5uYv00swCZ2vU0s0CbmsIk1sok1tok1sYk1 9YglaFe6DyuH73VZv8rcR4J+1mkslnzl8i3GkVDDfSQYMd/Xy/OrcSTU9J0T LvtiHAm15Dmh/Cjx6XKTcST8Rp4THO6Yw+fL0MaRcKXlnKAeLb6ly2XJOBKu 8r1PuOyLcST4+cYOl/1X40j4reWcYM0fvtjlEzOOhNoe7xPMl8MXvWyixpHw O9/Y4bK3cSTU8XJO8H4k+WoutRrjSLjaY+xgPV48i6/u0qwzjoS6lrGD0dL8 10HcV3tp1xpHwjW++YTLvhhHQr1K3ieYL4evxSXdwjgSfu8bO1z2No6E+tU4 J1Tv6PK1ulhbGUfCtb45xss+ZhwJDTyuOzgsNpcb2371tbxUWhpHwnVexg52 x4+34mt7cbc1joSG1XyfYL4cvtaXXGvjSPD3jR0uextHQoDvPsbLXsaRcH0l c4wOL/HKim+di28d40gIvAzuWbpC/wNEUWqKUkuU34hypShXieInym9FqS3K 70SpI8rVotQV5RpR6onye1Hqi3KtKA1EuU6UhqL4ixIgyvWiBIriEKWRKI1F aSJKU1GCRLlBlGai/EGU5qLcKEqwKDeJ0kKUm0VpKcotooSIcqsorUS5TZTW otwuSqgod4jSRpQwUdqK0k6UcFHuFKW9KHeJ0kGUu0WJEKWjKJ1E+aMonUW5 R5RIUe4VJUqU+0TpIsr9okSL8oAoXUV5UJRuonQXJUaUh0TpIcrDovQU5RFR YkV5VJReojwmSm9RHhclTpQnROkjypOi9BXlKVHiReknSn9RnhZlgCjPiDJQ lGdF+ZMopWVlZYPFv8+JMkSU50UZKsqfRRkmyguiDBflRVFGiPIXUUaK8pIo o0R5WZTRovxVlDGivCLK2Fqa1+PC99X4apwJHL5r0Zd9nXEkNDrDsaP15fCt eUmsaRwJjS1jR/OYsR47dra29a178a9rHAlNzuKc0Fj251v74l7bOBKa+u5P uexLmfuROqvv0R+pU/usXvqzOYLEEeX5vI4bbGLNbGJ/sIk1t4ndaBMLtond ZBNrYRO72SbW0iZ2i00sxCZ2q02slU3sNptYa5vY7TaxUJvYHTaxNjaxMJtY W5tYO5tYuE3sTptYe5vYXTaxDjaxu21iETaxjh4x/YwWpNnPgTgqRMyYXdzX w8Xcg5HbbtCqzm2OSuqqW3x9XLh9GEdCM029VuLQyo+axpoDWV3exlrr6+Vi 7cU4Ev6g+a6fXu42joTm2tmNga0vx1n3YL58PVXvdW56Mo6EG6vxPsHzODrb 4uvrwurLOBKCvYwdGlvWqfjV4SVe2Vdfbxdqb8aRcJPlnGB3vPhil37MOBJa nMP3CebLcdY9eL58PZ6bl32PxpFws8fYwaGpx051bV3fs42vzwu7T+NIaHke zgn6y3HWPdi9fL2ej16NI+EWL2MHh03MW/G1vbjbGkdCiGXsYNQ01sp7s371 1V6qtcaRcGs15xPK+6p+2zMtvr5/nb6NI6HVeXqfYL4cZ91DZS9f795eZ9K7 cSTc5rvucNnbOBJae5wTHL6ly27JOBJu980xXvYx40gIreS6g/nVUWmtWV9V G99WLtStGEfCHZWMHeyOoaqKb52Lbx3jSGhznscO1pfjrHuo7su3pTN5GUdC mG/scNnbOBLaetzHaMphEzOX1Ji1xlrrsIl5k29rv+bWjCOhncf7BOvx4ll8 dZdmnXEkhFdj7NDY0kflXx3VaFPdr74t/lJbNI6EO8/wuoO1VHb8na/i2+a5 L8aR0P4XHDtYX46z7uHnvHxbtXsZR8JdlrGDeRxaj0c7W9v61r341zWOhA6/ 0jlBfznOuoef+/Jt2foyjoS7z+J9gufx9UsX37bPTTGOhAiPsYPDYnO5se1X X8tLpaVxJHQ8y3OCr1z85dw+B6STOKI8n9fwR5tYZ5vYPTaxSJvYvTaxKJvY fTaxLjax+21i0TaxB2xiXW1iD9rEutnEutvEYmxiD9nEetjEHraJ9bSJPWIT i7WJPWoT62UTe8wm1tsm9rhNLM4m9oRNrI9N7EmPmH5G66TZz5WXnw/tah02 Mc86z1qHTawq+fbgl9gDI7f9UbO/fuawuPE5tLXvqtr79uGX2QfjSOis/Xpj YOvLcdY9nIvX5bkXxpFwj1b1+11HJXXVLb4+Ltw+jCMhUqve9TPzq6PaLc22 Z9Letye/xp4YR8K9lnOC+WpsKQ4b2x2LlcXs+qhsm759+WX3xTgSoi6Q9wnm y3HWPZzL1+WxN8aRcJ+XsYPPl4+NI6HLBXZO0F+Os+7hXL8u7T0yjoT7qzF2 qG5xVFL3axXfPlVdjCMh2jJ2MPbQ/NdB3Fd7adcaR8ID1TwnOCqpO9Pi6+vC 6ss4Erp6vE9wKP+aS2bMoSxZ5dnSs96+D8/t2NV5Lvn27FzvmXEkPFjJ2MGh 2cfPta3bq+66vn07d/tmHAndLsCxg/XlOOsezufr0tg740jo7jHH2Nij+GKX fsw4EmLO8LqD7+ul99U4Eh46h/MJZrE79i604tvH8mIcCT0u8PcJ5stx1j38 Eq+Lcy+NI+Fhj7GDQ1OPxeraur5nG1+fF3afxpHQs5L7GE05Kq1tLHusvBeH TUyVwyZ2pvLtqarq7alxJDxyHt4nGHt57vs8X+Vy31fjSIg9i7GDo9otPb86 vMTP51ff3nr7ahwJj3o5J5zJsedre3G3NY6EXhfJ2MH6cpx1D7/068LeY+NI eMwydjCPEetxZWdrW9+6F/+6xpHQ28u1yMaynX2dQ2vspc5RoRfPWMU6tV9r nbo3Ffu0W/Lt9ZnutXEkPH6GYwdHJXVnW3x9/zp9G0dC3Fled3B4iVfvq6Pa Lc/9V9+em1+NI+GJ8zSfUL7V89f3+S6Xy74bR0Kfaswxlh+JVbVz2MQqymET qyiHTeznyrf3ags1ZhwJT/r+3uGy97l9DkhfcUR5Pq/hKZtYvE2sn02sv03s aZvYAJvYMzaxgTaxZ21ig2xif7KJDbaJPWcTG2ITe94mNtQm9meb2DCb2As2 seE2sRdtYiNsYn+xiY20ib1kExtlE3vZJjbaJvZXm9gYm9grHjH9jNZXu/jm xTxfjrPu4dd+/brfgZHbntLU97vW855n8dVdmnXGkRCv2Y+BHRUiZswu7uvh Yu7BOBL6Wc4JdseML3bpx4wjof8l8D7BfDnOuocL5fXLfifGkfC0VvUY2KHZ x39pW/fl5/Zj7cv3vRg2joQBl9A5QX85zrqHC+n1y3w3xpHwjMfYwVocXuKV Fd86F986xpEw0DJ2KG9nXbNxBatt7GsbW746lFprn5Wv66ik1lGhTcXtWuNq e/vt2m29Ytzzu7j4vyPjSHi2knPCuS6OSuou1nIpfE/GkTDoEnufYL4cZ93D hfg6P9+VcST8qRpjB58vbRtHwuBL9Jygvxxn3cOF+jq335lxJDznZY7RYROz a2cuV6fdmcbstuNtXW/HvF3M972p+2EcCUO8XHf4OV8dXuJn/tVxjvo5l18d 56y3C+27M46E533XIi/7OuNIGHoJv08wX46z7uFCf53dd2gcCX+u5tjBoVXd 5tewdf/Otk9rf7/G9+LN1v072z6t/ZnLxpEwzHJOcFRDDpuYdzlsYt7lqGY7 616cyRrV1+X1XRpHwgtnMcfoqKTufBXfNs99MY6E4ZWMHRxe4madt1pfbxdX b8aR8OIveN3BWn6N37Nfq1zo36txJIzwGDs4bJYcmvc6097ryrdZeS9qK7uW 6hbtWqr7W1lL70uX33drHAl/sYwdzGPXegzb2drWt+7Fv65xJIz0Mp/g8EUv m6hxJLz0K71P0IujkrpLtVyI37NxJIw6h9cdzK+Oc9qb2d+57vNcf714v2vj SHj5LM8Jv+Yx7tv2uSnGkTD6DOcYfbr0ZBwJf/W47mD3nrM6tq7v2cbX54Xd p3EkjLkMrkVW9nKcdQ8X88v47o0j4ZVfcezgKxdGObfPARkrjijP5zW8ahMb ZxN7zSY23ib2uk1sgk3sDZvYRJvY32xik2xif7eJTbaJvWkTm2ITe8smNtUm 9rZNbJpN7B2b2HSb2P/ZxGbYxN61ic20ib1nE5tlE/uHTWy2TeyfNrE5NrH3 PWL6GW2sdu7HwPpXh5f42X11nIc+z9dXx3np+Xz8BIzc9qrm/W/+Pd9XeWtn jXl7v3WuY3bbq2pdu++vqnXt1qtqXbv9PNPtVidmt72q1rX7/owjYZx2eb/f NV+Os+7h4n0ZR8Jrmv29d1Ud3z/XnsdlZfbtwy+zD8aRMN7jnODwsuTQvNeV Lzk073XlSw5lyVtLRxW9WP+tqqX6fVTVZ+VLl95PwjgSXtcujDGwo5K6y638 0j8L40iYYBk7mMde+Z5Yv/pqL9Va40h4oxrnBEclddUtvj4u3D6MI2Gib+xQ 4eU46x4urpdxJPzNy9jBmx1a1W0uRDu0qtv8XFu38Ut8L+fK5ss4Eib5zgm2 L8dZ93DxvIwj4e8ec4zWY6eyY6mx5r1dZe3t+ve2rm9ffpl9MY6EyefpuoP5 1XHeejb7Pp/9n8+vF85PxjgS3rxA5hPMYnfc+opRztfPxjgSpnh5n2C2qxi1 /ltxyWEj63LFPhtrDtuot7h9P/bbtd9P++/L2z54i146Px3jSHjrDMcOPl96 No6EqZZzguMM5TjjNUw5bGLVk8MmVj05bGLnWxfHT8g4Et6+wN4n6MVRSZ2v GOVc/oyMI2Gax9jBYbG53Nj266Xb8tVamjZOlNdEGS/K66JMEOUNUSaK8jdR Jonyd1Emi/KmKFNEeUuUqaK8Lco0Ud4RZboo/yfKDFHeFWWmKO+JMkuUf4gy W5R/ijJHlPdFmSvKB6LME+VDUT4S5WNR5ovyL1EWiPKJKAtF+VSURaL8W5TF onwmyhJRPhdlqSj/EWWZKF+IslyUL0VZIcpXoqwU5WtRVonyjSgJovxXlNWi fCvKGlHWipIoyneiJImyTpT1omwQZaMoyaJsEmWzKFtE2SpKiijfi5IqyjZR touSJsoOUdJF2SlKhii7RNktSqYoe0TJEiVblL2i/CBKjig/ipIrSp4o+0TJ F8Upyn5RCkQ5KEppWVnZIfGvS5TDohSKckSUo6IcE+W4KCdEKRKlWJSTopwS pUSUn0Q5rfchyv9EKRNF+411VuXyOPaNM8E75zAnXIjnct8+VV2MI2G6b465 2i/HWfdwYb6MI+H/LGNH81i1HrN2trb1rXvxr2scCTN854QzejnOuocL72Uc Ce9W832Co5K6My2+vi6svowjYWY1rjs5Kq0166tq49vKhboV40h4z+OcYJdL POvs4pUdtw4vrqzPM62rbBue7Sr7PrzFqrMvla1/JvvhuV5l32t1t1dZP8aR MOss5pgby75+7rrm0s9b19rDz+nFcRbrnq0cNrHqy2ETq74cFWLGkfCPSq47 eR6358vW7VV3Xd++nbt9M46E2b6xw89+Oc66hwvjZRwJ/7wArztZi6OSOl+p vFT3Z2ccCXPO8z1r1q+OX2Qr5nZ+qW39Ul/P30/POBLer+Rv5X2xyyN2bp8D M1ccUZ7P6/jAJjbPJvahTewjm9jHNrH5NrF/2cQW2MQ+sYkttIl9ahNbZBP7 t01ssU3sM5vYEpvY5zaxpTax/9jEltnEvrCJLbeJfWkTW2ET+8omttIm9rVN bJVN7BubWIJN7L8eMf2MNler3t93l59hq9vS8yxa9XqOarf0bFv1euoeVbWe +p1Wf73qLF14P0Ejt32g+e69vNxtHAnzNN8Y+Fy8HGfdw6/3Mo6ED7VzPwZ2 VFJ3oRTfPpYX40j4SLN/5kO5rbXlrexqGyu1jkprK1/XGvestWtzZj1X3EPv 6zpsa60/n6q2e+H/JI0j4ePzcE44H8VRSZ2vnFnx/FkaR8J83/uEc/pynHUP v/zLOBL+5TF2cGjqMVNdW9f3bHN59dnkItnPchtHwoJKzgkOX81lUWMcCZ9Y 3idYjxW7Y6mqdpXF7I7Hs+nv58bs9ulM+3PYxM60P7s+z7Q/u+/p5/RnHAkL LWOHyr46vMTVr45qtKnuV98Wf6ktGkfCp+dp7GB3/F2o5XLfV+NIWOQbO5y3 l+Ose/hlXsaR8O+zuO7g0M6s/cVqh1Z1m3Nt67bP97aMI2Gx5Zxg1ptfG8t1 PF3exlrr6+Vi7cU4Ej7z8j7BYRPzVnxtL+62xpGwpJpjh3P91VHtlufyq+M8 938hfa3+T9g4Ej6/SK47WMuZHPe+UnUxjoSlvrHDL/JynHUP5+9lHAn/sYwd zN816++cna1tfete/OsaR8Iy3znhF3s5zrqH8/MyjoQvPN4neDvW7Jbt6uza VLWet/rqbO9M6irblrf1Kvu+vK3n8OLK1qusjzPZp6rWs6s3joTlv9LYobFl n375r45fabu/5leH11rjSPjyDMcOlR1zZ1t8ff86fRtHwgqPOcazkeOc9GL8 ey56sfZz9v05bGK/thw2sTOXcSR8dZZ/7+CZey4XO7Qza38ubd3+uejTOBJW ehk7OGxtjVrr7eIO2yVvPdjVeEYcVfTgbQ3PSGU9eNtvNVZ5D95+evZtvUV/ uZ+6cSR8fZ7nGB2V1F3o5XLZd+NIWOUxdnBYbC43tv3qa3mptDSOhG+qcR+j Z11l7aoT84yfbX/nKma3bz+3P4dN7Of2Z9fvz+3P7ns2joQE3xzjr/pynHUP Z/8yjoT/+v5W+rL3uX0OyGpxRHk+r+Fbm9gam9ham1iiTew7m1iSTWydTWy9 TWyDTWyjTSzZJrbJJrbZJrbFJrbVJpZiE/veJpZqE9tmE9tuE0uzie2wiaXb xHbaxDJsYrtsYrttYpk2sT02sSybWLZHTD+jrdZ8ue3XfjnOuoezexm57Vvt 4rvPxrM4KqnzlaqLcSSs0ez/5r/8q12twxK3X7dirV2f1V23Yq3Da611335O z2qto9Ja+3UdXmutP4Xq7pVdD55bqf53ZNencSSs9TgnWH+insVXd2nWGUdC ou99wgXzcpx1Dz/vZRwJ32n2Y2CHxXbH1M+1te+q2vv24ZfZB+NISPKdEy6o l+Osezjzl3EkrLO8T7AeN77Y5RMzjoT1lrHDr/nV4SX+y351XAD78Mt/NY6E DZfAfIJZ7I55X6m6GEfCRo/3CY4zWHIoS2fSi0PzXlf5kkPzXlf5krr+mfSi 7vGZ9OL4meudzZK6/eqsZxwJyV7GDlY7NPv4L23rvvzcfqx9+b4Xw8aRsMly TnCcIzlsYmcnxznuz9rruerZcU56Ob9y2MTMc8LmS+h9gl4cldT5in0xjoQt Zzh2cFS7pdn2TNr79uTX2BPjSNhayTnh5/x++da5+NYxjoQUL3OMDttlz6hn W2u997YVa+zaOqrcmnWp8rb263i2td8Lu0jVe2b/M/Gst/8pV9av9+jP/z9k HAnfW8YO1pf5HdvZro21rrL2Z7KuZ9yuH2/retsHb31527fq7LNnP2eyrrd9 tr6qEz+b7RpHQqrvusNF8XKcdQ/eX8aRsO0XHDs4Kqm7WMul8D0ZR8L2C+S6 g/nVccHsibkvF9L+nJ+vxpGQdonNJ5jlUjz/nK9iHAk7zsMco/n1XPZnyGET O3s5zkkvnnLYxC5MGUdCejWuO/h8ads4EnaexbVIa+xM1zP989Yzv4+ft55d D2fai/pdnGkv6s/u5/by85bUfdBfxpGQcYm+T9CLo5I6XykvxpGw6wIbO+hf HV7iv95XR7VbXoxfjSNht5f7GB02Mbt25nJ12p1pzG473ta123dv6/q+N3U/ jCMhs5I5RofHvxVrKi5XbGvGvdWY69jVO7wu2fdmfpf2L++13nv2vleVbcf7 T6Gi7Jcr++l7X6fqde22axwJe87h2MGhVd3G5/LlC2V/jCMhy3fd4aJ+Oc66 B/OckO37u8jLvu7cPgdkrziiPJ/X8INNLMcm9qNNLNcmlmcT22cTy7eJOW1i +21iBTaxAzaxgzaxQzYxl03ssE2s0CZ2xCZ21CZ2zCZ23CZ2wiZWZBMrtomd tImdsomV2MR+somdtomV2sT+ZxMr84jpZ7S9mve/+W+sfPXVXqq1Rm77Qbt0 58XM4qikzlfM97s5mu/97qXwcpzFusaR8KNWvTGwQ6u6za9h6/6dbZ/W/n6N 78Wbrft3tn1a+zOXjSMh13dOuGRejp+5nnEk5FneJ1iPFW8xz2PqTNatKubt eL7QY3b7f6624Rk/l9swX8aRsM8ydmistC3/WrHW0xVbWiPqWhVbVr9Pdb+q amlur/JI5VuvbB+q2rq5NbuWFffBe5/2/xccXmrt+rT/Xsxa40jIP4uxg6OS uvNVfNs898U4Epy+9wmX3Mtxhu2NI2F/JWMHh2YfP9e2bq+66/r27dztm3Ek FFjOCY7zIMc57k+V47z1bO37/GzDYRP7dWQcCQd+pTlGRyV1l1q50L9X40g4 6DF2uNC+OrzEL4yvjmq3vJC/GkfCIY9zgt3xa5ePvLXxVuet/kz69MxvP3df zrausv2qbp+V/Uyq26ddmzPtU38ZR4LLN3a4pF+OarQxjoTDlrGD3bFmZ8/j 2bfuxb2ucSQU+s4Jl/zLUUW9cSQc8TJ2cNjEvBVf24u7rXEkHL3Axw6+r+f/ q3EkHPsV71k6k+P3UikX4vdsHAnHPeYYHVr58aL/a8rq8jbWWl8vF2svxpFw opr3LJ2JHdqZtffZ3g6t6jbnwsaRUFTJ2MHhxZ5L1ri3Gus6nm3s1zH3tvLe KrawW8fhtaaqeu/9V96b9+/Jfrmy3rz/tL0tVef/QvnLOBKKz/J9gqOSuvNd fNs+N8U4Ek5eJGMHR7Vb/ppfHee5//Pz1TgSTp3hfYy+2KUXM46EEt8c42X5 clhsHAk/eYwdHJp67FTX1vU92/j6vLD7NI6E017OCQ4vUbu4t7Z2Nd7bVqyr rK1nbeVt1fqq2npbz1sP9nvkrQf779VbD/Y/RW892P//qaoH40govQz+LrKy 4qik7nIpxpHwv2r8rbSj0lojUllt5eta+/+561a/1lFprX3L87FXjkprq9ez o9Laij1469k4Esou83OCr5zL54BE1KivLdf0/zpp5f/N1WppV2i1xbau0Wp+ 5n74xRXaZ+J1+PBh7UrtN1o7EVl5hZ+Q1uX5QU/dUVss/9avnqZdWU87eN3m qzYkCtbUtN/VaF3e6xWaFvX5b7VlIbW1KfNra1Ob/k6bN+N3WsN6dbSUCXW0 kdrVWsFLV4uvNUTTOuJrf7H5GmLF37u/1tP8tNOfHEl9MD6m45PuNi3d8Vvc X8e5I2NFG/O/G2vUEl/LtFdFzbe1GghfJ8pr7tbj3V8f1B4QzQdqQ7Ugsa2n tRe0P2mDxL/DxfId4hWqtRZ6QUSGac+667UKbcS3VeuGTpnac1fVzB571RX6 Nyn+6y/+vUorK6vhXhY/CPG/a5g2QrtHe14bIv7Vexyunf1/Zu9XyOL5X+fX nn7DJmz7Xw/RUVf9R9a/Ql/6N+Px3yaqLrr/YpYaP5grNu1aWXVr33+X3X/i uDi7k0LFNiFaV/Gr3097ShusdRengMHaSyJ2fk4Kvv98//n+Ozf/nUl6+0Br JtrrqV9/1RDpv2KbK7RHRE1t7a/iDY6+uLxGQ7Es3ozUqGs2kF/1p2YZVp+k dYVNrIZNrKZNrJZN7Dc2sSttYlfZxPxsYr+1idW2if3OJlbHJna1TayuTewa m1g9m9jvbWL1bWLX2sQa2MSus4k1tIn528QCbGLX28QCbWIOm1gjm1hjm1gT m1hTj9gVNfSj4Aqxj4Zqot+gq9Bv0e/Q1ega9Ht0LboO+SMHaoyaoj+gG9FN 6GZ0C7oV3YbuQGHoTnQXuhv9Ed2D7kX3ofvRg6g7egg9jB5Fj6En0VOoH3oa PYOeRX9Cz6Hn0Z/RX9Er6FX0GnoD/Q39Hb2D/g+9i/6B/ok+QB+ij9G/0Kfo 3+hz9B/0BfoG/Rd9i9ai79A69D3ahvagbPQD+hHloXy0Hx1Ch9ERdAr9hMqk 9PO9qRqoFroS+aHaqA6qi+qh+qgBaih+Cw0FEAtEjVATFISaoeb0EkysBWqJ QlAr1mhNLBS1obYtsXDUHnVAEagT6kwvkcSiUBcUjbqibqwbQ6wHsZ7EYlEv ansTiyPWh1hfYvHE+qMBaCAahAajIWgo/Q0jNpzYCDQSjUKjWWMMsbHExhEb T2wCmogmocloCutORdOonY5moJloFprNunOIzUXzqP2I2HxiC4gtRIuoXUxs CVqKlqHlaAXrrkSrqE1Aq9EalIiS0Hq0kf42oS0ohXapxLYT20FsJ9qFMmmX RWwvsRyUi/YhJ2sUEDuIXKgQHUXHWbcInaS2hNhpYv8TShBnMv29rft9gVjS 3+nq70P8ZblKtvite7m2XKrjrrtaLl3jrqsnl+q7666VS9e56xrKJaPP6+WS w73cSC41cdc1lUs3uOuayaXm7rob5dJN7roWcqmlu+4WuXSru66VXGrtrrtd Lt0hlvzFec5YauuuayeX7nSv114udXDX3S2XOrrrOsmlzu66e+TSve66KLnU xV13v1x6wF3XVS51c9d1l0sPuet6yKWe7rpH5NKj7v3sJZd6u+sel0tPuNfr I5f6uuuekkv93HX95dIAd90zculZd90guTTYXfecXHreXTdULg1z170gl150 78sIuTTSvfSSXHrZvd5ouTTGvd4rculVd904uTTeXfe6XHrDXTdRLk1y1/1d Lr3prpsil6a6696WS++466bLpRnuunfl0nvuullyabZ7P/8pl953182VS/Pc 630olz52182XSwvcdZ/IpU/dvSySS4vddZ/Jpc/d6y2VS8vcdV/IpS/ddSvk 0kp33ddy6Rt3XYJcWu2u+1YurdWuEEPFGqLUFKWWKL8R5UpRrhLFT5TfilJb lN+JUkeUq0WpK8o1otQT5fei1BflWlEaiHKdKA1F8RclQJTrRQkUxSFKI1Ea i9JElKaiBIlygyjNRPmDKM1FuVGUYFFuEqWFKDeL0lKUW0QJEeVWUVqJcpso rUW5XZRQUe4QpY0oYaK0FaWdKOGi3ClKe1HuEqWDKHeLEiFKR1E6ifJHUTqL co8okaLcK0qUKPeJ0kWU+0WJFuUBUbqK8qAo3UTpLkqMKA+J0kOUh0XpKcoj osSK8qgovUR5TJTeojwuSpwoT4jSR5QnRekrylOixIvST5T+ojwtygBRnhFl oCjPijJIlD+J8pwopWVlZUPEv8+LMlSUP4syTJQXRBkuyouijBDlL6KMFOUl UUaJ8rIoo0X5qyhjRHlFlLG/0dzHRqI8GpLcx8Y6ubTBXbdRLm1yH5mb5dJW d12KXEp1122TS2nuuh1yaae7LkMu7XbXZcqlLPf2suXSD+66HLmU667Lk0v5 7jqnXCpw1x2QS4fcdS65VOiuOyKXjrnrjsulInddsVw65d6zErl02l1X6s5T NcT7dCN31eR9ek2tBqpF7ZXE/FBtVAfVRfVQfdQANUQBKBA1YrtNUBC1zVBz FIxaoJYoBLVCrVEoasPW2hILR+2p7YAiqO2EOqNIFIW6sG40sa6oG4qhXQ9i PVEs6kW73iiO2j7E+hKLR/3RADQQDUKD0RA0FA1jG8OJjSA2Eo2idjSxMcTG EhtHbDyagCbSbhKaTO0UNBVNQ9NZYwaaSe0sNJvaOcTmonnoI9rNJ7YALUSL aLeY2BK0lNplaDm1K9BKtAolsMZqYmtQIkqi3XpiG9EmarcQSyGWirajHbTb SWwXsUxiWcT2ohyUi/YhJypAB5GLngvRUWqPoyJ0knYl6DS1xvv0uu65Zf28 qJ8p9Z9qgIj8xr2slqtl62uI1ZeRBpZ2RuR6lhvJSBPa3CAjf6BNsIy0YD9u kZFbadNaRkLpJ0xG2tGmvYx0oE1HGfkjbSJlJIo298vIA7TpJiMx7n3RYw/L yCNy2XgfrUd6088TMvIk/cTLSH/aPCMjz9JmsIwMoc2fZeQFtjVCRkZq5s/n ZRn5q1z2F+cQIzKOfl6XkTdoM0lGJtPmLRl5mzbTZWQGbd6TkX+wz3NkZC77 86GMfMw+L5CRhfTzbxn5jH6Wysgyzfw5fykjX9FmlYwk0M+3MrKWNkkysp42 yTKyme8rRUZS5bK/eA9jRNLpZ5eMZNJPtoz8wPeVKyP7aLNfRg7Qj0tGCvm+ jsnICfbnpIyUaObP0HhfUov5w9/wvuQ3vC/5jVYLXYn8UG1UB9VD9VFDFIAa oSaoGWqOWqCWqBVqjdqgtqg96oA6oc5I/+001IVYV9QN9UA9US/UG/VBfVF/ NAANQoPRUDQMjUAj0Wg0hr0fR2w8mogm0W4KsaloOrUziM1Cs9FcNA/NRwvQ IrQYLUXL2NoKYitRAlqNElES2og2oRR6TkU70E7aZaIslINykRMVIBcqpOfj xIpQCdLHAgniN+JKsp9R9O81SESv4je+YrlWrnmdEg+U0Ub8Ruv/3iCjf1Da tpDRlkq/t8no7UrbtjIaTp/617tltKPSNlJGozRrvw/I6INK2x4y2lPZ38dk 9HHN+v33ldF4pd9nZPRZzdrvEBkdaon5ay/K6F8s2zJmefToGEssQHtNRl9X 2k6S0fLspZe3ZfQd2umvmTI6S2n7vox+YNmWMUujRxcobf8to59pZr7Q48tk dLnS9msZ/cby/fqL96JGNNHS1l+MuI1ostI2RUbLs5Nely6jGZZt+YvfDiO6 17K+MYrWo/lK24My6lLaHpPRE0pbfZRcV0RP067M/btyFXnoKvLQVeShq8Qa /lJ+xGqjOqguqsca9Yk1QA1RAApEjVATFISaoeYoGLVguy1RCLWtiLUmFora oLYonDXaE+uAIlAn1BlFoijUhf6iiXUl1o1YDOpBbU8US20v1BvFoT6oL4pH /dEAeh5IbBCxwcSGoKHUDiM2HI1AI9EoNJp1x6Cx1I5D46mdQGwisUnEJqMp aCqahqajGfQyE82idjaag+bSbh76iNr5xBaghdQuQovREtotRcuoXY5WoJVo FUpAq+llDUpESbRbjzaiTWgLSmHdVLQd7aDdTmK7iGWiLGr3Esshlov2UetE BeggcrFGIbGj6Di1RcROohJqTyPzOpafch3LT/O8jqXHfmuJXS3Xsl6/8tOs 16/8lOtXfnK96+WS9fqVn3L9yk+5fuWnXL/yU65f+SnXr/yU61d+yvUrP/fd NOb1Kz/l+pWfcv3KT7l+5adcv/JTrl/5Kdev/JTrV37K9Ss/5fqVn3L9ys99 TvOX16/83HfamNev/JTrV37K9Ss/5fqVn3L9yk+5fuWnXL/yU65f+SnXr/yU 61d+4t2MXjdCLo10170kl1527/VouWS9fuWnXL/yc5/D/OX1Kz/l+pWfcv3K T7l+5adcv/JTrl/5uc9e/vL6lZ9y/crPPbcXIK9f+SnXr/yU61d+yvUrP+X6 lZ/7zh7z+pWfcv3KT/vcvfWlcsl6/cpPuX7lp1y/8lOuX/m5z1f+8vqVnxjn 60uJcsl6/cJPuX7h557LC5DXL/yU6xd+yvULP+X6hZ/7PBUgr1/4Kdcv/JTr F35yHiBHLlmvX/gp1y/8lOsXfsr1Cz/l+oWfeDem93lcLlmvX/i57y8yr1/4 Kdcv/Lh+8Vven/2W92e/5f3Zb7UrkR+qzbp1iNVF9VB91AA1RIGoEWqCglBz FIxaoJaoFWqNQlEbFI7a8310IBaBOlMbSSwKdUFdUTcUg3qgWNQL9UZxqC+K R/3ZlwHEBqHB1A4hNhQNRyPQSDQKjUFj0Th6Ho8mUjsJTUZTaDeN2HQ0g9qZ xGajOWgumofmowVoIVqElqClbG0ZseVoJVqFEtBq1k1ESWg97TaiLSgFpbLG dmI70S6UibJQDuvmEtuHnOggcqFCdBQVoZOoBOkz+wnid7K2x4yGUfzdP5vW ovZ3Feq8l6ayxxss/ZTXt5S1IR5xo4TJ2na2fXeStZ0r7Kf+ekDWPlhhm3qJ lbW9bPo18r5e28+jT8ODZW35fLu1/EXWvlRhm/prnKwd79GnUd6UtW9VWFcv M2WtOSNhbWPMn+u1H3vEjX8Xy9olNv0GaF/J2q8r7K/+SpS1SR7rGX1vlbXf V9imXnbJ2kxN7dOoz5O1+cSs6xbK2qMVtqmXn0RtHVFbKqPGTMPvyGS/I3/9 jvz1O/LX77TaSL9nzFBdYvVQfdQQBaBGqAlqhprTcwtiLVEr1Bq1QW1Re9QB dUKdURTqgrqibqgH6ol6od6oD+qL+qMBfG+D0GBqh6JhaAQaiUajMWgc/Y1H E6mdhKagqWg6moFmodn0N5fYPDQfLUCLWGMxsaVoGVqBVqIEtBol0l8SsY1o E0pBqWgH2okyURbKQbnIyXYLiLlQITqOilijhJiRH5q4/1bH7jyi/x7q33e4 aHG18rvs+bttv+6NsvebvLYJlS3a2K6vvzrKFn/0us2uskU3y3pqm8dki8e9 7v8A2WIg2/Vs84Js8aLt96G/xsoW4zz6KG/zpmzxluX7U9vMki1m29QZ5V+y xSde+1gmW1hnpNV238oWa4l59rNFtkix2Qej3W7ZYk+F7Zsvp2xRYNOHUU64 f6fqiLFNxe/VOP9fzfn/akYyV5MJriYTXE0muJpMcDWZ4GoywdVkgqvJBFcz krmanKD/vZOpQNQINUFBqDkKRi3Yg5bEQlArFIraoLYoHLVHHVAn1BlFoij2 oAuxaNSN2hhiPVBPFIt6oTjUB/VF8ag/2xhAbBCxwWgItUPRMDQcjUSj0Gg0 Bo2l53FoArUT0SRqJxObgqai6WgGmolm0ctsNIfaeegjNB8tYI2FxBYRW0Js KVqGlqMVaCVKoJfVxNagRJREu/VoE7VbUApKRdvRDrQLZdJfFtpLbQ7KpdaJ CtBB2rmIFRI7iorQSVTCGqeJmTO5dZnJ1eN13TO5RvxKd9yYza2rec7m6rFr LLFr5VrmLK7R2/X0Zp3BrcsMrtHqBlqZs7dGXD93GHHrzG1dZm6NVq1pZc7a GvF29Gqdsa3LjK3RqiOtzNlaIx5Fr9aZ2rrM1BqtutHKnKU14o/Q66PueC+5 ZM7QGq2eoJU5O2vE+9OrdWa2rvaspmeJQbLVYFqZs7JG/AV6tc7I1mVG1mj1 Mq3M2VgjPo5erX9JUJeZWKPVJFqZs7BG/G16tc7A1uUvCIxW79HKnH014nPp 1TrzWpeZV6PVAlqZs65G/DN6tf7FQF1mXI1WX9LKnG014gn0av1LgbryjqpE 2SqJVhvc/y82yvhmerXOsNZ1z5QEaNtkqzRa7XTHM2Q8k16tM6t1uTPcaJVL K2N06ZTxA/RqnVGty4yq0eoYrczZVCNeQq/WmdS63HF1De8/ruH9xzW8/7iG 9x/X8P7jGq02qoPqIvNK9zW8/7iG9x/X8P5DP7eYCkSNUBMUhJqh5igYtWC7 LYmFoFaoNe1CibVBbVE4ao86sG4EsU7EOhOLRFHUdiEWjbqibrSLIdYD9USx qBfqjeJQH9QXxaP+bG0AGkjtIGKD0RBqh6JhaDgagUaiUWg0GkPPY4mNIzae 2AQ0kdpJaDK1U9BUaqcRm05sBrGZaBaajeawxlw0j9qP0Hy0gHYL0SJqF6Ml aClahpajFfSyEq2iNoHYarSG2kSURO16tBFtQltYIwWlou1oB9qJdtFLJsqi di/KQbm024ecqIB2B4m5iBWio+g4KkInUQm9nCZmvD8Kdj91w3yPY5SKoz39 p91F05/GYT9irbie93a3y63eUWlfeuksW0ZW0q+x/LBs+YjXfTL/7S9bDrCp U/99Ubb8i9c+zTJBtpxo05e63ruy5XtKX3ZtF8iWCz3qK37/X8mWX3vdtvna KFtustme2na3bLmnwnb9PXxQtlTvNbPbDyPv1iPv/p68+3uy7e/Jtr8nx/6e HPt7cuzvybG/J8f+nhz7e3Ks/vwSU41QE9QMNUctUEvUCrVGbVBb1B51QJ1Q Z/Y5ilgXYl2JdUM9UE/UC/VGfVBf1B8NYBuDiA1GQ9EwNAKNRKPRGDQOjUcT 2dokYlOITSU2Hc2gdhax2WgumofmowVoEVqMlqJlaAVayXYTiK1GiSgJbWSN TcRSUCragXaiTJSFcugvl5gTFVDrIlaIjqMiVIKMed+WWn2v875q0X8GMaL1 tR6/tVUXb2cw434ifQ/utK33PFNEy9Zdq7XdJ2TrJ+nH2xlK/3eobD3Mpq+K +/aabP16hb7svo8ZsvVMm7qK630iW3/q9Xuzbm+VbJ1giXn+3Mr/3Spbl1/X q2x/cmTrXJs6a99GMeZx64tRVcW+jHncazmfX8s46lrO59cyerqWM/u1nNmv 5cx+LbO317rvnjPUgFhDFIACUSPWaEIsCDVHwagFaolaodYoFLVB4ag96oAi UGcUiaLY0y7EuqJuKAb1QLGoF+qN4lBfthFPrD+xAcQGocFoCBrKGsOJjUAj 0Sg0Bo1F49B4NBFNYhuT0RRqp6Hp1M4gNhPNRnPQXDSPdeejBdQuRIvQErQU LWPd5cRWolXUJhBbjRKpTSK2Hm1EW1AKSkXb0U60C2WiLLaWg3LRPto5iR0k 5iJWiI5SW4ROohJkZJ7a7qfv6WeJK+SScQdtLXerBtpVtLI+DaaB5Wkw+vP7 POdf9Zj172+ul2tZ514bKHOvDZh7baDcOdtAuXO2gTL/2kCZf23g/sscI26d f23gvmvWiFvnXxsod8w2UO6YbaDMwTbQoujBnIM14g+wReudsg2UO2UbKE96 acA8rNHD4/Rg3iVrxPuyResdsg2UedgGyh2yDbhD1uhhKD2Yd8ca8RfZ4kh3 /CW5ZH2ySwPlztgG3Blr9PA6PVjnYhswF9tAuSO2gXJHbANlPraBMh/bwH3l xohb52MbuO+GNeL62cFfzsc2kHfkzJdL1jthGyhzsg2Yk23AnKwRX8YWv3TH V8gl6x2wDZQ7YBswL2v0kEgP5t2vRnwDW7Te+dpAmZdtwLyssWTe+Wr0kEEP 5l2vRjyLLVrveG2g3PHaQLnjtQF3vBo9uOjBOjfbgLnZBsqdrg2UO10bKPOz DRgnXsf7iut4X3EdI8breIdxHe8wrtNqI/P68HW8w7iOdxjXMXa8TmuAGrJG ALFA1Ag1QUGoGWqOglEL1JJthBBrRaw1sVDUBoWj9qgDikCdUGcUiaLYWhcU TW03FIN6oJ4oFvVCvVEc6oP6srX+xAYQG0hsELHBxIagodQOIzYcjUCj0Gg0 Bo1F49B4ep5AbCKxSWgytVPRNGqnE5uBZqJZtJtNbA6ai+bRbj5aQO1CtAgt RkvQUrSMXpajFdSuQgnUrkZrqE0kloTWU7sRbUJbUCrajnagnWgXykRZbG0v ykG5tHOiAnSQdi5USO1RYseJFaGTqAQZc6eh7icHe46UvBd/98+2r/sMU7Gu en3YraOOCO+Re3Zvtfo163vLteI86uzWL4/9Wa71gtf9sSsT5VqTPNr7a5X1 8b5c64NK982zv+VyrRU2bbxva7Nca2slbSr2kyvX2ufRt53Li3FXbEOR94xl YzTtT9bzJ9f5k+v8yXD+jKH9yWv+5DV/8po/I2dju4YCiTVCTVAz1By1QC1R K9QatUFtUXvUAXVCnVEU6oK6om6oB+qJeqHeqA/qi8xxsD/jYH/Gwf5c9fNn dtSfTOPPs578Gf36k1/8yS/+ZBV/xrz+jHn9mR31Z6Trz5U7fzKIPxnEn9lR f/KGP9nCn9lRf2ZH/ckW/uQIf3KEP39n4c/sqD/X3PwZ1erv6EytpjaRWBLa iDahFJTKujuI7USZKAvloFzWdRIrQC5USLvjxIpQCTLGqPo7wvLZ0ZoyUv4U JD8ZqU2bq90/iwBlXFr+u23UXa9V/B2/Qfbk+fSjAJ5+FCCffhRQ4elHAe6n Hxl9hslIO9q0lxHPpx8FVHj6UYAWxb7eLyOeTz8KcD/9yIg9LCPl19R6yYj5 9CN/+fSjgApPPwqo8PSjgApPPwqo8PSjAPn0I/01QkZG0uZlGfkr/YyVEc+n HwWI8aP5/2CSjJjPj/CXTz/Sx41mm+ky4vn0owD59CP9NUdG5tLmQxn5mP1Z ICOeTz8KkE8/0l9LZWQZ+/OljHg+/Ug/Qs0238pI+d28STLi+fSjAPn0I72k yIj5fIkA+fSjgApPPwqo8PSjAHlvjv7KlZF97M9+GfF8+lFAhacfBVieN3FS RsynH5ljvQDGete7fx8N1SBWC12J/FBtVAfVRfVQfdQANUQBbDeQWCPUBAWh Zqg5CkYtUEsUglqh1iiUPWhDrC0KR+1p1wFFUNsZRaIo1AVFo66oG4pBPVBP FIt6sQdxxPoQ60ssHvVHA2g3kNggYoOJDUFD0TA0gjVGolHUjkZj0Fg0Do1H E9BENAlNRlPZ2jRi04nNQDOpnYVmozm0m4vmUfsRmo8WokVoMVqCltLfMrSc 2hVoJbWriCUQW00sESWh9Wgj2oS2oBT6S0Xbqd2BdqJdKAvtRTn0kov2Uesk VoAOUusiVoiOUnscnUQl6DQyxn+1tUBljjuQOW5j6Up33VVyyTrPHWiZ59aX rE+NCLQ8NUL/LBnP+W495tDK32M0lWtZnxIRqMx1Bypz3YHKXHeg8pSIQOUp EYHKUyICladEBCpz3oHKnHegMucdqDwlIlB5SkSgcu9xoPKUiEBl7jtQmfsO VOa+A5V7kAPd70/85VMiApWnRAQqT4kIVObAA5U58EBlDjxQeUpEoPKUiEDl KRGBylPOA5W58EBlLjxQmQsPVJ4SEajcmxyoPCUiUHlKRKD2pnt7U+SSdU48 UD4fa7pcsj7lPFB5SkSg8pSIQDHW1tebK5es9yoHKk+JCFTmxgOVp0QEKk+J CFTuWQ6UT3/8Qi596a5bIZdWuuu+lkvWOfJA5d7lQO5dNpaS3HXr5JL1KRGB ylx5oDJXHqjMlQcqT4kIVJ4SEag8JSJQuZc5UHnKdaAyZx7I/czGkvUpEYHK Pc2BylMiApWnXAe658795dx5oDJ3HqjMnQfyfsrBLIKD91MO3k85eBfl0Gqj OqguqofqowaoIQpAgZq/VCPUhNog1Aw1p10wsRaoJQpBrVAoakMvbYmFo/ao A+qEOrNuJLEo1AVFo24oBvWgl57EYlEvFEe7PsT6Eosn1h8NQIPQYDQEDaWX YWg4tSPRKDQajWGNscTGoQloIpqEJqMp9DKV2HRiM4jNRLPQbNrNITYPfYTm owVoIVpEL0uILUXLqF1ObAVaSW0CsdXE1hBLJJZEbD3ahLagFJSKtqMd9LeL WCbKQntRDspFTnopIHaQmItYITqKimh3klgJOo2M9z8R7k+w08875pjPe/Gs 93f/dEeKHhpXul51+vPXKvZf+bqPyL1/tMo+7OL6a5jsYbhNXfX2+y3Zw9sV tuGveba172eR7GGxTVtrH9772SB7SLbdnvVl9/3pr32ih7aiB6eX7VmX1f6N ee7GZKjGjO4bk40ak40ak4Mak4Mak3n0Y8hUIGqEmqAg1Aw1Ry1QS9QKtUZt UHvUAXVGUagL6oq6oR6oF+qN+qL+aAAahAajoWgEGonGoHFoPJqIJqEpaDqa gWajuWgemo8WIPPs3JhzcmPmoBsz89xYS6DdamKJKAltRCkoFe2kl0xiWSgH 5SIncqFCVIRKkDGj3FlrUu0zon3Rv+exopemla5vV2f321vZtrz9lhrP19O/ kyeq7MPaj2d/o2Qvo71ss3r79J7s5R8V1rVbtr6s8RWyl5Ve1rXbdsW+02Uv Gbbr2+2LXf9FopeGopeTFeqNM2JTzohNec/elPfsTXnyblPevTflfNmU82VT 3r035W8lmnLmbMq796bc76J/XqsZC0SNUBPaBaFm1DZHwagFaolCUCvUGoWi NmyjLbFw1J7aDsQiUCfUmXaRxKJQFxSNuqJuKAb1oL+exGKJ9UK9qY1DfVBf 2sUT609sALGBaBAaTLshxIYSG0ZsOBqBRqJRrDGa2BhiY4mNQ+PRBDSRNSYR m4ymUDuV2DQ0Hc2g3Uw0C81Gc1hjLpqHPkLz0QK0EC2iv8VoCVpKu2VoOVpB u5VoFbUJaDW1a4gloiS0Hm1kjU3EtqAUlIq2ox2suxPtojaTWBaxvSiH2lxi +5CT2gJ0kFoXKqT2KLHjqIjak8RK0Glq9TFFuvg9jXpZ0wbXGF9T+82CWtpv ZtYcULOZ8Nxa9WqtrDGg5qwafWsFifhI4UE16tXqUmt2rd7CU2suqTW3Vt9a nWuk1OhcQ/+E7CBxHvX81OwbbGLNbGJ/sIk1t4ndaBMLtondZBNrYRO72SbW 0iZ2i00sxCZ2q02slU3sNptYa5vY7TaxUJvYHTaxNjaxMJtYW5tYO5tYuE3s TptYe5vYXTaxDjaxu21iETaxjh4xfU4uSLNeGwhSrg0EcW1AP/aD3NcGjLj1 ukCQcl0gSHmadJBmfZp0kGa8izCuDwRpDq38XUVTGSt/mqN5XSBIuS4QpFwX CFKuCwQp1wWClPvgg3gOSZD8S6/2csl6TSBIuSYQpFwTCFKuCQQp98IHcS98 kHI9IEh7yL2tHnLJvB5grKNnYiNufWJ0kHItIEi5FhCkXAsIUq4FBHEtwOh9 ML1brwMEKdcBgng2ibHOS3wX1msAQfIzMF6RS9ZrAEHKNYAg5RpAENcAjN7f pHfr/H+Qck98EE+JNtYx74kPUub+g5QnRAcpc/9Bytx/kDL3H6TcFx/kzq5G 3DrvH6Q8HTqIeX9jna9ZxzrnH6TM+Qcpc/5Bypx/EM8sMZbMOX+j9638jKzz /UHKfH+Q8tySIJ5bEqTM9Qcpc/1Bylx/kHJ/fJAy1x/EXL/ReyG9W+f5g5R7 5IOY5zfW0Z+dacic479BM++ZuIHxwg2MF25gVuUGxgs3aLVRHVQX1UP1UQPU EAWgQNQINUFBqBl72pxYMGqBWtIuhFgr1BqFojaoLQpH7emvA4qgthPqjCJR FOqColFX1A3FoB5sLZZYL2K9URy1fVBfFE+7/sQGoIFoEBrMGkPQUGqHoeFo JO1GERtNbAwaS+04NB5NQBPRJDQZTUFT0TQ0na3NQLPQbNrNQXPRPPQRms+6 C9BCahehxdQuIbaU2DK0nNoVaBVKQKvRGpSIktB6tJFtbCK2BaVQm4q2U7sD 7US7aJdFbC/KQbloH3KiAnQQuei5EB2l9jgqQidRCWvo7/71e8Kaadb7MPW6 Zu77MPUzYDP33woad2PWEUvm3Zh15JrqJ1PqLcrvmND/XzTTyj+X0iz+8v9T M49P6DLKLbIf807M2+SWQmkRJluEy0h7uafWJ681k09e09f0vBezmRZFX/fL 1ub7nGby+dfd5DbMOzJ7yDXVT6PUW5jPPH1Crm/cjdlX9huvmT9jz3symyn3 ZBqth2j+speh7po/y228IFu+KNccSV8vyxZjZGSsXN+4K/M12e/r7MUbbHOS jEymr7dka/Mpa80s72D0bRjvYIznautrqp9Oqbf4QEY+lOtbn6zWTD5ZTV/T 8x7NZso9mkZr82/4msnnrH4pt2Heqfm1XDOBvr6VLRJlJEmub9yluUH2m6yZ x4XnvZrNlHs1jdbp/CyMecddchvmHZtZcs0f6CtXtjA/FWy/XN+4W/Og7NfF z6JQrucv79lsptyzabQ2n6LWTH5SWKmMm59HoY+YA6RqoStRbVQH1UP1UUMU gBqhJigINUPNUTBqgVqiVqg1aoPaovaoA+qEOqMo1AV1Rd1QD9STn1ovYr1R H9QX9UcD0CA0GA1Fw9AINBKNRmPQODQeTUST0BQ0FU1HM/jeZhGbjeaieWg+ WsC6i4gtRkupXYZWULsSJaDVKBEloY1oE0pBqWxjB7GdKBNl0S6HWC5yogLk Yo1CYsdRESqhnZEnu7nnoCpeWQjwEqu8Xv85zRQ93ljlup59/Jz21Vm3vO45 +d0+X+3+qtqnabLH6TbtPde124512Xh9KXv8SlnX/vvxvt/Wot9XFi16zPJS b7d/dv0bceNq0o2cl29kdHgjZ+gbOUPfyOjwRvc7LEN1UF1q6xGrT6wBaogC UCBqhJqgINQMNWcbwagFtS1RCGpFu9bEQlEbatsSC0ftUQcUgTqhzigSRaEu bCOaWFdi3YjFoB7U9iQWS6wXsd4oDvVF8ag/GkAvA4kNIjaY2BA0FA2j3XBi I9BINIp2o4mNQWPRONpNIDaR2CRik9EUNBVNQ9NZdwaxmWgWmk27OcTmonnU fkRsPrEFxBahxWgJWsoay9BytIJ2K9EqlIBWs8YaYonEktB6ajeiTWgL7VKJ bUc7qN1JbBfKpDYL7aU2h1gusX3IiQrQQeRChfRylNhxdBKV0O40Mu43q+2+ tqKf266QS9Y59WDlfvtg7rfXewjWrqYH65x6sDKnHqzMqQdrxnn1erlkfcZM MM+Y0efWgzXrJyXdKGPWT8S4Ra5lnVMPVubUg5V77YOVe+2DlXvtg5VRZjDP 9w5W5tSDlTn1YOU++2DlPvtgZV49WLnPPli5zz5YecZMMM+YCZZ3ivSRS9Z5 9WDm1Y119DOTEbfeXx+s3F8frMyrB7vPSP5yXj1YeeZ3sHJ/fbAytx6sPPc7 mOd+Byvz6sHKvHqwMq8ezLx6sDKvHqzMqwcr99UHK/fVBytz68HK3Hqw8syZ YGWkGuz+7A8jbr2nPli5pz5YeeZMMOPVYOV++mDlmTPBytx6sDK3HqzMrQcr c+vByv30wcrcerB7ZsqIW+fWg8UYVv8Od8ilne66DLnObr5D69x6sPLsmWBl bj1YmVsPVubWg5X76IOV++iDmV83tlzM3lrvoQ9W7qEPZmR7E++gbuId1E28 b7qJ9003abVRHVQP1UcNUEMUiBqhJigINUPNUTBqwT63JBaCWqHWKBS1QeGo PeqAIlBnFImiUBfUFXVj/2KI9UCxqBftehOLQ31RPOqPBrDuIGKD0RA0FA1H I9BIehlFbAwai8bRbjyxiWgSmoymoGloOpqBZqLZaA6ay3bnofnULiC2kNgi YkuILUXLqF1ObCVahRLQapSIktB6tBFtQSlsLZXYdrQT7UKZKAvl0EsusX3I iQ4iFypER1ER/Z1EJdQad3jGuu/bMPO6Ufw9XNnYza74u3+uC0TPN9vUnWlf 3seHVfVZ2b6Xx1+SP4WXbfvz1kdl34f5mid7/simvV2/3rbjuT/G38brPW+2 qav+92C3Lf2abaDouchjPeNljMFvJoPczMj7ZrLFzWSLm8kWN5MtbiZH6MeG qUaoCWqGmqNg1AKZ11ZvJjPcTGa4mcxwM/ngZsbMN5MPbiYf3Mz4+Gbywc1a FOqCuqEeqCfqhfqgvqg/GoAGocFoKBqGRqLRaAw/g3HEJqJJaAqaiqajGWgW mo3msY35aAG1i9BStAytQCtRAlqNElES2oRSUCp7sINYJspCOSgXOVEBcqFC VMQ2SogZ58ze7nvYqv7draqu4u+//lNZInq/xaau6t9dz2Xr725l7f01+zZ2 7SrWvyJ/Iq9Wui/e9tu6fevLrFsoe1/k0bay/fTWf8X2+vNDeone0yvtw9s2 Pfc9QPnXOFfewrnyFt5t3yLOmv5SVxLzQ3VQXVQP1WfdBsQaogAUiBqhJigI NUPNUTBqgVqy3RBirVBrFIraoLYoHLVHHVAE6oQ6o0gUxb50IRaNulEbQ6wH 6oliUS/W6E0sDvVBfVF/1hhAbCAahAbTbgixoWgYGo5GoFFoNL2MITYWjaN2 PLEJaCKaRLvJxKaiaWg6moFmolloNppDz3PRPDSfdguILSS2iNhiYkuILSW2 DC1HK9AqlMC6q4mtQYkoiXbriW0ktgltoTYVbUc7aLeT2C6USW0Wsb0oB+XS zkmsAB1ELlSIjqLj9FKETlJbQsycfQxh9lGPh/BJgiHK3bwhmn79xIhb7+YN YebRaFWfVtZPFAzRrqdX64xjiPJU6xDtBlqVP+lDvwfcc9ZRj92qlZ+Nb5dr We/gDeEO3hBlpjFEmWkMYaYxRHmKdYgWxXdinWUMUT5JMIRPEgxRPkkwhE8S DFGe4hGifJJgCJ8kGKJ8kmAInyQYotyxG6LcsRvCHbshyicJhvBJgiHKrGKI 8kmCIXySYIgyoxjCjGKIMqMYojy9OoSnV4conyQYwj0uIcpsYojy5OoQPkkw RHlydQifJBiizCKGKLOIIXySYIhyd24IT60OUe7ODVE+STCETxIMUT5JMERL oFfr7GGI8kmCIXySYAgzh0Z8M71an8IRonySYIh75tCI73THM2Q8k7h11jBE +STBED5JMIQZQyN+gG1bZwtDlKdVh/C06hDlkwRDuAcmRLkHJoQ7cW/lvcut vHe5lRHfrbx3uZX3Lrdq5rXWW3kXcyvvYm7lXcytvIu5lXcxt/IuRr+qYCoQ NUJNWDeIWDPUHAWjFqglCqGXVqg1taGoDWqLwlF71AFFoE6oM4pEUWy3C4qm tivqRm0MsR6oJ4pFvVBvFIf60F9fFE9tf2IDiA1Eg9Bg2g0hNhQNRyPQSDSK dUcTG4PGonG0G09sAppI7SQ0GU2h3VQ0DU1HM9BMNAvNpr85xOYR+4jYfGIL 0EK0iHaLiS0htpTYMmLL0Qq0Eq1ijQS0mto1KBEl0W492kjtJpSCUtF2tIN1 dxLbhTKpzSK2F+WgXNrtI+YkVkDsIHKhQtodJXYcFaGTtCtB/9P08128+y/G 1BFdVaNHb3V29f7u/yurxVZuq3Jdzz7sRpqeI0vPujPdd+s63uv/Ln9Sb1ba v93+eb4qW3el3MoqL20999VuvyvbhlGn3y/aWmzlgE2d/T6bo/fbyIC3kfdu I+/dptVGdVA9VB81RAGoEWqCmqHmqAVqiUKQmbtuI3fdRu66jdx1G7nrNjLW bWSs28hTt5GnbtOiUBe20ZVYN9QD9US9UG/UB/Wlv/7EBqBBaDAayhrDiI1A I9FoNAaNQ+PRRDSJnqcQm4qmoxloFpqN5qJ5aD49L0CL0GLaLUXL0Aq0EiWg 1SgRJaGNaBNKQaloB9rJXmUSy0I5KBc5UQFyoUJ0HBWhErZm3AVa3/2Xudbf 29/I6FWa9fe1jozWVX53r5XR65S2gTLaSOlX/xsJ/S8/7f5Gwiy3yTa3W7bh We6WvXdU4pEyWv5Uav31gIw+qLTtIaM9lX4fk9HHWV//t6+Mxlva+rvHhXr0 WWU/h8joUKXfF2X0L8o+jJbRMUrb12RU/azASTI6WWn7toy+o/Q7U0ZnKfv7 voyqn3YwX0YXWGLGXzDo0c+UfpfJ6HJlH76W0W8s2/IX74CMaKLSdoOMJmvW n1mKjKYqbdNlVH02SpaM7mVf9ZIno/m0018HZdSl9HtMRk8obfU7NuqK6GnN /CkY+ed2/hbydkZgt5N/bmfcdTuZ6HYy0e1kotu1+qgBaogCUSPUBAWh5igY tWD/WhILQa1Qa9qFEmuD2qJw1B51QBGoM4pEUWyjC7GuqBuKQT1YI5ZYL9Qb xaG+KB71RwPQIDQYDUFD0XA0gn0ZSWwUGkPtWGLj0Hg0kXaTiE1GU9A0NB3N QDPRbDQHzUXz0Hy2uwAtRItotwQtRcvQcrQSrUIJaDU9J6IkatejjdRuIZZC LBVtp3Yn2oUyURbKQbloH3Kig2zDhQqpPYqK0ElUwhpGpqztfjaFfta4Qi5Z 7xcNVe4XDVWezxzKzK3eX6h75taIW+8XDVXuFw3VjLPT9XLJOnsbarlfVF+y Pqs5VHlWc6hmfSZDqOWZDPqTNso/G8KYydVjd1hi7eRa1lncUOU5DKHKcxhC lXtGQ5V7RkOV2dxQ5Z7RUOWe0VBlRjeUGd1QZUY3VHkWQ6jyLIZQ5Z7RUOVZ DKHKzG6oct9oqHLfaKhy32io8vmEoXw+Yahyz2iocs9oqPJM5lDleQyhzPIa /elnDiNufR5zqPIZhaHKfaOhykxvqHLfaKhy32ioct9oqHLfaKjyTIZQPqvQ 2CtzxjdUuW80VLlvNFSZ9Q1VnskQqn3p7m+F7O9rfmrW+0ZD3WcUfznzGyo/ lyJRLlnvGw1V7hsNVZ7DHKrMAIcq946GKs9lCFVmgUO5dzRUmQUOVZ7LEKrc Oxqq3Dsa6r531F9+bmEon1sYqtw3Gqo8lyFUeS5DqHLvaKgyIxzKjPAdjIfv EO9H/KVqEbsS+aHaqC6qx7r1iTVADVEA7QKJNUJNUBBqhpqjYNQCtaTnEGKt UGsUitqwRlti4ag96oAiUCfUmV4iiUWhLtRGE+tKrBuxGNQD9USxqBeKQ31Q XxSP+rO1AWggtYOIDUZDqB2KhqERaCQahUajMWgsGofGs7UJxCYSm0RsMpqK pqHpaAbrziQ2C82mdg6xuWgetR8Rm09sIbFFxBYTW4KWomVoOVrBuiuJrUIJ aDXtElEStevRRrQJbWGNFGKpaDu1O4jtRLtQFu32EsshlktsH3KiAtodRC5U SLuj6Dg6iUrQadY1rnAPcT+jyzqyrH7x9/jX0xXb6/9fdoothnntq7I+PON2 269Of9bv9Uz6rLzNP+VP832v7ez2ydt2vO2jNZ4qtthHbHG7TT9V7X9l+1S+ bIyww8hoYeSxMPJYGNkrjHF1GOPqMLJXGDlL/79vqhFqgpqh5qgFaolaodYo FLVBbVE4ao86oE6oM4pCXVBXZF51DCPHhJFjwrhjKoxRchiZJYzMEsbYOIyx cRhj4zDGxmHkjjByRxi5I4zcEUbGCCNjhHGVMIxxcBgzvGFkhzBGv2FkhzD+ +jKM0W8YmSCM0W8Y5/8wxrxh3NcUxn2wYYx0wzjrh3GuD+NcH8YMbxhn+DDO 62HM8IYxwxvGFbwwzuZhnM3DOIeHcQ4P48wdxpk7jLFsGGPZMMayYZyvwzhL hzHDG8YMbxhX4cI4I4cxgg3jjBzG5xK2VZ6HY0TUzyWsIyK/k5GrZQvrk3D0 /tqK94jG+9q2fOas0bL8iTiNZL317qK28u4ivaXnJxa29fjEwgARsY5KzRIm 69ppFc8kHWVPnk/Faat5PhWnLU/FaWt5Ko7eMoaWD8t643MKY+V6vfhee9Py CflzMz+t8CnZwnwujr98Lk5byyzxYBkZQi9/lhHziTjGXUN6vy/JyMuyhfWT Co29Mu8Yamu5Y0hvqT4TR683Zo7flOu9pZn/P8o/LWC63OoMueZM2UJ9Jo4e mcu+fygjH/P9LZAR9Xk4er9LZGSpbLGMFl/KvfpKM//ffO3ub5VsqT4PR6+3 3hnUVt4ZpLdcT8tkuVXziThbZYvyWeY0GUnn+9slI+aTcPy1bBnxfBZOW/kJ PAHykwvbKp9caOyV+TS+tu7PgzafhdPW4/ML9foS9/JPcj39c3sNmaO+dsxC t2MWuh3Zsh1jvXZky3Zky3aM+tqRN9uRN9uRN9tpASgQNWK7TVAQtc1RMGqB WqIQ1Aq1RqGoDWrL1sKJtUcdUATqxBqdiUWiKNQFRaNuKAb1QD1RLOrF1uKI 9UF9UTzqjwagQWgwGoKGso1hxIajkdSOIjYajUFj0TjWmEBsIpqEJqMpaCqa Ti8z0ExqZ6HZaA6ahz5C89ECtBAtQkvQUra7DC2ndgVaiRJot5rYGpRIbRJa T+0mtAWl0C4Vbad2B9qFMlEW2otyUC5y0nMBsYPIRW0hOoqKaHcSlaDTyBil 1XY/+Vg/A10hl6yz2uHuWW1/Oasdrsxqhyv3I4cr9yOHa9fSu3VWO1wzzn7X yyXrrHa4Mqsdrsxqhyuz2uHKrHa48qThcM36VIRwrfypCPoznj1nt/WY8ZRh I3a3XMs6qx2uzGqHK7Pa4cqsdrgyqx2uzGqHK09CCFeehBCuzGyHK/cqh3Ov crgyqx2uzGqHK7Pa4cqsdrgyqx2uPe/+fofKJetThsOV+5bDlZntcGVmO1yZ 2Q5nZtvY49fZY+vTEMKVme1wZWY7XJnZDueTBo3+9HONEbfOaocrs9rhyqx2 uDKrHa48aThcedJwuDKzHa7MbIdrn7v3Y6lcss5shytPRQhX7mkO18x7msOV e5rDlScihCsz2+HK04bDlScihPO04XBlVjtcmdUOd89q+8tPFwxXPl0wXJnZ DldmtsOVme1w5dMFw5WnIoQr9zmHy09nPiKXjrmXjss9LmaPrTPb4cpTEcJ5 j3Mn8wB38h7nTt7j3MmnlNzJu507tdqoDqqL6qH6rNuAWENiAcQCUSPUBAWx RjNizYkFE2uBWqIQ1Aq1RqGoDWqLwtlGe9SB2gjUCXWmXSSxKNQFRaOuqBuK QT3oryeKpbYX6o3iUB/Ul3XjifVHA6gdSGwQscHEhqCh1A4jNhyNQCPRKDQa jaGXscTGofFoApqIJqHJaAr9TSM2ndgMNJPaWWg2tXOIzUXzqP2I2Hy0AC1E i1hjMbElxJaiZdQuRyvQStqtIpZAbDWxNSgRJaH1rLGJ2BaUglLRdrQD7aSX XcQyURbai3JYIxfto9ZJrIDYQeRChbQ7io6jInSSNUrQaWS83xrl/gQJ4/1G ZTOknsWzbVXtK66v/38rFFu/q9J17erstnem+2tXV1Wf1u16+7fyffhM/sQ/ V9rb9eHp6uxjZfurlwKx9VZi6wdt2tjvvzErfhfZ8C7mwu8i391FvruLLHcX Y/q7GNPfRR67izx2F6P2u8hUd5Gp7iI/3UV+uousdBdZ6S4tHJlZ6S6ehX8X WekustJdjMvv0qJQF9QVdUM9UC/UG/VF/dEANAgNZq+GEhuBRqIxaBwajyai SWgKmo5moNloLpqH5qMFaBFaipahlSgBreZ7SySWhDaiFJSKdqJMlIVyUC7b cBJzoUJUhEqQMf88xv1ZOPa/Md5+k6r6zatu8Xf/vE6KPbi72uv/nN/8quq9 /8bbb9fT3vap8n34Qv70v1T6qOp7qE47z/31tv5RsQdNxB4c99qXcca7mzPe 3bz/v5v3/3fz/v9u3v/fzfnwbp4rezfv/+/mzHg3Z8a7ef9/N+//79YCiAWi RtQ2IRaEmqHmtAsm1gK1RCGoFWqNQlEb+mtLLBy1Rx1oF4E6UdsZRaIo2nUh Fo26om4oBvVg3Z7EYlEv1BvFoT6oL73EE+uPBqCBaBBrDCY2BA2ldhix4WgE GolGodGsOwaNpXYcGo8moIloEutOJjaF2FRi04hNJzYDzaR2NppD7Vw0D32E 5qMFaCFaRH+LiS1BS9Ey2i1HK9BKtIo1EoitJrYGJVKbRGw92kjtJrSF2hSU irajHWgXykRZ9LeXWA6xXGL7kJPaAmIHiblQIbVH0XFURLuTxErQaWTOt0Yo 860RzLfqrSLcf3VjxK1PnI1wn+OMuPWJsxHKHcQRylxrhGacYa+XPTSiB+vV 2Qie/RChzLFGKHOsEcocawRzrEYPt9OD9amzEVr5U2f1z7m7UyvPEnfLmPVv eO6Ra1nnVyOUT2+L4PpthDK3GqHMrUYoc6sRylNmI3jKbAR3DBvxvvx0rPOq Ecq8aoQyrxrBvKrRw1B6sN4pHMGdwhHKfGqEMp8aocynRijzqRHMp0Yoz4KI 4FkQEcpcaoQylxqh3CUcoTwPIoJPbYtwn3385fMgItxzqUbcOo8aocyjRijz qBHKMyEieCZEhPJU2QieKhvBncHGkvWpshHK3cERzKEaPSTSgzl/asQ3sEXr XcERyl3BEcr8aQTzp0YPGfRgzp0a8Sy2aJ03jVDmTSOUedMI5k2NHlz0YH02 RATPhohQ7gaOUOZMI5Q50wjmTDtyXbgj75k68p6pIyPHjrxn6qjVRnVYty6x eqg+aoAaogAUiBrRXxMURG0z1BwFoxaoJQpBrVBrFIraoLZsN5xYe9QBRaBO rNGZWCSKQl1QNOqKutFLDLEeqCeKRb1YozeKo7YP6kttPLH+aAAaiAahwWgI Gkp/w4gNRyOoHYlGUTsajUFj0Tg0Hk1AE9Ekep6MplA7ldg0YtOJzUAzqZ1F bDaaQ+1cNA99hOajBWghWoQWoyVoKVtbhpajFWgla6wilkBsNVqDEmmXRGw9 2og2oS0ohXVT0XZqd6CdaBfKRFmsuxflUJuL9iEn7QrQQWpdxArRUWqPoyJ0 EpWwxmli+vso/ZOdp72kf7LzwFqJtdbUHFAztMaWWsNr1asVWqNGzZY1ZtcK qrWzVssaA2oG1qxXa2ytJbWaCSfU7FtrfK2Dwik1mtU4WKtLLf3TdjuJ86jn J/D+0SbW2SZ2j00s0iZ2r00syiZ2n02si03sfptYtE3sAZtYV5vYgzaxbjax 7jaxGJvYQzaxHjaxh21iPW1ij9jEYm1ij9rEetnEHrOJ9baJPW4Ti7OJPWET 62MTe9Ijpt8T1knzvDuzk8fdmbVFpLZ7+Xfu34FO8vMn9JbXaOacSn0ZaUBv +nuOOiISKJcayRZNaHGDbGHel3mjbKHelalHyu/KbC0jobQx7s7sJN7pV5w7 6ijr/qjEjXK/7OkBYt1kRL0fU488Qptecp+tn1Oot3iSFvGyhXkn5gDZwvr5 hEbEeh+m8ZM1n+HWyXIvhN5ypGbOXr0sI9b7MY3IOHp7XUY878Ts5M57/vJO zE7cidnJ/fw2o+V0GZnBFt+T389s2WKObKHeiam3+Fgu/0u2UO/D1CPlf9W/ VO6D+Y68kzuDGZ9Epbc0PolKf62SEfNOTOMv9fTIWnpLkhH1Hky9V+MezC1y aymav2zpeS9mJ497MfXvZ4/cXrZs8YNmHmG5ssU+ueyULQ7QwiUjhWznmNyH E5r5/7jYXXNStizh+yuVLc332no+MFULXYnqoHqoPmqIAlAj1AQ1Q81RC9QS tUKtURvUFrVHHVAE6oTMOwb+yLvfP2pRqAvqirqhHqgn6oV6oz6oL+qPBqBB aDAaioahEWg0GoPGofFoIpqEpqLpaAY/jVnEZqO5aB6ajxagRWgxWoqWsY0V xBLQapSIklhjI7FNKBXtQDtRJutmEctBuciJCljDRawQHUdFSJ/xShA/2c6a +TdfAZZS1bI1ZldnV/y92FjWf571rugs3qFVZ9ue26/uOp7tq2pXmavbj7d9 rqoPf/edZsPF/6ENlfZhjXvbz+rsb/nLuMZzD+fQe5ivuIez6T2cTe9hvuIe 5ivuYb7iHq0usfrEGhBrSCyAWCBqhJqgINQMNUfBqAVqyTZCiLUi1ppYKGpD bVti4ag96oAiUCfUmV4iiUWhLigadWWNbsRiUA/UE8WiXqg3iqO/PsT6onjU n3YD0EBqBxEbTGwIGoqGoeGsMZLYKDQajUFj0Tg0nl4mEJtIbBKxyWgKmkq7 acSmE5tBbBaajeaguWge635EbD6xBcQWokVoMVqClrLuMmLL0QpqVxFLILYa raE2kVgSsfVoI9qEtqAUlEov24ntQDvRLpTFGnuJ5RDLRfuodRIrIHaQmItY ITqKjqMidBKV0Iv5BJhIzXrtJlK5Vz5SeQJMpHKvfKRyr3ykcg0nkms4+rYi 3ddwjLhxJr1eLlnvlY9U7pWPVO6Vj1Su40Qq13Eiles4kcq98pGWe+X1Jeu1 nEjLtRx9yfpEmEjLE2H02Q/Pazp67F5L7H65lvVe+Ujlek6kcj0nUrmeE6nc Kx+pPAUmUnkKTKRyv3ykcl0nUrmuE6lc14lU7pePVJ7xHcn4MFKMD/XcNkIu jXSv85Jcsl7biVSu7UQqT4GJdJ+T/OWzviOV++UjlfvlI5VrPJHu85G/vMYT qVzjiVSeBBOp3DMfqTz3O5LrPJHKdZ5I5TpPpHKdJ1K5Xz5SuV8+UnkSTKTy /O9I9znIiFuv9URq37i/kwS5ZL1fPlK5Xz5SuV8+UnkSTKRyzSdSueYTqVzz iVTumY/kSTDGkvWe+UjlnvlI5ZngkTwTPFJ5Ekykcr98pHK/fKTyNJhI5Wkw kcr1n0iu/xjbKtX8pcxPEbyX91L38l7qXt433avVRnVQPVQfNUSBqBFqgoJQ cxSMWqCWqBUKRW1QOGqPOqAI1Al1RpEoip9GF2LRqCvqhmJQDxSLeqE41BfF o/5oABqEBqMhaCjSr7eMqVFb6C/ip69pfToZ8ZG0GIXGoLFoHJqIJvFzmExs CpqOZtBuJrHZaA6ah+ajBWghWoSWoKVoGVqOVqIE9mU1sUSUhNajLSgFpaLt aBfKRFkoB+WyB05iB5GL2kJiR1EROolKkPFuYZoWZZnZrXx85TnWqqpUNfay 357+Uw+6Ikq774y2ZZRXf6Np40R5TZTxorwuygRR3hBloih/E2WSKH8XZbIo b4oyRZS3RJkqytuiTBPlHVGmi/J/oswQ5V1RZoryniizRPmHKLNF+acoc0R5 X5S5onwgyjxRPhTlI1E+FmW+KP8SZYEon4iyUJRPRVkkyr9FWSzKZ6IsEeVz UZaK8h9RlonyhSjLRflSlBWifCXKSlG+FmWVKN+IkiDKf0VZLcq3oqwRZa0o iaJ8J0qSKOtEWS/KBlE2ipIsyiZRNouyRZStoqSI8r0oqaJsE2W7KGmi7BAl XZSdomSIskuU3aJkirJHlCxRskXZK8oPouSI8qMouaLkibJPlHxRnKLsF6VA lAOiHBTFJUppWVnZYfFvoShHRDkqyjFRjotyQpQiUYpFOSnKKVFKRPlJlNP6 uqL8T5QyUcQbW4/jydvxWp3jqrJ1q1q/Otv1tp9261bsS3+XECd+c9Msa1S/ v6r2y5wLuY/8fR8zIPcxA3If+fs+8vd95O/7yN/3MdtxnxZArBFqgpqh5qgF aola0V9rYm1QW9QedUCdUGcUiaLouQuKprYr6oZ6oJ6oF+qN+qC+9Nyf2AA0 CA1GQ9EwNAKNRKPRGDQOjUcT2YNJxKagqWg67WYQm4Vmo7loHmvMJ7YALUKL 0VK0DK1AK+kvgdhqYonEktBGtAmloFS0g152okxqs1AOtbnEnMQKiLlQITqO ilijhJjxdwcz3FfO1d9Du9/XyuoqO1d4ngsqW7d8Hf3n3eKKLmIUbNeft21V tY2q2vvbLP+c7Va2z5Xtl+f2Pes848ZLH5XFiP+Lu23rq7u/6rJx/r2f8+/9 jJ/u50x8P2fi+xlT3a/pV+AN1SFWF9Wjtj5qQG1DFEBtILFGqAkKQs1QcxSM WtBfS2IhqBW1rVEotW1QWxSO2rNGB2IRqBPqjCJRFOpCL9HEuqJuKAb1QD1R LOqFeqM41Iet9SUWj/pTO4DYQDQIDabdEGJDiQ0jNhyNQCPRKDQajUFj6W8c Gk/tBDQRTaLdZGJTiE0lNg1NRzNoN5PYLDQbzUFzWWMesY/QfLSAdguJLSK2 mNgStJTaZcSWo5VoFUpgjdVoDbWJKIna9cQ2ok1oC0pBqWg72kF/O9EuajOJ ZRHbi3KozUX7qHWiAmoPEnOhQnQUHWeNImIniZWg09Tqd8zp80rRzF7r8Wg+ cTJa+cTJaPeZzohbZ62jlSe8RLvPc0bc+omT0XziZLQyYx2t/NVBNH91EM1s tRFvQa/Wmepo5S8Oot1nMyNu/eTJaK0dvVpnqKOVT56M1jrSqvzJLvr9c56z 1HrsAUusu1zL+nzyaJ5PHq3MTEcrT3GJ5iku0conTkbziZPRyox0tPKJk9F8 4mS0MhsdzWx0tPLklmjlEyej+cTJaOUTJ6N5fly08omT0cpfGUTzVwbRyidO RvOJk9HK7HO08hcG0XziZLQy8xztPr8YcevMc7TyiZPRPH88Wvnrgmj+uiBa mXGOVmaco/nEyWjl6SzRWgK9Wmebo5XnykXziZPRyidORvOJk9HKLHO08omT 0e5ZZiO+0x3PkPFMerXOLkcrs8vRzC5HK584Gc0nTkYrM8vRyl8VRLufxGLE zVllI15C3PoXBdHc5fSAZv5FwQO8K3qAd0UP8K7oAd4VPaDVZo06xOqieqgB aogCUCBqhJqgINQMNUfBqAX70hKFUNsKtaY2lFgb1BaFo/aoA4pAnVBneo4k FoW6oGjUlTW6EYtBPVBP2sUS64V6ozjUB/VF8ag//Q0gNhANQoNpNwQNpXYY Go5GoJFoFBpNL2PQWGrHEZtAbCKaRO1kNIXaqcSmEZuOZqCZaBaajeagufQ3 j9hHaD61C9AiahejJWgpWoaWoxVoJVqFEtjGamJrUCK1SWg9tRvRJrQFpbLG dmI70E60i3aZKAvtpV0OyqV2HzEnKkAHkQsVoqPoOP2dJFZC7DQy3u3Ud9/n bmZuveifa1ZHRK/SjBHhb93nwq7yubd15Dp1lXX0v6vU75hvaInqn25WV8Qa ETPe03SV72n0Xoz7qc2RZwtZr5+VjHVDWPc2uYXbLWuEyV7ClX3Rr68HiWj5 9fWKI+cHZJsHK9SVl8dk748rbfrK/ehnafmM3FvrfdPGdzLE/Z3ovQxV+n5R 1v9FC5DrvkTtaLmFMZY9Hyd7eV3Zx0ny/4x5r7Tx/+0tWf+2XMfuc8+68rln xhbel+t+INt9KHsuv76tr7NAs84U/Fvu5xJL78vkd7Oc2FfyO9WfVWv0Uv4Z aHpZI+uNv1bU101izzbILSRb1tgqe0llP/SSLvfX+By0XfK7yZRtsuQ6ey3b NT8PrSvPqDXKQbmu+XlohbLno+7lY3KdE5p1xqRErlMqezHmTh5k7uRB3hs8 yHuDB7XaqB6qjxqiANQINUHNUHPUApn5/UGy+oPMWD9ILn+QXP4gGfxBMviD 5O0HmcN4UItCXVA06sp2uxGLQT1QT9QL9UZ9UF/UHw1Ag9BgNBQNQyPQSDQa jWGfxxEbjyaiSWgqmo5moFloNpqL5qH5aBFajJaiZWgFWokS0GqUyHeURGwj 2oRSUCpr7CC2E2VRm0MsFzlRAXKhQnQclSBjJnqe+2+pKp6vzWL9natu8bf8 67muXV+V96//nDtd0U2McH/OflRnHbv99Vy3sn7svkdrP1WtX9W6dvtpt47n PpcX/Z6fEPF/+pBtP57bNGeiu3M27c6Yqztn0+6MtLoz0urOSKs7Z9junGG7 M9Lqzrm2O+Or7pxru/N32t0ZX3XnXNudUVV3RlXdmWHuzlm3O2fd7oylunO3 c3dGUN05/3bn/NudEVR3zr/dGTd116JQFxSNuqJubC0G9aC2J4pFvWjXm1gc 6oviUX80AA2il8HEhqChaDgagUaiUWgMGkvP44iNRxOpnURsMpqCpqHpaAaa iWbT3xxic9E8NJ92C4gtRIuoXUJsKbFlxJajlWgVSkCrUSJKor/1xDaiLSiF dqnEtqOdaBfKZI0slENtLtqHnOggcrFuITpKbRE6SW0JMSNT1Hb/Na1+lrhC LtV0nytqySXrHcYxyh3GMcpcbYxyh3GM8pSYGOUpMTGacfa6Xi5Z52xjlLuM Y5S7jGOUu4xjlLuMY5S52xjlLuMY5S7jGOUu4xjlLuMYZQ43RvncyRjN+oTu GOUJ3TGa9QkyMZYndOt/q1w+n+vvPt702EPEzLuMY5S53BjlLuMY5S7jGOUu 4xjlLuMYZU43Rn4OyCC5ZL3LOEb5rMkY5ancMcrcboxyp3GMcqdxjHKncYxy p3GMMscbo73h3peJcsl6p3GMcqdxjPI0mRhlrjdGudM4RrnTOEZ5OneM8nTu GGXON4bPnDSWrHcbx2ifuusWySXr3cYxytxvjPJ07hjl6dwxyh3HMcrTZWKU OeAY5Y7jGOWO4xjljuMY9x3H/vKO4xhlLjhGueM4Rt5LtEMu7XTXZcgl6x3H Me6zj7+cE45RnjYTozxtJka56zhGues4RpkbjlGe0h2j3HUco9x1HKM8dSZG mSOOYY74Id6vPMT7lYfE+clf6kpifqg2qkO7usTqEatPrAFqiAJQIGqEmqAg +mtGrDmxYGItUEtqQ4i1ItaaWChqg9qicNQedaCXCGKdUGcUiaJQF9aNJtYV dUMxqAdr9CQWi3qh3igO9UF9UTzqjwawjYHEBhEbTGwIGoqGoeFoBBpJL6OI jUZjqB1LbByx8WgCtROJTUKTqZ2CpqJpaDqagWaiWWg2moPmonls9yNi84kt ILYQLaJ2MbElxJYSW4aWoxVoJVqFEtBq+ltDLJFYErH1aCO1W1AKtaloO9pB u51oF7WZKIvavcRyiOUS24ecqAAdZA0XsUJiR9FxaouInSRWQuw0MuaSF7qf XaKO++zHgBWLt/FfZW3t1q3etvT/zzFX9NAerrLvquJVbb+q78dbnV3c02f+ fasvz+142we7Piquo2fHBuIIOOWxrjF+f5h8+DCzoQ+T8R5mrP4wY/WHyXMP k930/1+mGqEmqDlqgVqiVqgNaovM+7geZuT9MDnoYXLQw1oU6oK6om4oBvVA PdlGLLFeqDfqg/qi/mgAGoQGo6FoGBqJRqMxaByaiCahKWgqmo5moFloNpqH 5qMF/AwWEVuKlqEVaCVKQKtRIkpCm9hGCrFUtANloiyUg3KRExUgF9soJFaE SpAxYq3rfl6T+TtRU0aM5xfpLz8ZqU2bq93r93SPUPV3mj2137tr6suW6vOL 9Ij6+ZJ1RMR8glGQbPEHfi+DZcTzCUY9PZ5gpPdifhpUmGzRjr1uLyMd6KWj jHh+ymRPLYo297v/P/YUY8yKZ5yHZd0jFerMJxj19HiCkR7pT5tnZMTzGUY9 PT5LUv++XpDbfFG2GMlevCwjns8u6smzi4y/RdV7mSgjk2SLyWznLRlRn1mk /5+03vvTU977o7f0/BTJnu6r68ZP4kMZ+Zg2C2TE8+lFPcXIz/zpLZURz8+R 7MnnSPYU4z29ZpVsmUDLb2VEfXqR/j2vl3u1UbbYzPZSZMR8apG/fGpRT/nU Iv21S/ayR/abLVuonx+pR8ynFhmfIKnvq/EJkgfl92A8L1RvaT69yPwEyZ4e nyCpRzyfW9STvxN9hDt6HmG09gijtUcYrT0ifk/NWG1idVBdVA/VRw1QQxSA AlEjttEEBVHbjFhzFExtC9QShaBWrNGaWChqg9qicNSedTugCGo7oc4oEkWh LigadUXdUAzqgXqy3VhivVBvFIf6oL4oHvWnvwHEBqJBaDAagoaiYWg4GkHP I9EoakejMWgsGsca44lNIDaR2CQ0GU1BU9E0NJ1eZqCZ1M5Cs9EcNJc15qGP qJ1PbAGxhWgRtYuJLUFLqV2GllO7Aq1Eq1ACWo3WoESUhNazjY1oE9pCuxRi qWg7tTvRLmoziWWhvSgH5bLGPmJOYgXEDiIXtYXoKLXHURG1J4mVoNPof5px f2OsMoceqzylI1aZQ49V5tBjlTn0WGUOPVaZQ49V5tBjNeOMbDxpPdY9h27E 9fOcv5w/j1Xmz2PdZzl/OX8eq8yfxyrz57HK/HmsMn8eq8yfxyrz57HK/Hms Mn8eq8yfxyrz57HK/Hms8gmXsZr1qR2xlqd26M/j9JxH12OPauXvdx6Xa1nn z2OV+fNYZf48Vpk/j1We0hGrzJ/HKvPnscr8eawyfx4rn+T4klyyzp/HKvPn scr8eawyfx6rPKkjVpk/j1Xuk47lPulYZe48Vpk7j1XmzmOVufNYZe48Vpk7 j1We1BGrzJ3HKnPnscrceazyyZaxytx5rDJ3HqvMnccqc+exytx5rDJ3Hqs8 nT3W/emWRtz6pI5Ybat7P1LkknH30za5ZH1SR6wybx6rzJvHKvdSxyrz5rHM mxv74WQ/rHPmscqceawyZx6rzJnHus9G/nLOPFaZM49V5sxjeRf2KHMEj4p3 YWasFrErifkRq4PqonqoPmqAGtJLALFA1Ag1oV0zYs2JBRNrgVqiENQKtUah qA39hRNrjzqgCNQJdWbdSGJRqAu10cS6om4oBvVAPVEsvfRCvamNQ31QX9rF E+uPBqCBaBAajIagofQ3DA2ndgQahUajMawxltg4NJ7aCcQmEptEbDKaiqah 6WgGmolmodn0PIfYXDQPzUcL0EK0iF4WE1uCllK7jNhytAKtQgloNVqDElES Pa8ntpHYJmJbiKWi7WgH7XYS20Usk1gWsb0oB+UiJ2sUoIPUulAhtUeJHUdF 1J4kVoKMme3l7qdj+/MKqGbx97Dnsmcbb229taus3t/9/7fnFb20x6pseybb r873X511rdvwjJ/pvnr2aX1Vta63tnb7ZPxrzGg/RrZ6jPmBx7TaqA6qh+qj hqgRaoKaoxaoJWqFWqM2qD3qgDqjKNQFdUXdUA/UE8WiXqg3ikN9UF/UHw1A g9BgNBSNQCPRGDQOjUcT0SQ0BU1HM9BsNBfNQ/PRArQILUXL0EqUgFajRJSE NiJzxPkY587HGGc+xujyMc6Oj3FOfIxz4mOcEx/j/PcY89OPMT/9GFfxHpPz 0/Xdz/W3HuX634HoT/u/Siv/rfidbFnxrz/qiuh1lpjed2/3E/WNNRpZ1vCX z9PvrTxPv7ZYLh/d6eu0VLZym2xj/AVIqOyhjaxvK9cJV9a5W+5HR81f7qM6 L62vEaWsYfxlSG/tQUvMszwm26h/GaKWZ2TvzyrxIXIvzL8G8ZefftXb/ZRE Y42/0Fp/jZbf5xgZGyt/CsY89GtyHbu/C+ktZ6LflD28Jft8W67j+Xchxn4Y n3Sl7+Nsat+Xa3ygrDFfHh+fWKL/li3L55/1skxGl2vWs+rXcn3r34N8K1sm WtYOcP8diL5HyfxUtsi9TdHMn5r59yBG/+nye86QPeyWPxFjxjlLrlPx70H0 NuWfT6X3UCD7PCjXcVnW8ZdPyu8tn5Sv72Mx+1giI6dZw8gbjzPX/DhzzY8z ynmcUc7jjHIeJ6s8TlZ5nPHO4+SXx8kvjzPe0T/9wVQgPTdCTagNQs1Qc9oF E2tBrCUKobYVao1CURvWaEssHLVHHVAE6oQ600sksSjUBUWjrqzRjVgM6kFt T2KxqBfqTbs41Ifavige9UcD0EA0CA1GQ9BQtjGM2HBiI4iNRKPQaNqNQWOp HYfGowloIpqEJqMp9DeV2DQ0Hc1AM9Es1p2N5lA7D32E5tNuAVpI7SJii4kt QUvRMrScNVYQW0lsFbEEtBqtQYmskURsPdpI7SZiKcRS0Xa0g3Y7ie0ilomy 0F6Uwxq5xPYhJ7UF6CBy0a4QHUXHURFrnCRWQswYIdV2f96Pft67Qi5ZZ5Pj lNnkOGU2OU6ZTY5TZpPjlNnkOGU2OU4zzqrXyyWHe+uN3HsVpzVlr6yzyXHK 3dhxymxynDKbHKfMJscps8lxymxynDKbHKfMJscps8lxymxynPs85i9nk+OU 2eQ4ZTY5TplNjlOeAR2nWZ8BHaeVPwNa/wSmR7XyXPW4jD2hlefgp+Ra1tnk OGU2OU6ZTY5TZpPjlNnkOGU2OU6ZTY5T7saOU2aT4+Rfur4il6yzyXHKbHKc Mpscp8wmx4n3OXovU+SS9W7sOGVGOU65+h7HkzfilNnkOGU2OU6ZTY5TZpPj lNnkOOW5z3HKbHKccid2nDKbHKfMJscps8lxymxynDKbHKfMJscpd2LHKXdi xykzynHKjHKcMqMcp3zeZxyf9xmnzCbHKbPJcfIzh3LkkvUu7DjlLuw4+Z7q gFyyzijHKc9+jmNG2diPIs1fxq2zyXHKbHIcd2A/wfusJ3if9QTvs55gzP4E 77Oe0GqjOqguqkd/9Yk1QA1RAO0CiTUi1gQFUdsMNUfBtGtBrCUKQa1Qa9YI JdYGtUXhqD1rdEAR1HZCnamNJBaFuqBo1BV1QzGoB+qJYlEv1BvFsQd9UF9q 41F/NAANRIPQYHoZQmwoGkbtcGIjiI1Eo6gdjcZQO5bYODQeTUAT0SQ0GU2h v6nEpqHp1M5AM6mdhWajObSbS2we+gjNRwvQQtZdRGwxWoKW0m4ZWk7tCmIr ia1CCWg17dYQS0RJaD3aiDax7hZiKcRS0XZqdxDbSWwXykRZaC/KYd1ctI9a JzqIXLQrREepPY6KqD2JSqg9jYx3YXXdn6ZoZvyaMqJ+SqIesd5lqI9z+8h3 XQHa72ULz7sL+4j3Web7hkYy0oQ2N7jPxH3kfE5z9z71cZ/BjJaedxn2Ee+u zN5ay0gobcLk+u20ANlv+XsqvaXn3YZ9Ktxt2EczZ3X8tftlxPPTE/toMfRj 3HXYRyv/9ESz+Msjso/lrsPy8ozsyfNuwz4edxvqkRdoM0JGRmrmfMXLMqLe b6h/5+Y8j/ETMT7hXG+pfmKiHvG877CPct+hsb5+jjD6nemueU+2/If8Xs37 Dvu47/cxYh/KiHrfoX7MfCr3/t+yhfUzE42I9a5DI/IVbVbJiHm/oflpiX0q fFpiH49PS9S3bd5xuFW28LzfsI/HpyTqkUzaZMufgvVpYn3k08T0lup9h3rk AD8hl4wU0uaYXN/8vMQ+WrG75UnZsoSWpbKlecX7Sa4hPMk7kyd5Z/Ik70ee 5P3Ik8z2POkeGxlqSCwANUJNUDPUHLVALVErem5NrA1qi9qjDqgT6oyiUBfU FXVDPVBP1Av1RnGoD+qL4lF/NAANQoPRUDQMjUAj+WmMJjYGjUPj0UQ0CU1B U9F0NINtzCI2G81F89B8tAAtQovRUrQMrUArUQJ7sJpYIkpCG9EmlIJS0Q60 E2WiLJSDctkDJ7EC5KK2kNhxVIRKkJ4d9U/AXjlS/wTsj2q2rBlYI7HWxFrz xb8DRCmqFVRrS61eNdsI16s1t1ZRrcAaNWrOrllUa2qt2bXq10ipMbDmTuGi Wotr6p9K3Ff8tnp+UvFTNrF4m1g/m1h/m9jTNrEBNrFnbGIDbWLP2sQG2cT+ ZBMbbBN7ziY2xCb2vE1sqE3szzaxYTaxF2xiw21iL9rERtjE/mITG2kTe8km Nsom9rJNbLRN7K82sTE2sVc8YgniN7CvVtnTcazFfFmXA7TK1/Vcx25dz/qq 9qVivX6eibyir/i9qawvb/te1fY8+6vs+67uvnvui7f98LbP3mLWf721876P xrUk/ewTIFUD1UJ+qDYy/7b8Ka0usXrE6hNrSCyAWCBqhJqgINQcBaMWqCU9 hxBrRSyUWBvUFoWj9qgD6oQ6o0gUxTa6oGhqu6EY1AP1RLGoF730JhaH+qC+ tIsn1h8NQAPRINYYTGwIGoqGoeFoJBpFL6OJjUFj0Tg0AU1k3UnEJqMpaCqa zhoziM1Es6idTWwOmkftR8TmE1tAbCFahJagpWgZWo5WoJUogW2sRmuoTSSW RGw92oS2oBSUirajHWgXymQbWWgvtTnEcok5UQE6iFyokHWPoiJqT6ISdJp2 5jWdeM36FwLxyjWdeOVp6PHuazpG3Ho9J165nhPP9RxjHf0cY8SNs9r1csn6 dJ145ek68doNmn5WbCaXrNdz4rmeY/Tekt6t13LilWs58cqT0eOZc4hXruPE K9dx4pXrOPHKXwXEK9dx4rmOY/T+AL1br+HEK9dw4i3XcPSlR911veRS+RN2 9PeZT2jlGeEpGfN8Mqm+lvUaTrxyDSdeuYYTr1zDiecajrH3L7H31us38cpf A8Qr12/iles38cr1m3iu3xi9v0nv1ms38do7mv7/e7pcsl67iZd3q+hx67Wb eOXaTbxy7SZeuXYTr1y7iVeenh7vvnZjxK3XbeKV6zbxXLcx1vma78L6eZ3x yjWbeOWaTbxyzSZeuWYTzzUbo/et9G59ck688hcA8cqT1ON5knq88tSceOXu /3jlek28cr0mXvkLgHiu1xi9F9L7MXfvx+WS9Yk58crndMa7n5NqyLxW04/3 Mf14H9OPeZB+vI/pp9VGdVA9ZM6I9OO6TD/ex/Tj3Us/3r30491LP9699OPd Sz/evfTj3Us/3r3048pLP2ZJ+vHupR/vXvrxnqUf71n6cb2lH9db+vGepR/v WfppUagL6oq6oRjUA8WiXqg3ikN9UF8Uj/qzpwOIDUSD0GDaDSE2FA1HI9BI 1hhFbAwai8ah8WgimoQmoyloGprO1mYQm4lmozloLpqH5qMFaCFahJagpWgZ Wo5WsleriCUQW00sESVRu57YRrQFpaBUtB3tRLvoLxNloRza5RLbR8xJ7CAx Fyqk9igqovYkKkHGvahb3DMjZg4rL3YjI7uRlt2yNW432vJWPNvata+sD3/3 /88OV/TXnq6iXeX7Ud3tV+bKfiaVbce6fCb7aX2dyfbUuDHSfZoM8TTj26fJ EE+TF54mLzzNWPZp5sef1gJQI9QENUPNUQvUErVCrZF5b+PTjFaf5nz/NGPU pxmjPs1V9ae1KGJdUFfUDfVAPVEv1Bv1QX1RPOrPdgeggdQOQoPRUDQMjUAj 0Wg0Bo1D49FENAlNQVPRdDSDPZ1FbDaxucTmofloAVqEFqOlaBlagRLQaraW iJKo3Yg2oRSUinagnfSShXJQLu2cqAC5UCE6jopQCTLOrKnuuWT730brv3ax yn7TvdV5+42vrM+q6tR2+v+h8CsGiJGO5zrnevtV9VdVnd3P0vqqql/P9tb1 PPu366dizDizPsOZ9Rneez/DOfYZzrHP8C78GU2/f8BQXWL1iNVHDahtiAJQ IGrEGk2IBaFmqDlqwRotiYWgVqg17UKJtUFtqQ0n1h51QBGoM4pEUfTShVg0 6oq60S6GWA9iPYnFol6oN4pDfVBfFI/6owFsYyAaRO1gNAQNpd0wYsPRCDQS jUKj0Rg0Fo2j5/HEJqCJaBLtJhObiqah6bSbQWwmmkXt/7f3PgBdX/X+/xtk y5EamQnzmjFnZs4ZQ+ac15ljjpg58jIzrpmhIiEhMkTGGLHPmCMiMkbMMcYl cmSOzBEjIseIuMTIiJgRMUZExsiIy4jMiJn+znm/z/vB+3z4gG73fu/v/n7f +3Fnn8f7+Tr/Pm8+n/M+79c573NK0EqhMqzH0Mqh41AFdBI6BVVCVVA1Odeg 1aKdRquD6rE2oDWhNUMtWM9ArVAb1A6dhTqgTvLrQutG64X6oHPE60cbQDsP DUJDxBuGRrCOQhegMWicFJfQbJ9kHD5JqceZPkmL3gXZ7VOc6Yu0Ujl3ZYwz 2yhLd+7KGGeuoWbRQmLY/kdLv4l62L5HS19GfOc88jjN9xinzRyP03yMcdru i3HsvhiHf9HSwyjH6VuMM32LFkUQw7kDY5zxKXL8tKlHKf0zpPwsMSZWG5Hj yhM+RX/zuyo155Nt+1Uq566LceaMJ4sOkW+aGf9hpT+CbvsQLd1uJeLUjCcZ w7nbYhy7LcZpq4jEsYpInDbnO05bRSRO8xbGaf7BOG1nxTh2VozTfINx7KwY h2/Q0u1ffhy7KsZpuyrGmb90S7d9gpbeRMpm6KecwZ+Tm3MF7ThtN8U40w9o 0WtQD7n1UrJz3lMcuyjGabsoxplzniwaJoY9P9vS/0KtbH+fpY8T3zk3Ow5/ 3z76HPvoc+yjz7GPPsc++hz7DPs3vY8RzH3GHMiPeHPR5qHNhwKgBdBCUixC C4QWQ0uItxRtGdpytBXQSiiIeMFoIdBqrGvQ1kLroPXQBigU2giFkV842iZo MxRBvC1QJNat0DYoCtoO7YB2QtHktxstBoqF4qB4UiSgJUJJUDLxUtBSoTQo HcqAMiEXlEV+h9GyoRwol3h50BGs+VABVAgdhYqgYnIpQSuFyrAeQyuHjkMn iFeBdhI6BVVCVVA1aWugWqynoTqonngNUCPWJrRmqAXrGagVaoPaobNQB9QJ dZFzN1oPWi/Uh/UcWj80gPU8NIh1CG0YbQRtFLoAXYTGSDEOXcJq9WG6zRlY nu/OrnZnF+AhTKW72zzlM12e0+XrKa2/Ib8hQV7xxheumvbtlD9Vfa/1c0+X 51TadPm90zw8x7Xuwr/AFfELXAe/wHXwC4YvZF/9vsAd9xfwdH6BK90XjABo IbQIWgwtgZZBy6GVUBAUQrmr0dZC66ANUCgUBoVDm6EIKBLaCkVB26GdUDQU A8VCcVA8tU+AErEmQclQKpQGZUCZUBZ0GMqBcqEjUD5UCB2FiqESalqGdgw6 Dp2ATkKnoCqoGqqFTkP1UAPlNqE1Q2egVqgdOgt1Ql1QD9QLnaO0frTzaINo w9AIdAG6CI1DshdaL0pKuOZxpanaEU9xPOlXy+da8pyqnp7zl3+3FV4J4l7s WvK6WvlXq+90aaeu4+R3d+1ayvOU1lM9POU58c9qd/fT7u7nTmQ/7e5+7j/2 M660n3uN/dxr7OdeYz/zDfZzh7GfFng/LfB+2t393E3spwXeTwu8nxZ4Py3w fu4h9nMPsZ87h/081bmfWQb7uXPYT1u8n/uF/UYYFA5FQFugSGgbFAVth3ZA 0dBuKAaKheKgeCiB2idCSViToRQoFUqD0qFMyAVlQYehHErLRcuDCqBC4h1F K4JKoFKoDDoGHYdOQBXQSagSqqLcarQaqA6qJ14DWhPUDLVAZ6A26CzUAXVB 3VAP1Audg/qpy3loCOswNAKNQhehMcj2MCRqMxQTtRmKidqqE4naqhOJ2izF RG2WYqK26kSitupEomG1JDeqI+dMxURtpmIiMxVljRONDxkBSneuOpGoeQsT NW9hojZTMVHzHSZqq04kap7ERG22YqI2WzFRm62YqM1WTNRWnUhU+zNsVkfO GYuJ2ozFRG3GYqI2YzHRMWNRHjnXNE7U1jRONJyrUCQ6VqGQT5hMeBv9zW+2 1A6g2TMWE7VVJxK1VScStVmLidqsxURt1mKiNmsxUdsDMFFbdSJR2wMwUZu5 mKh5IBM1D2Sito5xouaPTNRmLyZq3slEbfZiojZ7MVFbeSLRnL3or1aeSNRm MCYyg9H6Zv7AsL+Zp800L6kj56oTidoMxkRtBmOiNoMxUZvBmKitOpGoeS8T tVmMidosxkRtHeNEbeWJRG3liURtJmOi2dL4q5mMiY7VvOSRcyZjorbyRKK2 8kSiNpsxUZvNmKitPpFo9i3tHSUS8XAeoF9xgH7FAe7sDtCvOGD4Qvad3QFG VQ9wj3eAe7wD3OPJ779NC6CF0CLSBqItgZZCy6DlpFiBthItGC0EWg2tId5a tHXQBigU2giFQeHksgktAtoCRUJboW1QFLQD2glFU8ZutBgoFmscWjyUACVC SaRIRkuBUqE0KB3KgDIhF5QFZUM5lJaLlgcdgfKhQugoVAQVQyVQKXSM0srR jqOdQKuATkKVxKtCq4ZqoFroNCnq0RrQGtGa0JrRWqBWqI147Whn0TrQOqFu qAfqJUUf2jm0fug8NEi8IWgYGoFGoYvQGDQOXSJny4M4YD5L6fnOyD243xn5 G9PHnyo/Zz7ueV6tDtdS7uTy5LdgiVeS8eA1l+Ppc7rX953U21Naf7fjt5N2 uriePoMnbeLYupN9kCvOg1xnHuRO9kGuMw9yJ/sgd7IPck2R59ome1zsQe5a H8Rv+CBXkge5fjzIXeuD3LU+yF3rg1w1HuSq8SDXige5VjzIteJBrhUPGmFQ OLQZioAioa1QFJ9jO9pOKBqKgWKheCgBSoSSoGQoBUqF0qAMKBPKgg5DOVAu tT+Clg8VQkehYqgEKoOOQcehE9BJ6BRUBVVDtdBpqJ6aNqA1Qc3QGaiVFGfR OqEuqAfqhc5B/eRyHm0QGoZGoAvQOGTNkJxjPn1u/7JmKMV9BZ1kQ19BRyrv Ic5cs2eYrNbQeb+Zv/VclRXzRsP+HS9Uir6SjlRuJs5Spehr6MwSykqlBKkY zhV0LOUO6rRWKfraOTIXe+2ce1SMifWQ71OK+8o5yYa+co5UPkV9o5Sy3bDP 4meV4r5vX7Lbvn0BQrH2fg/QwoPKdtCD7RGVk/tOfcns1Gfdx0nFfc2c5Elr 5iS77dUnlaPEeUYp+i598hx+U33S51QM9z36ks2Vs6zaf1cp+mo5Mhd7tZwa FcN9rZxkw14rx96bL3nSWjnJ2lo51jdPrpVjfSMn1vyTMd3XzEmetGZOMmvm 2Lv0Jat1/qTWrxT31XKSxR2WHWdYKc7Vcizlr6psa50cWTtrnZy3VK3tp8SS WS3noGFA9j3VQXbpO8i17iB3Vwe56h3kqnfQmAP5kXYu2jxoPhRAvAVoi9AC 0RZDS6ClxFuGthxaAa2EgqBgKIRcVqOtgdZiXQetx7oBCsW6ES0MLRxtE7QZ ioC2QJHQVmgbFEXO26EdWHdC0dBuKIYUsWhxUDyUACVCSVAyuaSgpUJpUDqU AWVCLiiL/A6jZUM5WHPR8qAjWPPRCqBCrEehIqzFUAlUCpVBx6By6Dh0Aqqg jJPQKayVUBXWaqgGay3aabQ6qB5qIF4jWhPUDLVArVAbaduhs1AH8TqhLqgb 6oF6oT7oHPn1ow1A56FB4g2hDaONQKNYL6BdRBtDG0e7BFn3d77m2jaybfRS R06/dorm107Bry1zSBH9ETsHp087RfNpp2izXlNMtnSnPztF82enaCspp2hP 3qdoPu0Uzaedovm0U/BpWyWHULLTn52i+bNTtJmxKcyMTdFWUE7RfNkpmi87 RVtBOUXzZadovuwUzZedos2UTTE+Q22dfuwUzY+dovmxU7TVlFMM55P4KY4n 8eVqRu7+bKkdMib6PA+rVE4/dormx07R/Ngpmh87RXv6PkV7+j7FXD3Z0p0+ 7BTNh52i+bBTNB92iubDTtF82CmaDztFm2GbYu4fYenOffhStJWTU7RZtilm a2TpPzD1WnXkXDU5RfNfp2j+6xTNf52i+a9TzD34bP91ivYEforacULqzhWT UzTfdYr2BH6K6bu2dKffOkXzW6doT+CnaE/gp2h+6xTjP8ySh9WR02+doq2Y nGLuRmHpTp91ijYrNwWf9SH6V4fYf+8QvoRD7ExxiP7VIcMXmgXNgfygudA8 aD75BUALoIXEWwQFQouhJaRYirYMbTm0AutKKAgKhkJIsRptDbQWWgethzZA oeSyEQrDGg5tgjZDEdAWKJJctkLbsEZB27HuQNsJRWPdjRYDxWKNQ4uHEqBE KAlKhlLIJRVKw5oOZUCZxHOhZUGHoWwoB8qF8qAj5JePVgAVQkehIqgYKiGX UrQy6BhUDh0nxQmoAutJtFNolVAVVE28GqgW62m0OrR6qAFqhJqgZqgFOkN+ rVAb1na0s1AH1k6oC2s3Wg/Ui7UP7RzUDw1A50kxiDaENgyNYB1Fu4B2EW0M bRztEmT1ueaa6wT688/aAUuqzh2w/EU7J9vQVGOOeSxX5psljt6r7O9Taaz+ lf1vgSGv5qnaLliBKubNhjP3ZUpd7tDk3leypqmi1ySvPnMErcK6WqVYo6W4 S8X7mGH3H0JVHhvNPGSKMC3FJ5Sq73wVqWr+KfKx9r+SMT/DZ5Tv0UrdreUq +z2BQtX3wXIGf+OQivOQB5vNj6vcn3Bolh9HqnmGM82Tqs7OHa6eVjGLtRK+ oVT3na2sM2U9+yPPYgXW76oUk3e4kvFqqPMPVR7WekAyhXOfK3/x+7TUJmot 33+qat6KYnlrZMyzWsxfq++dvsNVqrbDVaqHHa6k+gfHubJ3tkplZyvr31+U +let1uOqFGf/IZX+w0P0Hx7CF/MQPYSH6CE8RL/gIfoFD+FteYgr/0Nc+R/C n/IQXpSH8KI8xBX9Ia7oDzHa8BDX7Ie4Zj/EyMJDRhgUDm2GIqBIKAraDkVD MVAsFA8lQElQMpQCpUJpUDqUAWVCWdBhKAfKhY5AhdBRqAQqg45Bx6ET/KVP olVB1dBpqB5qgJqgZugM1A6dhbqgHqgXOgf1Q+ehYWiE2l9EG4eskYAF5nqw zuuBHW5Q1ncbAZpuhXnKOt/xe5qwf1BZb9J0m5cr6woP+VpefWm9wy1PK/0G ZQ31mPYTynq/lsZ+36asUW55WnHkfW2QsO6ZVO7U4SGV5uG3kearqhb2ToW6 vUhZiw1PaZ9T1m+Rzpn+lLJWuukW/1BZX/JYryZlbXbL1/r3C2V91aFNpO1W 1h5jcr5Weyytentsv48o66hbnha/Zbb/aaINthRrDPhhWuCHuYN7mDu4h7mD e5g7uIcNX7RZaHMgP2guNA+aT9oAtAXQQmgR8QLRFkNLsC5FWwYth1ZAK0kR hBYMhWBdjbYGWgutg9ZDG0gbCm3EGgaFY92EthmKgLZAkaTYirYNLQptO7QD 2km8aGg31hgoFoqD4qEEKBFKIr9ktBQoFUojXjqUgTUTckFZxDuMlg3lYM1F y4OOYM1HK4AKoaNQEVQMlZBLKVoZdAwqh46T4gRaBXQS6ym0SrQqqBprDVQL nSZeHVo91AA1Qk2kaIZasJ5Ba0VrQ2tHOwt1YO1E60LrRutB60Xrg85B/dAA dJ60g2hD0DDWEWgUukC8i2hjaOPQJeiyYXnl0jWvebrmNU/XvObp2mzwdG02 eLrmOU/XPOfp2mzwdMNqlW9UR07vebrZ6vkr73m65j1PN9s8f7V2RLrpPbd0 p+c8Xe2Ss1IdOWeDp2uzwdM173m65j1P12aDp2uzwdO12eDpmgc9XfOgp2se 9HTNg56uedDTNQ96ujYbPF2bDZ6uedHTzbbNX3nR0zUverrmRU/XvOjp2nq2 6YZzPdt0Y2I9W7lu/yFj4ir6sNIeMSauro+qVE4verrmRU/XvOjp2mzwdG02 eLrmSU/XPOnpmic9XfOkp2ue9HTNk56uedLTtdng6dps8HTNm56uedPTje+Z tip15FzPNl3zqKdrHvV0zaOernnU0zWPerrZUvkrj3o6M8Ktb7u9lkW6Nhs8 XZsNnq551NPN9slfzQZP12aDp2te9XTNq56uedXTNa96uuZVT9e86ulmu+Sv vOrpeNWto4um7W/qyOlZT9fujNO5M36EftkjzFx4hJkLj3C3/Ijol9maL9os aA7kB80lxTy0+VAAtABaSIpAtMXQEqxL0ZZBy6EV0EpSBKEFQyHQamgNtJa0 66D1WDdAodBGKAwKhzZBm6EIct6CFgltxboNLQptO7QD604oGututBgoFoqD 4qEEKBFKgpKhFCgVSoPSqUEGlInVBWVBh6FsKAfKhfKgI1A+VAAVUu5RqAhr MVQClUJl0DHSlqMdh05AFdBJUpyCKrFWoVVDNVhrodNQHVQPNUCNUBPUTM4t 0BmsrWhtaO1oZ6EOrJ1o3VAP1l6oDzoH9UMD0HloEBqChiljBBrFegHtIjSG dRy6hNXyos8xd72xr7EzlHKdOrbnT2YY7vMnM9zmT0plHnH8lXIjxwuVYs+c 9FczJzMc/vSlSllGnFuUcitxgpTiPncyY9LcyQyzhbL6Ch9Tivu+gxmG++zJ DPUUndQilOI+ezLDse9glFK2U9ZnleI+ezLDbfakVNz3IcwwEoljzaLMMCb2 IbSDv/rOZzhmUU7YnlA5uc+ezJg0ezJj0uzJjEmzJzPcZk9KpYyynlOK+/zJ DDzw/mr+ZIbDA1+lFHv+pL3bYMakGZRyzoSdz4+V4j6DMsP8NVt5/0wpPydO u1Jsb3yAmjuZYfxapbLnTmZMmjuZofomMvQrxX3uZMakuZMZzJ30V3MnM4y/ EmdMKePkY/U9Muh7fJHnAr6IJ+iL9C6+SO/ii/Qpvoiv54v0JOQ3w6aF0CJo CbQMWg6thEKg1dBayO4DfJEr/xe58n/RCIPCoQgoEtoKRUE7oWgoBoqF4qEE KAlKhlKhNCgdyoAy+UQutCzoMJQD5UJHoHyoEDoKFUMl0DHoOHQCOglVQdVQ LXQaqocaoCaoGWqF2qGzUCfUA/VC56B+6Dw0CA1DI9BFaJwzbvnxvb0ytWel /B0c4NACPIS3k2aq46nyds/XGW+6cq8WJtdD/vVmirPw6DXnNVXdp6qPp/pe LZ6n+l5rPlersye2guUnf5Q28VHuxx7lfuxR/OSP4id/lBbzUZ7TfdSYg+aH NhdtHjQfCoAWQAuhRVAg+S1GW4K2FG0Z2nJoBdaVaEFowVAItBpaA60l7Tq0 9dAGKBTaCIVB4eSyCW0zWgS0BWsktBXaBkWRYjvaDrSdaNHQbigGiiVFHFo8 WgJaIpQEJUMpUCpp09DSoQwok3gutCzoMJQN5ZAiFy0POgLlQwVQIXQUKoKK oRKoFCqj3GNQOdbjaCfQKqCTWE+hVaJVoVVDNVAtdBqqg+rJpQFqxNqE1ozW Ap2BWonXhtYOnYU6iNcJdWHthnqgXuL1oZ1D60cbgM5jHUQbgoahEWiUFBfQ LqKNQeNYL6HJezS5I+6ZVLkj7lzvaJ84Hz+fud7hM+Z6V/o0zTCum+sdK7hh RpFPtKkXzxjySfExrtswo927ytu4rshnyCd/hreII3cpdYl21H3n0sc8aFke tMc9aIc9aE940LI9aF/yoOV40L7sQcv1oH3Fg5bnQfuqB+2IB+1rHrR8D9qT HrQCD9rXPWiFHrSnPGhHPWhPe9CKPGjPeNCKPWjPetBKPGj/5kEr9aB9w02T /laX4Vz9x2XMMOTV3kcdOcd7XNp4j8u8hvur8R6XNt7j0sZ7XNp4j8uwehE3 qiPneI9Le1rCpY33uLSnJVzaPoUu4xYjQOnOJyVc2niPSxvvcWnjPS5tvMel jfe4tPEelzbe49LGe1zmtdpfjfe4tPEel3ml9lfjPS5tvMeljfe4tPEelzbe 49LGe1zaUxMubbzHpY33uLTxHpc23uPSxntcjvEeeeRcDcjlWA1ItlyPGBO9 wkeV9pgx0Vt8QqVyjve4tPEelzbe49LGe1zaeI9LG+9xaeM9Lm28x6WN97i0 8R6XNt7j0sZ7XNrqPy5tvMelrf7j0sZ7XNp4j0sb73Fp4z0u85rrr8Z7XNp4 j0t7gsKlrQDkUrMZf66OnGM+Lm39cpfxK8Nf6V2m/po6co73uLTxHpc23uPS xntc2niPSxvvcWmr/7i0pyhc2niPSxvvcWnjPS5tvMeFz0VeA23yhq6HZkL2 7JvH8L48xh3EY9xBPMYdxGPcNzzGfcNjzK95jBGdx/DIPIZH5jE8Mo/hkXmM O4PHuDN4jBk0j3E/8Bhemse4H3iM+4HHuAt4jLuAx4wwKJz8NqNFoG1Bi4S2 QVHQDiga2g3FQLFQPJQAJUJJUAqUCqVB6VAGlAm5+BxZ0GGs2VAOlAvlQUeg AqgQOgoVQSWUVopWBh2DjkMV0EmoEqoiv2q0Gug0VAfVQw2kbUJrRmtBOwO1 Qe3QWVJ0oHVB3VAvdA7qhwag89AQNAyNUNoo2hg0jtXyIvl6ZRnuK+4EGP6T /gVcY5jeS3Ht+bnH83d7fztp3fPwlI+/+Xc3xNl4/Kr5X0td3259p8rLU7zp 7Ndarns865/lRXqcVv5xPOuP08o/jp/ocdr2x2nbH6dFl+fRpoXQImgxtIT8 lqEth1ZCQVAItBZaB22AQqEwKByKgCKpwVa0KGg7tBOKhmKgWCgeSoCSoGQo FUqDMqBMyAVlQYepczZaDpQLHYHyoULoKFQMlZBzGdox6DjWE2gnoVNQFVQN 1UL1UAPURM7NaGegVugs1Al1QT1QL/mdQ+uHzkOD0DA0Al2ALkLSByGfIzls 2GPCVrhOqe/iFyX/ySer5gh1DvHea+ZzWNyL2fm8n1+iDAuU6nyuylpDx1eo 1kjwEkPOlD5srsMhj5epNO5PWFnqbYbz1y6frZJeiTsdMe9SMT+GJv9tVDGd z1RtUjH1OfeRSt3q0KxnqmQtP6PiflZ9BmvUN1qlmfxslVT1Z6sSlZqkxbWe sTpsPKTFdQZ/89sm4+jPWDnPh3V3I3P/umYvUmqxFv8bSp14ukr+O64+2cTd i/zc31FpvqvSTKyOI0O1Umu0Or2kznm9Q21UMZu0mD9VMX/m0H6hYp51xLSe q5Lqa4bzHPSqWtrPU51Tn2HibkOm+YOWZkipww5NjuBa32j5XJX1bf8bqcaV csmwz6B1nXnCsGePPcHdxBNccZ7givMEs8ee4L7iCa5CTzBa8QTXoyeYPfYE 9xpPcGWSe2/ZtABaCC2CAqHF5LcEbSm0DOtyaAXWlVAQ1mC0ELTVaGugtdA6 aD20AQqFNpJfGBSOdRO0GYog3ha0SLSt0DasUdB2aAe0E4qGdkMx5BeLFgfF QwnES0RLQktGS4FSsaahpUMZWDPRXFAWdJh42Wg5UC6UBx2B8qECqBA6ChVB xZRWglYKlWE9hlYOHcd6AqrAehI6BVVCVVA1VAPVkt9ptDq0eqgBayPUBDUT rwXtDNQKtUHtpDgLdWDthLqgbqiHFL1ofdA5rP3QANbz0CA0BA1DI9AodAG6 CI1B45R2CbJmlPma3n7ZGlo7Pmabs/ot3fbwWrps8yzdOZs/W9v5Mdts8Szd uQZOtjm3zNKdXt1sbffHbHZ/zNZ2f8xm98dsbQZ/Nh5dK1YQsWxvrqXfQa5O T262tu5NNuveZGs7QmYbYeTqnLGfjQfXihVBLOeukNnmk92W/mlTj1JHtufW ivVZyra9tpYeQ2qnxzYbj60VK4FYzh0is825aJbu9NRm46m1Yj1CrIm1buQY kDVL3wpPKO1LDu0rKpVzh8hsdojM1jy02XhorVjPEMv2zlp6GZ/E6ZnN1ta0 yWbXyGxt18hsdo3M1jyy2dp67NnGD0hte2MtvR7dOfM+G0+sFauZWM5Z99nM us/WPLDZmgc225x1b+ldpv6a0nvI1el9zVarAZ5TsfqJ5dxJMtvcSdLSnV7X bG03yWx2k8zWdpPMZq+HbM3bms26gF/iPvxL9I++RP/oS8zm+BJ+1y8Zvmiz 0OZAc7HOQ5sPBWBdgLYQWgQFQouhJdBSaBn5LUdbAa2EgogXgrYaWgOtJd46 tPXQBiiUeBvRwtDCoU1YN0MRWLdAkVi3QVHQdmgHtBOKhnZDMeQcixYHxUMJ xEuEkrAmQylQKpQGpUMZUCbkgrKgw1A2lEMNctHyoCNQPlQAFUJHyaUIrRgq gUqhMlIcg8qxHodOYK1AOwmdgiqhKqgaqoFqya8OrR6tAWrE2gQ1Y21BOwO1 Ym1Da4fOQh1QJ9QFdUO9UB90jjL6oQGs56FBrENow9AI1lG0C9BFaAwaJ4Xl XZ7vlYOHxN/tPcBxPJXNXfOU1j2PqcK1lH8tdZgq7VR5TC5PfpMuiF/Ul6fM d6o8PH3O6eo7Vf08xbua7q5NV3dPaW3v8pe5qn2ZmYlf5l7/y4YvNAvyI95c tABoIbQIWgwtgZZBy6GV5ByEFgKthtZC66ANUCgUBoVDm6EIKJJyt6JFQduh nVA0FAPFQvFQApQEJUOpUBqUAWVCWdBhKBvKofa5aHnQESgfKoSOQsVQCVQG HaOM42gnoJPQKagKqoZqodPkV4/WADVBzdAZUrSitUNnoU6oC+qBesnlHFo/ dB7rINowNAJdgC5Clhd6gVeu1sZ6+i37e+BrCc5/V4vj/rufSn875bpr15re CvIvPSK+oV+55rymqvt09XSP7+lzX608T3E95XO1utht7FdoY7/CncNXuEv4 Cm3sV2hjv4Lv9CvcJXyFe4OvGF7XG4YAY4YIPiJcJ8L1IrxLhJki3CCCrwjv FmGWCLNFmCPCe0TwE+G9IswV4X0izBPh/SLMF8FfhAARbhRhgQj/JMJCET4g wiIRPihCoAg3ibBYhJtFWCLCh0RYKsKHRVgmwkdEWC7CLSKsEOFWEVaK8FER gkS4TYRgEVaJECLC7SKsFuEOEdaIcKcIa0X4ZxHWiXCXCOtF+JgIG0S4W4RQ Ee4RYaMI94oQJsLHRQgX4T4RNonwCRE2i3C/CBEifFKELSL8iwiRIjwgwlYR PiXCNhE+LUKUCP8qwnYRPiPCDhE+K8JOET4nQrQIu0TYLcIeEWJE2CtCrAif FyFOhH0ixIvwBRESRNgvwgER/nHlypUk8f6gCMkiHBQhRYRDIqSK8JAIaSI8 LEK6CI+IkCHCF0XIFOFREVwiLOCbsJBvxyK0QGgJtBRaBi2HVpJLMFoItAZa C62DQqGNUBgUDkVAW6BIaBsUBe2AoqHdUAwUC8XzORLQEqEkrCloaVA6lAm5 oCzoMJQN5UC5lJGHdgTKhwqgQlIcRSuCSqBS6Bh0HDoBVUAnoUqoitKq0Wqg 01A91AA1Qc1QC9QGtUNnoQ6oG+qhLr1o56B+6Dw0BA1DI9AodBEag8YpTc21 MedZy9baSx0513HJ0+b15mnzevM0z2+eNq83z2yv/dW83jxtXm+eYV0dblRH Tg9wnjavN0+b15unzevN01ZBz8MTLD9bnrmWi6U75/XmafN687R5vXmaNzhP m9ebp1b23KCOnPN687R5vXmaVzhP29UzT1vHJU+b15unzevN07zDedq83jxt Xm+eNq83T5vXm6d5ifPUbi/x6sg5rzdPm9ebp83rzdO8xXmOeb3yyLk6ep62 Onqe4VzXJc+YWNdFzux39xxL7asO7UmVyuk1ztPm9eZp83rztHm9edq83jzN e5ynzevN0+b15mnzevO0eb15mhc5T5vXm6fN683T5vXmafN68wynNzlPm9eb p83rzdPm9eZpO3vmaV7lPG0tlzxtLZc8bW5vnja3N0/zLudpc3vztLm9eZqH Oc98atrSnR7mPG1eb542rzdP29UzT5vXm6d5mvOY1/tVRuK/Sn/xq3iav8rd +VfpQ37V8IVmkXYOmh/aXGge1vloAWgL0BaiLYICocXQEmgptAxaTn4r0Fai BaEFQyHQamgNtBZaRy7r0TaghUIbsYZB4Vg3oW1Gi4C2YI2EtkLboChoO7SD XHaiRUO7oRgolhRxaPFoCWiJUBKUDKWQIhUtDUqHMqBMyAVlQYfJLxstB8qF 8qAjpMhHK4AKoaNQEVQMlZBLKVoZdAxrOdpxtBNoFdBJ6BRUSYoqtGq0GrRa 6DTWOrR6tAaoEWsTWjPUgvUM1Aq1Qe3QWagD6oS6oG7K6EHrRetDO4fWDw1g PY82CA1hHYZGoFHoAnQRGoPGoUvkbI3ELzCfa/N0N36DGe+IuSJuvWi1jpi7 0NhW612uiztLWOx1ca0ZfUfM9mziXl72suTzczc5SpC9qzlC+zCaXCd3nlDc 18kNNlvvI+ZcIWsllwBxdIdWD+v9Y+rzuK+Wa1k/oVJGuFll2KbKiDKP/1XV 5DOG7ofYpeq8h3Sx6pPFOfJKUOcg0aH5m70ceabsvV8eMuRaukeMa19L19/4 qkrztUlp/Kdgqzciy7VXX/m2qt3zWvpT6nM419KtVp92Yn7eD9V5mVhT14r7 Y3X2JnoZ8jw3T6qLv/iNWX+hVx2pJ3LqVil/4+GzvaHKmHj6R9ZkUItjra8r 6zxK+r+qT/Y3R2lvqXPyD3Vs+Y2+Rj/ga1z9v8bV/2uGL9ZZaH7QXGg+FECK hWiLoMXQEmgZtBxaCQVBIdBqaC2lrUPbAIVCYVA4tBmKgCKhrVAUtB3aCUVD MVAsFA8lUNMktGQoFUqDMqBMKAs6DOVAuVAedIRy86ECrIXQUagYKoHKoGPQ cegEdBI6BVVRbjVaLXQaqocaoCaomVzOoLVC7dBZqBPqgnrIpRftHNQPnYcG oWFoBLoAXYTGIcsLMMd8Otr+vc5QivtOrPmG+0pi+eKu3/79zlWKvZKY/Cd/ z/niTt+K808qhr2OmL0Da/6kdcTy3XZglYr7OmL5buuI+QrlDvN4jfnZ8s1f nhVzHXX6mFLupo4bleK+mlj+pNXE8g3namJWGZ8yAlTZnzYtUSrmdmJ+Vinu a4rlT1pTLH/SmmL5bmuKSWViTbFUpaQR5xGluO/Qmu+2Q2uAUJz34PbZ+Zqy Pcknn7A9o3JyX1MsnzXFAtSaYvmT1hTLd9vVQyovGPZfoEop9ppi/mpNsfxJ a4rlG+5riuWLq5td12b1l2gxj3+q/kJyHroV031lsfxJK4vlT9qVNX/SymL5 2q6sVhlyZTGr7POm5Y8qpvv6YvmT9mbNd+z6MaYU9/XF8rknfpJr4ZPcEz/J VfFJropPck/8JPfET3JP/KQxB80PmgvNg+aTIgBagHUh2iIoEOtiaAm0FFpG iuVoK6CVUBAUDIVAq8llDdpatHXQeqwboFBoI/HCoHCsm6DNUAS0BYqEtkLb oChy3g7twLoTisa6Gy0GLRYtDorHmoCWCCVhTUZLgVKxpkHpWDOgTMgFZUGH oWwoB8qF8qAjUD7lFqAVQkehIqiYFCVopVAZdAwqh45DJ6AK6CQ5n0KrhKqw VkM1WGuh01AdVA81QI3k0gQ1Y22BzkCtUBvUTtqzUAfWTrQutG6oB+olXh/a OagfGiDeebRBaAgaJt4INIr1AtpFtDFoHLoEWffEvubaLLJd9FJH9liFjFVg 7h1m6c5dWgvMds/SnWMUBYZz7ZEC9bTbfHVktb83qhwWkoNzhnoBM9QLtLGJ Am1sokCbpV6gzVIvMJ+Bs3TnLPUCs2WzdOe4RIFaF/UudeRcb6RAm6leYISR gz0mYemfoETneESBNh5RoI1HFGg7sxaYz81Zuj0WYenRlOgchyjQxiEKtPVF ChiHsHJIIgd7DMLSD1Fimqk/rI6c4w8F2vhDAeMPVg5PkINzjZECxxojcuUf 9zEIqX3dmOgLPa1SOcceCrRZ6wXm2IOlO8cdCrRxhwJt3KGA9eOtHF4gB+dO rAXsxFqgjTcUaOMNBdp4QwHjDVYOTeRgjzVY+k8p0TnOUKCNMxRo4wwFjDNY ObxGDvYYg6X3UqJzfKFAG18o0NYOKWDtECuHYXJwzmAvYAZ7gTa2UKCNLRRo YwsF9KO+zlyUr9OP+joz/77OLPav04/6uuELzcI6B80PmgvNg+aTIgBtAdpC aBHWQGgxtBRaBi2HVkAroSAoGAqhtNXQGmgt8dahrUfbAIVi3YgWhhYObcK6 GYqAtkCRpNiKtg2KgrZDO6CdUDS57IZisMZCcVA8lAAlQknkkoyWAqVCaVA6 lAFlkosLLQs6DGVDOVAuafPQjkD5UAHxCqGjWIugYqiEeKVoZdAxqBw6Dp2A KqCT5HcKqsRaBVVjrUGrhU5jrUOrhxqwNqI1oTWjtUBnsLaitUHt0FmogxSd aF1o3Wg9UC/WPrRzUD/WAbTzaINoQ9Aw1hG0UbQLaBfRxtDGoUuQ1Xta6VU4 7ZzMAIfm76a5H7vH8RSc/6ZKO10e7jZnmqnqebW0116W/Nb1iN/SU1dNO139 pit/qnzdP8e1xHs7aS3N8q0/xXXwKXwHT3GlewqP+lNc357i+vYUHvWn8KM/ xRXsKe76n+Jq9RRXq6e4Rj3FNeop7uuf4h7+KXzmT3G//pQRBoVDm6EIKBKK grZD0VAMFAvFQwlQEpQKpUGZUBZ0GMqBcqEjUD5UABVyDo5CRViLoRKoDDoG HYdOQCehKqgaOg3VQw1QE9QMnYHaobNQF9QD9ULn+Gz9aOehYWiEeBfRxiHL ix3sddTjkz1X+zV6+tVM9atzT+Me13ns/j5VHp7STpduqrTXEk+3yb9xl/h+ PT1tPE/5TVdXT3lNZ//P5DP157ZauKdp4Z6mp/80HtOn6ek/zXoeT9P+PU37 9zQ9/aeZRfQ0/fun6d8/bQSgLYAWQouIFwgthpZAS0mxDFoOrYBWQkFQMBRC fqvR1kLrsK5H24AWCm3EGgaFQ5ugzVAEtAWKJL+taNugKGg7tAOKJu1utBi0 WCgOazxaAloilIQ1GS0FSoXSoHQoA8okFxdaFnQYyoZySJGLlgcdwZqPVgAV QkeJVwQVYy2BSqEy6BhUDh0nlxNoFdBJrKfQKtGq0KqhGqgWOk2KOrR6tAa0 RqgJaoZaoDOkbUVrg85CHVAn1EXabrQeqBfqg85B/aQdQDuPNog2BA1jHUEb RbuANgaNY72EZvs/izT/Z5E2V7vIbMv81VztIm2udhFztWV+RaYf1NKdPtAi bZ52kWG1pTeqI+c87SL227Tyk22YpTv9oEWaH7RI84MWaesvF2nztIu0edpF 2jztIs0fWqT5Q4vwh1q1CqVWzjnaRdoc7SJt7eUizSdapK3eUcRYb5E2P7tI m59dpM3PLtLmZxdpftEizS9apPlFi7T52UXa/OwizTdahG+0SPONFmm+0SLN N1qkzc0ucszNlkdO/2iRtgZzkeFcg7nIHLux/aRFxsQqZf7mr1tqz6DZc7OL tLnZRZqPtEjzkRZpPtIibW52kTY3u0ibm12kzc0uwldqna2XDPs74fSTFmnz sou0edlF2rzsIuOn5ic8o46c/tIi4xemrV0dOf2lRdq87CL22LRq9Tp/Q+ec 7CLNZ1qk+UyLNJ9pkeYzLcJnWqTNyS7S5mQXaX7TIs1vWqT5TYvwmz7D+PMz 9KaeoTf1DN7SZ+g5PUPP6RnuIZ/hHvIZ7iHlN8WmBdBCSlsELcG6FFoGLYdW QCuhYCgEWgOtpYx10AasoWgb0cKgcGgTFAFtgSKhrdA2KIoydqDthKKhGCgW iocSoEQoCUqGUqB0KAPKhFxQFpQN5UC5UB50BMrnsxWgFUJHoSKomBQlaKVQ GXQMKoeOQyfIpQLtJFQJVRGvGqrBWgvVQw1QI9QENUMtUCvUBp2ltA60Tqgb 6oF6SdGHdg7qh85Dg9AQNEwuI9Ao1ovQGNZxNKs/Msfci8Ju32coxX3WWLFh zxrzV7PGiiftP1lszhqz7+UsRd9/cpZQPqji3KRiuM8aK540a6x40qyx4km7 TxZru0/Kz1ds/v5lO1gs7o1kiR9TMd33oCw23GeNFav+hAwRSnHOGrMUfQ9K Wc52s5zPqPI/y/n9nDpz9qyxYmaN+atZY8XqyS6pJSjFfdZY8aRZY8WTZo0V T5o1VsysMXtnymLHrLFcpeSRjzV7rNiYavaYtD2r6ZbtOZWT+6yx4kmzxood a5VWKcV9J8piNWtM/qtTysSqpT9WivtOlMVq1pgMP1PKz/kc7Upxzhez/lK/ NgLUX/A109KtYrrPGiuetB9lsTmbwirhj0pxny9W7DZfTJZjzRe7qMofM+zf i/ussWKu2s/iA3mWa/Wz+HufNXwhP2guNB8KgBZC9nX5WcYpn+UK/SzX5We5 Lj/L1fhZfBbPcjV+Fk/Fs3gqnuVq/Cw+4GeNMCgc2gxFkCISbSsUBe2EoqEY KBaKhxKgJCgZSoXSoAwoE8qifofRcqBc6AiUDxVCR6EiqBgqgUqhMugYdBw6 AZ2ETkFVUDVUC52G6qEGqAlqhs5ArZyNdrSzUCfUBfVC56B+6Dw0CA1DI9AF aJwaWJ7k9V4lzIee3JZN1tztznd3ns7mTDtdGdPl6SnddHWZLu1U9Zg+P/kd aBXfv3/zmN90PFV5UwVnfPe00+XjP8W753wsT/K/0Yr+m7j38Vfkg3Y9NBPy Jd4saA5WP7S5aPOg+VAA8RagLURbhBYILYaWEG8p2jJoOdYVaCvRgtCCoRBo NbQGWkvadWjr0TaghaJtRAuDwrFuQtuMFoG2BYqEtkLboCjSbkfbAe3EGo22 G4rBGgvFYY1HS4ASsSZByVAKlAqlQelQBpQJuaAsSjsMZWPNQctFy4OOYM1H K4AKoaNQEVQMlZBLKVoZdAwqh46T4gRaBXQSOgVVQlVQNVRDfrXQaax1UD3U QLxGtCa0ZrQW6AzWVrQ2tHa0s1AH1k60Lqgb6oF6SdGHdg6tH20AOo91EBrC OgyNQKPQBVJcRBtDG0e7hGb7nks133Op5nsu1dYJKdV8z6XaOiGl6okhP3Xk 9D+Xav7nUsNqfW9UR07/c6m2Tkiptk5IqeaDLtV80KVmi+evfNClmg+6FB+0 /Nylpg/a0p3+51LN/1yqrRNSqs3HLdXWCSnVfNClmg+6VPNBl2o+6FJtXm6p Ni+3VPNDl2p+6FJxDyk/6U515PRDl2p+6FLND12q+aFLNT90qeaHLtXWCSnV 1gkp1XzRpZovulTzRZdqvuhSzRddqvmiSzVfdKnmiy51+KLlkXPdkFLHuiFy t0t3n7TUvmFMXPGfU6mcvuhSzRddqvmiSzVfdKnmiy7VfNGl5mrT9rzdUm3e bqnmjy7V/NGlmj+6VPNHl2rrhJRq/uhSbf5uqeaPLtX80aXaOiGl2johpZpP ulTzSZdqPulSzSddarZO/moPwFJtrZBSzS9dKu5tZcwL6sjply7V/NKlar+O f6jfqH2H+w380t/AL/0NemTfoEf2DcMXmgX5kXYu2jxoPrSAeAvRFkGB0BJo KbSMtMuhlViD0ILRQqA10FpoHSnWo4VCG6EwKBzaDEVAW6BIct6GFgVth3ZA 0dBuKAaKheKhBCgRSoJSoFQoDUqHMqmpCy0LOgzlQLmkyEM7AhVAhdBRqAgq hkqgUnIug45hLYeOQyeIV4F2EqqEqqBqUtSgnYbqoHqoAWqCmqEW6AzUBrVT 2lmoA2sXWjdaD9QLnYP6oQHoPDQEDUMj0Ch0kXLH0MbRZOsg99xe8bDcc7vI p2PGXO/lM9bPMK4L9GnymesdKY6LZhT5GNfNnBE747jQw30uCr3de653m4/L x8/n+IwQEce4rsRH7oNcJtoV972Rv+lBO+ZBe86DVu5B+5YH7bgH7dsetBMe tOc9aBUetO940E560L7rQTvlQXvBg1bpQfueB63Kg/aiB63ag/Z9D1qNB+0H HrRaD9oPPWinPWgvedDqPGgve9DqPWg/ctPkeiBlxsT4igzXKdXay83WZyl1 juH0XLzP/E2UmX1q6SG2n9KW/xaoFAu13G9S6sS4ivwne86zhLpcHa8wr8Rl pp/A3sutTO3lZofVSl2j5S97yfI39TGHdo+KaY+jWP8+odT7HTHt3dzKzD7w xOf8V5XrDkfMaBVzt0PzV3u4lTnGS2RIVJ8nyTx+UH1ae7zkkErzkFaTDKVm ajV5XKlP8DmknqvUiXESGWRPNVCo+t5uzuBvtuQyzje1+urhuyp3T3u4lWl7 uFk9Tam+7CjD3sWtjF3crLJ+qs6DvYvbz9VZmuhRyjQT4yEy1a+V+ppWl171 9+kjb2sERMb8gxZzSKnDWk3+otS/klqGcVW/f6h4lo9Ots0Binwge47nN+n9 fZPe3zcZ8/gmvb9v0ueTu+nZtBBaBC2GlkDLKG05tBIKIl4ItBpaC62DNkCh UBgUDm2GIqBIaCs1iELbDu2EookXgxYLxUMJUBIpktFSoTQoA8okRRbaYSgH ay7aESgfKoSOQsVQCVQKlZHzMagc63HoBHQSOgVVQdVQLXQaqocaoCaoGToD tULt0FmoE+qCeqBe6BzUD52HBqFhaAS6AF2ExiHZu6o3NnkdMybWinH+UicH Zzs4VfD0z1O+nvLxN96ZbTr9WtK42531ni5fPY38jjSI7+JzHvObri7X+nmd 2nT1m+5zTZ+P1e4+R7v7HPffz/E87XPciT/Hnfhzhi/WWWhzID9oLvHmQfOh AOItgBZCi4gXiLYYWgItJd5yaAW0knhBaMFoIWir0dZAa6F10HpoAxQKbYTC yDkc2oR1MxSBdQtaJNpWtG1QFNbtaDugnVij0XZDMVhj0eKgeCiBeIloSVAy 1hS0VCgNSocySJGJ5oKysB5Gy4ZysOZCeViPQPlQAVQIHYWKoGLyK0Erhcqg Y8Qrh45jPQFVQCehU1AlVEUu1Wg1UC10GqqD6knbgNYINWFthlqwnoFaoTao HToLdZBLJ1oX1A31EK8XrQ86h7UfGsB6HhqEhqBhUoxAo1gvQBehMeKNQ5ew 2iMi5YY9IiL1cmOG4a9052hIuTb+Ua7tkFlO61ZOm1bO7pjl2phHubb2SDlr j5Rru2OW0/8sN9syK4ZzzZFydsYs19YcKWdnzHJtjKNc2xmznJ0xy7X1RsqN MHJ1rjdSbo5tWBRBDOe8+nJzNpxFUcSwxzIs/bOUaY9jWHoM8Z1jGOXajpjl 7IhZru2IWc6OmOWMXVj6w9TnEWLYYxaWnkWOzvGKcsYrrFh2W1NujlVY9CQ5 OscoyrUdMcuNZ4hlry0i76HKDWvuvHX1fU5pE7Pm7PGJcm0nzHLWEynXxibK tZ0wy8158ha9BNXzOZ3jEeXaLpjl7IJZru2CWW6ut2bRL6iBPQZh6b9C7zL1 15TeQ47OsYdyxh6sWP3Ecq5PXs4OmOWMOVi6/esvZ+2Qcm33y3J+7eXmGqQW 2WMM36KP8y36ON+ij/Mt+jjfoo/zLcMX6yy0OZAfNJd486D5UADxFkALoUVQ ILQYWkIuS9GWoS2HVmBdiRYEBUMhxFuNtgZtLbQOWg9tgEKhjVAY+YWjbYI2 QxHE2wJFYt0KbYOiiLcdbQe0E4qGdkMxpI1Fi4PioQTiJaIlQclQCpQKpZE2 HS0DyoRcUBYpDkPZWHOgXKx5aEegfKgAKoSOQkVQMVRCzqVoZdAxqBw6TooT aBXQSegU8SrRqqBqqAaqhU5DdVA9+TWgNUJNUDPxWtDOQK1Y29DaobNYO9A6 0brQuqEerL1ofdA5qJ94A2jnoUFoCBqGRkg7inYBuoh1DG0c7RKa1duJ9Dr+ X3LX7+mO0plmurRTleueh3uca6nzVPGm0qaqw9XymziW38xa8av49jXldfX8 PKd5O2mvVbfv+r/NFfHbeFu/bfhCsyA/aC40HwqAFkKLoCXQMmg5ZF+tvs19 +Le5D/8216Nvcz36Nlehb3MV+rYRBoVDEVAktBWKgnZC0VAMFAvFQwlQEpQM pUEZUCaUBeVAudARKB8qhI5CxVAJVAYdg2TrLf3s3zZbb9n7OKEsFcQ5CZ2C qqBqqBY6DdVDDfz1mtCaoVaoHToLdUI9UC/5nUPrh85Dg9AwNAJdhMahS+Y5 WWSOvU71G3u3ijFbqZ5+k1aMBR7ysOJ/SMX4MOnd/wWrGCEe85fhYyrG3ZNs 9r/NKkaEm20i7r+qGJ9x0ydCrIoRNymtHQ6qGIco1z2OS8WYeOLIPZ7cZWGN iPE1j3Xwn4Kt8G2V9nmPZU8XrHWmZc0m1pl2L6NNxWj3mF6+v65i/AbNvR7n VYxBD/lb//5q/lpOiHsV9/zt0a/nDXsW1PPcoTzPfcnz3Jc8Txv9PG3087TM zzP36Xna6Oe583ieNvp52ujnufN4nvuN57nfeJ52+3na7edpt5/nLuN57i2e 547ieVrw52nBn+eO4nla8Oe5j3jeCIPCoc2UEQFtwRqJtg0tCm072g4oGtoN xUCxUDyUACVCSVAKlEa56WiZkAvKIt5htBwoF8qDjkAFUCG5HEUrgkqgUqgM OgaVQ8ehE+RcAZ3EegqqhKqgaqgGOg3VQfXk3IDWBDVDLdAZqA1qh85CHVAX 1A31QuegfmgAOk/9htCGoRFoFLpIijG0cci68vias3nkr99LHTlnYldovscK bSZ2heaJrGAmtsy9wngfuTtnYVcYVktzozpyeiQrtFnYFczCtvKTLYGlO2dg V2irgFSYOzXaM7ArzLbAX60CUqGtAlKhzcKu0DyUFdos7AptFnaFNgu7QpuF XaF5KivMVsLSnTOwK7QZ2BXaDOwKbQZ2hea1rDBnYFu6c/Z1hTb7ukLzXFZo s68rtNnXFdrs6wpzBMVfzb6u0GZfV2izryu02dcV2uzrCm2V5ApWSa7QZl5X aDOvK7SZ1xXazOsKzatZoe3YWGE4V02u0HZsrDCcq4JUOFYFkXPXJjyc/uav XmrWismW/oJK5fRuVmgzryu0FZMrtJnXFdrM6wrN01mhzbyu0GZeV2gzrytM D4G/8XN1Jm2PZ4U267pCm3Vdoc26rhC9BJlDjzpyej4rtFnXFdqs6wpt1nWF Nuu6Qpt1XaHNuq5gNRCrxn+jxs4Z1xXaSiAVoqdhtVDf4d7vOzwN9x3uAr9D r+M79Dq+Y/gSbxY0B6sf2ly0edB8KABaAC0k7SIoEOtiaAnWpWjLoBXQSuIF QcFYQ9BWo62B1kLroPXQBigU2giFQeGUsQltM1oE2ha0SLSt0DasUWjboR3Q TuJFo+2GYqBY4sWhxaMloCVCSVAy8VKgVKxpUDrWDLRMNBdaFnQYazZaDlou Wh50BMqHCkhRiHYUrQitGCrBWopWBh3DWo52HDoBVRDvJHQKayVUBVVDNVAt dBqqg+qhBspoRGtCa4ZasJ6BWrG2obVDZ6EOqBPqgrqhHvLrhfqwnkPrRxuA zkODxBtCG4ZGsI6iXYAuQmPQOHSJtJYPdKfXSXyg7vdvnjRPdk/ppnufSvOU h3s93Hmquk1X33eSzzsp19+Q39KT4t93Pebnia9F85TWPf5Ux9Pr1j33d7kO fper33e5+n3X8IXsa9538YZ+lyvdd7m+yU9v0yJSLEZbAi3DuhxtJRQEhUCr obXQOmgDFAqFQeHQZiiCGkSibYWioO3QTigaioFioXgoAUqCkqFUKA3KoFaZ aFnQYSgHyoWOQPlQIfkdRSuGSqAy6Bh0HDoBVUAnoVNQJVQFVUO10GmoHmqA mqBm6AzUCrVDZ6FOqAvqgXqhc1A/Z+g82iA0jHUE7QJ0ERonnnWfO8d8ysT+ 9c0wbafM1aVkv/SUuduPtcbULHFkrzE1S6XUV5iSMd6PYqW31pdaoPJdaPir lIsMu/26SSnOdaas2MvIZeJuVpZxq2obPqpS6mtNyRhrlLJWpXfOrTml5tbI lO4rTZ0ynCtNWbHtnXxOqeckIlQZ9npTkSqlvtqUjPEZpXxWpbdWmYpW+e7m XNhrTdk7FJ7Sdii0YidyLpxPUJzSnqCQKdMMu/V8RMXIVIpLpbd8v4+rfJ/g XLivOXVKW3PKim3PqzllWPv1FKoyjqqYRSqlvnuhjPFNpci7zQBx/C1j8vXk u8r2ggfbD1Q+9l6FL6mS9DWnZAz7CYtmVdMWM7efqk9g71N4atI+hacmrTt1 inWnTjnWnZJl2OtO9aqU+qpTMsYf1Gf4o0r/J9M6pPK1Vo6UKfWVp6Ti3KnQ ij1u2H97513iKebMvIBH+gU80i9wnXyBJzNe4C7xBTzSL3Bv+AJXzBe4Yr7A veELXDvlPCebFkALKWMRtBjrEmgptIx4y6EVWFdCQVAwFAKtgdaSyzpoPdYN UCi0EQojRTjaJigC2gJFkmIrtA1rFNp2aAfWnVA0FAPFQnFQPJQAJZJzEpSM NQVKxZqOloGWCbmwZkGHoWwoB8qF8qB8qAAqpIyjUBHWYqgEKoXKoGNQOXSc /E6gVUAnoVPEq0SrgqqhGqiWFKfR6qB6qAFqhJqgZqiF/M6gtUJt0FnidaB1 onWhdUM9UC/UB50jbT/aeWgQGoKGSTECjWK9AF2ExqBxUlj3cr7ms6myzfJS R04veqW2lnal5kWv1LzoldqegpWGcz2TSs2TXmlYreeN6sjpSa9kPW3ryLme SaW2nkml5k2v1NYzqdTWM6nU1tSu1LzplXjT5TmpNO40/JXu9KRXap70Ss2T Xql50iu19UwqtfVMKjVveqXxL2aNI9WR05teqXnTK7X1TCq1dbUrNY96peZR r9Q86pWaR71S86hXGgfMuiSpI+d6JpWaR73S7L34K496peZRr1RPgT6qjpzr mVRq84MrNa96peZVrzS+auZyRB05veqVmle90myr/JVXvVLzqldqXvVKzate qa21XWk41zepdKxvIp/atuYPW+EFpX3PmOj7fF+l+oF5XKuOnF71Ss2rXql5 1Ss1r3ql5lWv1Lzqldp6JpXaeiaVmme9UvOsV2qe9UptPZNKzbNeqXZzPqeO nJ71Ss2zXska29aR07NeqXnWK7V1tiu19UwqNe96pdZvqqTf9D28Ct+j3/Q9 +k3fo9/0PXYt+Z7hi3UWNAfyI95ctHnQfKwB0AKsC6FFWAPRFqMtgZZiXQYt x7oCbSUUBAVDIaRYjbYGbS20Dut6aAMUSryNaGFQOLQJ2gxFQFugSPLbirYN LQptO7QD2glFk2I3WgxaLFocFA8lEC8RLQktGS0FSoXSiJcOZWDNRHOhZUGH oWwoB8qF8qAj5JcPFWAthI5iLUIrhkqwlqKVQcewlqMdh05AFdBJ6BRUSS5V UDXWGqgWOk28OrR6qAFrI1oT1Iy1Be0MWitaG9QOnYU6SNGJ1oXWjdYD9UJ9 0DlS9EMDWM+jDUJDWIehEWgUugBdJO0Y2jh0CbL6ZvFeVXh+nD7XyffeE8GT 3fnPXb9aen9jctzpeCrbVHV9p/k46+Vuny6+53rIb2yZ+Ma/OG19p06v89Xq O11cT/GsY8vP/iJXxBfxrr/INe9Frnkv4it4kSvdi3gIXuRa9iKz117kuvUi V6sX8am/yDXqRa5RL3KX/yKe9Be5Cr3IffyLRhgUDm2GIqBIKAraDkVDMVAs FA8lQElQKpQGZUJZ0GEoB8qFjkCF0FGoBCqDjkHHoRPQSegUVAlVQdX8ZWrQ aqHTUD3UADVBzdAZqB06C3VBPVAvdA7qh85Dw9AIdBEahyzfdqJXtdbCTf8r 1X8dnn5JV8tjql/g1dJ4Suvp2FPdptKvpUx/x/tUaa+97vL7USK+S9+flOZq +V3L556qvp7Sei7DauG+Twv3ffr83+f5wu/jIf0+rd736d9/n1bv+7R636dX /30jAG0B2kK0RVAgtIR4y9CWQyuglVAwFELa1WhroLXQOuKFQhuxhqGFo22C IqAtUCQptqJtg6KgHdBOKJq0u9FioFgonngJaIlQEtZktDQoHcqAMknhQsuC sqEc4uWi5UH5UCF0FCqCiqES8itFOwaVQ8ehE1AFdJJcTqFVQlVQNfFqoFqs p6E6qB5qgBqhJqgZaoFaoTaonXLPonVAnVA31Av1Qeegfug8OQ+iDUHD0Ag0 Co1B49AlyPZU1mieyhrNU1mjzfet0TyVNZqnskbzVNZonsoa4/1mSzRfHVlt 043qyOmprNHm/NZonsoas9XwV57KGs1TWaPN+63RPJU1mqeyRvNU1mjzfmuY 9yvPUI1xl+Gv9I+ZJW9QR05PZY3mqazRPJU1mqeyRvNU1mjzfms0T2WN5qms Yfce68jpqazRPJU1mqeyRvNU1qh16eLVkdNTWaPN/a3RPJU16qmaVHWUZtoe VkdOT2WNNve3RvNU1mieyhrNU1mjeSprtPm/NZqnskbzVNZo839rNE9ljdkC +StPZY3mqazRPJU1mqeyxuGplEfOlZhrjImVmOUakJY3y7rGfl9pP0CzPZU1 mqeyRvNU1mieyhrNU1mjeSprNE9ljbYTYI3mqazRPJU1mqeyRvNU1mieyhpt DnCN5qmsUaO659WR01NZo3kqazRPZY3mqazRPJU1mqeyRvNU1uCp/AEjvD+g 1/IDPJU/4F7tB/RffmD4QrOgOZAfNJec56EFoC1AW4i2CArEuhhagnUp2jK0 5WgroJVQEBRMihC01dAaaC3x1kHroQ1QKCnCoHBoE7QZioC2QJHQVmgbFEVp 26EdWHdC0dBuKAaKJW0cWjxaAloilASlQKmkSIPSsWZAmZALyoIOQ9nkkoOW i5aHdgTKx1qAVoh2FCrCWgyVYC2FyrAeg8qh49AJqAI6CZ2CKqEqqBqqgWqp wWm0OqgeaiBeI1oT1Ay1QGegVqgNaie/s1AH1k6oC+omXg9aL1of2jmoH+sA 2nm0QbQhaBjrCDSK9QJ0ERqDxiGrzzXHXBnYvl+boRT3nQ1rDXvWWYDa2bBW PVMltblKmWfY1yB/peg7G0rFnnMm1+CV9ag155zJdrdW9KZkzKUq5jJKvEUp 7jsc1potlJXb7Uq5gzhrlbLOsO9HP6aUu6mlnHE2Syj2jLNwFcN9Z8NaZprZ OxvWus01k8p2w/78n1XK54izWykxxPm8UpzzzKzaHFDKgyrGQcM+06lKSaM2 jyjFfUfD2kk7GtaKno6dT65SnLPLLOVJ8ilUylHiPKOUZzl/pUopI85zSnHf 4bDWnP1vadYcs1pj8hwzf/VrrjV+OMlm72hYO2lHw9pJOxrWTtrRsFabWWYp v+ZzdCulhzi/VYr7Xoa15l6GlvZHpfyJOMNKGTHs7+VflOKcUWYp7rsY1tLT +CE9jR/Sv/gh/Ysf0qv4Ib2KHzLq+UO8Ij/EFyzn69m0EFoMLYGWQcuhlVAQ FAKthtZC66jLBrRQtDC0cGgzFAFFQluhKGg7tBOKhmIoLRYtHkrAmoSWDKVC aVAGlAllQYehHHLORTsC5UOF0FGoGCqByqBj0HHoBHQSOgVVQdVQDVRLTU+j 1UH1UAPUBDVDZ6BWqB06C3VCXVAPNehFOwf1Q+ehQWgYGiGXC2gXoXGsljd6 gbm+vf3bdIYbDHnXdNp4N5q/8R7zl3raeC/x56k85hNnIi9rTlOAsC6elLu/ +D3Jtb1Pm2utTujSDzBLqKvU8e0q/zvI3fm+wfwsp83fUr2ow2lx/dJjBJjr yc8TFn09eeuq5St066q1TZUTNSm9DLtU3D2mHqNyjNXiWFcrWYdEt/T+4i7d qudDhn3OH3YrwQpZ6tMfVsfZ6hzlOHL0N1fDkGd1YjWMCdvTKv9iD7lb16Ig Yf2WB5unzy3DD1WalzzYpsrjF6oWr3rMs1vV/zceSn1DfeI/aLYhdV7s1eFH VP6jk0qW72+ps22v43ea68hLXEde4o71Ja4oL3FFeYk71pe4trzEUzwvGXPQ /NDmQvOwzocCoAXEWwgtwhqIthhtCbQUWgYtJ8UKtCAoGAqBVpNiDdpatHVo 66ENWEOhjVjD0MKhTVg3o0WgbYEioa3QNigK2g7tgHZC0ZSxGy0GLRaKwxqP loCWiJYEJWNNgVKhNCgdyoAyIReURc6HoWysOWi5UB7WI1A+VAAVQkehInIp hkqwlkJl0DHilaMdRzuBVgGdxHoKrRKqgqqhGqgWOk0udVA91gaoEWoiXjNa C3QGaytaG9QOnYU6oE7SdqF1Qz1QL/H60M6h9aMNQOehQWiIFMPQCNZR6AJ0 ERqDxqFL5GKPIdRpYwh1jCHIWHXms1SWbo8fWLps7SzdOXZQZ7Zz/mrsoE6b 5VxnWO3wjSqHheRgjxtY+k2U6JzdXKeNGdRpYwZ1rBVi5XAbOThXMa4zWzZL d64RUqfNbK7TxgvqtJWM64wwcnCuD1LH81Z12jhBnTZOUKeNE9QxTmDl8Bly sMcILD2aEp3jA3Xa+ECdNpO5jvEBK4ckcrDHBiz9ECWmmfrD6sg5LlCnjQvU aWuC1Jm72Vi6c3XjOrN1snTneECdNh5Qp40H1GmrHNeZ7ZGl27OWLf0b1Nk5 DlCnjQPUaeMAdYwDWDm8QA7ONUHqHGuCyL2afmBM9BleUtrE3jj2GECdNgZQ xxiAVdJPKcnp/6/TZirXaf7/OnGnLUvsVDm8Rg6279/Sezk7Tr9/neb3r9Nm KNfh97dyGCYH2+dv6X+hRKe/v07z99dp/v46ek8vM0vhZXpPL9Nnepk+08uG L2T3mV7Gt/8y/aOX6R+9jEf/ZXpFL+PRfxmP/sv0hV6mL/QyfaGXuUd/mVU8 XqYv9DJ9oZfpC73MPfrL9Htept/zMv75l837CovCoHCsm6EIaAsUCW2DoqDt 0A4omjJ2QzFYY6F4KIF4iWhJaCloqVAalA5lQi4oC8qBcsk5D+0IVAAVQkdJ UYRWApVCZdAx6Dh0AqqATkKVUBVUTbk1aLXQaagOqidFA1oj1AQ1Qy3QGagN aofOQh1QF6V1o/VAvVjPofVDA9B5aAgaJu0I2ig0Bo1Dlkcgy6t+0gxcZ/B3 0/2nePcU3NN60t3z9vfAVwvOf1Plf7V6TlVnT+mmystTuVevu/wOytH3H72t cjzZ3es+XT6e01rz035Ey/8j7pZ/RMv/I9r7H+F//RF3xj/C//ojZqXJT2Zr C6FF0GJoCbQMWg6thIKgEGg1tBZaB22AQqlVGFo42ma0CCgS2gpFQduhnVA0 +cWgxULxWBPQkqBkKBVKgzKgTHLJQjsM5WDNRTuClo9WCB2FiqESqAw6Bh2H TkAnoVNQFVQN1UKnoTqoHmqgzo1oTVAzdAZqhdqhs1An1AX1QL3QOagfOg8N QsPQCHQBugiNQ7LdlTvXJqfKnWuDZsTOmOt90Wd4hnHdXO/L3gXe52ccNneq 3TGjcUaJT4mP1OWutQsEd/kUzNgxY0jED/c5L9LJ3UQbxK/VfYfRH3vQGj1o /+5Ba/Kg/cSD1uxBe8WD1uJB+6kH7YwH7WcetFYP2s89aG0etF940No9aK96 0M560H7pQevwoP3Kg9bpQfu1B63Lg/aaB63bg/a6B63Hg/YbD1qvB+23blq9 ke3VYEys3eL5OuTO7tevqeJe7do21fG1xPWUZqo8PNVzurpdC1+Ldq35+Jst 5mHREvzYg23qOnuq+7XUzVP9rGD1H2TrE6DIG/KB7Gdaf8wzrT82fKFZxJsD +UFziTcPbT5aALQA60JoERQILYaWQEuhZeS3HG0FtBIKIl4wFAKtJt4aaC3W ddB6rBvQQtE2QmFYw6FNWDdDEVi3oEVCW6FtUBS0HdoB7SS/aLTdUAzWWCgO azxaApSINQlKhlKgVCgNSocyyC8TzYWWBR3Gmg3lQLnEy0M7AuVjLUArRDuK VgQVQyVQKVRG2mNo5dBxrCegCqwnoVNQJVQFVUM1UC10GqqD6qEGym1Ea4Ka oRboDNQKtUHt5HcWrQPqhLqgblL0QL1Y+6BzUD/xBtDOow2iDUHD0Ag0SooL aBehMWiceJfQbA98o2F74KXeaHrgLd1ea8TS7Tav0ZhNDOeegY1ma2fpTs97 ozZPv1Hztzfib2/UdgtsZCWzRs3X3qjtGNhIS9ZI+9XIboGNmp+9UVvRrJHd Ahs1H3ujEUa5zvn4jczHt2JFEMu5Y2CjOV5v6Z829Silf0ad9UZ2DGzUdgxs pD1qNNsjK4Zzt8BGdgts1HYLbGS3wEZtZZBG/OpWrEeIZfvULT2LXJ3z7Bs1 n3oj7U0jOwY2Gk+S0ulLb9R86Y3sGNio+dIbzTbF0p2+9EbNl96oec8b8Z43 at7zRm2/wEbTe27pE+t+yPsJdw+61Jx7Z7yiUjn3Cmw01zyzdKfnvFHbL7CR /QIbtVnzjdo8+UZtl8BGdgls1HYJbGSXwEZtfnyj5itvNH3lFv0NGidHp4+8 ER/5v9PT+Xd6Ov9OT+ff6d/8u+ELzYLmEM8Pmot1PloA2gK0hdAiKBBaAi2F lpHLcrQV0EoomHgh0Gqsa6C10DpoAxQKbYTCyC8cbRMUgXULWiS0FdoGRUE7 oJ1QNLQbiqGMWCgeawJaIloSlAylQGlQOpQBZZKfCy0LLRstB8rFmod2BMrH Woh2FCqCiqESqBQ6BpVDx6ETlFGBdhKqhKqgalLUoNVCp6E6qB5qgBrJpQlq xtoCnYFaoTaoHTpLLh1onVA31EO8XrQ+6BzUT7zzaIPQEDQMjZBiFO0iNAaN E+8SmtWTOOLVNOW9taf7vOnuEafS3NO65zHVvd50Nk/5TFX3t5N2qnjueU6X z3TlTmf3N7+3GeLb+ZNrzms6/e2Ub7F1b/0Trjg/4TrzE3zzP+Hu+SdcU36C R/4n3Cn/xAhAWwgtghZDS0ixDG05tBIKgkKgtdA6aAMUCoVB4VAEFAlthaKg 7dBOKBqKgWL5HPFQAtYkKBlKhTKgTCgLOgzlQLlQPlQIHYWKoRKoDDpGTY+j nYBOYj2FVgVVQ7XQaageaoAaoSZybkZrgc5ArVA7dBbqhLqgHqgXOgf1Q+eh QWgYGoEuQBeps/S01xsFXs20nZ7aAfff4Nv9PXpqAzzlMV08T7bpyp6qjOnq MVXaa8nranlOV+fJQX7r0sQ36pVJaa6W33R1nSq+ntZqO1+h7XyF3vortJ2v MKPlFcMXsnvrrzDC+Qrt6Sv4IF+ht/4KffRXaFlfYW7LK/TRX6GP/gp99Fdo Y1+hjX2FuS2v0Ma+wtyWV+ijv0LP/BV8i6/Q7r6Cb/EVxj9foWf+ihEGhUOb oQhSbEGLhLZBUcTbjrYDioZ2QzGkiEWLhxKwJqIlQSlQKvHS0NLRMtFcUBZ0 GMqBcqE86Aj5FaAVQkexFqGVQKVQGfGOoR2HTkAV0EmoEqqCqqEa6DRUB9VT bgNaI9QENROvBe0M1Aq1Qe3QWagD6oK6oR6oFzpHuf1oA9B5aAgahkagUegi NAaNU4Y188XXHJmUrYSXOnKuttGirbbRoq220WK2Cv5qtY0WdtezjpyrbbRo frsWw2qVblRHTi9ei7baRou22kaLNnO2RZs526J581q0XfZatNU2WrTVNlq0 1TZazHWBbc9eizaDtoW1geXZazHu4ew5V9to0bx7LdpqGy3aLNoWbRZtizmL 1l/Nom3RVtto0dYFbtFW22jRVtto0WbTtmizaVu02bQt2mobLdpqGy3aahst mvevRZtV22I8YtY6Qx05Z9W2aKtttGhewBZttY0WbbWNFm12bYs2u7ZF8wi2 aKtttGirbbRo6wK3aKtttGiewRbNM9iizbJt0VbbaDFX2/A3XlBHTl9hi7b7 XouaaVurjpzrBLcYztU3Whyrb8g5AhPPtFp+Q6n91Ji4kv9cpXL6DFu02bYt 2mobLZrfsEVbbaNF8yK2aOsCt2izblu0Wbct2o57LZo3sUVbbaNFW22jRZt9 22L83cxlXB05PYsteBZ/atjPLv2UvspPueP7KWOoP6XX8lPDF5qFdQ7kB82F 5pFiPhQALYAWQougQHJZjLYEWgotI95yaAXWlWhBaMFQCLQaWkOKtdA6rOuh DVAotBEKg8LJZRPaZrQItC1QJNat0DYoinjboR3QTiiaFLvRYqBYrHFo8WgJ aIlQEpQMpZAiFS0NLR0tAy0TcmHNgg5jzUbLQcuF8rAegfKhAqgQOgoVkUsx WglUCpVBx0hRjnYc7QRUgfUkdAprJVoVVA3VQLXQaagOqocayLkRrQlqhlqI dwZqxdoGtUNnideB1gl1Qd1QD9RL2j60c2j9aAPQeWiQeENow9AINApdgC5C Y9A4+V2CLM/nXHM2mPNO7jqlvsuYuE5Ye0BJdY7hvEt8n1Lfr8VdYF5Vzhgf MI+sfzepmDdrMZcpdblWg48q9TaH5i/aJVnvM2arJJ+WPmO2SlYJd6kUH9Ny 36jUMIdmPbcs1YnnluU/q490xtFHmiWOPq1q8K8qzWe0GkUrdbeW/+eVus+h +YvWw8oxSR0nq/JSzBwPqTQPUR/5nqHUTC3/x5X6hFb/XHVO3HdxOqN2cZIp vk7O8l+RUosdWoDoxVjqN42JEq2ei1RPaDX5rlJf0GpdrdQaR1zrWaBAoTpH MvUgd22y4vyMvJyf0OJfq9xf0+y9Su3T0r2h1D9ocYeUaj/zbOX9F6X+VStv XJ3VS6S3/Bs/o8/wM3oKP8O/8TP6Bz/DS/wzfBk/owcgd6eyaSG0CFoMLYGW QcupwUq0ILQQtNXQWmgd8TaghUJhWMPRNkMRUCTxotC2QzuhaCgGioXioQQo CUqG0qAMKBPKgg5DOVAuNT2Clg8VQkehYqgEKoOOQcehE9BJ6BRUBVVDtdBp qB5qgJqgZqgFOsNna0Vrg9qhs1An1AX1QL3QOagfOg8NQsPQCHQBugiNQ5Zf YI45w9hf/ZuhFPcVoVoN9xWhWietCNXKilAyWIr7ilCt6r5fhpuU4tyFULbP rcZHDOv3f4uK4b4SVKvb/oNSuYM4a5VirwQVoFaCap2092CrMXFVuk8pzrWg 5HlqNbYY1qyIVvO35q9WhGoV1yf780cpxX1FqNZJK0K1Ttp5sNVtRSipJJLP g0o5qI7t+/NWbXZOq3l/bsX8IjFdSrFXhgpQK0O1TloZqnXSylCtk1aGap20 MlSr8Sz5lCqljDjPKWVi18ETSqkw7L/Ld5XyAmVVKaWafH6glB8Sp04p9cSx 5vK1anfVdviZsk2sEDURfqVy+jVat1LcV4ZqnbQyVKu5MpSV5x+V4r4yVOuk vQZbJ60M1crKUP7qrriVu+Kfc4X7OXvR/5xr3c+51v2cu+KfG77Em4U2B/KD 5hJvHtp8KABaAC0kxSIoEOtiaAnWpWjL0JajrYBWYg1CC4ZCsK5GWwOtxboO Wo91AxQKbYTCoHDSbkLbDEVAW4gXCW2FthEvCm07tAPrTrRotN1QDBQLxUHx UAKUCCWRczKUgjUVLQ1Kx5oBZUIu4mWhHYayoRzi5aLlQUegfKgAKiTtUagI azFaCVSKtQw6BpVDx6ETUAW5nEQ7BVVCVcSrhmqw1qKdRquD6qEGqBFqIm0z Wgt0BmolXhvUjvUs1AF1Ql1QN9RDLr1ofdA5qB8aIMV5tEFoCBom3gg0ivUC 2kW0MWgcugRZd8W+5jNNsl30UkfOEYs2bcSiTRuxaNPWB2/T1vhoY8RCltVm 3jVbutUu36iOnKMVbdpoRZs2WtGmrQ3epo1WtDFaYZUl2zlLd45UtBmrzBxC 1JFzpKJNm4Pcpo1UtGm7GLZpa4O3aaMVbdpoRZs2WtGmjVa0absYtmlrfrSp O/Eo9Wm282mcIxVt2khFmzZS0aaNVLRpIxVt2khFGzsYWmUdpCznKEWbtnth m7b2R5s2StGmjVK0aaMUbdooRZs2StGmjVK0aaMUbdooRZs2StGmjVK0sSa4 9WnsdUDatBGKNkYoHrveMLJEeFyEwyI8IUK2CF8SIUeEL4uQK8JXRMgT4asi HBHhayLki/CkCAUifF2EQhGeEuGoCE+LUCTCMyIUi/CsCCUi/JsIpSJ8Q4Qy Eb4pwjERnhOhXIRviXBchG+LcEKE50WoEOE7IpwU4bsinBLhBREqRfieCFUi vChCtQjfF6FGhB+IUCvCD0U4LcJLItSJ8LII9SL8SIQGEX4sQqMI/y5Ckwg/ EaFZhFdEaBHhpyKcEeFnIrSKcPnKlSsd4n1IhHZ1fFa8/1KEX4nwBxF+K8Kv RegS4TURukV4XYQeEX4jQq8IvxChT4TfiXBOhN+L0C/CGyIMiHBehBER/ijC n1Q5/6Heh8X7myL8XYS3RBgV4S8iXBDhryJcFOFvIoyJMCjCuAiXVFoZnC/r 2+AcoWrTRqjaHOvByyPnCFWbNkLVpo1QtWkjVG3aCFWbMTFCJY+ca8O0OdaH l0+aWjPcA8zv9M+VZq0Lb+m/VKmcI1Rt2ghVmzZC1aaNULVp68K0aSNUbdoI VZu2HnybNkLVpo1QtWkjVG3aCFUb68NYv057Zb02+uG/oB/+C0anfsEONr9g dOoX9MN/YfhCcyA/aC40D5pPLgFoC6CF0CIoEFoMLSGXZWjLoRXQSuIFoQVD IVhXo62B1kLroPVQKGk3ooVB4dAmaDMUQdotaJFoW9G2oUVBO6CdxItG240W A8VCcVA8lAAlQknklwylYk1DS0fLgDKxutCy0A5D2VhzoFwoD8qHCqBC6ChU RM7FaCVopWhl0DGs5WjHoQroJPFOoVVCVVA1VEOKWrTTaHVo9VAD1Ag1Qc2k bUE7A7VCbcRrh85i7YA6oS7idaP1QL1QH3QO6iftANp5tEG0IWgYGoFGSXEB bQwahy5BVr95gfmMv90+T/yzVr2dJ6wTq95a4b1mO9gu+sTyeJ7Kw7nq7URc 2QeeI6w3oS8xrwDt4m5/Iu5ylYdz/duJfG4369su+rjy6jNf0J1ajeS/DeZ3 oF31avWwSeV+/6T6yX9ytdu5whplOD+99MjNEqrtkdul8tgzKXcZElRs2xOX pPJMduQYYDyk8njYw3my+pryEzwxyRJgrnIrP/fXJqU8qs5NkeGvcneudjsR 8zl11p2r3T6v/jYTu1yfUnlUuuVh5WOtfttuvKTVbnJtnbZfqDSverBNle4N VYs/eIw7omo9iv5X9dn+5sjjLfUX+Yc6tsaAXmWO66tccV/F8/UqV9xXueK+ ipfrVa6pr3JNfZVRnle5fr7K9fNVRnleZWznVa6Gr3I1fBVv06tGGBQORUCR UJThrygaLQaKheKhBCgJSoMyoSwoB8qFjkCF0FGoBDoGHYdOQCehKqgaOg3V Qw1QE9QMnYFaoTaoHToLdUCdUBfUA/VC56B+6Dw0DI1AF6FxyBpFqfA66xhF 0f9N/VuabHfXPNmvZrtank7tWurpKf+p6jFVHa5W5+n4WtJeS55WkN/BaPG9 +eWU6f+z5dtt0y9pm36J9/6X3DX8kruGX/Lc7C9pw35JG/ZL7h9+SWv2S1qz X3L/8EvuH35p1sKiBVgXQougQGgxKZZAS7EuQ1sOrcC6Ei0ILRhaDa2B1kLr oPXQBiiUnDeihUHh0CZoMykioC1YI9G2om1Di4K2QzugnaSIRtuNFgPFQnFQ PCkS0BKhJKzJaCloqWhpaOloGVAmVhdaFtphtGwoB8qF8qAjpM1HK4AKsR5F K4KKoRLilaKVQcewlqMdh05AFdBJUpxCq4SqsFaj1UC10Gni1aHVozWgNUJN UDPUAp0hbStaG9QOnSVeB9SJtQvqhnqgXqgPOgf1QwPQecoYRBuChrGOoI1C F6CLxBtDG4cuQbbPvkN7yqDDmGHIdtJHHdkrglhHTp99h+az79B89h347K0j 51MGHYbV5t6ojpx++w7Nb9+h+e07tKcMOjS/fYf2lEGHtqdnh+a779B89x2a 775D8913aL77Ds1336GtIdJh+u4t3em379D89h2a375De8qgQ/Pbd+C3t462 m0efUUdO332H5rvv0Hz3HZrvvkPz3XdovvsO7SmDDu0pgw7Nf9+h+e87NP99 h9mi+Sv/fYfmv+/Q/Pcdmv++Q/Pfd2j++w7Nf9+h5uIVqiOn/75D8993aHt6 dmhPGXSYrZi/8uF3aE8ZdGg+3A7Nh9uh+XA7jO+ZuVSpI6cPt0Pz4XZoPtwO zYfboflwOzQfboe2x2eH4dzjs8OYWONbruhnPXUQYNbol0qz1va29NdUKqcP t0Pz4XZoPtwOzYfboflwOzQfbofxH2Y5w+rI6cPt0Hy4HZoPt0Nb47tDe8qg Az/ur/Dj/go/7q/okf2KHtmv8OP+yvBFm4U2B/KD5kLzoPlQALQAWkjOi6BA rIuhJdBS4i1DWw6twLoSLQgKhkKItxptDbQW6zpoPdYNUCi0EQojRTi0Cetm KALaQrxItK1o29Ci0LZDO7DuRItG2w3FQLFQHBQPJZBLIloSlIw1BS0VLQ1K x5oBZWJ1QVlYD0PZUA7xctHyoCNQPlQAFZL2KFSEtRgqwVqKVgYdw1qOdhw6 AVVAJ6FTUCVURX7VUA3WWug0VEe8erQGtEa0JqgZawvaGagVaoPaobNQB7l0 Ql1Yu6EeqJd4fWjnoH5oADoPDUJD0DD5jUCjWC9AF6ExaBy6BFl9sznmGqz2 fesMpVxn2O36TKW4z/TsVH0xGeYqxX2mZ6ea6Sn/LVTKIsq6SSk3E2ep2U53 ql0/P2LWs1P0t+zcbqVWQUpxn/HZOWnGZ6fqYcnwMaW4z/jsNMJUDfzVjM/O Sbt/dpqtklW+nOs5SyjbVIwoFcN9pmfnpJmenZP2/uycNNOzE/+yvftnp5rp KUOqUtLI5xFVG3uO56MqhvsMz07VI5IhVynuMzw7zfXXLK1QKe4zPDvV3p8y lCrFfYZn56QZnp1ue39KZWLvzyqluM/w7FQzPOW/OqXoMzyl4r4XaKf5PJGl WTM9O42fE8cO/savlO3Xk2z2DM/OSTM8Oyft/dkpein25xhWivsMz85JMzw7 J83w7KRH8mt6JL9mXuevmdf5a8MXmgX5QXOh+VAAtJCcF0GLsS6BlkHLoZVQ EBQCrYbWQuugDVAoFEYNwqHNWCOgSKxb0aKg7dBOKBqKgWKheCgBSoKSoVQo DcqgLploWdBhKAfKJcURtHyoEDoKFUMlUBm5HEM7Dp2ATkKnoCqoGqqFTkP1 lNGA1gQ1Q2egVqgdOgt1QJ1QF9QN9UC90DmoHzoPDULD0Ah0AboIjUOWb36u uaa4P//sp+u6jHfxa5ZhllLnODT76bouD0/X+Qp1oZnDB8x2ucv4oDFxvZNp PD1n16V8C3aL8FGl3qbFXW3Iu64u8zk7u47rVExPz9d1GRPXNal/QqmTn6+T 6laHJp+rk2ery3yuTrZXXconIEO0SrFbS/F5pe6jbjIkKjXJoVlP1ck8HyJ9 uiovwyxPpvD0bF2X49k6GXKVmqfFfVKpk5+qk2dv4urlr56p6/L4TF2Xx2fq ujw+U9elPVNn3YdL9WXiydCo1CYtrvVsXZfxM0e9nHYZfq3ivObBZoc3VO6e nqnr8vhMXZfjqiTDuPqrXCKuNWbxGtej1xizeI0r02tcmV7jDvk1rlGv8Rz+ a8YcND+0uWjzoPlQALQAWkjaRVAg1sVoS9CWQsuwLodWYF2JFgQFYw2BVkNr iLcWbR20HtoAhUIboTByCYc2Yd2MFoG2BYrEuhXahjUK2g7tgHZC0aTdjRaD FgvFYY1HS0BLhJKgZCgFSoXSoHTyy4AyIRfxsqDDWLPRctBy0fKgI1jz0Qqg QugoVESKYrQSqBQqg46RohztONoJqALrSbRTaJVQFVQN1UC1pD2NVgfVQw3E a0RrQmtGa4HOQK1QG9RO2rNoHVAn1EW8bqgHay/UB50jXj/aAHQe6yDaEDQM jUCj0AXoIjQGjZPzJcgevejWnjjo1p446NaeOOjWRi+6tdGLbm2NpG5t9KJb G73oNqwW+UZ15By96NZGL7rVjKvF6sg5etGtjV50a6MX3droRbc2etGtrZHU rY1edGujF93a6EW3NnrRrT150M2TB/LMdou7bPvMfsKs/2Z15By96NZGL7q1 NZK6tTWSurU1krq10YtubfSi27GfuTyKNY8+r46coxfd2uhFtzZ60a2NXnRr oxfd2hpJ3doaSd3a0wfd2uhFtzZ60a2NXnRroxfdxlfNPI+oI+foRbf29EG3 NnrRrY1edGtrJHVroxfd2hMI3droRbc2etGtjV50a6MX3doM9G5t9KJb3N/L z1CrjpyjF93a6EW32Xb5q9GLbm30olsbvejWRi+6HaMX8si5ZlK3Y80kuWeQ NSM9wCznNaW9jmaPXnRroxfd2uhFtzZ60a2NXnRrM9C7tdGLbm30olsbvejW Ri+6zXbJ9hV04yt4nb7Z64xevE6P7HV6ZK/jK3id3tfr9L5ep/f1Or2v1+lz vc48kdeZJ/I6/avX6V+9jtfgdbwGr+M1eB2vwev0ql6nV/U6ow2vM9rwOn2p 1+lLvc78j9fpQb1uhEHhUATxtqBFQtugKGg7tAOKhmLILxaKx5qAloiWBKVA qVA6lAm5oCzoMJQD5UJ5UAFUCB2lVkVoJWilaGXQMeg4dAKqIO1JtEqoCqqG aqA6qB5qIL8mtGaoBToDtUHt0FmoA+qEuqBuqIdye9H6oHNQPzQAnYeGoGFo BBqFLkJjkPRH1ItfU4/HFXqt8G5DehB6RP/Bssq9xuaL4/e6xfM385onLAsc mvwXaMg7uh7zrsjSZN9goVA+rMWbKPs2VauQSSXY4WNme9Rj3G2mCjX/mj3m bsHuOcqr+lxhi9BKeMBsYXvMXU1sXa7is0Bon9HKsv/FmOesR+1hImsXp+Xo DAdVXGsncJnnQ45yJoJL1cL2kst/2aq+OQ7NmpUtP+HXPJT4tDoXE1dWWbsS t3gTZ/jb6uxPrHagh2r197K9Cf7mbGz5l3WfjS2vh2uE7txrRC9x8rmxba+r tL95W+ms8FdVn79pce3rUo+4Llm/rN8wz/E3eAp+w3XpN4YvNIsUfmhzoflQ ALQQWgQthpZBy6GVUBAUQrmr0dZC66ANUCgpwtDCoc1YI6BIrFuhKGg7tBOK Jm0MFAvFQwmkSIKSoVQoDcqAMqEs6DCUA+VCR6B8qBA6ChVDJVAZdAw6Dp2A TvLZTqFVQdVQLXQaqocaoCaoGToDtULt0FmoE+qCuqEeqJc696Gdg/qh89Ag NAyNQBegi+Q8jmZ5rhu9et3WhZuep28Lrm6fLo273f3fVPl6iuuMPxW7a57i Od+ns18tv6nsV4tzNd3f/L6Gi+/Obz3YPOfhtOtxLA/tb2ltf8tdwG9pd3/L XcBvDXvm0m+5H/gtftnf0gL/1phLvPlQANYF0EKsi9ACoSVYl6ItQ1uOtgJa CQVDIdBq0q5BWwutgzYQLxRtIxSGNRxtExSBdQsUiXUrtA2KgnZAO0kbjbYb LQaKheKJl4CWiJYEJUMpUBqUDmVAmZALyqKMbLQctFwoD+sRKB8qhI5CRVAx VAKVQsegcug45Z6AKrCehCqhKuJVo9VAtdBpqJ4UDWiNUBPUTLwWtFaoDWqH zkIdUCfUBXVDPVAvpfWhnYP6oQHoPDQIDUHD0Ag0Cl2Exih3HLqEVXpA5T7d 0Q/LfbrnehvXDc6I9pnrvXzGXG8/c1/ukBnhM4pnGNfl+FT6DHrnest9vKVe MCN2xnKhl/g0zOjy3qH26e4T7ZT7fsq/86Cd86D93oPW70F7w4M24EH7gwft vAftjx60QQ/anzxoQx60//CgDXvQ3vSgjXjQ/uxBG/Wg/cWDdsGD9lcP2kUP 2t88aGMetL970MY9aG950C550P7hQbvsQbvipsk7tT7Dfg5Bfr/72JW0Dy++ pcurpKU7Pfh92s6kfeY10tLfb8ir8nyl30iuTs99n7ZHaR97lPZpe5T2sUdp n+ax79P2KO0zPfaWbnvrLf0OcnV66vu0fUr7xD28ndr5jEGfEYbufMagT9un tI99Svu0fUr72Ke0T/PO9+Gdt2J9lli2Z97SY8jV6ZXv0/Yr7WO/0j5tv9I+ 9ivt07zxfdqKiH3sV9qn7Vfax36lfZoXvk/br7TPvCpauv38gKU/Sa5O73uf tmdpH3uW9ml7lvaxZ2mf5nXvw+tuxTpBLOfupX3sXtqnedv7tN1L+9i9tA9P u6XXk6vzGYE+vOxWrGZiOXcx7TN+Tq5O73qftotpn/ErYnWZuuVh7zPcPexS s3YhsLQ3VCrnPqZ97GPap3nV+7R9TPtMr7ql2x51Sx/nkzifBejDmy6vRTZ5 Q/azAL/Df/E7ns78neELzcI6B/LDOheaB82HAkixAFoILYICocXQEmgp+S2D lmNdAa2EgogXjBYCrYbWQGuhdaRdj7YBLRRtIxSGNRzahHUzFIF1C1ok2la0 bVAUtB3aQYqdaNFou9Fi0GKhOKzxaAlQItYkKBlrCloqlAalQxlQJuSCssjv MFo2Wg5aLloe2hEoH2sBWiHaUagIazFUApVCZaQ4hlYOHYdOEK8C7SR0Cqok XhVaNVoNWi10GmsdWj1aA1oj1AQ1E68FOoO1FWqD2qGzpOhA64S6oG6oB+qF +sjlHNSPdQA6Dw1CQ9AwNAKNQhegi5QxhjaOdgnNmulwxuucYY9G2MGTx8P5 L8DQ7e58LV6R6fKZqnxP+bnn4ykPT2VNVy9PdbqW46ls7nlOFX+qOlytztax /EVsEN+w30+bdqr6Wmx5ln7PFfH3+JN+zzNxvzd80WZBftB8KIAUC9EWQYuh JdAyaDm0EgqCQqDV0FpKW4e2AQrFGoYWjrYZLQKKhLZCUdB2KBqKgWKheMpI QEtCS0ZLhdKgDCgTyoJyyCUX7QhaPlohdBQqhkqgMugYuRxHOwGdhE5BVaSo RquFTkP1UAPUBDVDZ6BWqB06C3VCXVAP1Av1QeeoaT/aAHQeGoSGoRHoAnQR GodkP7PeaPPq99iyevqVX62l8PQrfjuth3tZntJeLc1U+UxVj6vVyxNPlZen cjyl8ZR+ujpea90DzO/uOvGdeWPaNFOXb7Wsb9CyvsG9xhvcYbyBz/4N2tg3 GCt9g/uKNxgrfYM5PG9wD/EG/vk3aG3f4B7iDVrbN/DPv0G7+wZzpN+g3X2D dvcN7hfeoAV+g7uEN2iB3+Au4Q3uEt7g3uANIwxrONpmKALaAkVC26AoctmO tgOKxrobLQaKheKhBFIkQklQCvFSoTQoHcqEXFAWuRxGy4FyseahHYEKoELo KFQElUCl0DHoOHQCqoBOUoNKtCqoGmsN2mmoDqqHGqAm0jajtUBnoDaoHToL dUBdUDfUQxm9aH3QOaifeANo56FBaAgaJsUI2ih0ERqDxklhjdv6ml5o2Q54 qSN7HrGMNWDu6mXRDZD8vVtxnXOHB5g7bMWaTyyrnblR6QvRnZ7HATyPA9p8 4QHmC1uxlpPa6XkcMJ9JsnTnPOEBzd84oM0MHtBmBg9oPscBI4xybJ+jpX+C cpyzgge0WcEDrGlipbHbgQFzJpEVw54NbOnRlOZcx2RAW8dkQPM5DtAaDJht gBXDngFs6Yf4iz1Muc51Swa0mb8DzPy10jxBGqe/cYDWYMD0N1ox5P28v5rt O6D5Gwc0f+OAuUKkpTv9jQOsMz6g+RsHtFm+A9os3wFtlu8AnkYrv2rK+YGp 1yr9JcpxzucdwNNoxWoitT2X19J/SupW8xP/XOm/QJ+YwyuP7FWlrVivEcu5 GsmAYzUSOSY08Wyv5W2UmvPpqT+pVE5P44DmaRzA0zigzd0d0FaPHmD16AE8 jX/g6v8Hrv5/4A7rD/QD/kA/4A+G7Wn8A/2AP5jPJVrkB80lxTxoPtYAtAVo i9ACocXQEmgptAxaTi4r0FaiBaEFQyHQauKtgdZiXQetx7oBLRRtI1oYWji0 CetmtAi0LVAktBWKIsV2aAfWnVA01t1oMVAs1ji0eLQEKBFKgpJJkQKlQmlQ OpQBZUIuKAs6TBnZaDlouVAe1iNQAVQIHYWKoGJyKUErhcqgY8QrRzuOdgKt AjoJnSJeJVoVVI21BqrFehqqg+qhBlI0ojWhNaO1QGegVuK1obVDZ6EOqBPq grqhHqiXnPvQzkH90AB0nhSDaEPQMDRCvFG0C9BFaAwahy6R1vIldnqdN9xn qdnB+S/A0ONMpXvKY6p8p8rnavm512uqsjzF81SGp/Kmi3e1tFPVxVmnq8W/ 1rp4ji9/HSHi+/THacuZnId1x/tHrnl/5Er3R650fzR8IT/IHjX7I75Eq2yL FqItQluMtgRaBi2HVkJBUAi0GloLrYNCoTAoHNoMRUCR0FYoijrvRIuGYrDG osVDCViT0JKhVCgNyoAyoSzoMJQD5UL5UCF0FCqGSqhVGdox6Dh0EjoFVZG2 Gq0WOg3VQw1QE9QMnYFaoXboLNQJdUE9UC90DuqHBqDz0CCfYwhtGBqBLkAX oXHIumecY840sn9FM5Tivg/noGGvzuSvVmcaVDNV5L+5SnFfnWlQ3Cfav9SF SnFfnWnQbR9OqSwjH2sHq0Hz/lD2egeNj5qWIBUzmNxuV8od5LZWKfbqTP5q daZB9VyJ1DYqJYw49ynFfXWmQWMLtXpAKRPPl8h5KLOEsl0d71Ax3FdnGpy0 D+egYzWLBKW4r840aO5DZWmpSkkjziNK+SJluZTivj7ToNsOnLLGX1XK11QM 9/03ByetzjSo1reQ/0qVUkac55QysT/ACaVMPJHyXaVMrHNRpRT31ZkGJ+2/ OWi4r840OGl1pkFz7NUq62dKmVidqV0pZ8nnV0r5NXG6ldJDHHlHFyAU5x2d v6r/H5VtYpWmifAXlZP76kyDrM5kzxEZ5M7tT4b9xOWfuHP7E9ezP3E9+xN3 bn/izu1PjJL9yZgD+WGdC83DOh8tAG0BtBDrIigQ62JoCbQUWgYth1ZAK6Eg cg6GQqDVxFsDrcO6Hm0DWii0EWsYFA5tgjZDEdAWKJL8tqJtg6Kwbod2QDuJ Fw3thmKgWFLEocWjJaAlQklQMvFS0FLR0qB0rBlomWguKAs6DGVDOVAulEd+ R9Dy0QrQCtGOQkVYi9FK0ErRytCOQeXQceKdQKtAO4l2CqqEqohXDdVgrYVO Y61Dq0drQGuEmqBmqIUUZ9BaoTaonXhnoQ6snWhdaN1QD9QL9UHnoH5oADoP DVLGEDSMdQQahS4Q7yLaGDQOXYKsuzlfcyazbA291JFzDYwhbQ2MIW0NjCFt Bu2Q5sce0tbAGGIWrXVktb43qqN/Mm0L1ZFzDYwhbQXvIc2nPaStgTGkzagd 0tbAGDJbOX+1BsaQtoL3kLYGxpDm6R5SO4rfpY6cnu4hs6XzV2tgDGm7bw5p M2yHtBm2Q8YnOevOnTeHtBW8h7RZtkPaCt5D2hoYQ9oaGEOa53tIm207pK2B MaStgTGkrYExpK2BMWQcMnNJVUdppu1hdeT0hA9pnvAhbQ2MIW327ZC2BsaQ tgbGkLaC95C2BsaQ5hUf0tbAGNLWwBjS1sAY0tbAGNK840Oad3xI844Pad7x IW0NjCFtVu6QtgbGkLaC95DZevmrNTCGNJ/5kDY7d0hbA2NIWwNjSFsDY0hb A2NIm6U7pPnPh/CfW0ddpu01deT0oQ9pK3oPGc41MYYca2LIZx+cOzv9SWnW St6W/meVyrkGxpDmRx/S1sAY0mbtDtEj+w/8Cv9Bj+w/6JH9B/2w/zB8oVnQ HGguZPe5pOff1hZAC7EuQguElmBdirYMWg6tgFZCIaRdjbYGWgutI94GtFC0 jWhhUDi0CYqAtkCR5LINLQraAe0kXjS0G2sMFIs1Hi0BSoSSiJeMloKWhpaO loGWieZCy4KyoRwolxR5aEfQ8tEKoaNQMVRCilK0Y1A5dBw6QYoKtJNolWhV UDVUA9VC9VAD1Ag1Qc2U0YLWCrVB7dBZqIO0nWjdUA/UC/VB56B+aAA6Dw1C Q5Q2DI1gHYUuQBeJN4Y2Dl2CrJ7MOa9hPCr+bu+e2FMcd5unMFVa93Se8nCm u5Zyp6qLex08xbnW+k9Xz2up37XWwd+N305861j+KpaJb8+b15DO8ku/yfXj Te7e3+Ra8SbXijfxS7/Jnfqb+KXfxBv9JteFN7nvfpNrwJtcA96k5X8TH/Sb +KDfpL1/E8/zm3ie3zTCoHBoMxRB/SLRoqDtUDQUA8VC8VAClASlQmmUlomW BR2GcqBc6AhUCB2FSqAy6BilHUc7AZ2EqqBq6DRUDzVATVAzdAZqh85CXVAP 1Audg/qh89AgNAQNQyN8ylG0C9BFaByyfMYDXiNaCzfdL2iqX6bzePIvbPKx p/RX+/VNV/a11N1T3Knq4Ckf/ynep6rndHGnquu1aJ7iXD2N/P4uEd+RP0+b 3p5r+mdauD/TQ/4zz7X9mfn8f6av/GdavT/TQ/4znso/01f+M57KP9Nr/rNZ tkULsC6EFkGLoSWkWIq2DFoOrYBWkiIILRgKwboGWgutI956aAMUSryNaGFQ ONZNaBHQFqyR0Fas29Ci0LZDO6CdUDQpYqBYrHFQPJRAvES0JLRktBQoFWs6 lIE1E82FlgUdhrKhHCgXyoPyoQKokDKOQkVYi6ESrKVoZWjH0I5DJ6AK6CQp TqFVQlVQNVQD1ZK2Dq0easDaiNYENUMt0BlStKK1QWehDqgT6iJtN1oP1Av1 QedI0Y82AJ3HOog2BA1DI8QbhS5gvQiNQePEu4RmexZHNc/iqOZZHNU8i6Oa Z3FU8yyOansDjmqexVHNszhqWK3jjerI+Yz+qOZZHNU8i6OaZ3FU8yyOap7F Uc2zOKqtrjuqzZodNT2L/sqzOGrcaR6tVUfOObSjmmdxVFtdd1TzLI5qnsVR bX/AUW0u7ajmXRzVvIujmndxVFthd1TzLo6abZS/8i6Oaivsjmrzakc17+Ko 5l0c1byLo5p3cVTzLo5q+wOOat7FUW1/wFHNuziqeRdHNe/iqOZdHNW8i6Oa d3FU2x9w1Gyv/JV3cVTzLo5q3sVRzbs4qnkXRzXv4qjmXRzVvIujmndxVPMu jmrexVHNuziqrbA7qnkXR7UVdkc17+Ko5l0c1byLo5p3cdT4hZlLuzpyehdH Ne/iqOZdHNW8i6Oad3FU8y6OaivujhrOFXdHzbGQAOVlHDWsGbsBZo3+rLS/ oNnexVHNuziqeRdH8S7+hfHev9B3+gvexb9wx/gX1gT4i+GLNguaA/lBc6F5 0HxyCUBbAC3EuggKxLoYbQnaUmgZ1uXQCqwroSAoGAqBVpN2DbQWWk+8DVAo tBEKg8KhTeSyGS0CbQtaJNpWaBvWKLTt0A6sO6ForLuhGCiWeHFQPJQAJZIi CS0ZSoFSiZcGpWPNQMuEXFizoMNYs9FyoFwoDzoC5UMFUCH5HYWKsBZDJVAp 8crQjqGVox1HOwFVYD0JnYIqoSpSVEM1WGuh01AdVA81kLYRrQlqhlqgM1Ar 1Aa1k99ZqANrJ9QFdUM9UC/UB52D+sl5AO08NAgNQcPQCDQKXSC/i2hj0Dh0 iXhWr2yOuTKUfd85w7RdMOedyZbygtojSc4+myWO7Nlns1RKfWdAGWNinyQr vbUv4AKVr/Wckky5yLBb6JuU4px/ZsVeRi7LzVrcosq4VcX8qEoZTF63qxhr 1Cdaq9Lb/Ssr34/xyd33B7xgOGegWbE/QS2s3ZQiVBn2PLRIlfJT5BWlYthr HH9WpbdmoUWrfHdzLtznol3Qdgq0YidSiyTT8qAqw56RdkilTKP+j6gYmUpx qfTWbLTHVb5PcC7c9wy8oO0ZaMV+klpMjLzKMuy5aUUqpT4zTcaw9116TqV3 rnl0Qa15JFNWUOZ3lfIC9apSse3nkC6o1ZN/oMqw56i9pFLqM9RkjCalNKv0 LebxT1W+P+Nc/NywfS3tSnHOUrNi/9qwfyOvmZZuVYY9V61XpdT3FZQx7NFS a77aBWPyfDV/4y/Kpu/bZIV/qBrY/Za/0m/5K72Vv9Jb+St9lL/SR/krPZO/ 0jP5K/5tWaZNC8l5EdpiaAm0nHgr0YKgEGg1tJYU69A2QKFQGBQObSZtBFok tBWKgrZDO6FoKAaKheKhBCgJSoZSoTQog/plomWhHUbLgXKhI1A+VAgdhYqh EqiMMo6hHYdOYD2JdgqqgqqJV4t2GqrH2oDWBDVDZ6BWqB06C3VCXVAP1Aud g/qh89AgNAyNQKPQBegin2MMbRyyPOyLzPUQ7auj+29UrtovV0yc7dDfa8iV 5S8a73OLL1eDv2g+h2fn5cxziSrrw0qfXGKw2ZpcdKzWLz0J84Ryp1uOcnb1 AqHfraW342wyP99F8xdklRnhFmOi9H8126uL5s6A8p+8js0Xx5/TcpYh1myt Lpqr9bvbrPv8i477fFnqIQ/lWe8uFd++Tlk567sBWuGrqj5fm/Qpj6qaF6nj YlVqiVu8Cf62Oi/PG/7q/H1HK81OUa3Oeo1bberU30e/5sgy/31SiXZoU9+K V6eIYa3ef9H4DTZPuXjS/c3fqTxvf/OQxhop+BtXjb9xt/s3Rgr+xvXjb4wU /M3wxToLmoPVD20u2jxoPhQALSDFQrRAaDG0BFpKimXQcmgF8VaiBaEFQyFY V6OtgdZC64i3Hm0DFApthMJIEQ5twroZLQLagjUS2gptI14U2nZoJ9ZotN1Q DBRLvDi0eLQEtEQoCWsylII1FUqD0omXgZaJ5oKysB5Gy0bLQctFy4OOYM1H K4AKoaNQEVRC2lK0MugY1nK042gn0Cqgk9ApqBKqIm01Wg1UC52G6qB6qIFc GtGa0JqhFqxn0FrR2qB26CzUAXVCXVA31EPOvVAf1nNo/WgD0Hmsg2hD0DA0 Ao1CF6CL5DIGjWO9BNnjDWPaeMOYuLuVbaGPOnKON4xp4w1j2njDmDbeMKaN N4xpu/mNGVb7eqM6co43jGnjDWPaeMOYNt4wpnoBy9SRc7xhTNz7SttKdeQc bxjTxhvGtJnMY9pM5jFtvGFMG28Y08YbxrTxhjGzTfNX4w1j2njDmNr755Pm 32DMXLvD0p1jDWPaWMOYNtYwJvoXMoed6sg5k3lMm8k8po01jKknt+LVkXOs YUwbaxgz2zJ/NdYwpq0fPKbNZB7TxhrGtLGGMW2sYUwbaxjTxhrGtLGGMW2s YUwbaxjTZjKPaTOZx4xnzNKL1VGJefRv6sg51jBmtmL+6h57TBtrGNPGGsa0 sYYxbaxhTBtrGNPGGsa0sYYxbaxhTBtrGNNmMo9pYw1j2ljDmDbWMKaNNYxp M5nHtLGGMW2sYUwbaxjTxhrGzBbLX401jGljDWPaWMOYNtYw5hhrkEfO1UHG HLv7ydXQJ8Yc/I2/Ke3vaPY9+xj37H9nnsbf2Wn57/S5/k6f6++GLzQL8oPm QvOg+dACaCFlLEILhJZgXYq2DG052kq0ICgYawi0BloLrYPWQ6HQRigMCqeM zWgRaFvQIqFtUBTxtkM7sEZDu6EYKBaKJ20CWiKUBKVAqVAaadPRMtFcaFlo h9FyoFwoDzoCFUCF0FGoCCqhjFK0MugY1uNoJ6AK6CTxKtGqoGqoBjpNijq0 eqgBaoKaoRbSnkFrg9qhs1AH1AV1Qz1QLzmfQ+uHBqDz0BA0DI1Ao9AF6CI0 Bo1T7iU0q68y7jWOn8HTvZ6/2/FUwfnPkzZdHtdSrnv66fJ02jylm67s6dJO l2aqOk1Vz+niTZVmqvRvp84Tx383rxXjxlsO3bo/f4srxFt4dd/iavAWV4O3 uBq8xdXgLa4BMl+bFkKLILvlf4s5eG9xP/0W7f1btO1vccf8Fm37W7Ttb3F3 /BZz694ywtDCoQgoknhb0aKgnVA0FAPFQvFQAvkloSVDaVAGlAllQTlQLnQE yocKoaNQMVQCHYOOQyegk1AVVA3VQqeheqgBaoKaoVaoHToLdUI9UC90DuqH zkOD0DA0Al2ALkJj0Dh0ib+W1RIuMHeC8fSrukFZ3204f0F2mGeekUsef3Mf VClvcuQ3YV9uln/JWGHIvut8QSu1eDLW7SqHOzyWbd05XXI8AzpPHN2rleIv 7pasPO7XPpvN2wzpsbxk9lvk8XZD+pEvmc+vT8TfpfLY4+FT2utWXDLHCq28 HzRbl0vmnim29pDK42GtDvZ7lkpx2KHlqHxziftVlceE59UZilTdix15+4s7 FesTflPl+5zK41taWrvMU+osVrrlXaPOda15/EOVx0ukc4Ym9fdsdss7QK0x eEmtMShzeHVSavmvW1l7PNise4YgYf2Dx9L1Eu3jt9RZ+IeyWW39P/DF/gNf 7D/wxf6DWdv/4L7gH4Yv2iy0OZAfNJd489DmQwHQAmghtAgKJJfF0BJoKfGW oS1HW4G2EgqCgqEQUqyG1kBroXXQemgDuYRCG6EwKJwUm6DNUATxtqBFQlux bkOLQtuOtgPaCUVDu6EY0saixUHxWBOgRCiJeMlQCpQKpZEiHS0DyoRcUBYp DkPZWHPQcqE8rEegfKgAKiTFUbQiqBgqgUpJUQYdg8qJdxw6gbUC7STaKbRK qAqqhmqgWug0VAfVk3MDWiPUhLUZasF6BmrF2obWDp2FOqBOUnShdaP1QL1Y +6BzWPuhAaznoUFoCBomxQjaKHQBugiNQePQJXKxPbWXtd3aLrNb22Vtt7bL Zptn6baH1tLfo/K+zE5tl/HMWvqN5Oj0yl7WvLKXtf3ZLjP/6LLmg72MD9aK FUQs5/5sl9mf7bLme72szUW6bPpeLbLbrctGGDk653df1laOuMzebJe1vdku G59C/7SpR6kj29dqxbL3Zrus7c12mb3ZLms+1svaOsmX2ZvtsrY322Wzn2HR IfJPM8/Ww0p/BN1eHcLSs8jR9qdaut3eXGZPtsvanmyX2ZPtsuZDvaytkXyZ Pdkua2skX2ZPtsvaPO3L2vyky+zJdlnbk+0ye7Jd1nyml7U92S6bPlOLXoLq ydHpJ72s7cd2mf3YLmv7sV1mP7bLmn/0srYf22X2Y7us+UYvazOvL+MNtdL0 U6JzN7bLxp/Iy+kFvaytkXzZ+AuxJtZ2kHs2TvaEXmb/+Cvc517BE3qFO94r +ESvMOv6iuELzcI6B/KD5hJvHtp8KABaAC2EFpE2EG0x2hK0pWjLoOXQCuKt RAuCgrGGoK1GWwOthdZB66ENUCi5bITCoHBoEyk2QxFYt6BFQluxboOisG6H dkA7iReNthuKwRqLFgfFQwnES0RLQkuGUrCmQmlY09EyoEzIBWWR4jBaNloO lAvlEe8IlA8VQIXQUdIWoRVDJVhL0crQjqGVQ8ehE8SrgE5iPQVVQlXEq4Zq sNZCp6E6qJ4UDWiNUBPUTLwWtDNQK9QGtUNnoQ6oE+oi5260HrRetD7oHNRP vAG089AgNAQNQyOkHUW7AF2ExqBx6BJ0WeQid1xebu64HOhjXDfXO3zGXO/R GbN8zvnM9Q6ZUTBD7rC8UnC791zvEp8yn4s+jTN2zOj2Pid0P6GPeV/wNq67 NGO991yj5nrRkIq2YOJVJnecEG3lB0T/aMZXxFfQEIdfEf8KC+XyB9eJLoph nPaaKcgIPxC/6zZf439f/wNe9xvy+ZRDou07YNx29eiTXn7iOjpLvL9HhCvi dbX48tUpvj0h77f4c+LfA6Lt3yLeg6dP5vElyvfyEe/vMq69fPnaqd6d5a+a NoXnl/z8Vxyvq6cwRApDtOXWa6u4Eu0TfdlPi/OfbHxBXLUOiH9fmC659log Pr/8Mc42rv3zi5+g8doMi71EuCzSyUMfxTI/eT5ninCDCPKn+m4R5N9ZljPH sP7efiK8V4S5IrxPhHkq/XxD3mHJnpYh7oVkHQ1xJ2SI/o4h2gdD9HYMcRdk iL6OYdwkwmIRbhZhiQgfEmGpymeZeP+ICMtFuEWEFSLcKsJKET4qQpAI8jsr vzfybxciwu0irFbp14j3O0VYK8I/i7BOhLtEWC/Cxwyr/bpbhFAR7hFhowj3 ihAmwsdFCFf5bBLvnxBhsyF/L4bovRjGJ0XYIsK/iBApwgOG/Fsa4o7IEL0W Q/w9DdFnsdJvF++fEWGHCJ81rO/e50SIFmGXCLtF2CNCjAh7RYgV4fMixKn0 8eJdfiMSRNgvQqIIB0RIEuFBEZJFOKjiHhLvqSI8JEKaCKLBFz0SQ9wLGaI/ YhhfFCFThEdFcIkQGHhvn2G9jvq0mO/ya1QmvhdSn20E3r9rT/KB26w38VXd ZdpdPvbXzevNKuPulJTkfbsPpRh7A7eFfi5i134BdwUuvv8vomVJOHDb4tm+ DxiHdltZNNy27COzfT9szPRZM2NGwPXrAj+fvGv3LiNmV+DehMDgNcZHg1Z/ NDgo6A4jMOlAcuCn9yW6Yg48dDAwaoux3csr+u49e/YePBBoxOxL3rsn5cBa V+A9WyM337Lfe2FomPHR2H0Ju4zDtxmBWw8EBt++era3r9e8PQcSDu1P9Hq3 /917Uval7n3AiNu7N2XlPXsTwhMOLvNauyLQ55aP+K18YG+CsWu27/4PGxEz VngtXXmP9ydm+3onvnt+5IGHZvvOdvnuTUzZKz7/bOO+xJRl+wM/GuidaGQk 7z24L+aQ12O++wPvPxATmHiba9GhvaleM32u25eyyuv6w++b7Wv4vHvmp+P8 9iXsDZzx7vWBt731WMgT703MWuJ9iziFS2aunHHDzOtvSzkw2/fTe5ckxngt vi/WZ/ldgXe6iuL2Gh+feci1a2/yzH0Hkh97+EDyfYkBMXvTXAmu9fcmHJy5 d7Zv6byg2b73GokxgffFzvYN/HcjruXd23YlHPpxbugX5tzykx0NM2d8dt+B xJXhYQcSjdgDCe9adEfDbN+IvWkp93o9Nv9PRlH4M6s+8cyqR5/5xDMb0t7b ULlx337j/j27Erz3bPhh4N0HAyN3bU78vOseY/HelPDr78oOvH7VPd+8d9ee ONfa6IO7Au9LfOUG467Ax68zXHvuOxhxaP+Gz7r2LNtz4OCuld6bwj8SuNUV G/jhDTs/fM9PfT8+M3BdYJDPDcGrbpi3Yea+lB+/nOO7PDDzVt+5Mw6+a377 rC/PuyclMC/ww8aCbN+7dx/8/fu/+NyewLvXlvm7djd8ruxju8d3uT6e7PXe 6NCwgFleZR981Md3w45jNwa+q+C6Xem/OxC855sZN+1/4MHk370n+gMfufwR 13v6/mn0+se8vz3LddDn0Mea5nzz0Picvnd9+MZnZt2bNrYvJbBs3vsDjBt+ v8zf59F7PmtcF2oM+bgCwpfvnh/Y+uFVX72hYcGulV9P+1XQo+X/fOAGn/ce nx892yunLz3wPUvev8T7Jp9G8XNLE1/9aC/rZ5Mmms4WEaK8rfct3oZ2RQgU WriXrnW5xfk//ZopyotT9avU6pL8KZdqCewgomVmWA2E2dLfoJoH632GeVWw rmHWy87Jx7wQyP97yRbMTJ8vLyuivC3CPkvEDFTxN/hcviKvHhtU+fLlUkG+ pO0GVY6dvzySZYufjfGYshlmI/oPxyc17NcS43kVyWvqSNYrUdVWNHmXrXpK Nuun6tl+eaL+Tr3hstd8kb1cGqlJ1KbDKtCs8s/E+wcdF9nQ4t9EScvN4iBH HNcI9jK/QnaNPNbtGl+yMrIweWm3u0Ly5eU1Ux3Ji8HM6bIwzIjy//ff66yM /X+rsr9Vx7P+W7+/nl6yd+BtPLBZsjzFD/hBhRYJ+zqL7Np7iWt3kLgWBpn/ gkVYI3oQd4peRZD656R7JmnOfyGin/FF43rDOldeXrK34e26bNbNz1D185r4 g9r1lix7QR8y3HtsXpDzc7ofX4vu5Vaep3jy5eWowW+N/8Tr8hm7SP0bZ2Xv VVk5VR9ha5zo/X76QPIXdh844PcF0VPwzQvdddDLOy/okaCgoOCgLWtuu/NW wy9oxsx73mXM857rtSQoKGT1Fx+bnfHxhAO7dyV4tfs9kLRrj1dB2K4En4N7 Z8Xck7x3V8rMXbsT3v/BLcl7Y/L37hF9guvvizG+N3Nr8qHZofemJR0QEect 3Lp3f5K46Kfs3bg3eV/qDO+5BaGHDqYc2L/v+nSfjTOCPZ4v5w9opmiJxMeV v395vjeKn5/cjtdP/O6TBX9ChG9ov/+q5mv7/d/j+qcl6QPbNp3O3/+nn/zo Z+8JnGk1tg1WZmGG20tmknbsm51liYkbv/7lqrTrfnnkj9fcHoSLnmS86NS9 k3s/+ZolvuPyKmEXcNUE4iVv/bb4WGyXf/u0KaZ+yfLl/Yn8oNda/odFaFd/ Grv8d3LvJ1+yfHlK5f3RtZYvXSHunz9k2hRTv2aZbczE6+opDOM+Y+LzT//6 v/F6EOx2FXj71wN5X+rldcJ459cD+b5Bxn/cSj9TKHGOVJPTzzLTZ5Ut9Jaa TFVkWL2ny9PEt9qvGbL/EnOD1X/pUt3Dr4vjf55rtS5W+/VkmrTY3xtP7ZeP cW1fwMmva2uvJjqdU7yu/fs6b9rva8B/w7d5i1nj1b6SJXmvW2jY5APNhGZB fob1vTbEtznV29KsXOxPaf3JyuS7lzyfHzACzL+39+PzzO+HzDXIsM6LXb5d L8n29zHwcIa3U5cv+b1+99x0U7e61pNbf/c8ZcyPmL6cw+bfWSotyi7Pw0wv u28/kT5cxZPfCfm+5jpZboC3dd6utVx5I7CEcs37H++J8qVnSf4uD1heCNsJ YfsgbBeE8kCI/r84H/Kr+v+f+78rV2QbkeZtecNSxPENxsR9mqyn/LwxVybu i6Ru3/9EX7nyOWd81wzr7+irSrj6/Z9nPcihy3dbD3TT5bmVfz8/R/1s3U9V 1tZrjYn7thHH/VyZtKn4b//+b0KPcuiVbvFPqPPyfnVsl1d2+coH7XjSW9ri iCf186q1ledG/o1kr0E2hAsMK3/5kvGXGNb1RdplPRKueP4cO654/hybHfpM h77O7e9j/o3U7zLf8R3eIi57gSKsuX5CK1Ic59A2XPd/9nt/QuQ/U5UxIr53 K65M1P920ccNus76fO8ydose32pD1kd+zoVXJv4Ot4l/ScS7U6S71XBdZ33P Zl2ZOK97xRXfPk+XHH/vjxk7jCKVfqZx0HhYhBOqnCHH33u1yLvlejteiCjl TrPeAV5WHWLMnsYucdHbY+ryd3T+8sTvc5WIY5ff5Sg/RtTY1lscerDITeYj fwe1ju95rDgXG3xWmO3aCYd+0Ngn9A2mXuTQ5edzXW99nhyHvt+4WcTfbLWP Dn2XqJEsV56/OIcuP98Gn7Vm/CiHvkecB7v+Wx2f9w5xxrvU+brJPDOrzXzl 8WJ1tuSx3b6dV9+7ketlx0HvOtjXHvfXlil0+zX5/s/9eqO/fIx8Yf1R5Yxw X8Nribjc7DAixQm3/i0XVd4t/vBrxPsqQUFCC/ovuA+/31j82EyzI5ovr6eu G0zOUSwHacoUy4GTLY444YrlAM0yhx4oWeQpB3pmOnhkhsWy6epSLAeJWhws mzqZj3yZp0vodpMoWd48FimWpzffwTkOdjnyTPKQp8wn2hE/ysFbFMsvQbiH tDLPNSqOrNsyR/yZDj3AoRtWPhM9YJGn/IrLS6Zk2emQXQ0ZX56yEw4uE+yj 8ikS/+PvpdKafy/F8u+VpFj+vdY44gQpln8vP4duOgxc1mc3lE49RVnyhlk2 j/Z56/Oy4gTJ+iiWnyXJweFeE/UJUrzYsLpukuUgX59h8H2QPzG3cr1kfRqs OAHynFdaPD9QvOVbfKPMJ0mxjB+nWH6MaAdHqXzk+dxilTXTUdZsWc81Vpw5 5t/U4vfLzx6gWObjZ6V1/h21v6lHXXwWWe7Ma0xr/63tYy+vBh9rCE8uG3DF eMX0IMshvvPme5+xULT2qwxr3O2kIYdKM71vEl3MZcZ270DjsLfUrjNKRMyb zJiyvyrzOaHyKTOsoT95E3hSxPiwSBNoZIkgG/oJutHMZfMt+41PhsnJZyu8 L4v43maMJUa2t5eIIdO/2ygwNcm+IsVMM19D5Svrtly9B3m/2/AXepZ3nyGH hQPt173mOFVg4IeDhXWj6jzIzy/jLZyIt+fAwX0puwLvCjSHkuR41l7rzMl4 sx35JRzca9ZD6jdNmz5weeCtt5nxFk/EE3VxxFgXGBS4NW5voqiejPcRLZ45 vLU3eZ8a3jJTfERFv838HPIbJd9H1MVnTL6bf7XL4v8Z3l8XdrmdU5r3SnFk fes+a4z6rFH1tz+fvxGohjjtEU5rgPMhIzjIGe8WNS57Tfcthkyvj+euUuO5 9vmTr6M+5u+IoWX5fYpT79Eq3geMB/YmiHrJYcWwA4kpK+85kCBHJmP2pokz fochzuRdMt5NhjXces/ehAR1hu8KlMOzgbcEWiOyu8zvqSw/RpVvnj/D+l4F Gsv4vsvvnPM40FhravKbK8+jXEpXtk5S/7C4/QoU4cPGZvG+2eTZ4vu21vtG w07na06gkvE3ekuL9b7F/EVY6ZaYPFt9T+1j+Wv5sLHB26pLkIi7wlv+/qzj 5eJ4ifdMM98dIk6cCDHeHzJivb2N0A3h6vsQZ/6+vORn9CqwvmP3XTFTOHXr +2X/XeT7VN+L/Ubgf+J7IUq/ciXKsF9e0BXHy/14Kl1+ZTYYE68NhnU3H+4d 7n3F42um8d81/vDtKccfwg/EB+6SMxR8+0J3eR/0TrLGHaKD1gQH3So6Pn7m sMPCScMOjfqwQ8uUww4VVxl2WKIPO1zlc056vY3xxy2PScv/jj/+F71kh+J/ hr9ZlvE/a/zRvTxP8eTrf8jv//b/j//+5V/u6uOPMVuv7ff/k69suP7fhwM3 5t746bqCMx86dC3jj6efufv6outzwvOvtP36iff/8j3/2x78Xzr+FPg2x5/+ t/8h2p9V/1f0P571vrb25528/re9+d/+h0N3L89TPPn6H/L7D/m/4vdf/ov/ /f3/F77+a37/9vyj1R7OxrW83sn8o381JuYffc7YZoQad4v3LUak8Uljk3Gv aHe2Tpve+VpgvP3nb/4sGq1EP4tjjH3m8xPv9DXzHZS/T4Qjyh/sfP4oaNpU nl9+6vzLj3Ot5aeI8E/XWfyfbf/lS5b7ztv/cGX9f6P9n4jx/2r7v/r/w+1/ bpXLy+xpexlBy729828wkuZdHz7DyPI2Yvp9fAxfY6GxLfTuLckH4vfm7Em5 Ts503OA9L/56b9+7vH3f5Z3sNW/mddfPvcF7rjlMWmjM8t60ztt3vuGV7DqY EnMgYe967xuNg+JLGyOaKleCsdeYbcQZH/LeacxYvuPj4my5goKDQlaJszXz Az4+9xi+3nO85oqzZaz+4s3BK4NuDjJuvmftjk/fF7HR+OSnH9hx8OGDKYF7 968K3jFjb/BKIyVh982f3HxvoHH3IXESdqXsW3gg0Yg2vB6/95OxsRv37Tl8 7yeNWJexr8PYk3Xv8673fsPl9di9RvDGsDUbg0LuMW69PTTs7ltvC3LdFnpr 6MZ7b3fdu/Xuu133hLiuC865924jeU/cvtQDBwONmL2BSckHPp/st2v/rh3X ++45sN84lLj34I779+0xkg8cPBCbEviAEbdL/OV2fDLMCLvvnntvu23H/a4H Prly4+bNN3/Jz2vGA4G33bYyKPCT3ru9XgncvG938q4VyQ+7thhe7/HufpeR 9b6sGaHFNxrvcvka9/8lRj519fFyY47X9cZfXNWHXNVl8unOBTfMDPabeWyh a5a4Kwr1ui3rYPTdV/0D/5e+PmnsFlebvcYe8ecMNDaLlnC3aH13ifCwFq/O HCr/uHalCjFW/adaqptFLivF0c1muMdYK0r4tHGfuCKKL4agB8SxNVtD/EaN /aK0YFOxvnjyeyfTpwjaLdJ/UtT+XvEZ7jYOCe2AiL9LvO8TlKh9kvVe9icJ FuWEifZ2o1kj8dUxbhdXvjCRw61yZooIoYJChf1ec86JrPnd4p/1CUKUHswn WaV9EvFdE2dVPkuaKupwUNQsRtQ40EgS+gHj8+ZZlnV0jznXMBaFentdt+Jf Qhc8mXZT6MxbQr1u9MpK2Rq3T07LN+S8/C983Ai4bsP1W41U80nVu41080nV Bq8Dtzd4LWh7d3D3u3+x5EMzHvzFkt9ELQ69+SdLvE6FRx2I39Vw993V4cYH 44eMXY0bsq8P9n7pS9d/ckHBt7YsqGp+YMHtH89939HbN3zm3gW3f2LB7cbv Q7ZueeyBBas+sWBV+IJV94u3LQseXBCzddXskF/dMjtk2ewQ8f9HF+z++NZn vVfNXn3L7NXLZq++X7x9bPbi2eW/+MhsP69j9/h5T7To8v/WzIup2n35+von lj/sZfgZdj/Py7yeW2S/vBi8lYNOnv8ZRvKnZBKXMRFEq5jp5RZETpkH1PNG cpbXDSpfu2v6r6rY6NA/3vHav6TcX12UdPjj7b//hZdxg8jOd4lh9PvYdZH1 f5fhlRPIs1Ifud6ySUuSMcHext/V9f69xDCMH4r3x0TIEuFxw5wjaTwhQrYI XzKsbrq8nueqd/nM8lcVf82whuyfFKFABDnAKR/6f0qEoyI8bViDzzJusXh/ VoQSdVwq3r9hWIPU3xThmNLL1fv/vv77XuKUG96+k3tcrxrWy5Pt79PY3us1 te0j09juVrYZvj6TbA8rm49xn/1DdHvtmuFZ3+fjWf/mdZ51kb23vH1Ul1CR 2lvOU1GNodkWyigytbmIhfPgdufBKudByAzrM9MP2pPiNK+WB9fbuchCZ7zp o7vcRSW85RPvoiNzd+Q94fdty7xtAu6/757ITz4gQGQvw2rxv3tXy46DOG/e M6xyRfG+z6vzKM+rPDGy1XhVaXeqM6vfg8i6vM/N/f8ekal8ml7Wxe7f2N0b 2bsRXRrVoxE9qH179ooOjerP3Bt1z72bV94bda/96e9N27M3Qdbsm6p0WTMv w/rj/FRp96m/7QbD+ZI1C3I7S0J7VLSj3h80zNrJLp/d4zM7fFZ3Mnil6PPZ p9ySZBV+qIqRVbC/ZTeor8+/qPcthvMlq7C5fezW8c/8k9/LbxgVxsbeyPeJ fDcZU58cRNEDtDuAdv/P7v7ZvT+r82fX1DqZsqY/9nHW1Kr2H5X2ZfXFjtZq audhPcqvHa0S6WfPErfxE76RO9Tlyf75yfdob+uSJlJ5bTOuGJvlt1F0SXw8 P78rv+z2c8Puv2b7OeIrU7xSVPGueYZ82OTTexNjDKPeuM4+jtuXsPc6H/Or 47rFT/1SJ61j4vzJTrPIhvkr1h6CM3+92mNh5k9Ye1DL/KFqj66Zv2M3Z0qE nzHLx1mPjN/7Gdf5mEX+Zq7C+zbetfiR21avCQsNCwm9dXXw7UG3htwWFnrr 3atCQ28NvjskJOj2sNDgsOCQL4p7xPsPiA+79y71mWf7bjyw59D+vYkpdzlL +ejS8CD1csQwS/Vgcvof3un6L+5/4au9vizCdsW61+chc32Lt/Oa9w7K/4ph 9Ufk6515nSZe0v8if4JyHZRrLf+ICF9Vbcx14uwfEp96v7oLuk/cP8SaX9Op 7ij01zLl/5HTHa+1/GdE6FLcuuthsyspe5ayuev3cfZ7fcTZHfd4L3avuHP5 z9yLhah7sTsddzCRgsLFGdhmZIrvoiflfsH3mH+xB5RieQ/t99WK7hW0UjRP m8W/m4Uif/yHxPlMEHdEoeJdzm3fIzjMPNPyLi5J/Esw1YmzflA7a4u8Jp8H +fT4qv/UebhN1PP2d3gnd79Z32Qz1gHxrZH31J80p5ZLfa+I8UnxCcPMc3av +UzBDvEeZR5tFuVKvleU6ymfe400Mw95xm4zaxlk5v6/9+//s+7fZcw9Zv0P iZrvFceevxcPiBTy77RX5Ovpe3G/iPFJx2/mat+td/KteJd5Jz3xz8eQHbjr vb3MCeu+4v3t37/bLxnfR7Sm1pG32b+4XvUnJ1q0iVdo8buMOW69hnmGpwcy RNvq7R7zyhX5MKz5ku343XNl8QFT9jNkxpFaxqvF6bpy5Z+8p05z5cpv1MyI AFnEh2bIInwdXRWZ6VYPmX7A2xnryhW57IB8mQ8LfMstm9vNbD7lIZuveztj XbkiZw/KV5Gn2qwys/m0h2xu8nbGunIlRl1koz3VJsTMJspDNjd7O2NdufKs unymearNajObaC2bO0W39sqVp7ydsa5ckUOS8hU+kY18ZsPLq937aoMG/zUv 47+pnHfyCnfUTf7Vg7wn7gWmTvVf/0r7P1hewDR5f8O7YfuDN//+/qrCnd/b +FDGcqnJpiTod78JefPV+E+UbPtu5S2ff/fjtl4Q9G2/fce2biqL/kir4f2T Tbb+yqzHfv3u9d+976uf/kB545dHb7f1dTOqf/e3rjc3P/bGh/6l/4/z77X1 NwfTZtz7+AMf/17VicdfyXj5TVuX7/IhXp9PzPjbF3f+evMzi14tL/7huh6n XToyv7mvsCD05qflM7RXv39Td1XmwxSiOZmhjsMOJMuxSW91eF+sTG4bxW2I YVSRVj4HYRgvEnnrAcN4GetV7t+MGT7bQu/+2zl5O/TpfYm3rf5xpsJVwe96 VJrFbeqLVX6Gj4y3+rs3+4lu6pbkAw/LSfC3PbrPz7jex7qJ/3q0n+HrM+Fi qf+RtFm3ze8/5Ge8y0fdN3WIe68bxMm4MsPL+Ny9qbsSDu1K2Rvwmoh9eKYQ r1yxbpN/dU33b7uCe8FVvwVD+gR6Gftj/PyMmWZZV658LvRzqbuSP7d/9jFR UVX+xFMSL/9AVECp95hPSJTtk1kk7p2cReIckcUMFTnywENf/oVIa9x/8POh B9KejpS3ZPsTN+6UZ0pW/aBc8e7Hl0UuPvYn+UKAqKiRvPdgyoE7N4iPqWdv /onui52km/GX+siyrOXwOn/jZ8zW41iGDVHifBvW8ngH+p8wa3Tbh3fK98Tb Nov3OZNyljHjviyrlXhob+qBn82cVLyp/61V5ixxX8qB3y2flJOy9C8SOakT ZD5+0v8J+49O1H2xW0btU+sl1/Xbm7zvQPI/90/8dSYebvml+NP7GPIBlptG /Ix36xlJOeJTdrIJ+UBy/OZJJ8j6297Xb+difwcekH+lD0VMVFt+KQ4u+Kr8 uOqJmZ13TlTXTCS+t09nTDoFKva5dY685AcJDvMz/Pi0qXuTU+6Ljdj7+V2y 9Lgd4vMpm3yu51N+bj+H4E5H1SJ3JX5+b/esiZ8RDwVtP+WWbtWvI+T3MHnv nl0Je8Sv7/jj8kTKx6huahAGg0erliyX3yvr4a21BfJT794lznzyruv+TXzX jQceTF72q0kn04pePmvSn0QWEPGhic8kfiQHv/kp+Xu6Z7vfpDOmSvpymf3z vf13/JJXn5srfzkfT/6daEgO3PHI96ThnrhdySkfK5cNjOW03fc78d2Wg/9y TMTqxc71ln1Q+Yyh7qH4J2/ZC/6Atze91Zu8fcRHv9n7OmPmNV3oxC2/iOdt Xrq+Lkq5wXjK+3pjroe0c7xl2e8zH3fyMtf9dH8p19Cqqb1GIVObbp/atFoz Rezav/euxRNt8+LZvuF7E5LuEd+0vWkp0gcWJKRte5MPiu/QPQf2J4kv5e6E vauC71q86s5VwcHBIhcR4Z77P37X4jtvv/OOO4LvufvO4DvuvnO1M4gYG7eE 3rU45M6Q0LvvXbXq7jArCP3j99y1OGxjWNhtd98ukgXdcUeoDGFrhGm272fC DxxMCbw3LWWv/BoE3pcYe+Czs32p/213PbJqzargjatDgm69J+zOoFtvu+2e sFvX3Buy6tagoLuD7rnzttuCgm6/+4v/vC303n92fmqRs9n+Ju3as1dkqC4/ dwUHrwgMvnNF4B1Ba1YErrrjthWB22f7Oq8zdwWtCOS/e8SpklccT+IqT2KI J/F2T+Jqd9HD9+Nqr8uii3Gdl7fh/pIdkr4nvjH690/G+X3nyZnGLR9+8TU5 tiBnpb9L2TcY1oovcgaQdD/L9XHlY+Vy5FIOu8jxR7nesBxXlOsLlxnW7ZYc AV2k4jieZptSk52iCT+72fMwyzYurNry7A9f8TLZa/CPs19+xWuKgaQpX9N9 fu9f/fxXJSv/ye/rT4vPv+Lvp+TnD/SyPODSLocT5DrK8j5Prpcs+knmOmJy nV9ZZzlPS35uuW6vXFNZjs/K8yHHYeXnvGDo58Me7JKfYeD97zbzMlSent7F NVK0QRvF/dAe0we510gUZb49f+Sad+B//TcRtqibctEgm96LJOVFeLuvue+g /OcM4237mad7vd3y/6tf/5ny5XiR/C4tS75lz0fuSkret3+v+Z3ctfvgsuRb kd5rS7egBZpLAUTuTTA7EAkPb5Hiys/vizXz23MgKfkWM95BQ1yeze+p/I7K jGTbYw6L7fmd2Sdg5u47eHmJX+AMNZ7s/qDSTYbzd2/dCVg//0D6xeYE9tB9 sbFrzJUQTOtKsy+2co1x4c6qB6co9/8vr/8HUEsBAhQAFAAAAAgAZKDiNt8X MG+rygIAAPwNAAwAAAAAAAAAAAAgALaBAAAAAGNvcHJpbWVzLnhsc1BLBQYA AAAAAQABADoAAADVygIAAAA= ------=_Part_104140_14761177.1183426570634-- Maximilian Hasler has pointed out to me that at sequence A022940 "complement" is not defined. I assume that Clark Kimberling intended {c(k)} to be those positive integers (in order) that do not appear in A022940. So {c(k)} begins: 2,4,6,7,8,10,11,12,13,14,16,17,... Thanks, Leroy Quet Hello Seqfans, I ordered 2 sequence numbers. I didn't receive the confirmation email and on the page with numbers there is the following paragraph: Insufficient disk space; try again later Insufficient disk space; try again later returntosender: cannot select queue for oeis Insufficient disk space; try again later returntosender: cannot select queue for postmaster putbody: write error: No space left on device Error writing control file qfl63ErU4Y019338: No space left on device Is OEIS working? Can I use my numbers? Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com From qq-quet at mindspring.com Tue Jul 3 17:09:05 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Tue, 3 Jul 07 09:09:05 -0600 Subject: Another kind of sequence puzzle In-Reply-To: <721e81490707022117o386e3adau95c08683f9d9aa35@mail.gmail.com> References: <721e81490707022117o386e3adau95c08683f9d9aa35@mail.gmail.com> Message-ID: ------=_Part_114770_16554780.1183484165194 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline Yes Joshua: The only exception ocurrs if r | c or if c | r in the case abs(r-c)=prime; in other words if r and c are multiples of p. 2007/7/2, Joshua Zucker : > > Proof: if r and c are not coprime, then they have a common divisor d, > and then d divides r+c and r-c as well. > > The only possible exceptions would be cases like 6 and 3, where 6-3 is > prime even though 6 and 3 are not coprime. That is, where the common > divisor is a prime equal to r-c. > > --Joshua Zucker > > > On 7/2/07, xordan wrote: > > I understand that the attached file and the folloging words that don't > > coincide with the strict discussion line in seqfan, but they contain > some > > graphic curiosities that I wanted to share with the members of the list. > I > > wait some benevolent comments. Again I notice that the translation of > the > > original in Spanish is made with the help of software: > > > > The attached file (coprimes.zip ) contains one book of calculation > sheets > > that has 5 work sheets that give results (to my view) interesting > related > > with the numbers relatively primes. > > The first sheet shows the numbers (1 to 256) relatively primes to each > other > > that added (arithmetic sum) becomes a prime number as result; the > > second sheet shows the numbers relatively primes whose absolute > difference > > becomes a prime number as result; the third are the conjunction of the > > previous two , that is to say the numbers relatively primes whose their > > algebraic sum gives as result a prime number. The fourth is the same > > graph that it appears in the current page > > http://mathworld.wolfram.com/RelativelyPrime.html > > (RelativelyPrime.gif) and that it shows the primes numbers relatively to > > each other. The fifth work sheet is the conjunction of > RelativelyPrime.gif > > and the previous sheet "abs(r+-c)=prime". - With this it is shown > > graphically that all the numbers (r,c) whose algebraic sum is a prime > number > > (p) they are relatively prime to each other. > > IF r+c=p THEN coprime(r,c)=1.- > > -- > > xordan at hotmail.com > > xordan_co at yahoo.com > > xordan.tom at gmail.com > > > -- xordan at hotmail.com xordan_co at yahoo.com xordan.tom at gmail.com ------=_Part_114770_16554780.1183484165194 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline
Yes Joshua:
The only exception ocurrs if r | c or if c | r in the case abs(r-c)=prime; in other words if r and c are multiples of p. 
 
 
2007/7/2, Joshua Zucker <joshua.zucker at gmail.com>:
Proof: if r and c are not coprime, then they have a common divisor d,
and then d divides r+c and r-c as well.

The only possible exceptions would be cases like 6 and 3, where 6-3 is
prime even though 6 and 3 are not coprime.  That is, where the common
divisor is a prime equal to r-c.

--Joshua Zucker


On 7/2/07, xordan <xordan.tom at gmail.com> wrote:
> I understand that the attached file and the folloging words that  don't
> coincide with the strict discussion line in seqfan, but they contain some
> graphic curiosities that I wanted to share with the members of the list. I
> wait some benevolent comments. Again I notice that the translation of the
> original in Spanish is made with the help of software:
>
> The attached file (coprimes.zip ) contains one book of calculation sheets
> that has 5 work sheets that give results (to my view) interesting related
> with the numbers relatively primes.
> The first sheet shows the numbers (1 to 256) relatively primes to each other
>  that added (arithmetic sum)   becomes  a prime number as  result; the
> second sheet shows the numbers relatively primes  whose absolute difference
> becomes a prime number  as  result; the third are the conjunction of the
> previous two , that is to say the numbers relatively primes  whose their
> algebraic sum  gives as  result a prime  number. The fourth is the same
> graph that it appears in the current page
> http://mathworld.wolfram.com/RelativelyPrime.html
> (RelativelyPrime.gif) and that it shows the primes numbers relatively to
> each other. The fifth work sheet is the conjunction of RelativelyPrime.gif
> and the previous sheet "abs(r+-c)=prime". - With this it is shown
> graphically that all the numbers (r,c) whose algebraic sum is a prime number
> (p) they are relatively prime to each other.
> IF  r+c=p  THEN   coprime(r,c)=1.-
> --
> xordan at hotmail.com
> xordan_co at yahoo.com
> xordan.tom at gmail.com
>



--
xordan at hotmail.com
xordan_co at yahoo.com
xordan.tom at gmail.com ------=_Part_114770_16554780.1183484165194-- Are other people also having problems receiving the automated reply when with this.) I guess we will have to wait until Neil gets back from vacation to submit via this method. Thanks, Leroy Quet From qq-quet at mindspring.com Wed Jul 4 18:16:42 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Wed, 4 Jul 07 10:16:42 -0600 Subject: No automatic replies Message-ID: submitting sequences via the on-line form? (I know Tanya has had problems Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=hX1KQN1K+pYO5sPeSwq56UwvZZWeO781Oy82Q9ptNgrVHSKowB/5zNoD0dzqYuE9Ni80KblIr9aCk5jvv3nuEM89KcohU9r/SGqSoGBOiWfwP3M5a/LxZpkdOzW+HgxF83+lVbIf4nc4mX8ysFmgOfiz8OpvTRuR0S5n7qTnYAk= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=GbzmCPy2wTX81kF7SjwZhLJ3sBq/2DmL6uvGhfraDwUx69hSPFkBTaRbjmlH4g5MyFjz2FowCpt8CRuUDL7OFlVbNwpBob4VdsxpUhJPRDOyTjpdXC2JrQs7V0j4Jyg406cjQCtV/1/kBedhxVpmW4Om1iHWyogcf2HQV/W9vkw= Message-ID: <5542af940707041259v435e0f9alf913531e86f7230c at mail.gmail.com> Date: Wed, 4 Jul 2007 12:59:45 -0700 From: "Jonathan Post" To: "Leroy Quet" , "jonathan post" Subject: Re: No automatic replies Cc: seqfan at ext.jussieu.fr In-Reply-To: MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline References: X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Wed, 04 Jul 2007 21:59:47 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3598/Wed Jul 4 10:35:02 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 468BFC32.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.439 -> 1 X-Miltered: at shiva.jussieu.fr with ID 468BFC32.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! I got no autoreply for this: NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 -109, -42, -26, -18, -14, -12, -10, -9, -8, -7, -6, -6, -5, -5, -5, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1 %N A000001 Floor of constants in De Bruijn's approach to weighted Carleman's inequality. %C A000001 Abstract of Gao: "We study finite sections of weighted Carleman's inequality following the approach of De Bruijn. Similar to the unweighted case, we obtain an asymptotic expression for the optimal constant." %D A000001 N. G. De Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, pp. 505-514. %H A000001 Peng Gao, Finite Sections of Weighted Carleman's Inequality, 30 June 2007, p.1. %F A000001 a(n) = floor(e - (2*(pi^2)*e)/((log(n))^2)). %e A000001 a(2) = -109 because e - (2*(pi^2)*e)/((log(2))^2) ~ -108.9611770171388392925257212314455433803548032218666994709. a(3) = -42 because e - (2*(pi^2)*e)/((log(3))^2) ~ -41.7382232411477828847325690963577817095329948893743754723. a(4) = -26 because e - (2*(pi^2)*e)/((log(4))^2) ~ -25.20158288294042589661121470434688897177076548519170518650. a(30) = -2 because e - (2*(pi^2)*e)/((log(30))^2) ~ -1.92003649778404604739381818236913112747520. a(45) = -1 because e - (2*(pi^2)*e)/((log(45))^2) ~ -0.98456269963010489451493724472555817336322761419762175593. %O A000001 2,1 %K A000001 ,easy,sign, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 03 2007 From jvospost3 at gmail.com Wed Jul 4 22:01:04 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Wed, 4 Jul 2007 13:01:04 -0700 Subject: No automatic replies In-Reply-To: <5542af940707041259v435e0f9alf913531e86f7230c@mail.gmail.com> References: <5542af940707041259v435e0f9alf913531e86f7230c@mail.gmail.com> Message-ID: <5542af940707041301s32f82ca9h2f1e3638a33ddecc@mail.gmail.com> Nor did I get an autoreply for this: COMMENT FROM Jonathan Vos Post RE A122505 %I A122505 %S A122505 24, 24, 95, 1, 143, 1, 262, -213, 453, -261, 739, -833, 1169, -1168, 2172, -2505, 3104, -3581, 5255, -6449 %N A122505 Arises from energy spectrum of three dimensional gravity with negative cosmological constant, in analysis by Edward Witten. %C A122505 a(11)-a(20) given by "GH" at Not Even Wrong Blog; not verified as correct; commenter email unknown. %H A122505 "GH", Strings 2007, thread of "Not Even Wrong" Physics blog, edited by Peter Woit, , thread initiated 25 June 2007, comment by "GH" extending sequence dated 1 July 2007. %O A122505 1 %K A122505 ,sign, %A A122505 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 03 2007 From jvospost3 at gmail.com Wed Jul 4 22:05:27 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Wed, 4 Jul 2007 13:05:27 -0700 Subject: No automatic replies In-Reply-To: <5542af940707041301s32f82ca9h2f1e3638a33ddecc@mail.gmail.com> References: <5542af940707041259v435e0f9alf913531e86f7230c@mail.gmail.com> <5542af940707041301s32f82ca9h2f1e3638a33ddecc@mail.gmail.com> Message-ID: <5542af940707041305r34b54aa2w219a86bc732a103a@mail.gmail.com> For that matter (and I'm not saying that ANY of these are good or important, just that they track to OEIS and the Literature): COMMENT FROM Jonathan Vos Post RE A001399 %I A001399 %S A001399 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341 %N A001399 Number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also multigraphs with 3 nodes and n edges. %H A001399 Andrew N. Norris, Higher derivatives and the inverse derivative of a tensor-valued function of a tensor, 1 July 2007, Equation 3.28, p.10 %F A001399 After initial 1 appears identical to integer part of ((n+4)^2 + 4)/12, which is given Norris as the number of points in, and on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0, and I + 2J = n + 1. %O A001399 1 %K A001399 ,nonn, %A A001399 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 03 2007 From martin_n_fuller at btinternet.com Fri Jul 6 21:34:13 2007 From: martin_n_fuller at btinternet.com (Martin Fuller) Date: Fri, 6 Jul 2007 20:34:13 +0100 (BST) Subject: Help correcting A003294 and A096739 Message-ID: <324718.39838.qm@web86601.mail.ird.yahoo.com> SeqFans, A003294 and A096739 have some obvious errors, but they may also be the same sequence. Can anyone help provide terms and/or decide whether they are duplicates? http://www.research.att.com/~njas/sequences/?q=id:A003294|id:A096739 The first error is that there are missing multiples, e.g. 1765 = 353*5. Then there is a typo in A096739 which has 5129 instead of 5729. It looks like the values have been brought together from several sources but not checked carefully enough. Are there any fourth power sums which involve repeated values? If the answer is proved to be no, then these sequences can be combined. Martin Fuller From maximilian.hasler at gmail.com Sat Jul 7 00:33:01 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Fri, 6 Jul 2007 18:33:01 -0400 Subject: Help correcting A003294 and A096739 In-Reply-To: <324718.39838.qm@web86601.mail.ird.yahoo.com> References: <324718.39838.qm@web86601.mail.ird.yahoo.com> Message-ID: <3c3af2330707061533m3328ccb0vec62ccd85c7db644@mail.gmail.com> > http://www.research.att.com/~njas/sequences/?q=id:A003294|id:A096739 > > The first error is that there are missing multiples, e.g. 1765 = 353*5. I think this is an omission in the definition rather than error in the sequence - I believe in general for such "homogeneous" diophantine equations it is somehow tacitly understood that multiples are not listed as solutions (since any multiple of a solution (A,B,C,D,n) is trivially again a solution, one only gives solutions with gcd(A,B,C,D,n) = 1.) but of course this should be somehow said in the definition. M.H. From jvospost3 at gmail.com Sat Jul 7 00:33:48 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 6 Jul 2007 15:33:48 -0700 Subject: Correction to, comment on, A061789, and primes therein Message-ID: <5542af940707061533l7a0654a7u2ef96454c2cae8db@mail.gmail.com> Correction to A061789: a(4) = 2^2 + 3^3 + 5^5 + 7^7 = 826699 rather than, as shown, 826696. Comment: Primes in A061689 a(2) = 2^2 + 3^3 = 31 is prime a(4) = 2^2 + 3^3 + 5^5 + 7^7 = 826699 is prime a(24) = 2^2 + 3^3 + 5^5 + 7^7 + 11^11 + 13^13 + 17^17 + 19^19 + 23^23 + 29^29 + 31^31 + 37^37 + 41^41 + 43^43 + 47^47 + 53^53 + 59^59 + 61^61 + 67^67 + 71^71 + 73^73 + 79^79 + 83^83 + 89^89 = 313119 843606 266222 723931 946804 611259 287100 533754 507329 247768 328563 715123 287679 948437 264517 293404 303260 795541 448480 275059 086587 161357 892405 477908 284669 463639 709544 036228 659629 is prime A061789 Sum_{k=1..n} p(k)^p(k), p(k) = k-th prime (A000040). 4, 31, 3156, 826696, 285312497310, 303160419089563, 827240565046755853740, 1979246896225360344977719, 20880469979094808259715377888286, 2567686153182091604540923022990731504371755 From djr at nk.ca Sat Jul 7 04:46:18 2007 From: djr at nk.ca (Don Reble) Date: Fri, 06 Jul 2007 20:46:18 -0600 Subject: Help correcting A003294 and A096739 In-Reply-To: <324718.39838.qm@web86601.mail.ird.yahoo.com> References: <324718.39838.qm@web86601.mail.ird.yahoo.com> Message-ID: <468EFE7A.1040400@nk.ca> Seqfans: A003294 goes 353 651 706 1059 1302 1412 1765 1953 2118 2471 2487 2501 2604 2824 2829 3177 3255 3530 3723 3883 3906 3973 4236 4267 4333 4449 4557 4589 4942 4949 4974 5002 5208 5281 5295 5463 5491 5543 5648 5658 5729 5859 6001 6167 6354 6510 6609 6707 6801 7060 7101 7161 7209 7339 7413 7446 7461 7503 7703 7766 7812 7946 8119 8373 8433 8463 8472 8487 8493 8517 8534 8577 8637 8666 8825 8898 9114 9137 9178 9243 9431 9519 9531 9639 9765 9797 9877 9884 9898 9948 and all of these are in A096739. So they still might be the same. One might make a sequence of the primitive terms, where the fourth roots have no common factor. Ah! that's the intent of A039664. Dr. Sloane, do you have the original author? I'll send A003294 and A039664 edits to Dr. Sloane. -- Don Reble djr at nk.ca -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean. From jvospost3 at gmail.com Mon Jul 9 00:31:49 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 8 Jul 2007 15:31:49 -0700 Subject: Correction to, comment on, A061789, and primes therein In-Reply-To: <5542af940707061533l7a0654a7u2ef96454c2cae8db@mail.gmail.com> References: <5542af940707061533l7a0654a7u2ef96454c2cae8db@mail.gmail.com> Message-ID: <5542af940707081531o25ddaca4g5019982b3f02d3d@mail.gmail.com> I've verified, using Alpertron, and double-checking with the WIMS server at U.Nice, that there are no more primes in A061789 through a(78): 2^2 + 3^3 + 5^5 + 7^7 + ... + 397^397 which has 1032 digits. hence, if there is a 4th prime in A061789 it must be a Titanic prime, to use the term coined by Samuel Yates in the 1980s, denoting a prime number of at least 1000 decimal digits. From jvospost3 at gmail.com Tue Jul 10 02:03:30 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Mon, 9 Jul 2007 17:03:30 -0700 Subject: Prime Fermat number-twins (Boris V. Tarasov, arXiv) Message-ID: <5542af940707091703r69cc1411h385ccd4a7919158e@mail.gmail.com> Is it worth submitting this sequence? Prime Fermat number-twins. 5, 7, 13, 19, 65539 Prime numbers of the form (2^(2^n)) - 3 or (2^(2^n)) + 3 The concrete theory of numbers : Problem of simplicity of Fermat number-twins http://arxiv.org/PS_cache/arxiv/pdf/0707/0707.0907v1.pdf Authors: Boris V. Tarasov Comments: 6 pages Subjects: General Mathematics (math.GM) The problem of simplicity of Fermat number-twins f_n^{plus or minus) = 2^(2^n){plus or minus 3} is studied. The question for what n numbers f_n^{plus or minus) are composite is investigated. The factor-identities for numbers of a kind x^2 {plus or minus} k $ are found. a(n) are (sorted) from Tarasov, p.5 If this is worth submitting, what is the next value a(5) asserted by Tarasov to be equal or greater than (2^(2^17)) - 3? From jvospost3 at gmail.com Tue Jul 10 02:10:47 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Mon, 9 Jul 2007 17:10:47 -0700 Subject: Marek Wolf, arXiv: Analog of the Skewes number for twin primes Message-ID: <5542af940707091710o27abe8ft727a16b924a95413@mail.gmail.com> Dear Marek Wolf, I certainly hope that you submit sequence(s) to the Online Encyclopedia of IUnteger Sequences from your fine paper: arXiv:0707.0980 Title: Analog of the Skewes number for twin primes Authors: Marek Wolf Subjects: Number Theory (math.NT) 6 July 2007 Sincerely, Prof. Jonathan Vos Post From zakseidov at yahoo.com Tue Jul 10 15:57:55 2007 From: zakseidov at yahoo.com (zak seidov) Date: Tue, 10 Jul 2007 06:57:55 -0700 (PDT) Subject: Concise Search Result In-Reply-To: <5542af940707041305r34b54aa2w219a86bc732a103a@mail.gmail.com> Message-ID: <93596.85791.qm@web38208.mail.mud.yahoo.com> Dear seqfans, I think that Concise Search Result of the following form would be nice, right? Zak Search: 18, 96, 600, 4320 Result: A001563, A052633, A052655, A094258, A094304, A109074 ____________________________________________________________________________________ Need a vacation? Get great deals to amazing places on Yahoo! Travel. http://travel.yahoo.com/ From ogerard at ext.jussieu.fr Tue Jul 10 18:42:39 2007 From: ogerard at ext.jussieu.fr (=?ISO-8859-1?Q?Olivier_G=E9rard?=) Date: Tue, 10 Jul 2007 18:42:39 +0200 Subject: [seqfan] INTERRUPTION DE SERVICE - MAILING LIST HIATUS Message-ID: <4693B6FF.3010103@ext.jussieu.fr> Dear list members, The machine hosting the seqfan list server will be shut down from Thursday July 12 6pm GMT+2 until Friday July 13 9am GMT+2 (that's the end of tuesday morning till 1 or 2am friday US East time) Please do not send any message during this period as you will not be able to check whether it has been received or not by the mailing list robot. Anyway, they would be distributed only after the servers are rebooted. I will send a mail to the list so that everyone knows operations are back to normal. Thanks in advance for your patience and your discipline in that matter. with my best regards, Olivier GERARD PS: As usual, any inquiries about this matter should be directed to me (olivier.gerard at gmail.com or olivier.gerard at paris7.jussieu.fr) and not to the list. =============================== =============================== Chers abonn?s de la liste seqfan Arr?t temporaire du serveur h?bergeant la liste JEUDI 12 Juillet 18h, heure de Paris, pour les fran?ais, jusqu'au VENDREDI 13 Juillet au matin (probablement 9h) S'il vous plait, n'envoyez pas de message pendant cette p?riode, vous ne pourriez pas savoir si il a ?t? bien re?u, et vous risqueriez de provoquer une confusion ou des doublons. J'enverrai un courier ? la liste quand la situation sera revenue ? la normale. Merci d'avance pour votre patience et votre discipline. Cordialement, Olivier GERARD PS: Comme d'habitude, si vous avez des questions ? ce sujet, ?crivez moi directement (olivier.gerard at gmail.com ou olivier.gerard at paris7.jussieu.fr ) et pas ? la liste. From diana.mecum at gmail.com Wed Jul 11 15:22:53 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Wed, 11 Jul 2007 08:22:53 -0500 Subject: Question related to sequence A071267 Message-ID: Sequence Fans, I am looking at sequence A071267. %I A071267 %S A071267 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, %T A071267 154,165,176,187,198,111,222,666,888,1110 %N A071267 Numbers which can be expressed as the sum of all distinct digit permutations of some number k. %C A071267 222 can be expressed so in two different ways i.e. 222= 200 +020 + 002 as well as 222= 101 +110 +011. Question: find a number which can be so expressed in n different ways. %e A071267 1110 is a member as a sum of all distinct permutations of 104. i.e. 104,140,410, 401,014,041. %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence A072427 A050420 A096922 %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence A071268 A071269 A071270 %K A071267 base,more,nonn %O A071267 1,1 %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 When I try to follow the rule for generating the sequence numbers, I get the following list; 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 121, 132, 143, 154, 165, 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 Can someone explain why my list differs from the original? I am not understanding the hypothesis to generate the original list. Diana M. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From joshua.zucker at gmail.com Wed Jul 11 17:12:36 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Wed, 11 Jul 2007 08:12:36 -0700 Subject: Question related to sequence A071267 In-Reply-To: References: Message-ID: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Hi Diana and all, Murthy's sequences often have errors. Here, among other problems, the definition is "numbers which ..." but then shouldn't they be SORTED? I don't quite agree with your list, either, though. Here's what I think, based purely on brute-force with a computer, using as "seeds" all the numbers up to 100000: 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 29997 which leaves me wondering, for instance, why I got 29997 but not 2997 in there. But now I see it's a nice little bit of combinatorics: 108 goes to 1998 (six permutations, so effectively each spot is (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we get 27000 + 2700 + 270 + 27). So I think my above list of terms are correct. Differences from your list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 and 2775 and 3333 which are missing from your list. (2331 for example comes from 399 -> 399 + 939 + 993, and any list of identical digits maps to itself, so 333 -> 333.) Diana, would you verify that you agree with my list of terms and then if you do please submit the corrected terms for this sequence? Thanks, --Joshua Zucker On 7/11/07, Diana Mecum wrote: > Sequence Fans, > > I am looking at sequence A071267. > > %I A071267 > %S A071267 > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > %T A071267 154,165,176,187,198,111,222,666,888,1110 > %N A071267 Numbers which can be expressed as the sum of all distinct digit > permutations of > some number k. > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 +020 > + 002 as well as > 222= 101 +110 +011. Question: find a number which can be so > expressed > in n different ways. > %e A071267 1110 is a member as a sum of all distinct permutations of 104. > i.e. 104,140,410, > 401,014,041. > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > A072427 A050420 A096922 > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence A071268 > A071269 A071270 > %K A071267 base,more,nonn > %O A071267 1,1 > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > When I try to follow the rule for generating the sequence numbers, I get the > following list; > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > 121, 132, 143, 154, 165, > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, > 1665, 1776, 1887, > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > Can someone explain why my list differs from the original? I am not > understanding the hypothesis to generate the original list. > > Diana M. > > -- > "God made the integers, all else is the work of man." > L. Kronecker, Jahresber. DMV 2, S. 19. From g.resta at iit.cnr.it Wed Jul 11 17:11:28 2007 From: g.resta at iit.cnr.it (Giovanni Resta) Date: Wed, 11 Jul 2007 17:11:28 +0200 Subject: Question related to sequence A071267 In-Reply-To: References: Message-ID: <4694F320.3010100@iit.cnr.it> Diana Mecum wrote: > %I A071267 > %S A071267 > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > %T A071267 154,165,176,187,198,111,222,666,888,1110 > %N A071267 Numbers which can be expressed as the sum of all distinct > digit permutations of > some number k. > When I try to follow the rule for generating the sequence numbers, I > get the following list; > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, > 111, 121, 132, 143, 154, 165, > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, 1665, 1776, 1887, > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > Can someone explain why my list differs from the original? I am not > understanding the hypothesis to generate the original list. First of all, you must bear in mind that a consistent fraction of the sequences submitted by Amarnath Murthy are erroneous. In any case it seems to me that also your list is not consistent with the definition. In particular, considering elements less or equal to 3996, you list lacks the following terms: 333, 1111, 2222, 2331, 2553, 2775, 3333 It is clear that all the repdigits (like 333, 1111, 2222, 3333, and so on) belong to the sequence since, for example, the set of all the distinct permutations of 333 is just 333. (moreover 333 is also produced by the permutations of 300: 300+030+003 = 333). The other missing values are produced as : 2331 = 399 + 993 + 939 2553 = 599+995+959 2775 = 799+997+979 So I think that the correct list, up to 10000, is 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 121, 132, 143, 154, 165, 176, 187, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1111, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2222, 2331, 2442, 2553, 2664, 2775, 2886, 3108, 3330, 3333, 3552, 3774, 3996, 4218, 4440, 4444, 4662, 4884, 5106, 5328, 5555, 6666, 7777, 8888, 9999 while, if we let drop the 'distinct' clause (so for example 11 produces not 11 but 11+11=22), the elements up to 10000 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 222, 444, 666, 888, 1110, 1332, 1554, 1776, 1998, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996, 4218, 4440, 4662, 4884, 5106, 5328, 5550, 5772, 5994, 6666 g. From diana.mecum at gmail.com Wed Jul 11 18:40:30 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Wed, 11 Jul 2007 09:40:30 -0700 Subject: Question related to sequence A071267 In-Reply-To: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: Joshua and Giovanni, Thanks. I hadn't done a comprehensive initial list, having only looked at 200 terms. My question was more directed to why 1, 3, 5, 7 and 9 were not on the list. I will assume that my algorithm is correct, which agrees with your findings. Thank you, Diana M. On 7/11/07, Joshua Zucker wrote: > > Hi Diana and all, > Murthy's sequences often have errors. Here, among other problems, the > definition is "numbers which ..." but then shouldn't they be SORTED? > > I don't quite agree with your list, either, though. Here's what I > think, based purely on brute-force with a computer, using as "seeds" > all the numbers up to 100000: > > 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 > 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 > 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 > 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 > 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 > 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 > 29997 > > which leaves me wondering, for instance, why I got 29997 but not 2997 > in there. But now I see it's a nice little bit of combinatorics: 108 > goes to 1998 (six permutations, so effectively each spot is > (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 > (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we > get 27000 + 2700 + 270 + 27). > > So I think my above list of terms are correct. Differences from your > list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 > and 2775 and 3333 which are missing from your list. (2331 for example > comes from 399 -> 399 + 939 + 993, and any list of identical digits > maps to itself, so 333 -> 333.) > > Diana, would you verify that you agree with my list of terms and then > if you do please submit the corrected terms for this sequence? > > Thanks, > --Joshua Zucker > > > On 7/11/07, Diana Mecum wrote: > > Sequence Fans, > > > > I am looking at sequence A071267. > > > > %I A071267 > > %S A071267 > > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > > %T A071267 154,165,176,187,198,111,222,666,888,1110 > > %N A071267 Numbers which can be expressed as the sum of all distinct > digit > > permutations of > > some number k. > > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 > +020 > > + 002 as well as > > 222= 101 +110 +011. Question: find a number which can be > so > > expressed > > in n different ways. > > %e A071267 1110 is a member as a sum of all distinct permutations of > 104. > > i.e. 104,140,410, > > 401,014,041. > > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > > A072427 A050420 A096922 > > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence > A071268 > > A071269 A071270 > > %K A071267 base,more,nonn > > %O A071267 1,1 > > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > > > When I try to follow the rule for generating the sequence numbers, I get > the > > following list; > > > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > > 121, 132, 143, 154, 165, > > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, > > 1665, 1776, 1887, > > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > > > Can someone explain why my list differs from the original? I am not > > understanding the hypothesis to generate the original list. > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From diana.mecum at gmail.com Wed Jul 11 19:29:42 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Wed, 11 Jul 2007 10:29:42 -0700 Subject: Question related to sequence A071267 In-Reply-To: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: Joshua, Yes, I will double check that your and my terms agree. I will submit the corrected list, as that was my purpose in studying the list in the first place. Thanks for your time. Diana M. On 7/11/07, Joshua Zucker wrote: > > Hi Diana and all, > Murthy's sequences often have errors. Here, among other problems, the > definition is "numbers which ..." but then shouldn't they be SORTED? > > I don't quite agree with your list, either, though. Here's what I > think, based purely on brute-force with a computer, using as "seeds" > all the numbers up to 100000: > > 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 > 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 > 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 > 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 > 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 > 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 > 29997 > > which leaves me wondering, for instance, why I got 29997 but not 2997 > in there. But now I see it's a nice little bit of combinatorics: 108 > goes to 1998 (six permutations, so effectively each spot is > (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 > (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we > get 27000 + 2700 + 270 + 27). > > So I think my above list of terms are correct. Differences from your > list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 > and 2775 and 3333 which are missing from your list. (2331 for example > comes from 399 -> 399 + 939 + 993, and any list of identical digits > maps to itself, so 333 -> 333.) > > Diana, would you verify that you agree with my list of terms and then > if you do please submit the corrected terms for this sequence? > > Thanks, > --Joshua Zucker > > > On 7/11/07, Diana Mecum wrote: > > Sequence Fans, > > > > I am looking at sequence A071267. > > > > %I A071267 > > %S A071267 > > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > > %T A071267 154,165,176,187,198,111,222,666,888,1110 > > %N A071267 Numbers which can be expressed as the sum of all distinct > digit > > permutations of > > some number k. > > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 > +020 > > + 002 as well as > > 222= 101 +110 +011. Question: find a number which can be > so > > expressed > > in n different ways. > > %e A071267 1110 is a member as a sum of all distinct permutations of > 104. > > i.e. 104,140,410, > > 401,014,041. > > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > > A072427 A050420 A096922 > > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence > A071268 > > A071269 A071270 > > %K A071267 base,more,nonn > > %O A071267 1,1 > > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > > > When I try to follow the rule for generating the sequence numbers, I get > the > > following list; > > > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > > 121, 132, 143, 154, 165, > > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, > > 1665, 1776, 1887, > > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > > > Can someone explain why my list differs from the original? I am not > > understanding the hypothesis to generate the original list. > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From davidwwilson at comcast.net Thu Jul 12 07:41:32 2007 From: davidwwilson at comcast.net (David Wilson) Date: Thu, 12 Jul 2007 01:41:32 -0400 Subject: Question related to sequence A071267 References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: <000f01c7c447$4deb5920$6501a8c0@yourxhtr8hvc4p> Let f(n) be the sum of all permutes of n. Let s(n) = sum of digits of n. d(n) = number of digits of n. c_n(k) = number of occurences of digit k in n. p(n) = PROD(k = 0..9; c_n(k)!). r(n) = n-digit rep-1 number = (10^n-1)/n. t(n) = ((s(n)(d(n)-1)!)/p(n)). Then f(n) = t(n) r(d(n)). For example, if n = 314159, we get s(n) = 23 d(n) = 6 c_n = (0, 2, 0, 1, 1, 1, 0, 0, 0, 1) p(n) = PROD(k = 0..9; c_n(k)!) = 2 r(d(n)) = r(6) = 111111 t(n) = (23*120)/2 = 1380 and f(314159) = 1380*11111 = 153333180 A combinatorial argument shows that when we add the permutes of n, the same number of each digit will appear in each column of the sum. This means that f(n) = (sum of each column) * (d(n)-digit rep-1 number) = (sum of each column) * r(d(n)) from which we conclude t(n) = sum of each column implying that t(n) is integer and r(d(n)) | f(n). Using this knowledge, we can explore why f(n) = 29997 is insoluble while f(n) = 2997 is not. Let n have d(n) digits. Then n <= 9 r(d(n)) and has at most d(n)! permutes. This means that [1] f(n) <= 9 r(d(n)) d(n)! Suppose f(n) = 29997. We know that r(d(n)) | f(n), and the only rep-1 numbers that divide 29997 are r(1) = 1, r(2) = 11 and r(4) = 1111, implying d(n) = 1, 2 or 4. From [1], d(n) = 1 => f(n) <= 9 d(n) = 2 => f(n) <= 198 d(n) = 4 => f(n) <= 239976 Given f(n) = 29997, we must have d(n) = 4 and r(d(n)) = 1111. This means that t(n) = f(n)/r(d(n)) = 29997/1111 = 27. so that ((s(n)(d(n)-1)!)/p(n)) = 27. Since d(n) = 4, we have 6 s(n)/p(n) = 27 => s(n) = 9(p(n)/2). Since p(n) and s(n) are both integer, p(n) must be even to make the right side integer. This means 9 | s(n) <= 9 d(n) = 36. This means that s(n) = 9, 18, 27 or 36. Suppose s(n) = 9. Then p(n) = 2. By the definition of p(n), p(n) = 2 iff exactly one digit appears twice in n and all others once (or not at all). So we are looking for a 4-digit n with a single repeated digit and digit sum 9. Many such numbers exist, 1008 being the smallest, and indeed f(1008) = 29997. But now look at f(n) = 2997. Following similar logic to the above, we find that d(n) = 3 and t(n) = 27 giving ((s(n)(d(n)-1)!)/p(n)) = 27 => 2 s(n)/p(n) = 27 => s(n) = 27(p(n)/2). Again, p(n) must be even, so 27 | s(n). But s(n) <= 9 d(n) = 27, so s(n) = 27 forcing n = 999 and f(n) = 999. Hence f(n) = 2997 is insoluble. -------------- next part -------------- An HTML attachment was scrubbed... URL: From njas at research.att.com Thu Jul 12 10:45:29 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Thu, 12 Jul 2007 04:45:29 -0400 (EDT) Subject: 3 seqs that should be the same but are not In-Reply-To: <200707120845.l6C8jTGh29153108@fry.research.att.com> References: <200707120845.l6C8jTGh29153108@fry.research.att.com> Message-ID: <200707120845.l6C8jTGh29153108@fry.research.att.com> Why should "surface area" (A074457) equal "volume" (A087300)? From DWCantrell at sigmaxi.net Thu Jul 12 15:01:07 2007 From: DWCantrell at sigmaxi.net (David W. Cantrell) Date: Thu, 12 Jul 2007 14:01:07 +0100 Subject: 3 seqs that should be the same but are not References: <200707120845.l6C8jTGh29153108@fry.research.att.com> <5542af940707120512v585336e2vb67179da5f641008@mail.gmail.com> Message-ID: <001501c7c484$b79a7a30$25933e44@Dell> ----- Original Message ----- From: "Jonathan Post" To: Cc: ; ; ; "jonathan post" Sent: Thursday, July 12, 2007 13:12 Subject: Re: 3 seqs that should be the same but are not > Why should "surface area" (A074457) equal "volume" (A087300)? They're not the same constant, but the constant given in A074457 is simply 2 more than the constant given in A087300. Both entries should mention that, I think. There are also two errors in the title of A087300. It should read: Decimal expansion of value of d for which volume of d-dimensional unit ball is maximized. [Note that it is necessary to specify that it's a _unit_ ball.] David From DWCantrell at sigmaxi.net Thu Jul 12 16:05:33 2007 From: DWCantrell at sigmaxi.net (David W. Cantrell) Date: Thu, 12 Jul 2007 15:05:33 +0100 Subject: 3 seqs that should be the same but are not References: <181140.23791.qm@web86606.mail.ukl.yahoo.com> Message-ID: <001001c7c48d$b81894c0$25933e44@Dell> Martin, Concerning your question "Can someone explain why the dimension with maximum surface area is exactly 2 more than the dimension with maximum volume?": On a "mechanical" level, explaining why is trivial. If we let invdig denote the appropriate inverse of the digamma function, then we can solve the required transcendental equations to obtain 2 invdig(log(pi)) and 2 invdig(log(pi)) + 2. But you were probably wanting something deeper, and I'm not sure what that is. David ----- Original Message ----- From: "Martin Fuller" To: "David W. Cantrell" ; "Jonathan Post" ; Cc: ; ; ; "jonathan post" Sent: Thursday, July 12, 2007 14:53 Subject: Re: 3 seqs that should be the same but are not > A074455 and A087300 should be the same: A074455 has the right > description and > came first, A087300 has the right values. > > I get a different value to OEIS for A074457 as well as for A074455. > > See below for the current values and my calculations in PARI. The > PARI code > gives the same value as A087300 and is consistent when increasing > the > precision, so I think it's right. > > Martin Fuller > > PS Can someone explain why the dimension with maximum surface area > is exactly 2 > more than the dimension with maximum volume? > > PPS All these constants are based on geometers dimension which is > one more than > topologists dimension (see the comments at MathWorld and compare > with the > formulae at PlanetMath > http://planetmath.org/encyclopedia/VolumeOfTheNSphere.html) > > OEIS > A087300 > 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926 > A074455 > 5.25694640486057678013283838869076923661901723718321485750987966544135040807732427416016036408330066793834 > A074457 > 7.25694640486057678013283838869076923661901723718321485750987966581295771725141939748631782716397233020121 > A074454 > 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 > A074456 > 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 > > PARI/GP > A074455 > 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 > A074457 > 7.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 > A074454 > 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 > A074456 > 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 > > /* PARI/GP code */ > hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2) > hyperspherevolume(d)=hyperspheresurface(d)/d > > FindMax(fn_x,lo,hi)= > { > local(oldprecision, x, y, z); > oldprecision = default(realprecision); > default(realprecision, oldprecision+10); > > while (hi-lo > 10^-oldprecision, > while (1, > z = vector(2, i, lo*(3-i)/3 + hi*i/3); > y = vector(2, i, eval(Str("x = z[" i "]; " fn_x))); > if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break); > default(realprecision, default(realprecision)+10); > ); > if (y[1] < y[2], lo = z[1], hi = z[2]); > ); > > default(realprecision, oldprecision); > (lo + hi) / 2. > } > > default(realprecision, 105); > A074455=FindMax("hyperspherevolume(x)", 1, 9) > A074457=FindMax("hyperspheresurface(x)", 1, 9) > A074454=hyperspherevolume(A074455) > A074456=hyperspheresurface(A074457) > /* PARI/GP code ends */ > > --- "David W. Cantrell" wrote: > >> ----- Original Message ----- >> From: "Jonathan Post" >> To: >> Cc: ; ; ; >> "jonathan post" >> Sent: Thursday, July 12, 2007 13:12 >> Subject: Re: 3 seqs that should be the same but are not >> >> >> > Why should "surface area" (A074457) equal "volume" (A087300)? >> >> They're not the same constant, but the constant given in A074457 is >> simply 2 more than the constant given in A087300. Both entries >> should >> mention that, I think. >> >> There are also two errors in the title of A087300. It should read: >> Decimal expansion of value of d for which volume of d-dimensional >> unit >> ball is maximized. >> [Note that it is necessary to specify that it's a _unit_ ball.] >> >> David >> >> From diana.mecum at gmail.com Thu Jul 12 16:36:00 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Thu, 12 Jul 2007 09:36:00 -0500 Subject: Question related to sequence A071267 In-Reply-To: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> References: <721e81490707110812w7313fb79jba97b8181521661e@mail.gmail.com> Message-ID: Joshua, Performing permutations on numbers up to 100,000 gave me the following numbers to add to sequence A071267. I will add these to the sequence. Diana M. 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 121, 132, 143, 154, 165, 176, 187, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1111, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2222, 2331, 2442, 2553, 2664, 2775, 2886, 3108, 3330, 3333, 3552, 3774, 3996, 4218, 4440, 4444, 4662, 4884, 5106, 5328, 5555, 6666, 7777, 8888, 9999, 11110, 11111, 12221, 13332, 14443, 15554, 16665, 17776, 18887, 19998, 21109, 22220, 22222, 23331, 24442, 25553, 26664, 27775, 28886, 29997, 31108, 32219, 33330, 33333, 34441, 35552, 36663, 37774, 38885, 39996, 43329, 44444, 46662, 49995, 53328, 55555, 56661, 59994, 63327, 66660, 66666, 69993, 73326, 76659, 77777, 79992, 83325, 86658, 88888, 89991, 93324, 96657, 99990, 99999, 103323, 106656, 109989, 111110, 111111, 113322, 119988, 122221, 126654, 133320, 133332, 139986, 144443, 146652, 153318, 155554, 159984, 166650, 166665, 173316, 177776, 179982, 186648, 188887, 193314, 199980, 199998, 211109, 222220, 233331, 244442, 255553, 266664, 277775, 288886, 299997, 311108, 322219, 333330, 344441, 355552, 366663, 377774, 388885, 399996, 411107, 422218, 433329, 444440, 455551, 466662, 477773, 488884, 511106, 533328, 555550, 577772, 599994, 622216, 644438, 666660, 688882, 711104, 733326, 755548, 777770, 799992, 822214, 844436, 866658, 888880, 911102, 933324, 955546, 977768, 999990, 1022212, 1066656, 1111100, 1133322, 1155544, 1199988, 1244432, 1266654, 1288876, 1333320, 1377764, 1399986, 1422208, 1466652, 1511096, 1533318, 1555540, 1599984, 1644428, 1666650, 1688872, 1733316, 1777760, 1799982, 1822204, 1866648, 1933314, 1999980, 2066646, 2133312, 2199978, 2266644, 2333310, 2399976, 2466642, 2533308, 2599974, 2666640, 2733306, 2799972, 2933304, 3066636, 3199968, 3333300, 3466632, 3599964, 3733296, 3866628, 3999960, 4133292, 4266624, 4399956, 4533288, 4666620, 4799952, 4933284, 5066616, 5199948, 5333280, 5599944, 5866608, 6133272, 6399936, 6666600, 6933264, 7199928, 7466592, 7733256, 7999920, 8266584, 8533248, 8799912, 9066576, 9333240 On 7/11/07, Joshua Zucker wrote: > > Hi Diana and all, > Murthy's sequences often have errors. Here, among other problems, the > definition is "numbers which ..." but then shouldn't they be SORTED? > > I don't quite agree with your list, either, though. Here's what I > think, based purely on brute-force with a computer, using as "seeds" > all the numbers up to 100000: > > 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 110 111 121 132 143 154 > 165 176 187 222 333 444 555 666 777 888 999 1110 1111 1221 1332 1443 > 1554 1665 1776 1887 1998 2109 2220 2222 2331 2442 2553 2664 2775 2886 > 3108 3330 3333 3552 3774 3996 4218 4440 4444 4662 4884 5106 5328 5555 > 6666 7777 8888 9999 11110 11111 12221 13332 14443 15554 16665 17776 > 18887 19998 21109 22220 22222 23331 24442 25553 26664 27775 28886 > 29997 > > which leaves me wondering, for instance, why I got 29997 but not 2997 > in there. But now I see it's a nice little bit of combinatorics: 108 > goes to 1998 (six permutations, so effectively each spot is > (1+0+8+1+0+8) so we get 1800 + 180 + 18), while 1008 goes to 29997 > (twelve permutations, so each spot is (1+0+0+8+1+0+0+8+1+0+0+8) so we > get 27000 + 2700 + 270 + 27). > > So I think my above list of terms are correct. Differences from your > list, Diana, are that I have 333 and 1111 and 2222 and 2331 and 2553 > and 2775 and 3333 which are missing from your list. (2331 for example > comes from 399 -> 399 + 939 + 993, and any list of identical digits > maps to itself, so 333 -> 333.) > > Diana, would you verify that you agree with my list of terms and then > if you do please submit the corrected terms for this sequence? > > Thanks, > --Joshua Zucker > > > On 7/11/07, Diana Mecum wrote: > > Sequence Fans, > > > > I am looking at sequence A071267. > > > > %I A071267 > > %S A071267 > > 2,4,6,8,10,11,12,14,16,18,22,33,44,55,66,77,88,99,101,110,121,132,143, > > %T A071267 154,165,176,187,198,111,222,666,888,1110 > > %N A071267 Numbers which can be expressed as the sum of all distinct > digit > > permutations of > > some number k. > > %C A071267 222 can be expressed so in two different ways i.e. 222= 200 > +020 > > + 002 as well as > > 222= 101 +110 +011. Question: find a number which can be > so > > expressed > > in n different ways. > > %e A071267 1110 is a member as a sum of all distinct permutations of > 104. > > i.e. 104,140,410, > > 401,014,041. > > %Y A071267 Sequence in context: A081472 A097660 A067030 this_sequence > > A072427 A050420 A096922 > > %Y A071267 Adjacent sequences: A071264 A071265 A071266 this_sequence > A071268 > > A071269 A071270 > > %K A071267 base,more,nonn > > %O A071267 1,1 > > %A A071267 Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jun 01 2002 > > > > When I try to follow the rule for generating the sequence numbers, I get > the > > following list; > > > > 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, > > 121, 132, 143, 154, 165, > > 176, 187, 222, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, > 1554, > > 1665, 1776, 1887, > > 1998, 2109, 2220, 2442, 2664, 2886, 3108, 3330, 3552, 3774, 3996 > > > > Can someone explain why my list differs from the original? I am not > > understanding the hypothesis to generate the original list. > > > > Diana M. > > > > -- > > "God made the integers, all else is the work of man." > > L. Kronecker, Jahresber. DMV 2, S. 19. > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From martin_n_fuller at btinternet.com Thu Jul 12 15:53:02 2007 From: martin_n_fuller at btinternet.com (Martin Fuller) Date: Thu, 12 Jul 2007 14:53:02 +0100 (BST) Subject: 3 seqs that should be the same but are not In-Reply-To: <001501c7c484$b79a7a30$25933e44@Dell> Message-ID: <181140.23791.qm@web86606.mail.ukl.yahoo.com> A074455 and A087300 should be the same: A074455 has the right description and came first, A087300 has the right values. I get a different value to OEIS for A074457 as well as for A074455. See below for the current values and my calculations in PARI. The PARI code gives the same value as A087300 and is consistent when increasing the precision, so I think it's right. Martin Fuller PS Can someone explain why the dimension with maximum surface area is exactly 2 more than the dimension with maximum volume? PPS All these constants are based on geometers dimension which is one more than topologists dimension (see the comments at MathWorld and compare with the formulae at PlanetMath http://planetmath.org/encyclopedia/VolumeOfTheNSphere.html) OEIS A087300 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926 A074455 5.25694640486057678013283838869076923661901723718321485750987966544135040807732427416016036408330066793834 A074457 7.25694640486057678013283838869076923661901723718321485750987966581295771725141939748631782716397233020121 A074454 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 A074456 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 PARI/GP A074455 5.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 A074457 7.25694640486057678013283838869076923661901723718321485750987967877710934673682027281772023848979246926957 A074454 5.27776802111340099728214586417284638752999928451017356776163734021486412730547017110062048407258401284645 A074456 33.1611944849620026918630240155829735800472328410872585131001181554037565464718434466607460949351387694776 /* PARI/GP code */ hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2) hyperspherevolume(d)=hyperspheresurface(d)/d FindMax(fn_x,lo,hi)= { local(oldprecision, x, y, z); oldprecision = default(realprecision); default(realprecision, oldprecision+10); while (hi-lo > 10^-oldprecision, while (1, z = vector(2, i, lo*(3-i)/3 + hi*i/3); y = vector(2, i, eval(Str("x = z[" i "]; " fn_x))); if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break); default(realprecision, default(realprecision)+10); ); if (y[1] < y[2], lo = z[1], hi = z[2]); ); default(realprecision, oldprecision); (lo + hi) / 2. } default(realprecision, 105); A074455=FindMax("hyperspherevolume(x)", 1, 9) A074457=FindMax("hyperspheresurface(x)", 1, 9) A074454=hyperspherevolume(A074455) A074456=hyperspheresurface(A074457) /* PARI/GP code ends */ --- "David W. Cantrell" wrote: > ----- Original Message ----- > From: "Jonathan Post" > To: > Cc: ; ; ; > "jonathan post" > Sent: Thursday, July 12, 2007 13:12 > Subject: Re: 3 seqs that should be the same but are not > > > > Why should "surface area" (A074457) equal "volume" (A087300)? > > They're not the same constant, but the constant given in A074457 is > simply 2 more than the constant given in A087300. Both entries should > mention that, I think. > > There are also two errors in the title of A087300. It should read: > Decimal expansion of value of d for which volume of d-dimensional unit > ball is maximized. > [Note that it is necessary to specify that it's a _unit_ ball.] > > David > > From maximilian.hasler at gmail.com Fri Jul 13 04:16:00 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Thu, 12 Jul 2007 22:16:00 -0400 Subject: link to 3n+1 ? Message-ID: <3c3af2330707121916p1f22271bxb9b1a6eac4a04415@mail.gmail.com> %I A001281 %S A001281 2,1,8,2,14,3,20,4,26,5,32,6,38,7,44,8,50,9,56,10,62,11,68,12,74,13,80, %N A001281 Image of n under n->n/2 if n even, n->3n-1 if n odd. %Y A001281 Cf. A037082. I may be wrong but at first glance, the xref given in this record refers to something completely unrelated(?) (Primes of the form n!!! + 1), shouldn't it rather refer to A006370 Image of n under the `3x+1' map. or the like? (I could not spot an obvious typo comparing with id's at http://www.research.att.com/~njas/sequences/Sindx_3.html#3x1 On that token, %S A008908 1,2,8,3,6,9,17,4,20,7,15,10,10,18,18 %N A008908 Number of halving and tripling steps to reach 1 in `3x+1' problem. %Y A008908 a(n) = A006577(n) + 1. seems inconsistent with %S A006577 0,1,7,2,5,8,16,3,19,6,14,9,9,17,17,4,12, %N A006577 Number of halving and tripling steps to reach 1 in `3x+1' problem. (the %N should not be identical if values differ) M.H. I've now added all the sequences that were submitted to this point in time, including those that were "lost". [The "lost" ones have numbers in the range A130707 - A130742. There may be some duplicates there - let me know if you notice any. I checked, but not very thoroughly. Getting the "lost" ones out of the log files was a lot of work.] The next project is to process "Comments". There are about 500, In the meantime, please remember that the OEIS is on vacation. Neil From njas at research.att.com Fri Jul 13 16:12:16 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Fri, 13 Jul 2007 10:12:16 -0400 (EDT) Subject: OEIS status report Message-ID: <200707131412.l6DECGEp29694119@fry.research.att.com> so this will take a while. Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:sender:to:subject:mime-version:content-type:content-transfer-encoding:content-disposition:x-google-sender-auth; b=qdPYuyUuQhKVUStrOYnlXixl4Ap3QXBtuGKnnG6fbogZ8DVHNqRQpB/alK2ADjQ5D5YCsRL5t5uIw84xyNf/ZlWcmjrhbJ5BR1tAlvAOZF2u4e3vUV0IPGL86V9aB/WAGfsmFvcxQbKaaSVD393q43jHCt2oVzqJLnvFE+BI18I= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:sender:to:subject:mime-version:content-type:content-transfer-encoding:content-disposition:x-google-sender-auth; b=l09LSianrNizqw5RAw//cKLCTVBLDow10kBCr4QlYM6RskHB9mxNkR7BPpSp2w7jBMGMFgTWzqg3IW5r7YbDVQvHuYpMMzccpg/E5/VcmOeQzOcKrOAvwfhyHzVbpjyW2wwtr2yeW/M0QUUYb6LzTgf9yGgQzWYNiit+sgGdagg= Message-ID: <335cf8920707131046v25a23917s3adf511e259b60c at mail.gmail.com> Date: Fri, 13 Jul 2007 19:46:07 +0200 From: "Olivier Gerard" Sender: olivier.gerard at gmail.com To: seqfan at ext.jussieu.fr Subject: [seqfan] Online again MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Disposition: inline X-Google-Sender-Auth: f5ec4764b636ff85 X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Fri, 13 Jul 2007 19:46:09 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3661/Fri Jul 13 19:18:05 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 4697BA61.000 on shiva.jussieu.fr : j-chkmail score : XX : 0/50 2 0.319 -> 2 X-Miltered: at shiva.jussieu.fr with ID 4697BA61.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Content-Transfer-Encoding: 8bit X-MIME-Autoconverted: from base64 to 8bit by idf.ext.jussieu.fr id l6DHk9bN055271 Dear Members, As the last few messages have proven, the mailing listserver for SeqFan is up again and in good condition. Have a pleasant day. Olivier GERARD ==================================== Chers abonn??s de la liste seqfan, Comme les quelques messages r??cents l'ont montr??,le syst??me informatique de notre liste de discussionest de nouveau op??rationnel. A tous une bonne journ??e, Olivier GERARD From nholmes at leven.comp.utas.edu.au Sat Jul 14 13:38:18 2007 From: nholmes at leven.comp.utas.edu.au (Neville Holmes) Date: Sat, 14 Jul 2007 21:38:18 +1000 (EST) Subject: A008776 and A025192 Duplicates ? Message-ID: <20070714113818.9533E106B5@leven.comp.utas.edu.au> A008776 and A025192 look the same to me. Am I missing something ? ------------------------------------------------------------------------- Neville Holmes E-mail: Neville.Holmes at utas.edu.au School of Computing Phone : +61 363 243 393 or (03) 63 243 393 University of Tasmania Fax : +61 363 243 368 or (03) 63 243 368 Locked Bag 1-359 Launceston 7250 --------------------------------------- Neville, They are not quite the same - one has an initial 1. The relation between them is explicitly mentioned in the entries. Neil From njas at research.att.com Sat Jul 14 15:28:12 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sat, 14 Jul 2007 09:28:12 -0400 (EDT) Subject: A008776 and A025192 Duplicates ? Message-ID: <200707141328.l6EDSCSj27853097@fry.research.att.com> A124502 is essentially the same as A108458? http://www.research.att.com/~njas/sequences/A108458 http://www.research.att.com/~njas/sequences/A124502 V. -------------- next part -------------- An HTML attachment was scrubbed... URL: From aomunagi at gmail.com Mon Jul 16 17:52:58 2007 From: aomunagi at gmail.com (Augustine Munagi) Date: Mon, 16 Jul 2007 17:52:58 +0200 Subject: Possible duplicate In-Reply-To: <102c01c7c6d4$a4b992a0$3701f0d5@speedy> References: <102c01c7c6d4$a4b992a0$3701f0d5@speedy> Message-ID: Hi Seqfans, They should not be the same unless the definition of A108458 is modified. A108458 needs improvement. They are not transposes, even though A108458(n,k)=A124502(n+k,k+1) for fixed k. By definition A108458 is infinite both downwards and to the right while A124502 is finite to the right. On 7/15/07, Vladeta Jovovic wrote: > > > > A124502 is essentially the same as A108458? > > http://www.research.att.com/~njas/sequences/A108458 > > http://www.research.att.com/~njas/sequences/A124502 > > V. From maxale at gmail.com Tue Jul 17 06:20:25 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 16 Jul 2007 21:20:25 -0700 Subject: A091902 is duplicate of A067698 Message-ID: SeqFan A091902 is a duplicate of A067698. They differ only with an extra first term 1 in A091902, which actually should not be there since log(log(n)) in not defined for n=1. A067698 is much developed than A091902, missing only a link to Robin's Theorem. So, I suggest to add a link to Robin's Theorem to A067698 and remove A091902 from OEIS. Max I have recently submitted these sequences, which have already appeared in the database. >%I A131789 >%S A131789 1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,3,1 >%N A131789 a(n) = the length of the nth run of similar consecutive values >in the sequence A000005. (A000005(n) = the number of positive divisors of n.) >%e A131789 Runs of sequence A000005: (1), (2,2), (3), (2), (4), (2), (4), >(3), (4), (2), (6), (2), (4,4), (5), (2), (6), (2), (6), (4,4), (2), (8), >(3),... >%Y A131789 A000005,A131790 >%O A131789 1 >%K A131789 ,more,nonn, >%I A131790 >%S A131790 1,1,10,1,5,1,3,1,5,1 >%N A131790 a(n) = the length of the nth run of similar consecutive values >in the sequence A131789. >%e A131790 Runs of sequence A131789: (1), (2), (1,1,1,1,1,1,1,1,1,1), (2), >(1,1,1,1,1), (2), (1,1,1), (2), (1,1,1,1,1,), (3),... >%Y A131790 A000005,A131789 >%O A131790 1 >%K A131790 ,more,nonn, It seems VERY likely to me that there is no infinite string of 1's, or of anything else, in sequence A131789 (ie. the terms of A131790 are all finite). Can it be PROVED that all terms of A131790 are finite, possibly using Hardy and Wright or some other such reference? A harder question to answer: We can define sequence S(m) = {s(m,n)}, where s(m,n) = the length of the nth run of similar consecutive values in the sequence S(m-1), where S(0) = sequence A000005. (And S(1) = A131789, S(2) = A131790, of course.) Is every term of S(m) finite for every m = positive integer? It seems intuitive obvious that, yes, all terms are finite. But a proof would be harder to produce. Thanks, Leroy Quet From qq-quet at mindspring.com Tue Jul 17 16:45:59 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Tue, 17 Jul 07 08:45:59 -0600 Subject: Lengths Of Runs In The #-Of-Divisors Sequence Message-ID: Just for fun (?): http://www.cetteadressecomportecinquantesignes.com/WordsPosition.htm Best, ?. From joshua.zucker at gmail.com Tue Jul 17 21:44:10 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Tue, 17 Jul 2007 12:44:10 -0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: References: Message-ID: <721e81490707171244r38763dedj89e40b5e5d7bee5b@mail.gmail.com> On 7/17/07, Leroy Quet wrote: > I have recently submitted these sequences, which have already appeared in > the database. Should be easy to extend -- is it easier to post here first, asking someone with a computer to extend them for you, and then submit enough terms to begin with? > It seems VERY likely to me that there is no infinite string of 1's, or of > anything else, in sequence A131789 (ie. the terms of A131790 are all > finite). > > Can it be PROVED that all terms of A131790 are finite, possibly using > Hardy and Wright or some other such reference? No need for Hardy and Wright, just Euclid -- there are infinitely many primes. Plus there are not any consecutive primes after 2. Hence the primes (2s) partition the list into finite chunks. --Joshua Zucker From joshua.zucker at gmail.com Tue Jul 17 21:45:14 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Tue, 17 Jul 2007 12:45:14 -0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: <721e81490707171244r38763dedj89e40b5e5d7bee5b@mail.gmail.com> References: <721e81490707171244r38763dedj89e40b5e5d7bee5b@mail.gmail.com> Message-ID: <721e81490707171245r7865a036ude11b441e53b8ae7@mail.gmail.com> On 7/17/07, Joshua Zucker wrote: > On 7/17/07, Leroy Quet wrote: > > It seems VERY likely to me that there is no infinite string of 1's, or of > > anything else, in sequence A131789 (ie. the terms of A131790 are all > > finite). > > > > Can it be PROVED that all terms of A131790 are finite, possibly using > > Hardy and Wright or some other such reference? > > No need for Hardy and Wright, just Euclid -- there are infinitely many > primes. Plus there are not any consecutive primes after 2. Hence the > primes (2s) partition the list into finite chunks. Wups, I think that's a proof for A131789, not for A131790. --Joshua Hello all, I was looking at A069803 - Smaller of two consecutive palindromic primes: 2, 3, 5, 7, 181, 787, 919 Conjectured to be complete. I am interested in seeing a proof that 919 is actually the largest palindromic prime such that the next prime is palindromic. I checked up to 10^8 with Mathematica coding. Also, it is obvious that the distance from a palindrome n to the next one is more than Sqrt(n/10). It is clear that prime gaps grow slower than that. Looking at the prime gaps sequence A053303, it is easy to prove that 919 is the last number like that up to 10^16. Is there a bound for prime gaps that proves that the gaps are less than Sqrt(n/10) starting from some n? Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com From tanyakh at TanyaKhovanova.com Wed Jul 18 00:12:20 2007 From: tanyakh at TanyaKhovanova.com (Tanya Khovanova) Date: Tue, 17 Jul 2007 15:12:20 -0700 Subject: 919 conjecture In-Reply-To: References: Message-ID: <200707171512.AA1076494578@TanyaKhovanova.com> On 7/17/07, Leroy Quet wrote: > Can it be PROVED that all terms of A131790 are finite, possibly using > Hardy and Wright or some other such reference? It would follow from the statement: There exist infinitely many positive integers k such that both 2k+1 and 3k+1 are prime. I do not have a proof that this statement is true (it may be as hard as twin prime conjecture) but heuristic arguments ala Hardy--Wright suggest that it is ture. Now, if for some k>1 both 2k+1 and 3k+1 are prime then 3(2k+1)=6k+3 and 2(3k+1)=6k+2 both have exactly 4 divisors, implying that A000005(6k+3)=A000005(6k+2)=4 belong to the same run in A000005 and the length of this run is greater than 1. In other words, in A131789 elements greater than 1 appear infinitely often. It is also clear that for each prime p >= 5, A000005(p)=2 forms its own run of length 1 in A000005, implying that in A131789 elements equal 1 appear infinitely often. Therefore, all runs in A131789 are finite and so are elements of A131790. P.S. btw, the sequence of k such that both 2k+1 and 3k+1 are prime seems to be missing in OEIS. It starts with: 2, 6, 14, 20, 26, 36, 50, 54, 74, 90, 116, 140, 146, 174, 200, 204, 210, 224, 230, 270, 284, 306, 330, 336, 350, 354, 384, 404, 410, 426, 440, 476, 510, 516, 554, 564, 596, 600, 624, 644, 650, 704, 714, 726, 740, 746, 834, 846, 894, 930, 944, 950 Regards, Max From franktaw at netscape.net Wed Jul 18 05:21:12 2007 From: franktaw at netscape.net (franktaw at netscape.net) Date: Tue, 17 Jul 2007 23:21:12 -0400 Subject: 919 conjecture In-Reply-To: <200707171512.AA1076494578@TanyaKhovanova.com> References: <200707171512.AA1076494578@TanyaKhovanova.com> Message-ID: <8C99701D3845E00-E70-2A8D@FWM-D43.sysops.aol.com> No. It is an open problem of long standing to show that there is always a prime between n^2 and (n+1)^2. This means that we can't prove that prime gaps are always less than sqrt(n) for n sufficiently large. Franklin T. Adams-Watters -----Original Message----- From: Tanya Khovanova Hello all, I was looking at A069803 - Smaller of two consecutive palindromic primes: 2, 3, 5, 7, 181, 787, 919 Conjectured to be complete. I am interested in seeing a proof that 919 is actually the largest palindromic prime such that the next prime is palindromic. I checked up to 10^8 with Mathematica coding. Also, it is obvious that the distance from a palindrome n to the next one is more than Sqrt(n/10). It is clear that prime gaps grow slower than that. Looking at the prime gaps sequence A053303, it is easy to prove that 919 is the last number like that up to 10^16. Is there a bound for prime gaps that proves that the gaps are less than Sqrt(n/10) starting from some n? Tanya ________________________________________________________________________ Check Out the new free AIM(R) Mail -- Unlimited storage and industry-leading spam and email virus protection. From aomunagi at gmail.com Wed Jul 18 17:16:54 2007 From: aomunagi at gmail.com (Augustine Munagi) Date: Wed, 18 Jul 2007 17:16:54 +0200 Subject: Possible duplicate In-Reply-To: References: <102c01c7c6d4$a4b992a0$3701f0d5@speedy> Message-ID: Hi Seqfan, Additionally, the relation A108458(n,k)=A124502(n+k,k+1) shows that the sequences are related like "multichoose" to "choose". I suggest a merging of the sequences by inserting the definition of A108458 as a comment in A124502 with the above relation. Else A108458 as presently displayed is inaccurate, and indeed leaves us with a duplicate. On 7/16/07, Augustine Munagi wrote: > Hi Seqfans, > > They should not be the same unless the definition of A108458 is > modified. A108458 needs improvement. > They are not transposes, even though A108458(n,k)=A124502(n+k,k+1) for > fixed k. By definition A108458 is infinite both downwards and to the > right while A124502 is finite to the right. > > > > On 7/15/07, Vladeta Jovovic wrote: > > > > > > > > A124502 is essentially the same as A108458? > > > > http://www.research.att.com/~njas/sequences/A108458 > > > > http://www.research.att.com/~njas/sequences/A124502 > > > > V. > From joshua.zucker at gmail.com Wed Jul 18 23:19:32 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Wed, 18 Jul 2007 14:19:32 -0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: References: Message-ID: <721e81490707181419y19dc932fy51af3d71b8b0cf0@mail.gmail.com> On 7/17/07, Leroy Quet wrote: > A harder question to answer: > We can define sequence S(m) = {s(m,n)}, where s(m,n) = the length of the > nth run of similar consecutive values in the sequence S(m-1), where S(0) > = sequence A000005. > (And S(1) = A131789, S(2) = A131790, of course.) > > Is every term of S(m) finite for every m = positive integer? > > It seems intuitive obvious that, yes, all terms are finite. But a proof > would be harder to produce. There seems to be a strongly alternating pattern: Divisor sequence: 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 10 3 6 4 6 2 8 4 8 4 4 2 12 2 4 6 7 4 8 2 6 4 8 2 12 2 4 6 6 4 8 2 10 5 4 2 12 4 4 4 8 2 12 4 6 4 4 4 12 2 6 6 9 Run lengths in divisor sequence: 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 3 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 Run lengths in that: 1 1 10 1 5 1 3 1 5 1 2 1 4 1 11 1 16 1 8 1 5 1 2 1 4 1 10 2 2 1 9 2 4 1 1 2 9 1 11 1 4 1 10 1 10 1 1 1 6 1 1 1 10 1 9 1 7 1 30 1 9 2 1 1 22 1 4 2 8 1 28 1 4 1 4 1 4 1 33 1 3 1 9 1 5 1 26 1 18 1 4 1 5 1 10 1 9 1 3 1 Run lengths in that: 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 And then: 1 25 1 4 1 10 1 1 1 10 1 55 1 15 1 4 1 63 1 3 1 12 1 33 1 5 1 32 1 9 1 7 1 3 1 13 1 56 1 61 1 5 1 103 1 47 1 17 1 13 1 25 1 5 1 5 1 47 1 3 1 21 1 7 1 11 1 1 1 17 1 3 1 1 1 8 1 1 1 5 1 7 1 9 1 2 1 15 1 36 1 5 1 11 1 7 1 1 1 15 And then: 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 And then: 6 1 57 1 3 1 1 1 17 1 63 1 7 1 9 1 101 1 17 1 43 1 13 1 27 1 129 1 37 1 17 1 9 1 39 1 15 1 15 1 45 1 27 1 11 1 3 1 19 1 41 1 5 1 51 1 9 1 47 1 33 1 15 1 35 1 7 1 7 1 15 1 13 1 29 1 53 1 25 1 9 1 23 1 69 1 9 1 5 1 35 1 13 1 9 1 9 1 37 1 And then: 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 And then: 5 1 105 1 3 1 49 1 29 1 5 1 31 1 15 1 9 1 15 1 17 1 5 1 61 1 9 1 1 1 1 1 1 1 13 1 11 1 11 1 41 1 51 1 19 1 73 1 5 1 55 1 31 1 41 1 67 1 133 1 5 1 5 1 85 1 9 1 7 1 61 1 11 1 5 1 1 1 15 1 29 1 And so on, where alternately you get (long strings of 1s with the occasional other number) and (alternately 1s and other numbers, with occasionally 2 or 3 1s in a row). By the way, using the first million terms of A000005, I get only the first 82 terms of S(8), so it'll take some work to explore this any further numerically. I don't think it's at all obvious that this thing won't eventually yield a sequence of all 1s, even if it is intuitively obvious to Leroy Quet, it's sure not obvious to me! --Joshua Zucker PS: I also submitted extensions of A131789 and A131790 as part of this work. Joshua Zucker wrote: >I don't think it's at all obvious that this thing won't eventually >yield a sequence of all 1s, even if it is intuitively obvious to Leroy >Quet, it's sure not obvious to me! I think my use of the phrase "intuitively obvious" is quite an exaggeration. It just seems *likely* to me that the terms of each S(m) are finite. Nothing is really obvious. :) Thanks, Leroy Quet From qq-quet at mindspring.com Wed Jul 18 23:44:20 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Wed, 18 Jul 07 15:44:20 -0600 Subject: Lengths Of Runs In The #-Of-Divisors Sequence Message-ID: This is a multi-part message in MIME format. ------_=_NextPart_001_01C7CA44.3128B80C Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Hello SeqFans, could someone check and compute a hundred terms or so of the seq below? =20 4,6,9,21,22,25,33,39,46,49,51,54,... =20 Integers n whose "ordered concatenation" of all divisors (except 1 and n) i= s a prime. =20 n div. prime 4 -> 1,2,4 -> 2 6 -> 1,2,3,6 -> 23 9 -> 1,3,9 -> 3 21 -> 1,3,7,21 -> 37 22 -> 1,2,11,22 -> 211 25 -> 1,5,25 -> 5 33 -> 1,3,11,33 -> 311 39 -> 1,3,13,39 -> 313 ... 26 is not a member : =20 26 -> 1,2,13,26 -> 213 -> 1,3,71,213 -> 371 -> 1,7,53,371 -> 753 -> 1,3,251= ,753 -> 3251 is prime =20 but 753 will be a member. =20 =20 I like 54: =20 54 -> 1,2,3,6,9,18,27,54 -> 23691827 prime =20 Best, =C9. =20 ----- =20 (I've used Magma to compute the factorization, plus Edwin Clarkk's advice: =20 > [Math-Fun] > > (...) > Use for example the command Divisors(12345678); at this site > > http://magma.maths.usyd.edu.au/calc/ > > and click on evaluate. You will get > > [ 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846, 14593, 29186, 43779, > 87558, 131337, 262674, 685871, 1371742, 2057613, 4115226, 6172839, > 12345678 ] > > Total time: 0.350 seconds, Total memory usage: 6.46MB =20 =20 =20 Please do not send any message during this period as you will not be able to check whether it has been received or not by the mailing list robot. Anyway, they would be distributed only after the servers are rebooted. I will send a mail to the list so that everyone knows operations are back to normal. Thanks in advance for your patience and your discipline in that matter. with my best regards, Olivier GERARD PS: As usual, any inquiries about this matter should be directed to me (olivier.gerard at gmail.com or olivier.gerard at paris7.jussieu.fr) and not to the list. =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D Chers abonn=E9s de la liste seqfan Arr=EAt temporaire du serveur h=E9bergeant la liste JEUDI 12 Juillet 18h, heure de Paris, pour les fran=E7ais, jusqu'au VENDREDI 13 Juillet au matin (probablement 9h) S'il vous plait, n'envoyez pas de message pendant cette p=E9riode, vous ne pourriez pas savoir si il a =E9t=E9 bien re=E7u, et vous risqueriez de provoquer une confusion ou des doublons. J'enverrai un courier =E0 la liste quand la situation sera revenue =E0 la normale. Merci d'avance pour votre patience et votre discipline. Cordialement, Olivier GERARD PS: Comme d'habitude, si vous avez des questions =E0 ce sujet, =E9crivez moi directement (olivier.gerard at gmail.com ou olivier.gerard at paris7.jussieu.fr ) et pas =E0 la liste. ------_=_NextPart_001_01C7CA44.3128B80C Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable [seqfan] INTERRUPTION DE SERVICE - MAILING LIST HIATUS
Hello=20 SeqFans,
could someone check and = compute a=20 hundred terms or so of the seq below?
 
4,6,9,21,22,25,33,39,46,49,51,54,...
 
Integers n whose "o= rdered=20 concatenation" of all divisors (except 1 and n) is a prime.
 
 n   = ; =20 div.         prime
 4 ->=20 1,2,4     ->    2
 6 -> 1,2,3,6&nb= sp; =20 ->   23
 9 -> 1,3,9 = ; =20   ->    3
21 -> 1,3,7,21 = =20 ->   37
22 -> 1,2,11,22 ->=  =20 211
25 -> 1,5,25 &nb= sp; =20 ->    5
33 -> 1,3,11,33 ->=  =20 311
39 -> 1,3,13,39 ->=  =20 313
...
26 is not a member :
 
26 -> 1,2,13,26 ->= 213 ->=20 1,3,71,213 -> 371 -> 1,7,53,371 -> 753 -> 1,3,251,753 -> 325= 1 is=20 prime
 
but 753 will be a=20 member.
 
 
I like 54:
 
54 -> 1,2,3,6,9,18,27= ,54 ->=20 23691827 prime
 
Best,
=C9.
 
-----
 
(I've used Magma to comp= ute the=20 factorization, plus Edwin Clarkk's advice:
 
> [Math-Fun]
>
> (...)
> Use for example the= command=20 Divisors(12345678); at this site
>
>   http://magma.maths.usyd.edu.au/calc/
>
> an= d click=20 on evaluate. You will get
>
> [ 1, 2, 3, 6, 9, 18, 47, 94, 141,= 282,=20 423, 846, 14593, 29186, 43779,
> 87558, 131337, 262674, 685871, 13717= 42,=20 2057613, 4115226, 6172839,
> 12345678 ]
>
> Total time: 0= .350=20 seconds, Total memory usage: 6.46MB

 
 
 
Please do not send= any=20 message during this period as you will
not be able to check whether it h= as=20 been received or not by
the mailing list robot.  Anyway, they would= be=20 distributed
only after the servers are rebooted.

I will send a ma= il to=20 the list so that everyone knows operations
are back to normal.  Tha= nks=20 in advance for your patience and
your discipline in that matter.

= with=20 my best regards,

Olivier GERARD

PS: As usual, any inquiries a= bout=20 this matter should be directed
to me (olivier.gerard at gmail.com or=20 olivier.gerard at paris7.jussieu.fr)
and not to the=20 list.

=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D

Chers=20 abonn=E9s de la liste seqfan

Arr=EAt temporaire du serveur h=E9berge= ant la=20 liste

JEUDI 12 Juillet 18h, heure de Paris, pour les=20 fran=E7ais,

jusqu'au

VENDREDI 13 Juillet au matin (probableme= nt=20 9h)


S'il vous plait, n'envoyez pas de message pendant cette=20 p=E9riode,
vous ne pourriez pas savoir si il a =E9t=E9 bien re=E7u, et v= ous=20 risqueriez
de provoquer une confusion ou des doublons.
J'enverrai un= =20 courier =E0 la liste quand la situation sera revenue
=E0 la normale.
=
Merci=20 d'avance pour votre patience et votre=20 discipline.


Cordialement,

Olivier GERARD


PS: C= omme=20 d'habitude, si vous avez des questions =E0 ce sujet, =E9crivez
moi direc= tement=20 (olivier.gerard at gmail.com ou
olivier.gerard at paris7.jussieu.fr ) et pas = =E0 la=20 liste.



------_=_NextPart_001_01C7CA44.3128B80C-- From Eric.Angelini at kntv.be Thu Jul 19 22:38:44 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Thu, 19 Jul 2007 22:38:44 +0200 Subject: Divisors concatenated shape a prime Message-ID: Sorry for the bad header -- and the old "tail"... I'm not working on my "normal" computer and quite confused :-/ Best, ?. ________________________________ Hello SeqFans, could someone check and compute a hundred terms or so of the seq below? 4,6,9,21,22,25,33,39,46,49,51,54,... Integers n whose "ordered concatenation" of all divisors (except 1 and n) is a prime. n div. prime 4 -> 1,2,4 -> 2 6 -> 1,2,3,6 -> 23 9 -> 1,3,9 -> 3 21 -> 1,3,7,21 -> 37 22 -> 1,2,11,22 -> 211 25 -> 1,5,25 -> 5 33 -> 1,3,11,33 -> 311 39 -> 1,3,13,39 -> 313 ... 26 is not a member : 26 -> 1,2,13,26 -> 213 -> 1,3,71,213 -> 371 -> 1,7,53,371 -> 753 -> 1,3,251,753 -> 3251 is prime but 753 will be a member. I like 54: 54 -> 1,2,3,6,9,18,27,54 -> 23691827 prime Best, ?. ----- (I've used Magma to compute the factorization, plus Edwin Clarkk's advice: > [Math-Fun] > > (...) > Use for example the command Divisors(12345678); at this site > > http://magma.maths.usyd.edu.au/calc/ > > and click on evaluate. You will get > > [ 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846, 14593, 29186, 43779, > 87558, 131337, 262674, 685871, 1371742, 2057613, 4115226, 6172839, > 12345678 ] > > Total time: 0.350 seconds, Total memory usage: 6.46MB -------------- next part -------------- An HTML attachment was scrubbed... URL: From simon.plouffe at gmail.com Thu Jul 19 22:54:57 2007 From: simon.plouffe at gmail.com (Simon Plouffe) Date: Thu, 19 Jul 2007 16:54:57 -0400 Subject: Divisors concatenated shape a prime In-Reply-To: References: Message-ID: <33a322bc0707191354h70440f5amb6693976ff15c9a5@mail.gmail.com> hello I made this simple maple routine : ############################### with(numtheory): for k from 5 to 1e99 do: v0:=divisors(k): nn:=nops(v0): if nn > 3 then v1:=[seq(v0[j],j=2..nn-1)]: v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))): v3:=parse(v2): if isprime(v3) = true then lprint(k,v3) fi: fi: od: ################################# and here is some output from it (see the attachement) ################################# Simon plouffe -------------- next part -------------- 6, 23 21, 37 22, 211 33, 311 39, 313 46, 223 51, 317 54, 23691827 58, 229 78, 236132639 82, 241 93, 331 99, 391133 111, 337 115, 523 133, 719 141, 347 142, 271 147, 372149 153, 391751 154, 2711142277 159, 353 162, 236918275481 166, 283 174, 236295887 177, 359 186, 236316293 187, 1117 189, 379212763 201, 367 205, 541 219, 373 226, 2113 235, 547 237, 379 247, 1319 249, 383 253, 1123 262, 2131 267, 389 274, 2137 286, 211132226143 291, 397 294, 23671421424998147 301, 743 318, 23653106159 319, 1129 327, 3109 333, 3937111 355, 571 358, 2179 366, 23661122183 387, 3943129 391, 1723 402, 23667134201 411, 3137 427, 761 459, 39172751153 478, 2239 489, 3163 501, 3167 502, 2251 505, 5101 511, 773 531, 3959177 535, 5107 538, 2269 543, 3181 562, 2281 565, 5113 573, 3191 583, 1153 586, 2293 589, 1931 598, 213232646299 606, 236101202303 622, 2311 639, 3971213 654, 236109218327 657, 3973219 658, 27144794329 679, 797 687, 3229 694, 2347 697, 1741 711, 3979237 721, 7103 726, 23611223366121242363 747, 3983249 753, 3251 759, 311233369253 763, 7109 766, 2383 771, 3257 778, 2389 781, 1171 793, 1361 799, 1747 801, 3989267 813, 3271 822, 236137274411 835, 5167 871, 1367 889, 7127 895, 5179 901, 1753 921, 3307 931, 71949133 934, 2467 939, 3313 943, 2341 949, 1373 957, 311293387319 985, 5197 993, 3331 994, 271471142497 1003, 1759 1006, 2503 1017, 39113339 1041, 3347 1042, 2521 1057, 7151 1077, 3359 1078, 27111422497798154539 1081, 2347 1083, 31957361 1114, 2557 1119, 3373 1135, 5227 1143, 39127381 1147, 3137 1165, 5233 1167, 3389 1186, 2593 1234, 2617 1243, 11113 1254, 23611192233385766114209418627 1294, 2647 1299, 3433 1318, 2659 1339, 13103 1341, 39149447 1347, 3449 1351, 7193 1354, 2677 1362, 236227454681 1366, 2683 1371, 3457 1383, 3461 1387, 1973 1389, 3463 1401, 3467 1405, 5281 1411, 1783 1417, 13109 1426, 223314662713 1435, 573541205287 1438, 2719 1441, 11131 1467, 39163489 1473, 3491 1474, 2112267134737 1477, 7211 1497, 3499 1501, 1979 1513, 1789 1518, 23611222333466669138253506759 1537, 2953 1551, 3113347141517 1581, 317315193527 1594, 2797 1603, 7229 1611, 39179537 1615, 517198595323 1623, 3541 1629, 39181543 1633, 2371 1639, 11149 1641, 3547 1645, 573547235329 1651, 13127 1666, 271417344998119238833 1671, 3557 1686, 236281562843 1713, 3571 1714, 2857 1719, 39191573 1735, 5347 1749, 3113353159583 1774, 2887 1779, 3593 1798, 229315862899 1819, 17107 1821, 3607 1839, 3613 1843, 1997 1851, 3617 1855, 573553265371 1893, 3631 1899, 39211633 1902, 236317634951 1903, 11173 1906, 2953 1909, 2383 1929, 3643 1942, 2971 1963, 13151 1977, 3659 1981, 7283 2001, 323296987667 2013, 3113361183671 2019, 3673 2026, 21013 2031, 3677 2034, 2369181132263396781017 2038, 21019 2043, 39227681 2047, 2389 2059, 2971 2062, 21031 2073, 3691 2077, 3167 2094, 2363496981047 2095, 5419 2103, 3701 2119, 13163 2122, 21061 2127, 3709 2149, 7307 2155, 5431 2157, 3719 2167, 11197 2169, 39241723 2173, 4153 2181, 3727 2199, 3733 2214, 236918274154821232463697381107 2215, 5443 2217, 3739 2245, 5449 2257, 3761 2259, 39251753 2283, 3761 2307, 3769 2317, 7331 2326, 21163 2329, 17137 2343, 3113371213781 2374, 21187 2386, 21193 2391, 3797 2395, 5479 2419, 4159 2421, 39269807 2442, 2361122333766741112224078141221 2443, 7349 2463, 3821 2469, 3823 2479, 3767 2514, 2364198381257 2515, 5503 2527, 719133361 2529, 39281843 2554, 21277 2559, 3853 2566, 21283 2586, 2364318621293 2589, 3863 2605, 5521 2629, 11239 2631, 3877 2637, 39293879 2638, 21319 2641, 19139 2643, 3881 2679, 3194757141893 2721, 3907 2733, 3911 2742, 2364579141371 2757, 3919 2761, 11251 2763, 39307921 2773, 4759 2785, 5557 2787, 3929 2815, 5563 2827, 11257 2839, 17167 2841, 3947 2845, 5569 2866, 21433 2883, 33193961 2901, 3967 2914, 2314762941457 2922, 2364879741461 2923, 3779 2929, 29101 2962, 21481 2967, 3234369129989 2974, 21487 2977, 13229 2983, 19157 2986, 21493 2994, 2364999981497 2998, 21499 3013, 23131 3031, 7433 3039, 31013 3046, 21523 3057, 31019 3097, 19163 3099, 31033 3115, 573589445623 3117, 31039 3118, 21559 3123, 393471041 3133, 13241 3139, 4373 3141, 393491047 3153, 31051 3154, 21938831661577 3178, 27142274541589 3189, 31063 3199, 7457 3202, 21601 3205, 5641 3207, 31069 3226, 21613 3235, 5647 3246, 23654110821623 3247, 17191 3265, 5653 3273, 31091 3286, 23153621061643 3295, 5659 3322, 211221513021661 3333, 311331013031111 3346, 27142394781673 3357, 393731119 3369, 31123 3409, 7487 3415, 5683 3417, 31751672011139 3421, 11311 3439, 19181 3451, 71729119203493 3453, 31151 3459, 31153 3487, 11317 3493, 7499 3505, 5701 3526, 2414382861763 3543, 31181 3573, 393971191 3574, 21787 3579, 31193 3589, 3797 3597, 311331093271199 3609, 394011203 3657, 32353691591219 3661, 7523 3669, 31223 3693, 31231 3711, 31237 3715, 5743 3742, 21871 3747, 31249 3777, 31259 3786, 23663112621893 3787, 7541 3789, 394211263 3799, 29131 3829, 7547 3831, 31277 3841, 23167 3883, 11353 3901, 4783 3921, 31307 3957, 31319 3963, 31321 3973, 29137 3979, 23173 3981, 31327 3987, 394431329 3994, 21997 4006, 22003 4009, 19211 4011, 37211915731337 4039, 7577 4047, 31957712131349 4054, 22027 4063, 17239 4069, 13313 4071, 32359691771357 4074, 23671421429719429158267913582037 4078, 22039 4105, 5821 4126, 22063 4135, 5827 4147, 111329143319377 4165, 5717354985119245595833 4171, 4397 4183, 4789 4195, 5839 4213, 11383 4222, 22111 4249, 7607 4258, 22129 4285, 5857 4303, 13331 4306, 22153 4309, 31139 4342, 213261673342171 4354, 27143116222177 4369, 17257 4381, 13337 4398, 23673314662199 4405, 5881 4429, 43103 4443, 31481 4453, 6173 4458, 23674314862229 4467, 31489 4494, 236714214210721432164274914982247 4501, 7643 4531, 23197 4533, 31511 4546, 22273 4585, 5735131655917 4593, 31531 4623, 32367692011541 4629, 31543 4633, 41113 4653, 39113347991414235171551 4681, 31151 4701, 31567 4711, 7673 4722, 23678715742361 4726, 217341392782363 4749, 31583 4753, 74997679 4762, 22381 4765, 5953 4771, 13367 4803, 31601 4821, 31607 4837, 7691 4843, 29167 4858, 27143476942429 4873, 11443 4881, 31627 4882, 22441 4894, 22447 4923, 395471641 4929, 33153931591643 4941, 392761811835491647 4971, 31657 4981, 17293 4989, 31663 5001, 31667 5002, 24161821222501 5017, 29173 5034, 23683916782517 5062, 22531 5086, 22543 5089, 7727 5097, 31699 5098, 22549 5103, 379212763811892435677291701 5133, 32959871771711 5137, 11467 5143, 37139 5146, 23162831662573 5155, 51031 5161, 13397 5163, 31721 5169, 31723 5191, 29179 5193, 395771731 5206, 219381372742603 5221, 23227 5223, 31741 5242, 22621 5293, 6779 5299, 7757 5305, 51061 5353, 53101 5358, 236193847579411414128289317862679 5371, 41131 5389, 17317 5398, 22699 5401, 11491 5473, 13421 5482, 22741 5511, 311331675011837 5514, 23691918382757 5518, 23162891782759 5533, 11503 5539, 29191 5541, 31847 5542, 217341633262771 5545, 51109 5554, 22777 5593, 71747119329799 5607, 3792163892676238011869 5611, 31181 5619, 31873 5721, 31907 5722, 22861 5746, 2131726341692213384422873 5751, 392771812136391917 5754, 236714214213727441182295919182877 5755, 51151 5761, 7823 5773, 23251 5803, 7829 5823, 396471941 5898, 23698319662949 5917, 6197 5919, 31973 5926, 22963 5941, 13457 5965, 51193 5971, 7853 5983, 31193 5989, 53113 6009, 32003 6019, 13463 6022, 23011 6058, 213262334663029 6081, 32027 6082, 23041 6085, 51217 6087, 32029 6099, 319571073212033 6102, 2369182754113226339678101720343051 6103, 17359 6109, 41149 6139, 7877 6145, 51229 6181, 7883 6187, 23269 6189, 32063 6201, 391339531171594776892067 6207, 32069 6223, 749127889 6226, 211222835663113 6249, 32083 6267, 32089 6286, 27144498983143 6297, 32099 6306, 236105121023153 6309, 397012103 6313, 59107 6331, 13487 6334, 23167 6349, 7907 6354, 236918353706105921183177 6391, 7117783581913 6394, 223461392783197 6406, 23203 6415, 51283 6418, 23209 6423, 32141 6429, 32143 6433, 7919 6439, 47137 6457, 11587 6487, 13499 6493, 43151 6502, 23251 6511, 17383 6522, 236108721743261 6523, 11593 6535, 51307 6538, 27144679343269 6543, 397272181 6558, 236109321863279 6559, 7937 6565, 513651015051313 6601, 72341161287943 6609, 32203 6613, 17389 6639, 32213 6667, 59113 6697, 37181 6706, 27144799583353 6711, 32237 6721, 111347143517611 6727, 731217961 6739, 23293 6742, 23371 6753, 32251 6774, 236112922583387 6787, 11617 6799, 13523 6805, 51361 6811, 749139973 6817, 17401 6862, 24773941463431 6891, 32297 6895, 57351979851379 6901, 67103 6903, 391339591171775317672301 6913, 31223 6921, 397692307 6927, 32309 6978, 236116323263489 7003, 47149 7006, 231621132263503 7023, 32341 7078, 23539 7087, 19373 7089, 317511394172363 7113, 32371 7114, 23557 7123, 17419 7131, 32377 7135, 51427 7143, 32381 7153, 23311 7162, 23581 7186, 23593 7195, 51439 7201, 19379 7233, 32411 7246, 23623 7269, 32423 7273, 71039 7279, 29251 7323, 32441 7327, 17431 7339, 41179 7342, 23671 7354, 23677 7363, 37199 7387, 8389 7401, 32467 7405, 51481 7413, 372135310592471 7435, 51487 7438, 23719 7447, 11677 7467, 319571313932489 7483, 71069 7501, 13577 7509, 32503 7522, 23761 7531, 17443 7534, 23767 7542, 236918419838125725143771 7555, 51511 7593, 32531 7614, 2369182747548194141162282423846126925383807 7633, 17449 7666, 23833 7693, 7491571099 7711, 11701 7713, 398572571 7731, 398592577 7737, 32579 7777, 711771017071111 7801, 29269 7822, 23911 7827, 32609 7834, 23917 7858, 23929 7863, 32621 7881, 337711112132627 7893, 398772631 7897, 53149 7899, 32633 7903, 71129 7909, 11719 7929, 398812643 7939, 17467 7941, 32647 7947, 398832649 7969, 13613 7974, 236918443886132926583987 7986, 23611223366121242363726133126623993 7999, 19421 8002, 24001 8014, 24007 8035, 51607 8038, 24019 8047, 13619 8061, 32687 8065, 51613 8071, 71153 8074, 211223677344037 8079, 32693 8086, 213263116224043 8091, 39293187932612798992697 8098, 24049 8121, 32707 8137, 79103 8139, 32713 8157, 32719 8173, 11743 8182, 24091 8185, 51637 8197, 71171 8227, 19433 8247, 32749 8251, 37223 8266, 24133 8323, 729412032871189 8347, 17491 8365, 573523911951673 8367, 32789 8383, 83101 8391, 32797 8401, 31271 8403, 32801 8409, 32803 8421, 372140112032807 8458, 24229 8494, 231621372744247 8499, 32833 8502, 23613263978109218327654141728344251 8514, 23691118223343668699129198258387473774946141928384257 8529, 32843 8587, 31277 8605, 51721 8634, 236143928784317 8653, 17509 8659, 71237 8661, 32887 8674, 24337 8683, 19457 8727, 32909 8743, 71249 8746, 24373 8751, 32917 8754, 236145929184377 8782, 24391 8791, 59149 8797, 19463 8815, 541432052151763 8817, 32939 8826, 236147129424413 8842, 24421 8847, 399832949 8871, 32957 8874, 236917182934515887102153174261306493522986147929584437 8907, 32969 8913, 32971 8935, 51787 8962, 24481 8983, 13691 8989, 89101 8997, 32999 9019, 29311 9031, 11821 9034, 24517 9061, 131741221533697 9069, 33023 9082, 219382394784541 9094, 24547 9097, 11827 9111, 33037 9117, 3910133039 9147, 33049 9169, 53173 9211, 61151 9217, 13709 9229, 11839 9238, 231621492984619 9246, 23623466769134138201402154130824623 9249, 33083 9271, 73127 9289, 71327 9303, 372144313293101 9306, 236911182233476694991411982824235178461034155131024653 9307, 41227 9313, 67139 9322, 259791181584661 9339, 311332838493113 9355, 51871 9357, 33119 9382, 24691 9393, 331931013033131 9426, 236157131424713 9466, 24733 9493, 11863 9499, 723591614131357 9517, 31307 9523, 89107 9535, 51907 9543, 33181 9549, 3910613183 9553, 41233 9565, 51913 9573, 33191 9586, 24793 9589, 43223 9598, 24799 9609, 33203 9633, 3131939571692475077413211 9658, 211224398784829 9673, 17569 9693, 392735910773231 9745, 51949 9754, 24877 9757, 11887 9763, 13751 9778, 24889 9793, 71399 9798, 23623466971138142213426163332664899 9819, 3910913273 9838, 24919 9841, 13757 9853, 59167 9865, 51973 9886, 24943 9903, 33301 9913, 23431 9934, 24967 9987, 33329 9991, 97103 9993, 33331 10003, 71429 10029, 33343 10041, 33347 10057, 89113 10063, 29347 10077, 33359 10087, 711771319171441 10135, 52027 10171, 71453 10173, 33391 10174, 25087 10179, 39132729398711726135137778311313393 10183, 17599 10203, 319571795373401 10209, 341831232493403 10239, 33413 10249, 37277 10279, 19541 10294, 25147 10297, 71471 10306, 25153 10311, 372149114733437 10326, 236172134425163 10342, 25171 10345, 52069 10351, 11941 10354, 231621673345177 10359, 3911513453 10371, 33457 10378, 25189 10381, 71483 10383, 33461 10405, 52081 10407, 33469 10422, 23691827541933865791158173734745211 10441, 53197 10447, 31337 10461, 311333179513487 10467, 3911633489 10474, 25237 10483, 11953 10519, 67157 10522, 25261 10537, 41257 10539, 3911713513 10587, 33529 10599, 33533 10606, 25303 10615, 511551939652123 10618, 25309 10641, 33547 10681, 11971 10722, 236178735745361 10726, 231621733465363 10743, 33581 10765, 52153 10777, 13829 10783, 41263 10797, 359611771833599 10807, 101107 10809, 3912013603 10827, 392740112033609 10839, 33613 10843, 71549 10849, 19571 10851, 33617 10869, 33623 10902, 23623466979138158237474181736345451 10906, 27141938418213326628757477915585453 10911, 33637 10914, 236173451102107214321642181936385457 10917, 3912133639 10923, 311333319933641 10927, 7492231561 10942, 25471 10947, 341891232673649 10963, 19577 10971, 3923536915920747712193657 10981, 79139 11007, 3912233669 11029, 41269 11061, 3912293687 11107, 29383 11133, 3912373711 11134, 219382935865567 11163, 3611833721 11166, 236186137225583 11167, 13859 11169, 3917517315321965712413723 11179, 71597 11185, 52237 11203, 17659 11217, 33739 11262, 236187737545631 11278, 25639 11281, 29389 11301, 33767 11307, 33769 11313, 392741912573771 11314, 25657 11326, 271480916185663 11335, 52267 11341, 111031 11358, 2369186311262189337865679 11359, 37307 11371, 83137 11386, 25693 11391, 33797 11401, 13877 11406, 236190138025703 11413, 101113 11434, 25717 11473, 7117714910431639 11479, 13883 11482, 25741 11506, 2112252310465753 11511, 3912793837 11517, 3113334910473839 11521, 41281 11539, 111049 11553, 33851 11581, 37313 11589, 33863 11602, 25801 11611, 17683 11623, 59197 11629, 29401 11637, 392743112933879 11641, 71663 11653, 43271 11667, 33889 11673, 3912973891 11694, 236194938985847 11698, 25849 11707, 23509 11733, 33911 11734, 25867 11749, 31379 11754, 2369186531306195939185877 11769, 33923 11791, 13907 11793, 33931 11797, 47251 11806, 25903 11817, 39133910111730390913133939 11823, 372156316893941 11842, 231621913825921 11851, 71693 11857, 71167 11878, 25939 11893, 71699 11901, 33967 11902, 2112254110825951 11929, 79151 11949, 372156917073983 11962, 25981 11977, 729592034131711 12001, 111091 12057, 34019 12058, 26029 12066, 236201140226033 12106, 26053 12127, 67181 12133, 111103 12169, 43283 12171, 34057 12183, 331931313934061 12187, 71741 12193, 89137 12199, 111109 12226, 26113 12307, 31397 12319, 97127 12327, 372158717614109 12349, 53233 12351, 323691795374117 12381, 34127 12387, 34129 12406, 26203 12418, 271488717746209 12429, 3913814143 12439, 71777 12447, 392746113834149 12453, 372159317794151 12469, 37337 12471, 34157 12477, 34159 12493, 1331403961 12501, 392746313894167 12523, 71789 12526, 26263 12535, 5231091155452507 12559, 19661 12571, 13967 12573, 39113399127381114313974191 12579, 372159917974193 12594, 236209941986297 12633, 34211 12634, 26317 12643, 47269 12651, 34217 12667, 53239 12693, 34231 12715, 52543 12742, 223462775546371 12759, 34253 12777, 34259 12783, 34261 12798, 236918275479811581622374747111422213342666399 12802, 237741733466401 12811, 23557 12819, 34273 12843, 3914274281 12847, 29443 12849, 34283 12861, 3914294287 12871, 61211 12874, 241821573146437 12879, 3927538115924347714314293 12891, 34297 12895, 52579 12898, 26449 12921, 359731772194307 12937, 17761 12949, 23563 12954, 236173451102127254381762215943186477 12961, 13997 12969, 39113399131393117914414323 12981, 34327 13011, 34337 13015, 519951376852603 13027, 71861 13045, 52609 13057, 111187 13066, 247941392786533 13069, 71867 13117, 131009 13149, 392748714614383 13153, 71879 13174, 271494118826587 13179, 323691915734393 13182, 236132639781693385071014219743946591 13213, 73181 13258, 271494718946629 13263, 34421 13278, 236221344266639 13329, 3914814443 13347, 3914834449 13357, 1937361703 13371, 34457 13387, 111217 13402, 26701 13405, 573538319152681 13449, 34483 13459, 43313 13471, 19709 13474, 26737 13497, 3113340912274499 13519, 111229 13531, 71933 13539, 34513 13555, 52711 13557, 34519 13561, 71191 13603, 61223 13618, 2112261912386809 13639, 23593 13647, 34549 13666, 26833 13678, 271497719546839 13686, 236228145626843 13707, 3915234569 13713, 372165319594571 13726, 26863 13747, 59233 13749, 34583 13761, 39113399139417125115294587 13767, 3133935310594589 13771, 47293 13773, 34591 13777, 23599 13779, 3915314593 13782, 236229745946891 13795, 531891554452759 13809, 34603 13813, 19727 13819, 131063 13894, 26947 13906, 217344098186953 13909, 71987 13915, 511235511512125360512652783 13918, 26959 13947, 34649 13951, 71993 13953, 34651 13993, 71999 14019, 34673 14023, 37379 14034, 236233946787017 14037, 34679 14041, 19739 14046, 236234146827023 14059, 17827 14082, 236234746947041 14086, 27043 14101, 59239 14109, 34703 14137, 67211 14155, 519951497452831 14157, 3911133339991171211433634291089128715734719 14163, 34721 14182, 2714101320267091 14185, 52837 14187, 34729 14206, 27103 14218, 27109 14223, 3113343112934741 14233, 43331 14247, 3915834749 14254, 27127 14257, 53269 14263, 17839 14269, 19751 14271, 367712012134757 14277, 34759 14299, 79181 14305, 52861 14311, 111301 14329, 723891616232047 14371, 72053 14395, 52879 14422, 27211 14463, 3916074821 14506, 27253 14515, 52903 14566, 27283 14577, 3431131293394859 14613, 34871 14623, 72089 14631, 34877 14643, 3916274881 14647, 97151 14659, 107137 14671, 17863 14677, 131129 14689, 37397 14722, 217344338667361 14739, 317512898674913 14754, 236245949187377 14757, 34919 14769, 392754716414923 14782, 219383897787391 14785, 52957 14803, 113131 14815, 52963 14874, 236376774111134201222402247949587437 14893, 53281 14899, 47317 14914, 27457 14935, 5291031455152987 14962, 27481 14973, 37212331699316121748365171321394991 14974, 27487 14977, 17881 14995, 52999 15018, 236250350067509 15049, 101149 15051, 329871735195017 15058, 27529 15069, 35023 15082, 27541 15103, 111373 15127, 72161 15133, 37409 15151, 109139 15153, 35051 15166, 27583 15171, 3133938911675057 15177, 35059 15198, 236173451102149298447894253350667599 15213, 3113346113835071 15223, 131171 15229, 97157 15243, 35081 15247, 79193 15258, 236254350867629 15274, 2714109121827637 15279, 3113346313895093 15297, 35099 15321, 35107 15346, 27673 15382, 27691 15417, 392757117135139 15418, 2132659311867709 15445, 53089 15459, 35153 15487, 17911 15499, 111409 15507, 3917235169 15513, 35171 15517, 59263 15547, 72221 15558, 236259351867779 15571, 23677 15586, 27793 15634, 27817 15646, 27823 15681, 35227 15697, 111427 15723, 3917475241 15745, 547672353353149 15757, 72251 15759, 39175110315330992717515253 15766, 27883 15769, 131213 15793, 17929 15802, 27901 15829, 111439 15834, 23671314212629394258788791174182203273377406546609754113112182262263952787917 15837, 35279 15838, 27919 15843, 35281 15849, 392758717615283 15883, 72269 15906, 236112233662414827231446265153027953 15933, 3471131413395311 15942, 236265753147971 15949, 41389 15958, 2791011582027979 15969, 35323 16003, 131231 16006, 2531061513028003 16009, 72287 16093, 711197712113320984714632299 16138, 28069 16143, 35381 16162, 28081 16173, 392759917975391 16174, 28087 16179, 35393 16191, 3792163257771179923135397 16203, 3113349114735401 16207, 19853 16219, 7493312317 16221, 35407 16222, 28111 16237, 131249 16246, 28123 16257, 35419 16299, 3918115433 16302, 236111319222633383957667811414320924728641842949462774185812541482271754348151 16311, 35437 16347, 35449 16357, 111487 16387, 72341 16405, 517851939653281 16423, 111493 16438, 28219 16465, 537891854453293 16495, 53299 16501, 29569 16507, 17971 16521, 35507 16537, 23719 16543, 71233 16563, 35521 16579, 59281 16581, 35527 16591, 47353 16593, 35531 16594, 28297 16609, 17977 16615, 53323 16623, 3918475541 16654, 2112275715148327 16659, 392761718515553 16678, 231622695388339 16681, 72383 16707, 35569 16719, 35573 16762, 2172934582894935789868381 16771, 31541 16773, 35591 16774, 28387 16795, 53359 16837, 113149 16857, 3918735619 16858, 28429 16861, 131297 16866, 2369189371874281156228433 16882, 223463677348441 16894, 28447 16939, 131303 16951, 1123672537371541 16957, 31547 17014, 247941813628507 17022, 236283756748511 17023, 29587 17026, 28513 17035, 53407 17046, 2369189471894284156828523 17071, 43397 17074, 28537 17089, 23743 17098, 2831031662068549 17106, 236285157028553 17127, 39113399173519155719035709 17131, 37463 17146, 28573 17158, 223463737468579 17173, 131321 17182, 211227112114224278115628591 17187, 3175133710115729 17194, 28597 17202, 236476194122141183282366286757348601 17214, 236193857114151302453906286957388607 17217, 3919135739 17254, 28627 17263, 61283 17269, 72467 17313, 329871995975771 17326, 28663 17338, 28669 17371, 29599 17379, 3919315793 17403, 35801 17461, 19919 17473, 101173 17503, 23761 17506, 28753 17511, 3133944913475837 17517, 35839 17521, 72503 17553, 35851 17607, 35869 17614, 28807 17626, 2714125925188813 17635, 53527 17637, 35879 17653, 127139 17674, 28837 17691, 35897 17719, 1329473776111363 17734, 28867 17754, 236112233662695388071614295959188877 17769, 35923 17778, 236296359268889 17779, 23773 17803, 19937 17806, 229583076148903 17833, 171049 17847, 392766119835949 17857, 72551 17866, 28933 17883, 3919875961 17889, 367892012675963 17919, 39113399181543162919915973 17937, 3919935979 17946, 2369189971994299159828973 17953, 131381 17965, 53593 17991, 3919995997 17994, 236299959988997 18007, 111637 18021, 36007 18033, 36011 18066, 236301160229033 18067, 729892036232581 18085, 53617 18091, 79229 18094, 2831091662189047 18111, 36037 18115, 53623 18118, 29059 18157, 67271 18163, 41443 18201, 36067 18219, 36073 18231, 3591031773096077 18247, 71257 18274, 29137 18279, 392767720316093 18283, 47389 18298, 2714130726149149 18319, 72617 18337, 111667 18346, 29173 18366, 236306161229183 18393, 36131 18402, 236306761349201 18415, 5291271456353683 18418, 29209 18442, 29221 18453, 36151 18474, 236307961589237 18529, 72647 18547, 171091 18571, 7493792653 18574, 237742515029287 18589, 29641 18595, 53719 18622, 29311 18631, 31601 18651, 36217 18667, 111697 18673, 71263 18687, 36229 18697, 72671 18709, 53353 18751, 171103 18783, 3920876261 18789, 36263 18807, 36269 18811, 131447 18817, 31607 18822, 236313762749411 18823, 72689 18829, 19991 18831, 36277 18841, 83227 18871, 113167 18874, 29437 18897, 36299 18931, 111721 18943, 19997 18946, 29473 18949, 72707 19021, 23827 19027, 53359 19029, 36343 19033, 72719 19039, 79241 19059, 36353 19063, 111733 19114, 2193850310069557 19119, 36373 19135, 543892154453827 19147, 41467 19161, 3921296387 19167, 36389 19174, 29587 19198, 229583316629599 19218, 236320364069609 19233, 3921376411 19258, 29629 19302, 236321764349651 19329, 3175137911376443 19339, 83233 19353, 36451 19357, 131489 19369, 72767 19377, 3921536459 19398, 2365361106122159183318366323364669699 19399, 191021 19405, 53881 19407, 36469 19413, 392771921576471 19414, 2173457111429707 19419, 36473 19426, 2112288317669713 19519, 131149 19549, 113173 19579, 72797 19585, 53917 19587, 36529 19606, 29803 19615, 53923 19627, 191033 19639, 41479 19651, 43457 19653, 36551 19666, 29833 19689, 36563 19693, 47419 19702, 29851 19711, 23857 19713, 36571 19741, 191039 19771, 171163 19797, 36599 19807, 29683 19821, 36607 19842, 236330766149921 19897, 101197 19899, 391127336799201297603737180922116633 19911, 36637 19918, 223464338669959 19933, 31643 19939, 127157 19959, 36653 19986, 236333166629993 20005, 54001 20041, 7494092863 20059, 131543 20065, 54013 20073, 36691 20074, 210037 20127, 36709 20131, 41491 20178, 236918193857591141181711773423545311062112122423363672610089 20187, 3922436729 20191, 61331 20203, 89227 20221, 73277 20239, 37547 20245, 54049 20257, 47431 20278, 210139 20283, 36761 20317, 111847 20337, 36779 20338, 210169 20343, 36781 20373, 36791 20379, 36793 20386, 210193 20401, 23887 20403, 3922676801 20449, 111312114316915731859 20455, 54091 20494, 210247 20499, 36833 20517, 372197729316839 20554, 2438623947810277 20569, 67307 20571, 36857 20581, 111871 20613, 36871 20665, 54133 20671, 72953 20695, 54139 20697, 36899 20701, 127163 20766, 2363461692210383 20782, 210391 20799, 3923116933 20803, 71293 20829, 3531311593936943 20841, 36947 20889, 39113399211633189923216963 20941, 43487 20953, 23911 20974, 210487 20991, 36997 20994, 2363499699810497 20998, 210499 21039, 37013 21043, 111913 21057, 37019 21079, 107197 21085, 54217 21102, 2363517703410551 21106, 26112217334610553 21115, 5411032055154223 21117, 37039 21127, 37571 21133, 73019 21151, 131627 21159, 3923517053 21171, 37057 21181, 59359 21202, 210601 21217, 7494333031 21229, 1323712999231633 21253, 53401 21259, 73037 21262, 210631 21331, 83257 21337, 191123 21361, 41521 21367, 23929 21418, 210709 21427, 73061 21439, 111949 21457, 43499 21477, 37159 21478, 210739 21502, 21326827165410751 21553, 73079 21607, 1731415276971271 21646, 27913715827410823 21691, 109199 21703, 111973 21706, 210853 21729, 37243 21759, 37253 21771, 39415912317736953124197257 21774, 23619385711419138257311463629725810887 21814, 21326839167810907 21847, 73121 21861, 37921633471041242931237287 21867, 3371111975917289 21921, 37307 21922, 29711319422610961 21927, 37309 21963, 37321 21967, 111997 21969, 3924417323 22017, 3411231795377339 22026, 2363671734211013 22045, 54409 22069, 29761 22098, 2362958871271742543817623683736611049 22102, 2438625751411051 22105, 54421 22107, 37369 22131, 3924597377 22186, 211093 22191, 3133956917077397 22207, 53419 22258, 2316235971811129 22267, 73181 22314, 2363719743811157 22327, 83269 22333, 23971 22345, 5411092055454469 22354, 211177 22357, 79283 22386, 23671314212639414278829112318224627328753354657486110661599172231983731746211193 22414, 27141601320211207 22426, 211213 22459, 37607 22465, 54493 22467, 37489 22471, 23977 22507, 71317 22518, 236918275481139162278417834125125023753750611259 22521, 37507 22537, 31727 22551, 37517 22566, 2363761752211283 22585, 54517 22587, 37529 22611, 37537 22641, 37547 22647, 37549 22683, 37561 22689, 3925217563 22719, 37573 22735, 54547 22738, 211369 22759, 112069 22767, 37589 22773, 37591 22813, 73259 22821, 37607 22839, 323693319937613 22854, 2361326397829358687917583809761811427 22855, 573565332654571 22867, 131759 22885, 5231151999954577 22887, 3925437629 22893, 3133958717617631 22903, 37619 22911, 3721109132737637 22915, 54583 22918, 27141637327411459 22929, 37643 22938, 2363823764611469 22947, 37649 22957, 112087 22971, 3131931395793247403589741120917677657 22999, 109211 23062, 21326887177411531 23073, 37691 23077, 47491 23095, 5311491557454619 23097, 37699 23101, 131777 23106, 2363851770211553 23119, 61379 23122, 211221051210211561 23151, 37717 23161, 19235343710071219 23179, 131783 23194, 211597 23221, 112111 23263, 43541 23281, 31751 23314, 211657 23317, 73331 23362, 211681 23365, 54673 23377, 97241 23383, 67349 23389, 191231 23395, 54679 23403, 329872698077801 23419, 112129 23437, 231019 23491, 131391691807 23493, 3411231915737831 23503, 191237 23511, 3175146113837837 23527, 73361 23553, 3926177851 23554, 211777 23559, 37853 23569, 71337499125948163718133367 23574, 2363929785811787 23578, 211789 23602, 211801 23605, 54721 23637, 37879 23683, 112153 23707, 151157 23713, 231031 23721, 37907 23731, 191249 23734, 211867 23751, 3791321293963879111720326127337760981911311827263933937917 23755, 54751 23791, 37643 23817, 3175146714017939 23839, 31769 23853, 37951 23854, 211927 23866, 211933 23889, 37963 23935, 54787 23938, 211969 23941, 89269 23967, 3926637989 23979, 37993 23986, 26713417935811993 23995, 54799 24018, 2364003800612009 24031, 73433 24033, 38011 24117, 38039 24157, 717294911920349383314213451 24159, 38053 24162, 2364027805412081 24163, 73331 24187, 19673611273 24193, 131861 24201, 3926898067 24207, 38069 24231, 3411231975918077 24234, 23671421425771154173134624039807812117 24237, 3926938079 24259, 171427 24277, 112207 24289, 107227 24313, 41593 24322, 212161 24343, 112213 24382, 27314616733412191 24385, 54877 24393, 3471411735198131 24406, 212203 24454, 212227 24463, 171439 24478, 212239 24487, 47521 24501, 38167 24541, 11239725310672231 24562, 212281 24579, 3927318193 24595, 54919 24607, 112237 24613, 151163 24618, 23611223366373746111922384103820612309 24619, 73517 24637, 71347 24643, 191297 24651, 391127338399249297747913224127398217 24657, 38219 24669, 3927418223 24679, 2329376678511073 24693, 38231 24703, 73529 24711, 38237 24721, 59419 24741, 3927498247 24742, 28913917827812371 24798, 2364133826612399 24811, 43577 24819, 38273 24829, 73547 24861, 38287 24865, 54973 24871, 7111719771191331872093231309146322613553 24874, 212437 24898, 25911821142212449 24949, 61409 24951, 38317 24954, 2364159831812477 24958, 212479 24961, 109229 24987, 38329 24993, 3927778331 24997, 73571 24999, 3133964119238333 25027, 29863 25045, 55009 25047, 3911233369991212072533637591089227727838349 25062, 2364177835412531 25063, 71353 25081, 73583 25105, 55021 25129, 131933 25131, 38377 25149, 3831012493038383 25177, 171481 25249, 73607 25255, 55051 25267, 112297 25291, 73613 25293, 38431 25297, 41617 25341, 38447 25342, 212671 25366, 211221153230612683 25377, 3113376923078459 25383, 38461 25387, 53479 25422, 23619385711422344666913384237847412711 25459, 73637 25482, 2363162931371862744118224247849412741 25489, 71359 25497, 3928338499 25501, 73643 25503, 38501 25507, 231109 25533, 3928378511 25549, 29881 25567, 37691 25582, 212791 25587, 3928438529 25591, 157163 25593, 3195744913478531 25615, 5471092355455123 25629, 38543 25651, 113227 25711, 73673 25729, 112339 25735, 55147 25738, 21734757151412869 25749, 3928618583 25777, 149173 25813, 83311 25827, 38609 25834, 212917 25846, 212923 25855, 55171 25887, 38629 25902, 236918143928784317863412951 25915, 571733553655183 25963, 73709 25974, 23691318262737395474781111172222343333514816667029629991443199828864329865812987 26007, 38669 26011, 19377031369 26031, 38677 26037, 39113399263789236728938679 26077, 89293 26079, 38693 26086, 213043 26089, 73727 26097, 38699 26101, 43607 26121, 38707 26137, 59443 26139, 38713 26154, 236918145329064359871813077 26167, 137191 26178, 2364363872613089 26211, 38737 26241, 38747 26245, 5291451819055249 26266, 22346571114213133 26281, 41641 26329, 113233 26335, 52311522911455267 26349, 38783 26359, 43613 26401, 171553 26409, 38803 26434, 213217 26439, 3721125937778813 26451, 3929398817 26458, 213229 26461, 47563 26463, 38821 26503, 171559 26517, 38839 26527, 41647 26529, 3371112397178843 26554, 2111722347114218737478112071562241413277 26583, 38861 26601, 38867 26623, 79337 26629, 31859 26643, 3831072493218881 26659, 53503 26665, 55333 26674, 213337 26707, 171571 26743, 47569 26755, 55351 26761, 73823 26769, 38923 26794, 213397 26799, 38933 26802, 236918148929784467893413401 26857, 107251 26871, 313395315916950768920678957 26905, 55381 26911, 171583 26913, 38971 26929, 73847 26989, 137197 26991, 3929998997 26995, 55399 27006, 23671421426431286192938584501900213503 27009, 3930019003 27019, 41659 27034, 27141931386213517 27042, 2364507901413521 27046, 213523 27049, 112459 27106, 213553 27123, 39041 27129, 39043 27139, 73877 27153, 37921634311293301738799051 27171, 3930199057 27205, 55441 27226, 213613 27261, 391339117233699209730299087 27294, 2364549909813647 27298, 213649 27309, 39103 27349, 73907 27373, 31883 27399, 39133 27403, 67409 27442, 213721 27451, 97283 27459, 392781113243339101730519153 27463, 29947 27469, 132113 27471, 39157 27477, 39437112921338763930539159 27483, 39161 27493, 191447 27498, 2364583916613749 27501, 3891032673099167 27502, 213751 27505, 55501 27513, 3927101930579171 27543, 39181 27553, 59467 27571, 79349 27597, 39199 27598, 213799 27601, 73943 27607, 191453 27619, 71389 27627, 39209 27661, 139199 27667, 73379 27681, 39227 27699, 3721131939579233 27711, 3930799237 27717, 39239 27718, 213859 27721, 191459 27723, 39241 27727, 71711923316313961 27781, 132137 27801, 3930899267 27802, 213901 27829, 171637 27835, 5199529314655567 27879, 39293 27894, 2364649929813947 27958, 27141997399413979 27969, 39323 27973, 112543 27981, 3931099327 27999, 39172751611531834595491037164731119333 28018, 214009 28023, 39341 28029, 39343 28066, 214033 28102, 214051 28107, 392781347104131239369 28113, 39371 28117, 31907 28129, 231223 28135, 5178533116555627 28147, 74021 28149, 3113385325599383 28153, 47599 28165, 5431312156555633 28174, 214087 28189, 74027 28191, 39397 28195, 55639 28207, 67421 28213, 89317 28221, 3236940912279407 28243, 61463 28257, 39419 28282, 27915817935814141 28317, 39439 28354, 214177 28357, 74051 28381, 101281 28383, 39461 28398, 2364733946614199 28417, 157181 28423, 43661 28486, 214243 28507, 29983 28533, 39511 28555, 55711 28563, 39521 28585, 55717 28615, 559972954855723 28651, 74093 28653, 39551 28693, 74099 28714, 271449982935862051410214357 28735, 573582141055747 28749, 372137111259777136941079583 28783, 107269 28831, 112621 28849, 171697 28857, 39619 28869, 39623 28891, 167173 28893, 39631 28902, 2364817963414451 28923, 331933119339641 28966, 27142069413814483 28993, 79367 29002, 21734853170614501 29011, 67433 29035, 55807 29037, 39679 29038, 214519 29065, 55813 29073, 3113388126439691 29089, 191531 29095, 5112355115253529126526455819 29113, 74159 29122, 214561 29157, 39719 29199, 39733 29202, 2363162931571863144719424867973414601 29206, 21734859171814603 29215, 55843 29227, 112657 29239, 74177 29245, 55849 29247, 39749 29278, 214639 29293, 112663 29307, 39769 29314, 214657 29353, 149197 29371, 231277 29373, 39791 29377, 291013 29407, 74201 29446, 214723 29461, 171733 29479, 41719 29482, 214741 29485, 55897 29487, 39829 29503, 163181 29515, 55903 29517, 39839 29518, 214759 29533, 74219 29542, 214771 29557, 112687 29566, 214783 29571, 39857 29593, 101293 29617, 74231 29635, 55927 29647, 231289 29649, 39883 29661, 39887 29662, 214831 29703, 39901 29707, 61487 29709, 3933019903 29713, 43691 29731, 132287 29734, 214867 29743, 7496074249 29749, 71419 29782, 214891 29787, 39929 29838, 2364973994614919 29878, 214939 29934, 236918166333264989997814967 29935, 55987 29941, 79379 30001, 191579 30007, 37811 30031, 59509 30042, 2369181669333850071001415021 30079, 74297 30151, 112741 30154, 215077 30157, 53569 30199, 132310129913132323 30231, 39335910077 30246, 2367114221342650411008215123 30249, 39336110083 30265, 56053 30273, 310091 30322, 215161 30333, 310111 30354, 23650591011815177 30357, 39337310119 30442, 2316249198215221 30499, 74357 30501, 39338910167 30502, 210115120230215251 30505, 56101 30507, 310169 30511, 132347 30541, 74363 30543, 310181 30546, 2369181697339450911018215273 30565, 56113 30607, 127241 30618, 23679141821274254638112616218924337848656772911341458170121873402437451031020615309 30622, 26112225150215311 30654, 23691318263978117131234262393786117917032358340651091021815327 30655, 56131 30658, 215329 30669, 310223 30678, 23651131022615339 30691, 47653 30718, 215359 30721, 31991 30729, 310243 30733, 73421 30787, 171811 30799, 191621 30819, 310273 30823, 132371 30835, 573588144056167 30886, 215443 30913, 191627 30922, 215461 30939, 310313 30973, 47659 30978, 2369181721344251631032615489 30979, 132383 30985, 56197 30991, 171823 30994, 215497 30999, 310333 31071, 310357 31087, 74441 31165, 52311527113556233 31201, 41761 31273, 112843 31279, 311009 31299, 310433 31315, 56263 31345, 56269 31363, 79397 31377, 310459 31383, 391133993179512853348710461 31389, 310463 31429, 53593 31441, 231367 31447, 1341595337672419 31449, 31133953285910483 31453, 71443 31459, 163193 31474, 215737 31479, 37211499449710493 31483, 191657 31495, 56299 31503, 310501 31534, 215767 31549, 74507 31555, 56311 31561, 37853 31594, 215797 31609, 73433 31621, 103307 31647, 371121337713723141195915072877452110549 31651, 311021 31677, 310559 31681, 132437 31683, 35917717953710561 31686, 23652811056215843 31698, 236918275458711741761352252831056615849 31701, 310567 31711, 191669 31743, 39352710581 31789, 83383 31795, 56359 31798, 213261223244615899 31809, 32369461138310603 31858, 21734937187415929 31881, 310627 31894, 2377443186215947 31897, 167191 31899, 372131499314721734365110291519455710633 31909, 171877 31915, 5136549124556383 31918, 215959 31923, 39354710641 31927, 74561 31954, 213261229245815977 31959, 395367159201477603355110653 31969, 74567 31987, 291103 31989, 310663 31999, 112909 32013, 39355710671 32023, 311033 32037, 35917718154310679 32038, 28316619338616019 32062, 21723344146823916977829431394188616031 32113, 171889 32122, 216061 32133, 310711 32142, 236112233664879741461292253571071416071 32167, 191693 32179, 74597 32182, 216091 32187, 310729 32197, 112927 32199, 310733 32202, 2369181789357853671073416101 32206, 216103 32218, 28917818136216109 32254, 216127 32281, 191699 32287, 83389 32313, 310771 32329, 112939 32334, 236173451102317634951190253891077816167 32343, 310781 32349, 34112326378910783 32365, 56473 32367, 310789 32407, 231409 32434, 216217 32437, 163199 32493, 310831 32554, 2418239779416277 32583, 310861 32601, 310867 32631, 37314921944710877 32638, 216319 32649, 310883 32658, 23654431088616329 32667, 310889 32694, 23654491089816347 32701, 53617 32743, 137239 32842, 216421 32845, 56569 32847, 310949 32863, 59557 32881, 131251 32899, 167197 32901, 31133997299110967 32902, 216451 32935, 573594147056587 32947, 47701 32959, 231433 32961, 310987 32962, 216481 32973, 32987379113710991 32986, 216493 32995, 56599 32997, 31751647194110999 33027, 310110930332711009 33039, 39367111013 33043, 173191 33081, 311027 33103, 74729 33106, 216553 33121, 113011 33127, 157211 33154, 211221211372422741507301416577 33166, 2714234610316120632272114422369473816583 33169, 41809 33193, 191747 33214, 216607 33231, 3111933535715920958362710071749302111077 33243, 37211583474911081 33253, 113023 33283, 83401 33291, 3927811372434111233369911097 33295, 56659 33298, 216649 33313, 74759 33322, 216661 33334, 27142381476216667 33367, 61547 33378, 23655631112616689 33381, 39370911127 33406, 216703 33433, 67499 33451, 113041 33499, 139241 33505, 56701 33519, 311173 33531, 311177 33535, 5199535317656707 33543, 39372711181 33559, 37907 33574, 216787 33591, 311197 33609, 31751659197711203 33651, 39373911217 33655, 5531272656356731 33657, 31339863258911219 33658, 216829 33685, 56737 33711, 31751661198311237 33802, 216901 33817, 74831 33837, 311279 33841, 43787 33865, 5136552126056773 33877, 191783 33895, 56779 33897, 311299 33913, 113083 33921, 39376911307 33979, 113089 33981, 34714124172311327 33987, 311329 34009, 71479 34027, 74861 34054, 217027 34063, 231481 34066, 217033 34117, 109313 34135, 56827 34146, 2367914182142631262715428131626189724393794487856911138217073 34174, 27142441488217087 34179, 311393 34207, 79433 34219, 191801 34234, 217117 34251, 3721491472336991631489311417 34285, 56857 34287, 311331039311711429 34321, 74903 34339, 231493 34341, 311447 34387, 137251 34393, 163211 34411, 132647 34414, 217207 34417, 127271 34435, 571973554856887 34459, 172027 34531, 74933 34554, 236132639784438861329265857591151817277 34555, 56911 34561, 171910732318192033 34609, 53653 34638, 236234669138251502753150657731154617319 34653, 311551 34666, 217333 34701, 34312926980711567 34702, 217351 34774, 217387 34789, 191831 34813, 311123 34837, 113167 34866, 23691318263978117149234298447894134119372682387458111162217433 34869, 35917719759111623 34915, 56983 34921, 47743 34933, 181193 34957, 132689 34978, 217489 35031, 311677 35038, 217519 35041, 67523 35043, 311681 35047, 101347 35058, 23658431168617529 35077, 75011 35133, 3721491472397171673501911711 35146, 217573 35158, 217579 35173, 172069 35179, 127277 35191, 132707 35211, 31133971212913631067320111737 35229, 311743 35293, 291217 35299, 113209 35359, 191861 35362, 217681 35383, 41863 35394, 2361734511023476941041208258991179817697 35409, 3112933378711131940795710731221321911803 35421, 311807 35463, 311821 35481, 311827 35485, 5471512357557097 35494, 217747 35599, 97367 35601, 311867 35611, 149239 35659, 131692112743 35691, 311897 35698, 213261373274617849 35703, 39396711901 35713, 71503 35718, 23659531190617859 35737, 132749 35743, 311153 35773, 83431 35779, 37967 35818, 217909 35857, 231559 35889, 37211709512711963 35901, 39398911967 35943, 311981 35947, 103349 35953, 157229 35962, 217981 35965, 57193 36019, 181199 36021, 312007 36042, 23660071201418021 36049, 1347596117672773 36069, 311331093327912023 36079, 109331 36091, 111718719321233281 36094, 218047 36117, 39401312039 36129, 312043 36133, 231571 36154, 218077 36166, 213261071692143381391278218083 36169, 75167 36181, 97373 36213, 312071 36219, 312073 36259, 101359 36262, 218131 36271, 19238343715771909 36286, 218143 36298, 218149 36303, 312101 36321, 312107 36349, 163223 36367, 41887 36382, 218191 36391, 151241 36403, 59617 36406, 210916721833418203 36415, 57283 36441, 39404912147 36453, 32987419125712151 36463, 75209 36466, 218233 36483, 312161 36562, 210118120236218281 36574, 218287 36579, 38913726741112193 36589, 75227 36591, 312197 36594, 23691819385710711417121432134264296319262033406660991219818297 36597, 311331109332712199 36601, 172153 36609, 312203 36619, 113329 36633, 312211 36649, 67547 36655, 57331 36667, 37991 36679, 43853 36723, 312241 36742, 218371 36745, 57349 36751, 111314325728273341 36753, 312251 36759, 312253 36763, 97379 36769, 83443 36798, 23661331226618399 36802, 218401 36807, 312269 36814, 27915823346618407 36819, 39409112273 36829, 132833 36843, 312281 36867, 312289 36889, 37997 36922, 218461 36949, 113359 36961, 231607 37029, 312343 37042, 218521 37063, 132851 37081, 113371 37099, 231613 37113, 38913926741712371 37129, 107347 37135, 5735106153057427 37141, 132857 37146, 236418212315124630245390661911238218573 37203, 312401 37239, 312413 37261, 75323 37267, 83449 37285, 57457 37293, 33193401120312431 37351, 41911 37353, 312451 37378, 211221699339818689 37393, 61613 37399, 149251 37429, 75347 37434, 2361734511023677341101220262391247818717 37435, 57487 37438, 218719 37459, 47797 37498, 218749 37531, 132887 37551, 312517 37581, 312527 37594, 218797 37621, 172213 37645, 57529 37659, 312553 37678, 218839 37687, 131692232899 37702, 27142693538618851 37734, 236193857114331662993198662891257818867 37749, 312583 37767, 312589 37795, 57559 37803, 312601 37849, 75407 37854, 236918275470114022103420663091261818927 37857, 312619 37866, 23663111262218933 37882, 213263147629440361180612221457291418941 37893, 31751743222912631 37894, 218947 37953, 39421712651 37971, 39421912657 37981, 191999 38002, 219001 38005, 5115569134557601 38017, 75431 38023, 47809 38046, 2361734511023737461119223863411268219023 38049, 311331153345912683 38059, 75437 38062, 219031 38107, 53719 38109, 312703 38131, 172243 38137, 113467 38179, 73523 38187, 39424312729 38191, 181211 38229, 312743 38245, 57649 38271, 312757 38293, 149257 38347, 311237 38353, 75479 38359, 89431 38383, 131293 38389, 132953 38397, 312799 38467, 111314326929593497 38479, 72316123916735497 38482, 27114227154219241 38491, 61631 38509, 97397 38521, 75503 38523, 312841 38545, 5136559329657709 38551, 192029 38553, 37118121354312851 38563, 7497875509 38581, 41941 38601, 39428912867 38602, 219301 38607, 31751757227112869 38623, 132971 38635, 57727 38647, 75521 38659, 67577 38683, 101383 38689, 75527 38697, 312899 38706, 23664511290219353 38823, 312941 38827, 41947 38866, 219433 38878, 27142777555419439 38881, 59659 38899, 75557 38901, 312967 38905, 53115525112557781 38926, 219463 38929, 113539 38937, 312979 38946, 23664911298219473 38965, 57793 39007, 192053 39009, 313003 39027, 313009 39049, 172297 39051, 39433913017 39073, 41953 39111, 313037 39114, 2369184153821061231592463183694777389542173434665191303819557 39127, 113557 39141, 39434913047 39145, 57829 39154, 219577 39223, 61643 39265, 57853 39274, 27314626953819637 39307, 231709 39327, 313109 39357, 39437313119 39369, 311331193357913123 39381, 313127 39427, 89443 39441, 313147 39453, 313151 39454, 219727 39487, 75641 39489, 313163 39505, 57901 39526, 219763 39553, 371069 39571, 75653 39613, 75659 39643, 291367 39649, 311279 39657, 313219 39669, 37211889566713223 39681, 39440913227 39699, 3911339940112033609441113233 39714, 23666191323819857 39723, 313241 39747, 313249 39778, 219889 39781, 75683 39801, 313267 39817, 291373 39823, 75689 39835, 53115525712857967 39853, 113623 39874, 219937 39891, 313297 39931, 73547 39934, 2418248797419967 39958, 219979 39961, 89449 39967, 172351 39973, 71563 39993, 313331 40003, 109367 40021, 311291 40042, 220021 40069, 172357 40074, 23666791335820037 40081, 149269 40126, 220063 40143, 313381 40147, 192113 40197, 313399 40201, 75743 40219, 371087 40246, 220123 40254, 23667091341820127 40267, 67601 40279, 47857 40294, 220147 40303, 41983 40341, 3717215111311933935779119212373576313447 40354, 220177 40393, 311303 40399, 71569 40417, 133109 40431, 313477 40437, 39449313479 40491, 3911339940912273681449913497 40495, 5713356589914454556231157311557858099 40555, 58111 40567, 113359 40573, 133121 40578, 23667631352620289 40651, 1353596897673127 40654, 220327 40659, 313553 40666, 220333 40669, 67607 40701, 313567 40702, 2479443386620351 40714, 220357 40726, 27142909581820363 40735, 58147 40738, 220369 40741, 131311 40747, 75821 40761, 379216364719414529582313587 40762, 28917822945820381 40783, 172399 40791, 313597 40798, 220399 40822, 220411 40839, 313613 40855, 58171 40857, 313619 40909, 113719 40969, 53773 40983, 31957719215713661 40987, 172411 41005, 5591392956958201 41007, 313669 41037, 313679 41053, 61673 41059, 192161 41083, 75869 41086, 220543 41103, 39456713701 41133, 313711 41155, 58231 41163, 313721 41185, 58237 41191, 172423 41197, 133169 41215, 58243 41226, 23668711374220613 41247, 39458313749 41259, 31751809242713753 41289, 313763 41305, 5115575137558261 41311, 109379 41313, 34714129387913771 41319, 39459113773 41326, 220663 41331, 32369599179713777 41361, 31751811243313787 41362, 220681 41371, 113761 41377, 72316125717995911 41407, 47881 41431, 133187 41442, 23669071381420721 41473, 67619 41487, 313829 41494, 220747 41497, 172441 41527, 131317 41533, 411013 41541, 36118322768113847 41542, 220771 41569, 113779 41578, 220789 41614, 220807 41637, 313879 41649, 313883 41683, 73571 41707, 179233 41731, 291439 41733, 39463713911 41746, 220873 41758, 220879 41763, 313921 41767, 113797 41793, 313931 41794, 220897 41799, 313933 41806, 220903 41815, 58363 41845, 58369 41847, 31329373987111377481107311311443321913949 41859, 39465113953 41878, 220939 41929, 231823 41989, 199211 41991, 313997 42006, 23670011400221003 42037, 127331 42039, 3927811732435191557467114013 42058, 217341237247421029 42103, 71593 42118, 221059 42127, 103409 42166, 22958727145421083 42177, 31751827248114059 42202, 221101 42207, 311331279383714069 42219, 39469114073 42271, 411031 42277, 67631 42289, 133253 42319, 101419 42321, 314107 42385, 573549173245865121160558477 42454, 221227 42477, 314159 42519, 314173 42523, 133271 42541, 192239 42547, 157271 42553, 76079 42613, 43991 42634, 221317 42637, 76091 42657, 35917724172314219 42661, 371153 42685, 58537 42715, 58543 42729, 314243 42759, 39475114253 42769, 192251 42802, 221401 42817, 47911 42819, 37212039611714273 42835, 5136565932958567 42865, 58573 42871, 43997 42873, 33193461138314291 42949, 291481 43009, 411049 43017, 313391103330914339 43033, 231871 43047, 39478314349 43074, 2369182393478671791435821537 43083, 39478714361 43141, 76163 43147, 133319 43158, 23671931438621579 43171, 231877 43173, 3913273941811171233513695331053110715993321479714391 43174, 221587 43179, 337111389116714393 43182, 2369182399479871971439421591 43195, 5531632658158639 43203, 314401 43221, 314407 43266, 23672111442221633 43269, 314423 43273, 109397 43279, 113383 43353, 39481714451 43357, 191227 43363, 103421 43417, 113947 43419, 341123353105914473 43426, 221713 43458, 23672431448621729 43465, 58693 43474, 221737 43479, 39483114493 43489, 157277 43495, 58699 43507, 139313 43521, 38916326748914507 43527, 311331319395714509 43546, 221773 43629, 314543 43647, 314549 43699, 89491 43701, 37212081624314567 43705, 58741 43723, 231901 43773, 314591 43774, 24386509101821887 43837, 59743 43879, 113989 43881, 314627 43903, 431021 44011, 114001 44083, 133391 44109, 3913293987117169261377507113115213393490114703 44134, 222067 44143, 114013 44146, 222073 44155, 58831 44157, 341123359107714719 44169, 314723 44218, 222109 44241, 314747 44262, 2369182459491873771475422131 44311, 73607 44313, 314771 44331, 37212111633314777 44337, 314779 44374, 211222017403422187 44386, 222193 44401, 76343 44434, 213261709341822217 44439, 314813 44479, 192341 44481, 314827 44482, 22346967193422241 44494, 222247 44509, 47947 44514, 2369182473494674191483822257 44515, 52914530715358903 44553, 314851 44569, 76367 44593, 192347 44634, 2364386129173258346519103874391487822317 44637, 314879 44653, 76379 44679, 35315928184314893 44682, 2361122336667713542031406274471489422341 44694, 236913182639781171912343825731146171924833438496674491489822347 44698, 222349 44734, 222367 44749, 73613 44758, 2714234613916127832297319463197639422379 44761, 172633 44803, 114073 44815, 58963 44857, 311447 44862, 23674771495422431 44871, 314957 44881, 371213 44911, 97463 44923, 167269 44943, 37121121363314981 44947, 76421 44949, 314983 44986, 28316627154222493 44991, 39499914997 45022, 222511 45039, 315013 45043, 311453 45055, 59011 45067, 111718724126514097 45103, 23375385112191961 45123, 31339891692675071157347115041 45145, 59029 45163, 192377 45169, 172657 45193, 431051 45198, 236918273154628193162186243279486558729837145816742511502275331506622599 45211, 291559 45213, 37212153645915071 45226, 222613 45238, 222619 45246, 23675411508222623 45249, 315083 45271, 172663 45277, 192383 45286, 222643 45297, 379216371921575033647115099 45298, 2112229587114231963878115622059411822649 45333, 392327697320721962165716791971503715111 45349, 101449 45358, 222679 45367, 76481 45421, 53857 45487, 133499 45499, 173263 45537, 343129353105915179 45574, 222787 45579, 315193 45597, 315199 45679, 172687 45709, 431063 45726, 23676211524222863 45727, 114157 45754, 222877 45769, 371237 45807, 315269 45811, 61751 45849, 317293151879349352789914791581269715283 45891, 39509915297 45901, 197233 45909, 39510115303 45919, 47977 45937, 71647 45939, 315313 46014, 23676691533823007 46026, 2369182557511476711534223013 46033, 133541 46038, 23676731534623019 46045, 59209 46047, 315349 46069, 232003 46081, 72920322715896583 46083, 315361 46105, 59221 46119, 315373 46126, 223063 46131, 315377 46174, 223087 46177, 61757 46195, 59239 46198, 223099 46213, 371249 46231, 83557 46249, 76607 46267, 133559 46323, 39514715441 46353, 315451 46369, 89521 46383, 315461 46387, 114217 46389, 3721471413299872209662715463 46401, 315467 46405, 59281 46413, 3927811912435731719515715471 46423, 133571 46461, 31751911273315487 46479, 315493 46483, 23434798910812021 46498, 26713434769423249 46518, 23677531550623259 46519, 114229 46551, 35917726378915517 46579, 133583 46581, 315527 46582, 223291 46597, 172741 46638, 2369182591518277731554623319 46653, 315551 46677, 315559 46678, 223339 46693, 53881 46699, 17416769711392747 46705, 59341 46707, 315569 46711, 76673 46729, 83563 46753, 76679 46849, 114259 46882, 211222131426223441 46885, 59377 46917, 39133911740112033609521315639 46929, 315643 46939, 73643 46951, 291619 47011, 53887 47013, 315671 47023, 59797 47043, 39522715681 47046, 23678411568223523 47071, 103457 47095, 59419 47098, 223549 47131, 76733 47167, 101467 47197, 109433 47203, 133631 47217, 315739 47245, 5115585942959449 47262, 23678771575423631 47266, 223633 47335, 59467 47365, 59473 47371, 127373 47409, 315803 47434, 23774641128223717 47457, 39527315819 47467, 76781 47479, 79601 47485, 59497 47494, 223747 47503, 67709 47506, 223753 47545, 53718525712859509 47617, 172801 47643, 315881 47662, 223831 47673, 39529715891 47686, 211321122642223843 47695, 59539 47721, 315907 47731, 59809 47733, 37212273681915911 47749, 133673 47767, 371291 47778, 23679631592623889 47785, 5199550325159557 47803, 76829 47811, 315937 47821, 17299749316492813 47863, 232081 47941, 191251 47983, 133691 47997, 39533315999 48043, 107449 48061, 133697 48097, 76871 48099, 316033 48102, 23680171603424051 48123, 39534716041 48142, 224071 48145, 59629 48147, 311331459437716049 48151, 179269 48181, 76883 48186, 2369182677535480311606224093 48198, 236295887174277554831166280331606624099 48199, 157307 48201, 316067 48211, 371303 48217, 133709 48219, 316073 48226, 224113 48241, 192539 48261, 316087 48291, 316097 48319, 211229 48322, 23774653130624161 48349, 76907 48361, 137353 48394, 224197 48403, 97499 48417, 316139 48427, 79613 48429, 39538116143 48478, 224239 48502, 224251 48505, 5891094455459701 48529, 133733 48567, 316189 48577, 311567 48579, 316193 48582, 2369182699539880971619424291 48583, 192557 48591, 39539916197 48606, 23681011620224303 48634, 224317 48643, 76949 48669, 316223 48697, 111920923325634427 48715, 59743 48718, 224359 48727, 76961 48771, 39541916257 48802, 213261877375424401 48831, 341123397119116277 48841, 131716922128928733757 48874, 27143491698224437 48877, 371321 48886, 224443 48903, 316301 48913, 411193 48937, 76991 48946, 224473 48955, 59791 48961, 114451 48967, 232129 48997, 133769 49014, 23679141821426312638977811672334272335015446700281691633824507 49017, 316339 49054, 224527 49074, 23681791635824537 49089, 316363 49111, 67733 49129, 73673 49146, 23681911638224573 49165, 59833 49183, 137359 49222, 224611 49234, 210320623947824617 49311, 39547916437 49347, 39548316449 49354, 224677 49359, 316453 49366, 224683 49402, 217341453290624701 49413, 3713213991181273543126723533801705916471 49414, 23162797159424707 49423, 114493 49435, 59887 49441, 74910097063 49479, 316493 49483, 77069 49519, 232153 49522, 211222251450224761 49579, 431153 49594, 213718127436224797 49645, 59929 49701, 316567 49723, 192617 49765, 53718526913459953 49822, 22958859171824911 49849, 79631 49866, 23683111662224933 49867, 471061 49879, 311609 49882, 2714499850910183563712624941 49899, 316633 49909, 291721 49947, 316649 49954, 224977 49969, 107467 49983, 316661 50005, 57313736568510001 50017, 114547 50035, 510007 50041, 163307 50067, 39556316689 50073, 316691 50074, 225037 50089, 133853 50097, 316699 50107, 89563 50109, 316703 50137, 181277 50157, 39557316719 50217, 31957881264316739 50229, 39558116743 50253, 37212393717916751 50262, 23683771675425131 50277, 316759 50298, 2368310116620224930349860683831676625149 50299, 179281 50305, 510061 50317, 67751 50326, 225163 50335, 510067 50395, 510079 50397, 310715732147116799 50401, 133877 50427, 39133911743112933879560316809 50473, 172969 50491, 77213 50607, 39562316869 50614, 225307 50617, 74910337231 50629, 197257 50637, 316879 50659, 77237 50673, 3719215712713338139988924132667723916891 50686, 225343 50689, 173293 50698, 225349 50701, 77243 50709, 316903 50719, 67757 50731, 97523 50746, 225373 50761, 232207 50769, 39564116923 50803, 101503 50811, 316937 50851, 211241 50863, 192677 50874, 2366112213918327836641783484791695825437 50887, 151337 50914, 225457 50917, 59863 50947, 133919 50983, 172999 50991, 32369739221716997 50994, 2369182833566684991699825497 50998, 24386593118625499 51013, 139367 51022, 29719426352625511 51033, 317011 51046, 225523 51049, 71719 51063, 317021 51067, 223229 51073, 114643 51087, 317029 51126, 23685211704225563 51139, 114649 51141, 317047 51162, 23685271705425581 51166, 225583 51202, 225601 51211, 83617 51223, 181283 51231, 317077 51235, 510247 51262, 21938711423617221349269825631 51265, 510253 51274, 23162827165425637 51277, 471091 51289, 71711943130177327 51291, 39411231393694171251569917097 51355, 510271 51369, 317123 51382, 223461117223425691 51391, 173023 51457, 77351 51466, 225733 51469, 114679 51477, 317159 51498, 2369182861572285831716625749 51535, 51155937468510307 51538, 27314635370625769 51567, 317189 51571, 133967 51583, 77369 51601, 114691 51619, 411259 51627, 317209 51655, 510331 51687, 39574317229 51757, 73709 51771, 317257 51778, 225889 51819, 32369751225317273 51831, 39133911744313293987575917277 51838, 225919 51843, 311331571471317281 51862, 225931 51883, 131693073991 51886, 225943 51898, 2711142277154337674235937074718741425949 51919, 77417 51937, 167311 51963, 317321 51969, 317511019305717323 51978, 23686631732625989 51981, 317327 51999, 317333 52047, 39578317349 52053, 317351 52089, 39717929153717363 52126, 26713438977826063 52159, 431213 52171, 72920325717997453 52198, 226099 52231, 192749 52257, 317419 52278, 23687131742626139 52282, 226141 52285, 510457 52293, 317431 52315, 510463 52333, 59887 52339, 77477 52366, 226183 52378, 226189 52414, 27314635971826207 52423, 77489 52446, 23687411748226223 52449, 317483 52458, 2367142142124924983747749487431748626229 52467, 317489 52471, 137383 52473, 317491 52534, 226267 52546, 2132643478694559611111812222021404226273 52555, 523115457228510511 52573, 192767 52615, 51785619309510523 52617, 317539 52645, 510529 52647, 3721236910916132748376322892507752117549 52687, 19475989311212773 52714, 226357 52771, 113467 52789, 114799 52797, 317599 52803, 39586717601 52821, 39586917607 52827, 317609 52842, 23688071761426421 52843, 77549 52891, 227233 52917, 33193569170717639 52939, 167317 52942, 210320625751426471 52945, 510589 52993, 197269 53011, 77573 53029, 192791 53059, 97547 53062, 24386617123426531 53065, 510613 53071, 73727 53137, 77591 53187, 317729 53191, 431237 53203, 83641 53209, 134093 53229, 311331613483917743 53263, 74910877609 53311, 89599 53329, 173137 53338, 226669 53347, 77621 53349, 317783 53367, 317789 53455, 510691 53457, 310317330951917819 53481, 317827 53517, 317839 53539, 371447 53545, 510709 53554, 226777 53566, 226783 53626, 226813 53638, 213262063412626819 53659, 232333 53662, 27143833766626831 53671, 191281 53677, 134129 53686, 217341579315826843 53709, 317903 53737, 172910949318533161 53743, 223241 53761, 371453 53763, 317921 53767, 77681 53769, 317923 53779, 114889 53785, 531155347173510757 53806, 226903 53809, 77687 53814, 23689691793826907 53827, 192833 53829, 39598117943 53871, 317957 53877, 317959 53893, 77699 53913, 317971 53961, 317987 53989, 134153 53997, 341123439131717999 54021, 311331637491118007 54022, 227011 54031, 71761 54061, 77723 54069, 36720126980718023 54157, 311747 54199, 83653 54211, 232357 54231, 318077 54234, 236918234669131138207262393414786117923583013602690391807827117 54235, 510847 54247, 173191 54261, 39602918087 54262, 213262087417427131 54301, 134177 54333, 39603718111 54355, 57351553776510871 54379, 13478961111574183 54381, 318127 54382, 227191 54427, 371471 54433, 291877 54445, 510889 54463, 107509 54535, 51365839419510907 54543, 318181 54553, 173209 54562, 227281 54573, 318191 54589, 79691 54598, 227299 54619, 193283 54633, 318211 54637, 114967 54687, 318229 54694, 2232941465882667943118913341886237827347 54699, 318233 54703, 114973 54715, 531155353176510943 54754, 27143911782227377 54763, 232381 54793, 157349 54811, 59929 54814, 227407 54819, 39609118273 54823, 73751 54846, 23691118223366991982775548311662249330474986609491411828227423 54847, 134219 54849, 347141389116718283 54853, 192887 54861, 318287 54862, 227431 54867, 318289 54903, 318301 54931, 163337 54939, 318313 54942, 23691571831427471 55027, 74911237861 55041, 37212621786318347 55069, 77867 55126, 24386641128227563 55129, 291901 55134, 2369182754102120423063612691891837827567 55146, 23671314212639427891101182202273303546606707131314142121262639394242787891911838227573 55159, 134243 55162, 227581 55183, 139397 55222, 227611 55231, 115021 55258, 27143947789427629 55261, 73757 55285, 511057 55306, 227653 55329, 318443 55371, 318457 55387, 97571 55413, 39471311413934231179615718471 55423, 192917 55435, 511087 55453, 232411 55486, 227743 55495, 511551009504511099 55509, 318503 55531, 77933 55543, 67829 55569, 318523 55591, 232417 55654, 227827 55657, 77951 55687, 233239 55707, 33193599179718569 55735, 57115735578511147 55771, 431297 55773, 39619718591 55786, 227893 55789, 471187 55801, 411361 55846, 27143989797827923 55855, 511171 55885, 511177 55894, 227947 55899, 39621118633 55914, 23693191863827957 55969, 97577 55981, 17378962915133293 55989, 39622118663 56013, 318671 56014, 27144001800228007 56034, 23691118223366991982835668491698254731135094622693391867828017 56037, 318679 56065, 511213 56067, 311331699509718689 56071, 471193 56073, 318691 56089, 115099 56103, 318701 56119, 78017 56139, 318713 56182, 27144013802628091 56185, 51785661330511237 56194, 228097 56215, 511243 56229, 318743 56247, 318749 56251, 134327 56253, 317511103330918751 56305, 511261 56313, 39625718771 56334, 2364182123229246458687137493891877828167 56338, 217341657331428169 56353, 114710951711995123 56362, 228181 56379, 318793 56395, 511279 56407, 134339 56413, 78059 56418, 23694031880628209 56422, 228211 56449, 192971 56461, 131431 56482, 23162911182228241 56557, 232459 56614, 228307 56643, 37923723971718881 56674, 24386659131828337 56679, 37212699809718893 56683, 115153 56707, 78101 56709, 39630118903 56719, 134363 56733, 318911 56743, 179317 56746, 217341669333828373 56751, 318917 56755, 511351 56757, 318919 56758, 2132637597411848176796215342183436628379 56802, 23694671893428401 56818, 228409 56851, 139409 56869, 293753107315371961 56874, 23694791895828437 56899, 173347 56935, 55919329596511387 56937, 318979 56961, 39632918987 56974, 26112246793428487 56977, 227251 57003, 319001 57034, 228517 57093, 319031 57102, 236316293186307614921184295171903428551 57103, 173359 57111, 319037 57118, 228559 57151, 67853 57169, 78167 57178, 211222346113226253506124324862599519828589 57181, 211271 57199, 471217 57207, 319069 57211, 7117774352018173 57229, 151379 57235, 511447 57238, 228619 57253, 78179 57277, 114112745113975207 57289, 59971 57313, 371549 57321, 3911273399193297579173721235211636919107 57333, 32987659197719111 57337, 78191 57379, 74911718197 57391, 291979 57439, 71809 57502, 228751 57549, 319183 57573, 39639719191 57586, 228793 57595, 511519 57607, 115237 57631, 78233 57633, 319211 57682, 215119130238228841 57711, 319237 57718, 228859 57721, 197293 57739, 112918131919915249 57745, 511549 57769, 411409 57777, 319259 57802, 228901 57813, 37212753825919271 57867, 319289 57877, 311867 57895, 511579 57913, 291997 57921, 343129449134719307 57922, 228961 57934, 28316634969828967 58014, 23691118223366991982935868791758263732235274644696691933829007 58029, 3232969876678412001252319343 58054, 229027 58062, 23696771935429031 58069, 115279 58117, 89653 58161, 319387 58165, 511633 58173, 319391 58177, 78311 58183, 83701 58219, 78317 58221, 39646919407 58246, 229123 58255, 56119130595511651 58281, 319427 58291, 71821 58299, 319433 58306, 229153 58323, 319441 58326, 23697211944229163 58333, 115303 58339, 227257 58399, 115309 58407, 319469 58422, 23671314212639427891107182214273321546642749139114982247278241734494834697371947429211 58431, 319477 58449, 319483 58459, 531103 58467, 319489 58473, 397389219267657801649719491 58483, 233251 58531, 111718731334435321 58591, 134507 58609, 294347124713632021 58623, 319541 58626, 2369183257651497711954229313 58627, 232549 58651, 89659 58669, 134513 58714, 23162947189429357 58731, 319577 58738, 24386683136629369 58783, 292027 58798, 229399 58818, 23698031960629409 58819, 131449 58846, 229423 58855, 57914939574511771 58879, 97607 58891, 74717932912538413 58959, 39655119653 58969, 109541 58987, 61967 58998, 23698331966629499 59005, 511801 59007, 31317395189221267663115715133471453919669 59043, 319681 59061, 319687 59097, 319699 59155, 511831 59161, 67883 59173, 471259 59179, 23318371319092573 59181, 319727 59199, 37212819845719733 59254, 21326435386106559689111813782279455829627 59269, 78467 59289, 319763 59335, 511867 59347, 173491 59383, 431381 59389, 115399 59431, 103577 59434, 229717 59457, 319819 59461, 97613 59479, 72920329320518497 59485, 511897 59506, 229753 59518, 229759 59545, 511909 59554, 211222707541429777 59593, 232591 59613, 33193641192319871 59623, 109547 59638, 229819 59649, 359177337101119883 59658, 2366112216318332636648997899431988629829 59665, 511933 59674, 229837 59677, 83719 59683, 134591 59695, 511939 59713, 211283 59757, 319919 59761, 134597 59773, 78539 59781, 319927 59794, 27144271854229897 59803, 79757 59811, 319937 59821, 163367 59919, 319973 59926, 21938831663617221577315429963 59947, 151397 59979, 319993 59989, 239251 60001, 292069 60019, 471277 60031, 173347 60033, 320011 60055, 512011 60079, 73823 60094, 230047 60097, 193163 60115, 511551093546512023 60118, 230059 60157, 431399 60163, 173539 60171, 33193647194120057 60178, 230089 60181, 115471 60189, 320063 60198, 23679127158237254381474762100332006630099 60199, 371627 60241, 107563 60265, 51785709354512053 60274, 230137 60283, 232621 60294, 23613263978773154623194638100492009830147 60301, 471283 60303, 320101 60307, 134639 60321, 320107 60339, 320113 60349, 292081 60361, 78623 60406, 230203 60429, 320143 60439, 193181 60447, 320149 60451, 61991 60454, 216718133436230227 60471, 39671920157 60481, 311951 60498, 23691833616722100832016630249 60499, 101599 60505, 512101 60558, 236100932018630279 60559, 232633 60571, 71711950935638653 60657, 320219 60682, 230341 60685, 553229265114512137 60691, 137443 60738, 236531061591913183825731146101232024630369 60751, 79769 60778, 230389 60807, 320269 60831, 3927817512253675920277 60862, 230431 60898, 230449 60934, 230467 60949, 78707 60991, 78713 61021, 139439 61078, 230539 61126, 213262351470230563 61147, 471301 61159, 78737 61167, 320389 61174, 27314641983830587 61189, 431423 61201, 74912498743 61237, 111920929332235567 61249, 232663 61255, 512251 61267, 197311 61278, 23671421421459291843778754102132042630639 61287, 33193659197720429 61293, 320431 61302, 236173451102601120218033606102172043430651 61345, 512269 61377, 341123499149720459 61431, 320477 61447, 431429 61449, 320483 61453, 78779 61489, 173617 61503, 31319395783247249741107915773237473120501 61531, 371663 61542, 2369131826397811723426352678915782367341947346838102572051430771 61546, 230773 61563, 320521 61582, 24182751150230791 61599, 320533 61621, 78803 61639, 531163 61689, 320563 61719, 37212939881720573 61726, 27144409881830863 61753, 371669 61758, 236918477394141146219282423438657846131434316862102932058630879 61771, 223277 61818, 236103032060630909 61833, 320611 61849, 127487 61858, 215719731439430929 61873, 78839 61881, 320627 61882, 230941 61887, 37214914742112632947884120629 61926, 236103212064230963 61954, 230977 61986, 236103312066230993 62038, 231019 62077, 232699 62079, 320693 62089, 292141 62097, 37212957887120699 62107, 173359 62158, 231079 62203, 173659 62209, 78887 62218, 213262393478631109 62221, 431447 62227, 115657 62251, 78893 62257, 134789 62277, 320759 62287, 199313 62349, 37212969890720783 62353, 232711 62377, 7194967133469931127332838911 62407, 173671 62431, 149419 62446, 231223 62485, 512497 62487, 39531311593934771179694320829 62493, 337111563168920831 62503, 78929 62515, 512503 62542, 231271 62551, 71881 62554, 231277 62574, 236104292085831287 62587, 78941 62599, 591061 62607, 341123509152720869 62611, 172912749321593683 62623, 115693 62646, 236531061591973183945911182104412088231323 62673, 313391607482120891 62686, 213262411482231343 62697, 320899 62707, 73859 62719, 193301 62739, 39697120913 62749, 131479 62758, 231379 62817, 320939 62838, 23691834916982104732094631419 62845, 512569 62857, 239263 62863, 371699 62899, 312029 62905, 523115547273512581 62907, 313391613483920969 62941, 113557 62962, 231481 62977, 71887 63013, 611033 63043, 232741 63051, 321017 63093, 321031 63094, 231547 63109, 223283 63118, 211192238151209302418166128693322573831559 63139, 103613 63151, 115741 63163, 83761 63178, 231621019203831589 63205, 512641 63214, 231607 63226, 210120231362631613 63237, 310719732159121079 63286, 231643 63301, 79043 63319, 232753 63339, 343129491147321113 63355, 512671 63429, 321143 63489, 321163 63507, 321169 63523, 139457 63561, 321187 63565, 512713 63579, 321193 63597, 31729435187129493731124714792193374121199 63598, 231799 63613, 115783 63622, 213262447489431811 63657, 3911339964319295787707321219 63663, 321221 63681, 321227 63685, 547235271135512737 63718, 231859 63721, 79103 63723, 311331931579321241 63741, 321247 63757, 103619 63787, 227281 63817, 134909 63834, 236106392127831917 63871, 232777 63873, 39471411514234531359709721291 63877, 115807 63897, 319575917736110831121336321299 63898, 24386743148631949 63931, 79133 63939, 321313 63957, 321319 63969, 321323 64006, 232003 64021, 73877 64023, 321341 64026, 23691835577114106712134232013 64057, 79151 64069, 79811 64087, 193373 64093, 107599 64101, 32369929278721367 64102, 232051 64105, 512821 64149, 321383 64159, 83773 64161, 39712921387 64165, 541205313156512833 64191, 321397 64197, 3792163101930577133917121399 64234, 232117 64243, 173779 64267, 79181 64309, 79187 64339, 115849 64354, 223461399279832177 64363, 134951 64369, 591091 64378, 232189 64401, 321467 64423, 232801 64459, 73883 64471, 115861 64495, 512899 64507, 251257 64533, 37214914743913173073921921511 64546, 259118547109432273 64573, 312083 64585, 512917 64606, 232303 64647, 3911339965319595877718321549 64669, 115879 64678, 27314644388632339 64686, 236107812156232343 64687, 79241 64707, 321569 64726, 232363 64731, 321577 64741, 101641 64759, 312089 64762, 232381 64774, 213923327846632387 64789, 67967 64795, 512959 64807, 229283 64822, 232411 64833, 321611 64837, 232819 64851, 321617 64878, 23611223366983196629495898108132162632439 64899, 39721121633 64903, 411583 64933, 115903 64941, 321647 64981, 79283 64983, 321661 64987, 134999 65001, 347141461138321667 65002, 27144643928632501 65005, 513001 65017, 79823 65041, 193337 65061, 39722921687 65127, 317511277383121709 65133, 39723721711 65137, 531229 65209, 611069 65214, 23691836237246108692173832607 65227, 193433 65233, 79319 65242, 232621 65253, 321751 65262, 23673146149219298438447894108772175432631 65266, 232633 65271, 321757 65277, 39725321759 65281, 97673 65311, 241271 65359, 79337 65383, 151433 65397, 321799 65439, 3911339966119835949727121813 65443, 79349 65451, 321817 65463, 321821 65467, 173851 65481, 3132339697321929989794916792847503721827 65491, 79829 65515, 513103 65545, 513109 65553, 321851 65602, 232801 65622, 236109372187432811 65665, 523115571285513133 65718, 23691827541217243436517302109532190632859 65722, 217341933386632861 65733, 321911 65743, 292267 65767, 135059 65779, 79397 65785, 559223295111513157 65791, 115981 65797, 193463 65803, 232861 65857, 115987 65883, 321961 65911, 193469 65946, 23629588717437975811372274109912198232973 65953, 101653 65973, 321991 65974, 232987 66001, 135077 66013, 251263 66021, 359177373111922007 66031, 79433 66039, 322013 66043, 211313 66111, 322037 66117, 322039 66133, 411613 66142, 233071 66147, 317511297389122049 66153, 322051 66166, 233083 66201, 322067 66211, 73907 66219, 322073 66226, 233113 66229, 103643 66237, 322079 66243, 37121331193322081 66253, 111920931734876023 66279, 322093 66303, 39531391594174771251736722101 66313, 135101 66322, 233161 66327, 322109 66333, 322111 66454, 214922329844633227 66489, 337111599179722163 66498, 236110832216633249 66513, 322171 66517, 116047 66547, 135119 66561, 311332017605122187 66565, 513313 66573, 39133911756917075121739722191 66579, 322193 66582, 2369182754811371622432744114868221233246636997398110972219433291 66589, 173917 66621, 353159419125722207 66658, 233329 66667, 163409 66687, 322229 66691, 173923 66694, 233347 66699, 39741122233 66706, 233353 66741, 322247 66811, 71941 66813, 322271 66835, 513367 66903, 32987769230722301 66961, 292309 66966, 236111612232233483 66979, 116089 66985, 513397 66991, 312161 67047, 322349 67054, 213262579515833527 67063, 199337 67111, 116101 67117, 411637 67191, 322397 67198, 233599 67207, 79601 67227, 322409 67234, 233617 67237, 71947 67243, 116113 67267, 137491 67269, 317511319395722423 67279, 193541 67282, 233641 67291, 79613 67299, 322433 67371, 317511321396322457 67381, 431567 67414, 23774911182233707 67417, 79631 67422, 236173451102661132219833966112372247433711 67423, 191353 67426, 233713 67441, 116131 67458, 236112432248633729 67462, 28917837975833731 67471, 109619 67503, 322501 67521, 37121331795122507 67561, 135197 67591, 257263 67621, 193559 67633, 471439 67647, 322549 67674, 236112792255833837 67693, 139487 67702, 233851 67705, 511551231615513541 67713, 322571 67717, 135209 67719, 322573 67734, 2369185371106142159213318426477639954127837637526112892257833867 67747, 371831 67762, 217341993398633881 67822, 233911 67839, 322613 67846, 233923 67879, 79697 67882, 233941 67893, 37215361159183371427111312813233969922631 67926, 236113212264233963 67981, 157433 68007, 322669 68022, 23691837797558113372267434011 68049, 39756122683 68119, 174007 68127, 322709 68149, 232963 68155, 543215317158513631 68157, 39757322719 68158, 253106643128634079 68179, 292351 68181, 322727 68197, 471451 68245, 513649 68269, 233293 68271, 37213251975322757 68293, 312203 68307, 322769 68319, 39759122773 68323, 174019 68347, 411667 68349, 322783 68359, 197347 68362, 27141938133257266514179935984883976634181 68383, 79769 68395, 513679 68421, 322807 68422, 234211 68434, 234217 68455, 513691 68466, 236114112282234233 68485, 513697 68518, 234259 68533, 193607 68542, 24386797159434271 68551, 74913999793 68557, 179383 68577, 322859 68587, 107641 68589, 39762122863 68613, 322871 68617, 591163 68631, 322877 68638, 234319 68653, 135281 68662, 211223121624234331 68671, 431597 68677, 79811 68703, 322901 68707, 127541 68719, 79817 68722, 234361 68731, 131722131140435287 68751, 39763922917 68763, 322921 68787, 39764322929 68803, 79829 68827, 116257 68833, 174049 68841, 39764922947 68889, 322963 68901, 37172151119193357579135132814053984322967 68905, 513781 68914, 234457 68937, 311332089626722979 68941, 71971 68959, 116269 68982, 236114972299434491 68998, 234499 69009, 323003 69022, 234511 69049, 292381 69081, 323027 69082, 213262657531434541 69121, 131694095317 69145, 513829 69153, 3721378911125926762377718693293987923051 69159, 323053 69178, 234589 69205, 513841 69226, 234613 69229, 107647 69261, 323087 69301, 371873 69306, 236115512310234653 69307, 79901 69309, 39172751151153453459135925674077770123103 69343, 174079 69346, 234673 69349, 79907 69393, 323131 69397, 292393 69423, 37321931795123141 69442, 234721 69471, 392731839324927974783722412573771923157 69474, 236115792315834737 69511, 135347 69543, 39772723181 69546, 236671341732013464025191038115912318234773 69547, 174091 69562, 234781 69589, 135310168913135353 69603, 323201 69607, 471481 69613, 671039 69619, 116329 69621, 323691009302723207 69658, 229581201240234829 69679, 591181 69694, 234847 69703, 431621 69715, 57319136595513943 69745, 513293765145185377481107318852405536513949 69753, 323251 69769, 79967 69781, 312251 69793, 71983 69798, 236116332326634899 69799, 223313 69811, 79973 69834, 236103113206226309339618678116392327834917 69858, 23691838817762116432328634929 69889, 471487 69909, 37213329998723303 69922, 234961 69934, 27314647995834967 69949, 116359 69954, 23689131178262267393534786116592331834977 69999, 323333 70006, 21729345871142493986120720592414411835003 70017, 323339 70045, 514009 70063, 710009 70069, 411709 70086, 236116812336235043 70089, 361183383114923363 70102, 235051 70107, 323369 70113, 323371 70138, 235069 70174, 213262699539835087 70198, 235099 70219, 23437198916333053 70222, 235111 70234, 235117 70255, 514051 70285, 514057 70314, 236117192343835157 70318, 235159 70339, 312269 70342, 235171 70353, 39781723451 70387, 591193 70405, 514081 70419, 323473 70441, 729203347242910063 70527, 323509 70561, 411721 70579, 163433 70603, 135431 70611, 323537 70647, 323549 70666, 28917839779435333 70669, 174157 70701, 323567 70711, 312281 70723, 197359 70741, 115910964911996431 70743, 323581 70747, 263269 70789, 292441 70797, 323599 70801, 101701 70813, 193727 70831, 193367 70837, 135449 70869, 323623 70885, 514177 70894, 235447 70909, 233083 70918, 259118601120235459 70933, 89797 70954, 213262729545835477 70983, 3911273399239297717215126296453788723661 71002, 213126227154235501 71074, 235537 71103, 313717341151923701 71131, 83857 71133, 313118139354323711 71169, 372133891016723723 71182, 235591 71197, 749145310171 71215, 514243 71221, 671063 71227, 135479 71245, 514249 71251, 431657 71286, 236109218327654118812376235643 71301, 323767 71311, 292459 71322, 236118872377435661 71367, 323789 71401, 116491 71403, 323801 71406, 23691839677934119012380235703 71418, 236119032380635709 71455, 531155461230514291 71457, 323819 71491, 749145910213 71494, 235747 71509, 431663 71511, 311331211973635912167650123837 71545, 541205349174514309 71559, 39795123853 71637, 323879 71641, 312311 71653, 79907 71695, 513651103551514339 71697, 323899 71749, 157457 71754, 236119592391835877 71833, 292477 71857, 181397 71871, 323957 71902, 235951 71911, 710273 71949, 32987827248123983 71989, 193373 72001, 89809 72034, 236017 72042, 236120072401436021 72049, 109661 72067, 193793 72079, 749147110297 72081, 39800924027 72085, 513651109554514417 72097, 174241 72126, 23691840078014120212404236063 72178, 215123930247836089 72187, 371951 72214, 236107 72217, 257281 72247, 710321 72291, 324097 72339, 324113 72349, 711019 72403, 174259 72418, 236209 72453, 324151 72531, 39805924177 72537, 324179 72553, 135581 72558, 2369182958871391742612784175228341251250240318062120932418636279 72586, 236293 72595, 514519 72619, 101719 72621, 39806924207 72622, 211223301660236311 72667, 749148310381 72669, 324223 72678, 236121132422636339 72715, 514543 72717, 324239 72753, 324251 72793, 710399 72799, 431693 72805, 514561 72814, 27144998743148652011040236407 72829, 671087 72858, 236121432428636429 72861, 314916344748924287 72913, 174289 72958, 236479 72966, 236121612432236483 72987, 324329 72991, 471553 73054, 236527 73069, 89821 73087, 753197371137910441 73093, 193847 73099, 135623 73105, 514621 73111, 113647 73126, 236563 73131, 319571283384924377 73147, 193379 73159, 149491 73173, 324391 73195, 514639 73213, 710459 73231, 671093 73257, 324419 73282, 211223331666236641 73306, 236653 73314, 23691840738146122192443836657 73317, 324439 73345, 514669 73357, 109673 73399, 292531 73407, 324469 73411, 135647 73419, 324473 73426, 236713 73446, 236122412448236723 73449, 39816124483 73465, 573520991049514693 73473, 319571289386724491 73498, 236749 73501, 312371 73509, 310722932168724503 73551, 324517 73558, 236779 73573, 294359124717112537 73579, 116689 73591, 710513 73594, 231621187237436797 73639, 211349 73663, 193877 73674, 23691840938186122792455836837 73705, 514741 73717, 710531 73729, 174337 73735, 514747 73749, 31331396193183403793120918912379567324583 73759, 741257287179910537 73777, 111920935338836707 73779, 324593 73806, 236123012460236903 73813, 223331 73837, 471571 73873, 312383 73894, 236947 73909, 116719 73915, 514783 73921, 292549 73927, 759179413125310561 73963, 371999 73981, 167443 73989, 39822124663 73993, 611213 74029, 181409 74038, 237019 74083, 233221 74091, 324697 74097, 39823324699 74113, 135701 74155, 514831 74199, 324733 74221, 723161461322710603 74227, 199373 74262, 236123772475437131 74281, 591259 74289, 324763 74335, 514867 74343, 324781 74359, 235361121914033233 74389, 710627 74397, 324799 74403, 37921631181354382671062924801 74422, 212725429358637211 74427, 324809 74434, 237217 74479, 711049 74499, 319571307392124833 74503, 111314352157316773 74511, 39175115348714614383827924837 74541, 324847 74554, 237277 74563, 173431 74583, 39828724861 74605, 543215347173514921 74626, 237313 74641, 710663 74659, 135743 74667, 324889 74671, 89839 74695, 514939 74701, 116791 74722, 237361 74743, 411823 74758, 237379 74773, 233251 74793, 310723332169924931 74818, 237409 74833, 116803 74853, 39831724951 74859, 324953 74917, 193943 74931, 324977 74937, 324979 74938, 28917842184237469 74947, 149503 74961, 39832924987 74982, 236124972499437491 74983, 167449 75055, 51785883441515011 75067, 271277 75094, 237547 75097, 116827 75142, 237571 75151, 223337 75163, 116833 75214, 237607 75238, 237619 75241, 671123 75301, 257293 75313, 729495320337114211537259710759 75349, 151499 75382, 237691 75406, 237741019203837703 75409, 731033 75417, 323691093327925139 75421, 199379 75433, 241313 75447, 3983101249303747909838325149 75451, 197383 75459, 325153 75466, 29719438977837733 75478, 213262903580637739 75487, 192913755126033973 75489, 325163 75529, 471607 75562, 237781 75567, 325189 75589, 269281 75613, 83911 75618, 23691842018402126032520637809 75637, 431759 75657, 325219 75687, 325229 75745, 515149 75754, 27144998773154654111082237877 75769, 174457 75771, 39841925257 75838, 271454171083437919 75849, 313119339357925283 75859, 710837 75865, 515173 75891, 341123617185125297 75901, 749154910843 75903, 325301 75921, 325307 75922, 27111417222934587711915418720323831937440649363898613092233261834514466542369021084637961 75927, 325309 75934, 237967 75939, 317511489446725313 75955, 511551381690515191 75994, 237997 76021, 116911 76029, 325343 76033, 139547 76047, 325349 76051, 591289 76057, 194003 76063, 135851 76069, 710867 76078, 238039 76093, 471619 76134, 236126892537838067 76135, 515227 76165, 515233 76174, 271454411088238087 76177, 174481 76195, 573549245311155521771088515239 76201, 181421 76233, 325411 76317, 325439 76321, 710903 76327, 127601 76339, 97787 76341, 325447 76359, 325453 76363, 710909 76374, 23691842438486127292545838187 76389, 325463 76393, 79967 76402, 238201 76411, 431777 76429, 233323 76474, 238237 76494, 236111922333857616611412218320936641862767111591254134220132318347740266954127492549838247 76513, 194027 76522, 238261 76549, 116959 76567, 233329 76611, 325537 76623, 325541 76633, 197389 76642, 238321 76662, 23691842598518127772555438331 76687, 131722134745115899 76759, 591301 76762, 271454831096638381 76821, 32987883264925607 76842, 23691827541423284642698538128072561438421 76854, 236128092561838427 76885, 515377 76909, 710987 76929, 325643 76933, 107719 76941, 3983103249309747927854925647 76942, 217313462731465271054124122632482452638471 76959, 39175115350315094527855125653 76981, 233347 77001, 325667 77005, 515401 77019, 325673 77059, 263293 77061, 317511511453325687 77062, 253106727145438531 77067, 39856325689 77074, 28917843386638537 77079, 325693 77083, 194057 77089, 127607 77091, 372136711101325697 77127, 347141547164125709 77179, 113683 77233, 131694575941 77241, 325747 77278, 238639 77307, 373219353105925769 77434, 271455311106238717 77439, 38324931193325813 77443, 431801 77446, 238723 77458, 238729 77473, 117043 77494, 238747 77503, 17479779916494559 77533, 233371 77547, 325849 77629, 149521 77667, 325889 77698, 253106733146638849 77703, 359177439131725901 77767, 194093 77769, 39864125923 77817, 325939 77821, 591319 77829, 325943 77842, 238921 77853, 325951 77857, 135311368914695989 77887, 711097 77911, 174583 77917, 711131 77919, 319571367410125973 77997, 325999 78019, 611279 78046, 239023 78097, 292693 78126, 23629588717444989813472694130212604239063 78153, 310923932771726051 78199, 117109 78211, 711173 78238, 239119 78249, 326083 78262, 210921835971839131 78294, 236130492609839147 78297, 326099 78298, 211223559711839149 78339, 326113 78346, 24386911182239173 78357, 326119 78361, 233407 78397, 117127 78423, 326141 78459, 326153 78466, 239233 78493, 531481 78501, 313719141157326167 78502, 239251 78513, 326171 78529, 115912164913317139 78559, 136043 78567, 326189 78574, 217342311462239287 78594, 236130992619839297 78598, 213263023604639299 78609, 326203 78619, 292711 78685, 515737 78703, 211373 78733, 431831 78753, 326251 78763, 79997 78766, 239383 78805, 515761 78829, 174637 78841, 749160911263 78847, 372131 78865, 515773 78871, 136067 78895, 531155509254515779 78922, 239461 78927, 326309 78973, 151523 78978, 236131632632639489 78991, 114316747318377181 79009, 711287 79015, 515803 79018, 239509 79033, 174649 79042, 239521 79069, 372137 79081, 312551 79093, 711299 79117, 611297 79123, 117193 79207, 103769 79219, 711317 79237, 175979100313434661 79246, 239623 79281, 39236920738311493447880926427 79285, 510115750578515857 79303, 711329 79311, 326437 79339, 131722135946676103 79341, 353159499149726447 79342, 239671 79345, 573522671133515869 79347, 326449 79369, 139571 79374, 236132292645839687 79381, 163487 79387, 711771031721711341 79426, 215126330252639713 79435, 515887 79437, 326479 79441, 174673 79459, 181439 79461, 3927811092433277299812943882926487 79471, 711353 79491, 326497 79497, 3911337399121219363657803108924097227883326499 79521, 313392039611726507 79543, 174679 79558, 239779 79615, 515923 79617, 326539 79683, 326561 79711, 791009 79713, 39175115352115634689885726571 79714, 239857 79729, 136133 79759, 471697 79761, 311332417725126587 79791, 326597 79803, 39886726601 79833, 31323396989267299897115720473471614126611 79837, 292753 79858, 239929 79885, 513651229614515977 79899, 326633 79927, 257311 79951, 174703 79953, 32987919275726651 80011, 29318989925812759 80043, 326681 80059, 711437 80061, 326687 80079, 326693 80095, 58319341596516019 80103, 326701 80119, 136163 80121, 317511571471326707 80211, 326737 80257, 174721 80281, 431867 80302, 240151 80338, 240169 80377, 117307 80382, 236133972679440191 80413, 97829 80419, 137587 80455, 516091 80466, 236134112682240233 80467, 671201 80478, 23691718345110215326330652678915782367447147348942134132682640239 80479, 711497 80487, 3911273399271297813243929817317894326829 80497, 101797 80518, 212725431763440259 80533, 292777 80562, 23629588717446392613892778134272685440281 80566, 240283 80589, 326863 80623, 372179 80635, 516127 80641, 117331 80643, 326881 80667, 39896326889 80709, 326903 80821, 136217 80823, 32987929278726941 80827, 131617 80841, 326947 80851, 233347 80853, 326951 80866, 240433 80887, 471721 80931, 353159509152726977 80965, 516193 80979, 326993 80994, 236134992699840497 81033, 327011 81034, 231621307261440517 81051, 327017 81061, 103787 81099, 39901127033 81115, 516223 81127, 312617 81142, 229581399279840571 81177, 327059 81211, 136247 81217, 241337 81229, 292801 81241, 137593 81247, 113719 81265, 516253 81319, 711617 81339, 319571427428127113 81381, 327127 81385, 541205397198516277 81402, 236135672713440701 81403, 729203401280711629 81427, 107761 81478, 240739 81507, 310126930380727169 81514, 253106769153840757 81526, 240763 81537, 327179 81541, 731117 81583, 174799 81589, 83983 81595, 516319 81598, 211223709741840799 81601, 136277 81633, 327211 81658, 240829 81661, 127643 81682, 240841 81706, 240853 81745, 516349 81751, 292819 81766, 240883 81805, 516361 81811, 233557 81831, 327277 81841, 223367 81858, 236714214219493898584711694136432728640929 81859, 109751 81879, 372149147557167138991169727293 81907, 711701 81951, 359177463138927317 81994, 211223727745440997 81997, 167491 82011, 327337 82023, 319571439431727341 82071, 3911339982924877461911927357 82074, 236136792735841037 82102, 241051 82105, 516421 82111, 157523 82117, 711731 82138, 271458671173441069 82147, 13718992311576319 82165, 516433 82195, 51785967483516439 82221, 327407 82227, 327409 82234, 241117 82249, 233353 82273, 292837 82282, 241141 82326, 236137212744241163 82354, 241177 82359, 39915127453 82366, 241183 82381, 136337 82437, 327479 82459, 136343 82465, 516493 82489, 117499 82497, 310725732177127499 82519, 179461 82543, 197419 82573, 711163 82587, 327529 82626, 23647941412822935868791758137712754241313 82666, 241333 82683, 39918727561 82687, 117517 82693, 136361 82711, 107773 82717, 181457 82734, 236137892757841367 82743, 327581 82749, 327583 82767, 347141587176127589 82819, 117529 82849, 136373 82873, 711839 82887, 372139471184127629 82906, 241453 82909, 174877 82911, 32987953285927637 82927, 136379 82929, 371121337723135910772513394975391184727643 82933, 239347 82941, 327647 82951, 117541 82977, 317511627488127659 82987, 312677 83019, 327673 83026, 241513 83067, 327689 83086, 241543 83095, 516619 83119, 431933 83161, 136397 83191, 233617 83194, 241597 83206, 241603 83211, 327737 83217, 327739 83263, 531571 83271, 341123677203127757 83302, 241651 83323, 97859 83337, 327779 83347, 117577 83365, 516673 83374, 241687 83395, 513651283641516679 83397, 327799 83427, 327809 83461, 711923 83469, 327823 83473, 136421 83481, 327827 83487, 317511637491127829 83491, 292879 83493, 39927727831 83499, 313392141642327833 83509, 376113692257 83511, 39278110313093927927837 83529, 39928127843 83533, 103811 83542, 241771 83553, 327851 83566, 27144794127254329658889177859691193841783 83569, 193433 83599, 412039 83683, 671249 83713, 711959 83722, 241821021204241861 83751, 327917 83806, 241903 83823, 327941 83827, 174931 83851, 711181 83859, 327953 83887, 149563 83901, 327967 83913, 383249337101127971 83934, 23691846639326139892797841967 83949, 327983 83953, 372269 83962, 241981 83971, 131641 84009, 341123683204928003 84031, 174943 84049, 712007 84055, 516811 84073, 117643 84145, 516829 84153, 328051 84166, 242083 84201, 313173951127221381663165121594953647728067 84202, 242101 84217, 753227371158912031 84226, 223461831366242113 84253, 136481 84277, 711187 84327, 328109 84331, 131694996487 84342, 236140572811442171 84355, 516871 84361, 292909 84394, 242197 84403, 117673 84415, 516883 84454, 242227 84471, 337111761228328157 84514, 242257 84597, 316317348951928199 84655, 516931 84663, 39236920740912273681940728221 84717, 39941328239 84733, 117703 84739, 101839 84763, 712109 84831, 328277 84841, 372293 84843, 3911339985725717713942728281 84849, 328283 84895, 516979 84909, 31131338393249341913102325732739771928303 84934, 242467 84939, 323691231369328313 84943, 173491 84982, 242491 84997, 117727 85018, 242509 85029, 372140491214728343 85051, 175003 85066, 242533 85099, 712157 85102, 217342503500642551 85107, 311332579773728369 85111, 136547 85177, 194483 85186, 219122338244642593 85233, 328411 85257, 39947328419 85273, 269317 85287, 328429 85311, 39947928437 85317, 328439 85321, 412081 85323, 371721511192393577171673406350191218928441 85327, 117757 85354, 242677 85377, 314919144757328459 85378, 242689 85414, 271461011220242707 85417, 229373 85458, 236142432848642729 85489, 531613 85507, 372311 85539, 328513 85546, 242773 85557, 319577923736110831501450328519 85558, 211223889777842779 85573, 831031 85594, 242797 85603, 749174712229 85633, 194507 85651, 97883 85663, 175039 85689, 39952128563 85699, 431993 85705, 561281305140517141 85726, 242863 85735, 513651319659517147 85737, 328579 85741, 179479 85759, 191449 85773, 328591 85846, 242923 85854, 236418212324634969810472094143092861842927 85857, 328619 85863, 328621 85882, 223461867373442941 85891, 136607 85897, 749175312271 85915, 517183 85923, 39954728641 85945, 517189 85978, 242989 85993, 113761 86023, 712289 86031, 3911337999121237363711869108926077821955928677 86035, 517207 86041, 139619 86059, 412099 86061, 328687 86101, 292969 86107, 712301 86223, 341123701210328741 86251, 117841 86259, 328753 86347, 791093 86349, 310726932180728783 86365, 523115751375517273 86367, 328789 86377, 175081 86439, 328813 86454, 23691827541601320248039606144092881843227 86511, 328837 86517, 39961328839 86538, 236144232884643269 86647, 117877 86703, 328901 86713, 117883 86758, 271461971239443379 86761, 531637 86763, 328921 86782, 243391 86793, 372141331239928931 86806, 243403 86809, 471847 86833, 711223 86842, 271462031240643421 86863, 712409 86883, 328961 86905, 57133565911914559551337248366851241517381 86926, 27144998887177462091241843463 86953, 89977 86965, 517393 86974, 243487 86983, 136691 87007, 167521 87027, 329009 87031, 712433 87034, 243517 87057, 39175115356917075121967329019 87081, 329027 87085, 517417 87097, 251347 87111, 39967929037 87154, 243577 87163, 101863 87177, 329059 87217, 136709 87222, 236145372907443611 87226, 243613 87229, 194591 87241, 711771031217218471133793112463 87301, 671303 87303, 329101 87307, 117937 87355, 517471 87369, 329123 87373, 111347143169517611185967217943 87478, 219122938245843739 87487, 89983 87489, 39972129163 87501, 329167 87502, 267134653130643751 87529, 136733 87562, 243781 87573, 329191 87574, 243787 87577, 712511 87603, 329201 87621, 329207 87627, 329209 87655, 547235373186517531 87673, 731201 87727, 372371 87729, 329243 87757, 127691 87778, 243889 87783, 329871009302729261 87807, 329269 87891, 329297 87937, 471871 87942, 236146572931443971 87946, 243973 87949, 372377 87985, 517597 87999, 329333 88041, 329347 88042, 244021 88045, 517609 88051, 191461 88161, 329387 88174, 244087 88203, 329401 88207, 712601 88243, 791117 88258, 244129 88279, 432053 88318, 244159 88338, 236147232944644169 88351, 531667 88417, 717119743520112631 88419, 329473 88441, 591499 88461, 39982929487 88489, 107827 88567, 312857 88573, 233851 88603, 251353 88621, 131722140152136817 88626, 236147712954244313 88629, 33193953285929543 88633, 611453 88645, 517729 88659, 39985129553 88674, 236147792955844337 88686, 23691318263978117234379758113722743411492768229854147812956244343 88702, 244351 88705, 511315756578517741 88714, 244357 88735, 517747 88761, 329587 88762, 244381 88782, 236147972959444391 88839, 39987129613 88879, 712697 88887, 329629 88891, 118081 88933, 136841 88953, 314919944759729651 88989, 329663 88999, 611459 89013, 329671 89014, 244507 89023, 118093 89049, 329683 89077, 281317 89143, 97919 89151, 329717 89169, 329723 89173, 712739 89194, 271423461612773225541939387863711274244597 89197, 191467 89263, 233881 89266, 244633 89283, 329761 89301, 317511032893098671751525329767 89335, 517851051525517867 89347, 471901 89359, 193463 89367, 329789 89374, 244687 89389, 711259 89391, 383249359107729797 89409, 329803 89422, 244711 89437, 175261 89461, 137653 89467, 712781 89469, 39994129823 89479, 136883 89497, 312887 89506, 244753 89541, 39994929847 89551, 711771163814112793 89589, 329863 89601, 329867 89617, 118147 89619, 329873 89629, 471907 89647, 157571 89673, 371213421126329891 89686, 244843 89703, 39996729901 89737, 194723 89773, 107839 89814, 236149692993844907 89841, 329947 89851, 194729 89857, 591523 89866, 27144998131262343686917183464191283844933 89878, 244939 89881, 118171 89887, 712841 89905, 517981 89953, 233911 89961, 315719147157329987 90022, 219233846103206437874195723693914473845011 90043, 127709 90046, 211224093818645023 90061, 113797 90078, 236150133002645039 90082, 273146617123445041 90085, 543215419209518017 90091, 233917 90103, 132923937731076931 90109, 251359 90141, 330047 90151, 175303 90159, 341123733219930053 90166, 245083 90174, 236714192138425711311413322626633939967879179815822147237342944746644112882150293005845087 90178, 211224099819845089 90223, 712889 90229, 233923 90235, 518047 90253, 175309 90258, 23671421424998147294307614921184221494298644712894150433008645129 90262, 245131 90283, 137659 90291, 330097 90295, 518059 90309, 330103 90319, 181499 90337, 136949 90361, 109829 90399, 330133 90409, 118219 90417, 330139 90463, 611483 90486, 23691118223366991984579141371274241135027822610054150813016245243 90553, 831091 90609, 330203 90634, 245317 90643, 723161563394112949 90655, 518131 90661, 175333 90714, 236132639781163232634896978151193023845357 90718, 267134677135445359 90721, 257353 90723, 330241 90733, 412213 90757, 471931 90763, 171928132347775339 90769, 712967 90778, 245389 90802, 283166547109445401 90805, 511135565127143635715139716516985825518161 90811, 712973 90813, 330271 90822, 236151373027445411 90883, 136991 90894, 236151493029845447 90919, 235967135715413953 90939, 330313 90943, 199457 90955, 518191 90963, 392781112333691010730321 90985, 531155587293518197 90999, 391011130333 91003, 118273 91039, 134714961119377003 91041, 330347 91057, 233710785124613959 91066, 245533 91123, 293311 91147, 729203449314313021 91165, 518233 91167, 330389 91174, 245587 91177, 731249 91239, 317511789536730413 91267, 118297 91281, 330427 91293, 330431 91321, 294767136319433149 91326, 23631629318649198214732946152213044245663 91329, 372143491304730443 91333, 111923209253361437397148078303 91363, 211433 91383, 383249367110130461 91389, 341123743222930463 91407, 330469 91417, 113809 91438, 213126234969845719 91447, 194813 91462, 27144794139278329658973194665331306645731 91498, 211224159831845749 91501, 372473 91527, 330509 91537, 239383 91555, 518311 91603, 471949 91614, 236152693053845807 91627, 591553 91642, 245821 91657, 151607 91671, 330557 91681, 175393 91687, 277331 91699, 107857 91705, 518341 91726, 245863 91831, 131701 91879, 139661 91891, 432137 91923, 313392357707130641 91929, 330643 91945, 573537711852593554971295248526271313518389 91959, 372129871512034536091057317143791313730653 91978, 245989 91981, 591559 91983, 330661 92001, 371321399127333710112359438170771314330667 92002, 215729331458646001 92007, 391022330669 92029, 713147 92046, 236232946586987138174529667105813341587200131744002153413068246023 92047, 831109 92059, 118369 92067, 330689 92091, 330697 92098, 246049 92101, 312971 92109, 330703 92113, 713159 92146, 246073 92149, 432143 92155, 573526331316518431 92161, 234007 92178, 236918275481162569113817073414512110242153633072646089 92193, 379237389116730731 92197, 713171 92239, 713177 92245, 51995971485518449 92253, 372123691611914835731337401143931317930751 92257, 118387 92266, 246133 92281, 713183 92329, 127727 92338, 213727433767446169 92359, 194861 92374, 246187 92422, 211224201840246211 92454, 236193857114811162224334866154093081846227 92478, 236154133082646239 92514, 236173451102907181427215442154193083846257 92517, 330839 92542, 246271 92559, 330853 92577, 330859 92605, 518521 92653, 118423 92698, 246349 92706, 236154513090246353 92709, 391030130903 92719, 118429 92727, 391030330909 92746, 279158587117446373 92755, 513651427713518551 92785, 571135557724138512051687265184351325518557 92797, 711307 92815, 51995977488518563 92818, 211224219843846409 92869, 713267 92878, 246439 92889, 391032130963 92923, 432161 92935, 518587 92949, 330983 92971, 239389 93022, 246511 93039, 331013 93046, 246523 93087, 391034331029 93091, 127733 93115, 511551693846518623 93129, 337111839251731043 93142, 271466531330646571 93163, 713309 93189, 331063 93193, 412273 93201, 347141661198331067 93217, 31979613007 93223, 137110192313137171 93231, 392781115134531035931077 93243, 331081 93246, 236155413108246623 93286, 246643 93301, 137177 93361, 891049 93391, 611531 93409, 293221 93414, 236155693113846707 93441, 331147 93459, 331153 93477, 331159 93486, 236155813116246743 93538, 246769 93549, 331183 93598, 253106883176646799 93606, 236156013120246803 93622, 246811 93631, 109859 93634, 246817 93661, 229409 93667, 713381 93678, 236132639781201240236037206156133122646839 93693, 331231 93715, 518743 93727, 194933 93747, 331249 93777, 331259 93778, 246889 93781, 191491 93793, 713399 93799, 97967 93823, 175519 93829, 101929 93831, 331277 93834, 236913182639781172344018021203240636095213721810426156393127846917 93838, 246919 93847, 137219 93853, 127739 93859, 471997 93877, 713411 93882, 236156473129446941 93895, 589211445105518779 93919, 713417 93921, 331307 93934, 267134701140246967 93943, 372539 93957, 331319 93973, 118543 93999, 331333 94011, 331337 94015, 518803 94101, 372144811344331367 94107, 313193957127247381741165124134953723931369 94122, 236791418212742546381831261621661892493784985675817471134116214941743224134864482522967231045813446156873137447061 94123, 611543 94147, 313037 94173, 331391 94174, 247087 94267, 107881 94315, 513651451725518863 94318, 271467371347447159 94339, 713477 94341, 313394159123177533767159923012419725731447 94363, 197479 94366, 229581627325447183 94389, 373219431129331463 94429, 891061 94453, 293257 94459, 591601 94467, 331489 94486, 271417341192383977942779555867491349847243 94489, 611549 94491, 391049931497 94509, 391050131503 94533, 331511 94537, 176783113914115561 94546, 241821153230647273 94555, 518911 94558, 247279 94611, 311334761141183517671155120132867860131537 94618, 247309 94629, 331543 94639, 171929332349815567 94641, 331547 94657, 103919 94663, 181523 94678, 247339 94726, 247363 94729, 432203 94741, 175573 94746, 236157913158247373 94762, 247381 94779, 391053131593 94822, 271314269118252110423647677372941354647411 94879, 791201 94917, 329871091327331639 94927, 771191497133713561 94989, 331663 95002, 247501 95031, 391055931677 95049, 395917717953153716111056131683 95074, 271467911358247537 95103, 391056731701 95113, 227419 95155, 519031 95173, 137321 95179, 713597 95182, 247591 95185, 519037 95197, 234139 95199, 313392441732331733 95215, 513713968569519043 95218, 247609 95245, 543215443221519049 95269, 472027 95281, 151631 95307, 331769 95334, 236158893177847667 95359, 118669 95373, 391059731791 95389, 713627 95422, 247711 95434, 247717 95437, 195023 95478, 236159133182647739 95491, 118681 95542, 223314662671347131426154120773082415447771 95559, 353159601180331853 95571, 379213741631111232592873333697778611517233125834551106191365331857 95578, 271468271365447789 95605, 519121 95646, 236193857114839167825175034159413188247823 95649, 331883 95653, 412333 95721, 331907 95767, 713681 95797, 137369 95817, 319415712377916812337504331939 95842, 217327734655447921 95871, 331957 95878, 247939 95899, 412339 95919, 331973 95953, 111361121143671793157373818723 95965, 517851129564519193 95995, 573263365131519199 96027, 332009 96109, 137393 96147, 392781118735611068332049 96166, 271468691373848083 96198, 236160333206648099 96207, 332069 96217, 118747 96219, 391069132073 96238, 248119 96247, 109883 96297, 332099 96333, 316319748959132111 96351, 332117 96358, 248179 96379, 313109 96402, 236160673213448201 96427, 211457 96438, 236160733214648219 96439, 723161599419313777 96463, 195077 96474, 236714214222974594689113782160793215848237 96477, 332159 96486, 236132639781237247437117422160813216248243 96505, 519301 96526, 217341672893345782839567848263 96529, 831163 96531, 323691399419732177 96541, 293329 96549, 332183 96573, 332191 96577, 131719232212472993233914374199508356817429 96591, 311332927878132197 96598, 248299 96609, 332203 96619, 531823 96649, 713807 96742, 248371 96745, 511551759879519349 96753, 332251 96793, 432251 96807, 323616918352914031587420932269 96814, 248407 96817, 713831 96853, 234211 96865, 519373 96871, 731327 96886, 219325138650248443 96894, 236791418214263126769153823074614538369211076613842161493229848447 96909, 332303 96913, 199487 96927, 332309 96946, 248473 96955, 519391 96961, 472063 96991, 234217 97009, 118819 97062, 236714214223114622693313866161773235448531 97066, 248533 97093, 151643 97099, 891091 97111, 713873 97129, 234110394323694223 97135, 519427 97141, 118831 97165, 519433 97186, 248593 97197, 317918153754332399 97198, 223462113422648599 97201, 137477 97219, 191509 97233, 332411 97273, 113723940726298843 97285, 519457 97291, 175997100316495723 97321, 713903 97323, 332441 97333, 131743 97366, 289178547109448683 97401, 332467 97471, 118861 97503, 372146431392932501 97518, 236162533250648759 97558, 248779 97591, 137507 97623, 391084732541 97627, 233419 97642, 248821 97683, 332561 97707, 332569 97719, 332573 97738, 248869 97765, 519553 97791, 337111881264332597 97833, 332611 97837, 227431 97867, 711314177217287341451127123873157889713981 97885, 519577 97891, 531847 97897, 223439 97914, 236163193263848957 97957, 234259 97963, 163601 97981, 137537 98001, 391088932667 98019, 391089132673 98043, 311332971891332681 98053, 313163 98061, 332687 98074, 249037 98083, 432281 98109, 39113399991297389191090132703 98127, 391090332709 98158, 217342887577449079 98167, 891103 98203, 714029 98206, 249103 98233, 234271 98247, 332749 98298, 236918438612712925425838138776277411432286546110922163833276649149 98311, 175783 98331, 373219449134732777 98337, 332779 98341, 432287 98398, 249199 98409, 332803 98422, 249211 98433, 391093732811 98449, 137573 98466, 236164113282249233 98506, 249253 98511, 372146911407332837 98551, 139709 98557, 671471 98578, 223462143428649289 98601, 323691429428732867 98634, 236173451102967193429015802164393287849317 98661, 332887 98677, 101977 98734, 249367 98743, 195197 98749, 714107 98799, 332933 98851, 412411 98862, 236164773295449431 98866, 249433 98881, 611621 98901, 39112733378199111243297333407891999122126732997366389911098932967 98926, 249463 98937, 391099332979 98958, 236164933298649479 98961, 332987 98965, 519793 98977, 293413 98979, 332993 98998, 249499 99001, 714143 99031, 167593 99033, 311333001900333011 99037, 971021 99049, 372677 99069, 333023 99087, 333029 99147, 333049 99157, 229433 99163, 531871 99193, 281353 99213, 333071 99217, 472111 99243, 391102733081 99253, 711771289902314179 99267, 372129871632034896091141342347271418133089 99301, 199499 99307, 137639 99321, 333107 99331, 175843 99445, 519889 99454, 249727 99457, 271367 99481, 531877 99483, 333161 99493, 372689 99507, 341123809242733169 99535, 517851171585519907 99595, 519919 99601, 103967 99613, 236171140316334331 99621, 391106933207 99622, 249811 99639, 391107133213 99681, 314922344766933227 99706, 249853 99742, 249871 99778, 271471271425449889 99799, 753269371188314257 99861, 333287 99862, 271449981019203871331426649931 99886, 249943 99919, 163613 99985, 519997 99993, 333331 100039, 711409 100047, 333349 100087, 137699 100102, 250051 100105, 520021 100159, 372707 100171, 109919 100246, 250123 100249, 175897 100257, 323691453435933419 100281, 333427 100285, 531155647323520057 100294, 250147 100306, 250153 100315, 520063 100339, 195281 100371, 333457 100387, 714341 100399, 137723 100431, 391115933477 100437, 333479 100479, 333493 100509, 333503 100543, 293467 100578, 236167633352650289 100597, 749205314371 100599, 333533 100603, 372719 100615, 520123 100623, 317511973591933541 100645, 520129 100687, 107941 100689, 333563 100698, 236132639781291258238737746167833356650349 100729, 263383 100743, 333581 100753, 531901 100765, 573528791439520153 100767, 333589 100777, 179563 100783, 971039 100831, 591709 100846, 250423 100869, 333623 100882, 250441 100893, 313391691995075972587776133631 100903, 119173 100909, 194711389321475311 100914, 236112233661211392422783634177268341529305845879174168193363850457 100917, 391121333639 100941, 333647 100963, 175939 100974, 236168293365850487 101011, 831217 101037, 333679 101077, 611657 101086, 250543 101139, 333713 101157, 372148171445133719 101163, 333721 101181, 329871163348933727 101206, 271472291445850603 101211, 311333067920133737 101266, 211224603920650633 101271, 333757 101307, 333769 101317, 711427 101353, 714479 101373, 333791 101434, 241821237247450717 101461, 241421 101482, 250741 101485, 520297 101497, 119227 101506, 250753 101521, 714503 101554, 250777 101569, 131696017813 101571, 333857 101586, 236169313386250793 101598, 236714214142598211812317724628735441357482686112391722241924784838725714514169333386650799 101613, 333871 101623, 151673 101722, 218128136256250861 101733, 333911 101734, 250867 101755, 547235433216520351 101769, 333923 101785, 520357 101791, 137743 101799, 391131133933 101815, 573529091454520363 101823, 333941 101838, 236112233661543308646299258169733394650919 101842, 213263917783450921 101845, 520369 101857, 714551 101899, 714557 101902, 250951 101905, 589229445114520381 101931, 361183557167133977 101938, 250969 101941, 714563 101947, 971051 101965, 520393 101967, 341123829248733989 101986, 250993 101989, 791291 101991, 333997 102051, 391723295169871532072613914936671173147920013519443760031133934017 102055, 520411 102073, 103991 102093, 334031 102118, 251059 102133, 109937 102142, 251071 102157, 113725140727619287 102171, 334057 102223, 119293 102261, 389267383114934087 102265, 511318156590520453 102271, 137867 102297, 313394361129183559793167723792623786934099 102313, 1011013 102327, 323691483444934109 102331, 313301 102349, 137873 102358, 261122839167851179 102381, 334127 102394, 251197 102406, 251203 102421, 119311 102439, 891151 102459, 371721414951119123147287357697833861200920912499487960271463734153 102471, 334157 102502, 253106967193451251 102511, 234457 102513, 334171 102514, 251257 102517, 313307 102526, 251263 102549, 334183 102558, 236170933418651279 102561, 317512011603334187 102574, 251287 102597, 311333109932734199 102598, 243861193238651299 102613, 710713774995914659 102619, 111920949154019329 102622, 213263947789451311 102637, 197521 102649, 234463 102691, 103997 102693, 334231 102694, 251347 102721, 139739 102727, 432389 102733, 195407 102741, 323691489446734247 102745, 520549 102783, 334261 102799, 176047 102807, 391142334269 102822, 236171373427451411 102847, 195413 102862, 251431 102874, 251437 102891, 334297 102901, 176053 102946, 251473 102951, 392731418193123279369837110712712511332138131143934317 102954, 236171593431851477 102957, 334319 103009, 239431 103027, 269383 103051, 137927 103057, 257401 103078, 251539 103111, 971063 103129, 137933 103209, 334403 103227, 319571811543334409 103246, 211131922263814320924728636141849472227173971469354347942938651623 103249, 223463 103261, 313331 103263, 334421 103273, 611693 103279, 114122945125199389 103287, 334429 103299, 372149191475734433 103321, 277373 103417, 195443 103422, 236112233661567313447019402172373447451711 103437, 392781127738311149334479 103443, 329418712384111892523356734481 103459, 307337 103461, 334487 103462, 217341792893585783043608651731 103489, 372797 103501, 294383124724073569 103513, 176089 103533, 334511 103539, 334513 103546, 223462251450251773 103579, 714797 103582, 267134773154651791 103585, 520717 103603, 313331 103609, 119419 103627, 173599 103633, 313343 103647, 334549 103666, 217343049609851833 103674, 236377411122246793414012802172793455851837 103711, 372803 103735, 520747 103746, 236172913458251873 103753, 132329934745117981 103762, 229581789357851881 103786, 251893 103789, 714827 103791, 329871193357934597 103795, 520759 103809, 334603 103882, 251941 103897, 107971 103909, 137993 103915, 573529691484520783 103926, 236173213464251963 103942, 251971 103953, 334651 103957, 714851 103978, 271449981061212274271485451989 104001, 334667 104034, 236714214224774954743114862173393467852017 104046, 236173413468252023 104077, 199523 104079, 334693 104083, 714869 104101, 195479 104106, 236173513470252053 104163, 334721 104209, 714887 104226, 236295887174599119817973594173713474252113 104277, 334759 104283, 391158734761 104299, 137111392314698023 104305, 523115907453520861 104326, 252163 104359, 791321 104362, 252181 104407, 131797 104413, 193541 104422, 210921847995852211 104446, 252223 104506, 252253 104517, 379212749637914718923744155371113231659213338714977116131493134839 104529, 334843 104563, 313373 104578, 252289 104581, 234547 104605, 520921 104626, 252313 104629, 714947 104631, 334877 104641, 269389 104689, 138053 104691, 334897 104697, 391163334899 104767, 138059 104782, 252391 104791, 432437 104802, 236174673493452401 104809, 163643 104815, 520963 104821, 372833 104863, 119533 104889, 334963 104893, 293617 104905, 520981 104914, 252457 105013, 195527 105039, 391133991061318395491167135013 105043, 173716762928396179 105061, 119551 105079, 135913776717818083 105082, 252541 105115, 521023 105145, 517851237618521029 105153, 335051 105166, 252583 105201, 391168935067 105217, 715031 105243, 335081 105267, 335089 105274, 213264049809852637 105289, 211499 105313, 138101 105321, 335107 105334, 252667 105339, 313373973111219481949144327012847810335113 105351, 335117 105382, 252691 105406, 271475291505852703 105418, 252709 105447, 335149 105453, 391171735151 105454, 252727 105463, 263401 105474, 236175793515852737 105511, 715073 105513, 335171 105535, 521107 105631, 731447 105634, 252817 105663, 335221 105757, 176221 105763, 729203521364715109 105789, 317919753759135263 105798, 236711142122334266771542292314584626871374160325193206480950387557961815114176333526652899 105831, 391133991069320796211175935277 105838, 252919 105841, 531997 105843, 335281 105874, 252937 105895, 521179 105958, 231621709341852979 105969, 335323 106006, 253003 106009, 227467 106021, 971093 106039, 195581 106098, 236176833536653049 106111, 293659 106143, 335381 106147, 179593 106162, 271475831516653081 106231, 412591 106282, 211224831966253141 106306, 223462311462253153 106327, 138179 106347, 335449 106351, 715193 106407, 379212763189563168939415067118231520135469 106429, 711499 106431, 313392729818735477 106447, 119677 106479, 391183135493 106483, 138191 106503, 313127139381335501 106521, 335507 106557, 311333229968735519 106579, 119689 106581, 335527 106585, 521317 106587, 391339117911273381991184335529 106626, 236132639781367273441018202177713554253313 106633, 293677 106638, 236714214225395078761715234177733554653319 106698, 236177833556653349 106717, 138209 106738, 283166643128653369 106741, 173617 106762, 253381 106773, 335591 106777, 111718757162819707 106803, 391186735601 106813, 715259 106831, 472273 106885, 521377 106933, 611753 106969, 412609 106983, 391188735661 106989, 319571877563135663 107005, 521401 107007, 353159673201935669 107011, 113947 107014, 253507 107023, 715289 107047, 167641 107058, 236714214225495098764715294178433568653529 107083, 176299 107178, 236178633572653589 107187, 335729 107191, 715313 107218, 253609 107241, 335747 107245, 589241445120521449 107266, 253633 107278, 253639 107313, 335771 107329, 293701 107362, 253681 107382, 236112233661627325448819762178973579453691 107389, 176317 107427, 335809 107431, 532027 107434, 253717 107439, 359177607182135813 107454, 236179093581853727 107455, 521491 107469, 391194135823 107479, 234673 107487, 392781132739811194335829 107515, 521503 107521, 195659 107527, 715361 107529, 373219491147335843 107533, 191563 107538, 236179233584653769 107554, 253777 107577, 391195335859 107593, 176329 107611, 715373 107629, 432503 107637, 335879 107638, 253819 107653, 713499116963711832197828115379 107673, 319571889566735891 107691, 335897 107743, 163661 107763, 317512113633935921 107785, 521557 107803, 671609 107829, 391198135943 107899, 111718757763479809 107902, 253951 107917, 311347 107929, 372917 107961, 372153971592913716791113203751411542335987 107974, 253987 107983, 831301 107986, 253993 107997, 335999 108001, 176353 108043, 138311 108073, 715439 108133, 711523 108166, 254083 108181, 251431 108229, 119839 108259, 731483 108297, 379212763811891915675731337171940115157120331547136099 108327, 336109 108361, 119851 108369, 391204136123 108387, 391204336129 108442, 259118919183854221 108453, 336151 108478, 273146743148654239 108493, 711771409986315499 108523, 472309 108531, 393193279389116735011205936177 108583, 234721 108613, 176389 108663, 329871249374736221 108706, 213263774113226481962146929384181836254353 108711, 394714125742377123131207936237 108753, 336251 108754, 254377 108777, 3101303359107736259 108789, 336263 108817, 173717362929416401 108826, 254413 108835, 521767 108847, 891223 108859, 234733 108874, 254437 108895, 529145751375521779 108921, 336307 108955, 571135557728338514151981311399051556521791 108966, 236111322263339667812714325428638142976285813971651279433024191495383829906181613632254483 108973, 591847 108985, 571307355153521797 108999, 391127339929736711013303403799091211136333 109003, 195737 109027, 313517 109057, 138389 109059, 336353 109066, 223462371474254533 109093, 127859 109113, 337111983294936371 109117, 195743 109119, 336373 109153, 119923 109177, 432539 109179, 379216317335199121311559736393 109183, 412663 109198, 271142769153854599 109219, 119929 109243, 293767 109246, 254623 109294, 254647 109347, 372141123127287381861889266752071562136449 109369, 134717961123278413 109393, 139787 109405, 521881 109426, 254713 109449, 391216136483 109501, 715643 109527, 311333319995736509 109546, 254773 109581, 336527 109587, 336529 109614, 236182693653854807 109615, 511551993996521923 109645, 521929 109651, 472333 109653, 336551 109657, 532069 109666, 254833 109689, 336563 109699, 163673 109713, 336571 109714, 211224987997454857 109738, 254869 109753, 715679 109761, 336587 109797, 336599 109842, 236183073661454921 109861, 611801 109866, 236183113662254933 109867, 181607 109869, 353159691207336623 109882, 254941 109909, 131839 109918, 254959 109927, 372971 109929, 336643 109939, 172922349337916467 109951, 432557 109959, 336653 109974, 236183293665854987 109977, 372152371571136659 109978, 211224999999854989 109993, 138461 110013, 336671 110014, 267134821164255007 110029, 195791 110046, 236183413668255023 110049, 336683 110077, 1110007 110089, 715727 110094, 236591181773113546229331866183493669855047 110098, 255049 110173, 715739 110179, 239461 110185, 522037 110191, 1011091 110229, 372129871812035436091267380152491574736743 110254, 255127 110283, 336761 110287, 293803 110299, 749225115757 110301, 336767 110302, 213126242184255151 110334, 236714213742717411114221322225942649751877799414911554262729825254788115762183893677855167 110365, 522073 110377, 234799 110379, 336793 110395, 522079 110434, 255217 110451, 3113333471004136817 110506, 2112250231004655253 110518, 255259 110529, 391228136843 110571, 336857 110578, 213264253850655289 110605, 5115520111005522121 110613, 336871 110626, 255313 110643, 313392837851136881 110658, 236184433688655329 110661, 336887 110671, 1110061 110683, 151733 110697, 336899 110701, 313571 110703, 336901 110719, 715817 110721, 313173951167221501663217128396513851736907 110727, 392781136741011230336909 110742, 236184573691455371 110761, 715823 110782, 271441821932873865741351270279131582655391 110785, 522157 110787, 336929 110839, 271409 110847, 3113333591007736949 110854, 243861289257855427 110857, 176521 110907, 391232336969 110914, 255457 110938, 255469 110974, 255487 110983, 294389124725813827 110991, 336997 111013, 715859 111022, 255511 111039, 337013 111063, 337021 111073, 313583 111079, 113983 111106, 273146761152255553 111117, 337039 111123, 391234737041 111133, 1110103 111139, 715877 111145, 522229 111147, 337049 111162, 236971911942913825735821146185273705455581 111166, 2112231621633263416821793358650531010655583 111178, 255589 111193, 251443 111223, 715889 111234, 236185393707855617 111243, 3113333711011337081 111247, 532099 111258, 236791418214263126883176626495298618179471236215894185433708655629 111289, 1091021 111291, 337097 111295, 522259 111319, 138563 111334, 255667 111361, 193577 111367, 176551 111379, 127877 111381, 313727141181337127 111415, 522283 111433, 715919 111463, 1110133 111466, 255733 111511, 195869 111519, 391239137173 111523, 229487 111526, 255763 111547, 331337 111553, 138581 111567, 337189 111579, 313392861858337193 111583, 241463 111603, 337201 111649, 311359 111651, 337217 111655, 513716368581522331 111669, 337223 111703, 373019 111709, 131696618593 111763, 731531 111787, 138599 111811, 715973 111831, 337277 111837, 3113333891016737279 111841, 971153 111865, 513651721860522373 111879, 393193279401120336091243137293 111901, 317353 111931, 173647 111937, 715991 111939, 337313 111955, 522391 111967, 197183134915775893 111991, 1110181 112003, 313613 112017, 337339 112027, 293863 112039, 181619 112045, 522409 112077, 379212763189593177941515337124531601137359 112083, 337361 112093, 197569 112107, 337369 112146, 236186913738256073 112159, 591901 112173, 313926941780737391 112177, 138629 112183, 176599 112186, 256093 112191, 337397 112231, 716033 112263, 323691627488137421 112333, 138641 112345, 522469 112351, 283397 112357, 749229316051 112383, 391248737461 112393, 711583 112402, 243861307261456201 112411, 138647 112431, 3113334071022137477 112435, 511319956599522487 112441, 716063 112453, 1110223 112467, 337489 112471, 472393 112533, 337511 112546, 271480391607856273 112551, 337517 112557, 317512207662137519 112587, 337529 112591, 173717962930436623 112597, 1091033 112609, 716087 112611, 337537 112629, 3113334131023937543 112669, 307367 112678, 2531061063212656339 112705, 522541 112711, 269419 112717, 1110247 112735, 573532211610522547 112738, 256369 112747, 313637 112753, 472399 112786, 256393 112806, 236918275420894178626712534188013760256403 112813, 373049 112821, 337607 112881, 319119757359137627 112899, 337633 112903, 712788916129 112962, 236671342012814025628431686188273765456481 112963, 831361 112978, 256489 112981, 1110271 112993, 193133615947 113035, 513374765185235481611173924053055869522607 113043, 372149147769230753831614937681 113047, 1143239473262910277 113059, 167677 113073, 337691 113179, 1110289 113185, 522637 113221, 1959101112119195959 113239, 749231116177 113283, 394112330736992127631258737761 113299, 137827 113311, 1110301 113317, 472411 113343, 337781 113361, 329871303390937787 113374, 256687 113379, 372153991619737793 113395, 522679 113413, 234931 113443, 1110313 113451, 313392909872737817 113461, 831367 113473, 532141 113481, 392781243467140142031260937827 113503, 138731 113517, 391261337839 113527, 1071061 113559, 337853 113578, 2109218521104256789 113583, 337861 113587, 971171 113613, 337871 113622, 236295887174653130619593918189373787456811 113626, 256813 113641, 1110331 113653, 891277 113721, 337907 113739, 331931223366937913 113743, 716249 113746, 256873 113851, 257443 113871, 337957 113914, 256957 113935, 522787 113959, 831373 113965, 523115991495522793 114007, 173659 114009, 372161891832674276231281186954291628738003 114055, 522811 114061, 167683 114081, 3113334571037138027 114109, 532153 114115, 529145787393522823 114121, 717491191378339592329671316303 114154, 257077 114189, 317512239671738063 114214, 257107 114241, 234967 114253, 611873 114265, 522853 114271, 229499 114273, 391269738091 114313, 791447 114337, 432659 114342, 23617193438515759102114118177323354646969100311211938200622423009336360186726190573811457171 114355, 522871 114357, 338119 114363, 399713129139387311791270738121 114391, 731567 114409, 191599 114442, 257221 114459, 338153 114477, 3113334691040738159 114501, 338167 114543, 3911133339899911714326742980197911571287293734718811104131272738181 114546, 2361734511021123224633696738190913818257273 114549, 338183 114574, 257287 114591, 338197 114619, 611879 114673, 138821 114693, 338231 114697, 1110427 114711, 338237 114715, 522943 114718, 241821399279857359 114751, 713919716967911831261882716393 114763, 1110433 114801, 317512251675338267 114805, 522961 114817, 196043 114861, 338287 114867, 391276338289 114877, 716411 114918, 2361071792143213585376421074191533830657459 114942, 236191573831457471 114963, 338321 115006, 257503 115045, 571935951331736658651211328760551643523009 115051, 1031117 115069, 235003 115081, 157733 115105, 523021 115129, 716447 115134, 236316293186619123818573714191893837857567 115141, 131722152167738857 115171, 716453 115207, 235009 115219, 138863 115242, 236192073841457621 115243, 176779 115278, 236192133842657639 115281, 391280938427 115293, 338431 115339, 716477 115347, 338449 115378, 257689 115383, 338461 115387, 196073 115398, 236918275421374274641112822192333846657699 115426, 257713 115447, 176791 115458, 236714214227495498824716494192433848657729 115462, 257731 115465, 573532991649523093 115494, 236192493849857747 115519, 331349 115537, 313727 115582, 257791 115587, 392781142742811284338529 115609, 138893 115614, 236918275421414282642312846192693853857807 115617, 317512267680138539 115629, 338543 115647, 372155071652138549 115654, 2711142277154751150252578261105141652257827 115677, 391285338559 115681, 293989 115687, 1113143809889910517 115701, 338567 115743, 341123941282338581 115801, 771233497163116543 115822, 271482731654657911 115827, 338609 115867, 1091063 115894, 257947 115899, 372155191655738633 115909, 313739 115923, 317512273681938641 115939, 269431 115951, 1183127913139710541 115993, 193601 115999, 138923 116007, 338669 116023, 157739 116029, 294001 116062, 258031 116083, 1161173671190310553 116119, 151769 116121, 338707 116122, 258061 116134, 258067 116142, 236132639781489297844678934193573871458071 116173, 235051 116218, 258109 116241, 338747 116245, 567335347173523249 116334, 236918234669138207281414562843168625295058646312926193893877858167 116335, 553265439219523267 116373, 338791 116377, 294013 116407, 591973 116409, 338803 116419, 472477 116422, 258211 116431, 716633 116439, 3371111049314738813 116473, 749237716639 116479, 1110589 116485, 523297 116494, 2714531061573143717421099219883211664258247 116509, 263443 116511, 371213547164138837 116517, 338839 116553, 338851 116569, 176857 116581, 731597 116589, 3113335331059938863 116601, 338867 116614, 219929339858658307 116617, 277421 116631, 391295938877 116653, 315371164322013763 116659, 432713 116665, 523333 116667, 392729871492614477831341402343211296338889 116674, 258337 116698, 219373874831667031406157730713154614258349 116701, 134719161124838977 116749, 313373 116785, 523357 116806, 258403 116851, 716693 116862, 236194773895458431 116877, 338959 116947, 831409 116979, 338993 116998, 271461122137274427854959191883571671458499 117009, 391300139003 117058, 2107214547109458529 117069, 339023 117079, 177197120716496887 117085, 523417 117087, 331931259377739029 117151, 193607 117166, 271483691673858583 117177, 313928141784339059 117181, 1761113103719216893 117186, 236195313906258593 117187, 716741 117217, 251467 117219, 341123953285939073 117226, 258613 117229, 716747 117262, 258631 117277, 235099 117283, 176899 117295, 523459 117297, 391303339099 117309, 339103 117321, 339107 117333, 391303739111 117337, 1110667 117354, 236195593911858677 117417, 339139 117426, 236195713914258713 117445, 583283415141523489 117451, 671753 117463, 1011163 117466, 258733 117478, 215130238977858739 117483, 339161 117505, 571331355165523501 117526, 258763 117574, 258787 117613, 337349 117631, 791489 117697, 373181 117717, 339239 117739, 281419 117799, 1110709 117871, 139067 117898, 2112223462332534665062563512653591071858949 117919, 373187 117927, 391310339309 117934, 258967 117961, 179659 117969, 339323 117982, 258991 117985, 573533711685523597 117987, 367201587176139329 118003, 197599 118006, 271484291685859003 118015, 523603 118018, 259009 118023, 339341 118026, 236918798315816623724947449871174714221494655713114196713934259013 118078, 243861373274659039 118119, 339373 118159, 173683 118183, 139091 118207, 432749 118237, 719491271338899312413622316891 118246, 259123 118306, 214929839779459153 118318, 259159 118327, 1131341347381710757 118345, 523669 118366, 259183 118417, 139109 118438, 259219 118467, 391316339489 118537, 1131049 118597, 233509 118609, 176977 118693, 196247 118705, 523741 118711, 176983 118729, 139133 118774, 259387 118837, 151787 118867, 716981 118887, 323691723516939629 118893, 339631 118906, 259453 118909, 716987 118933, 235171 118938, 236438612925846192213832766198233964659469 118939, 831433 118977, 339659 119005, 523801 119011, 611951 119013, 339671 119023, 412903 119037, 339679 119059, 671777 119077, 717011 119139, 315126345378939713 119149, 196271 119181, 339727 119182, 271485131702659591 119221, 177013 119242, 259621 119247, 339749 119254, 259627 119263, 196277 119283, 339761 119307, 339769 119319, 331931283384939773 119323, 177019 119329, 717047 119397, 339799 119431, 139187 119443, 313853 119446, 259723 119449, 1110859 119463, 339821 119467, 193619 119473, 373229 119479, 163733 119481, 339827 119482, 2112254311086259741 119517, 339839 119521, 472543 119523, 339841 119542, 259771 119562, 236199273985459781 119578, 217343517703459789 119581, 7117715531087117083 119587, 139199 119589, 339863 119593, 592027 119599, 199601 119629, 173122752738597037 119661, 339887 119683, 294127 119731, 177043 119845, 5115521791089523969 119883, 389267449134739961 119989, 971237 119995, 5103233515116523999 120034, 260017 120085, 573547732353293655111645255534311715524017 120093, 340031 120111, 340037 120126, 236200214004260063 120133, 139241 120151, 532267 120178, 260089 120189, 340063 120253, 741287419293317179 120271, 432797 120291, 3101303397119140097 120303, 391336740101 120313, 235231 120327, 319572111633340109 120333, 340111 120337, 717191 120355, 524071 120363, 353159757227140121 120381, 340127 120387, 340129 120403, 196337 120418, 260209 120481, 211571 120499, 412939 120507, 340169 120526, 271486091721860263 120553, 294157 120559, 313889 120565, 524113 120595, 589271445135524119 120597, 361183659197740199 120622, 241821471294260311 120634, 260317 120642, 236201074021460321 120655, 559295409204524131 120703, 1110973 120711, 340237 120733, 157769 120741, 316724150172340247 120742, 273146827165460371 120769, 1110979 120789, 391342140263 120826, 260413 120837, 347141857257140279 120849, 340283 120853, 177109 120903, 319121157363340301 120985, 524197 121015, 524203 121023, 37917215163113119153339357791101710711921237357637119134471728940341 121051, 717293 121054, 260527 121078, 260539 121107, 372173792192375115531533165957671730140369 121111, 281431 121126, 271142853170660563 121159, 177127 121161, 340387 121177, 749247317311 121186, 2132659791181587671027153420544661932260593 121197, 371213569170740399 121201, 196379 121218, 236891782272674545346811362202034040660609 121219, 717317 121279, 235273 121287, 340429 121294, 260647 121339, 711709 121387, 717341 121435, 514916374581524287 121459, 139343 121477, 331367 121522, 260761 121546, 260773 121557, 340519 121573, 611993 121597, 729203599419317371 121615, 513651871935524323 121627, 1111057 121651, 239509 121677, 340559 121707, 391352340569 121731, 340577 121746, 2361031972063093945916181182202914058260873 121749, 340583 121773, 340591 121819, 432833 121861, 313931 121879, 307397 121897, 791543 121933, 717419 121939, 611999 121945, 529145841420524389 121957, 1111087 121981, 223547 122062, 261031 122065, 524413 122079, 340693 122086, 261043 122101, 717443 122107, 235309 122119, 294211 122127, 340709 122137, 373301 122143, 717449 122161, 139397 122194, 2107214571114261097 122319, 391359140773 122335, 543215569284524467 122338, 261169 122361, 340787 122391, 392781151145331359940797 122403, 340801 122437, 717491 122446, 261223 122457, 340819 122538, 236132639781571314247139426204234084661269 122545, 524509 122547, 340849 122587, 177211 122646, 236204414088261323 122671, 612011 122677, 671831 122691, 340897 122695, 553265463231524539 122707, 139439 122709, 340903 122737, 139883 122758, 261379 122773, 717539 122781, 340927 122799, 340933 122817, 340939 122841, 391364940947 122842, 217343613722661421 122851, 432857 122857, 717551 122863, 131697279451 122866, 223462671534261433 122917, 1011217 122926, 261463 122949, 391957171719215764711366140983 122961, 317512411723340987 122965, 524593 122989, 294241 122995, 517851447723524599 123051, 341017 123054, 236205094101861527 123067, 717581 123133, 592087 123142, 223462677535461571 123157, 1071151 123171, 341057 123178, 21122121242509101855991119861589 123223, 149827 123241, 251491 123261, 318122754368141087 123262, 261631 123271, 131941 123274, 261637 123286, 261643 123343, 1111213 123346, 261673 123403, 7176111928942710372023725917629 123415, 524683 123423, 341141 123513, 313393167950141171 123514, 261757 123537, 341179 123561, 391372941187 123597, 393193279443132939871373341199 123609, 341203 123613, 717659 123643, 139511 123649, 532333 123679, 337367 123681, 341227 123691, 373343 123699, 341233 123709, 171932338365117277 123777, 391751153809242772811375341259 123781, 717683 123783, 31131339312134136310231331375139931125341261 123801, 329871423426941267 123807, 341269 123811, 177283 123841, 592099 123843, 341281 123865, 573535391769524773 123867, 391376341289 123978, 236206634132661989 123999, 341333 124009, 269461 124018, 2591181051210262009 124057, 131947 124063, 971279 124071, 341357 124093, 314003 124101, 391378941367 124111, 139547 124113, 3113337611128341371 124129, 1011229 124137, 3913391171061318395491379341379 124179, 3113353711592135837811749234337631128941393 124314, 236207194143862157 124329, 341443 124341, 372131931912175736511337401159211776341447 124357, 373361 124381, 294289 124413, 3113339367110141471 124473, 341491 124519, 239521 124521, 341507 124563, 341521 124573, 347359 124597, 1147241517265111327 124606, 262303 124623, 396118322754968120431384741541 124629, 341543 124639, 1131103 124651, 314021 124702, 262351 124747, 771251497175717821 124791, 341597 124797, 317512447734141599 124807, 137911 124809, 341603 124822, 213927844989862411 124831, 7171191049734317833 124851, 341617 124855, 524971 124861, 1111351 124918, 262459 124923, 341641 124941, 341647 124957, 717851 124977, 341659 125002, 262501 125011, 149839 125026, 2112256831136662513 125035, 517851471735525007 125043, 341681 125047, 139619 125061, 341687 125065, 525013 125077, 192922755143136583 125143, 235441 125154, 2369171834511021533064098181227245436816953736213906208594171862577 125187, 341729 125194, 262597 125227, 971291 125245, 537185677338525049 125254, 262627 125257, 1159193649212311387 125263, 229547 125313, 341771 125314, 271489511790262657 125323, 1111393 125331, 341777 125389, 1111399 125395, 531155809404525079 125401, 891409 125418, 236209034180662709 125434, 2591181063212662717 125439, 341813 125446, 262723 125461, 717923 125473, 271463 125553, 341851 125563, 307409 125589, 341863 125593, 139661 125611, 592129 125613, 391751153821246373891395741871 125635, 525127 125637, 341879 125638, 262819 125653, 1111423 125665, 541205613306525133 125733, 341911 125758, 222727745455462879 125773, 294337 125781, 341927 125794, 262897 125811, 379216319975991139791797341937 125815, 525163 125841, 341947 125859, 341953 125877, 341959 125886, 236209814196262943 125913, 319475714189322092679662741971 125917, 1111447 125923, 717989 125949, 341983 125962, 262981 125983, 1113143881969111453 126061, 139697 126073, 139907 126094, 267134941188263047 126106, 217343709741863053 126109, 235483 126115, 5115522931146525223 126159, 3113338231146942053 126166, 219931739863463083 126183, 342061 126213, 342071 126214, 2112257371147463107 126217, 713197391133247511949138717296643970918031 126219, 342073 126231, 372160111803342077 126235, 525247 126261, 391402942087 126265, 525253 126273, 372149147859257760131803942091 126277, 197641 126283, 293431 126289, 472687 126301, 718043 126303, 342101 126343, 718049 126361, 177433 126367, 1071181 126373, 139721 126379, 1111489 126393, 342131 126399, 371321399127346313893241601997231805742133 126489, 3113338331149942163 126513, 391405742171 126537, 342179 126559, 196661 126561, 342187 126591, 342197 126595, 573536171808525319 126607, 139739 126619, 127997 126649, 413089 126717, 342239 126727, 353359 126771, 342257 126793, 1031231 126843, 342281 126847, 718121 126849, 342283 126865, 525373 126886, 263443 126897, 342299 126919, 131697519763 126937, 235519 126955, 525391 126973, 71117779711918767910671309164974691154318139 127003, 891427 127011, 342337 127042, 263521 127045, 525409 127063, 612083 127066, 263533 127077, 342359 127093, 731741 127113, 372160531815942371 127119, 342373 127137, 342379 127138, 2112257791155863569 127177, 177481 127183, 718169 127195, 525439 127222, 263611 127231, 139787 127237, 1143269473295911567 127257, 313391692515077533263978942419 127269, 397917923753771116111414142423 127279, 177487 127285, 525457 127294, 263647 127303, 1171163781179311573 127339, 294391 127353, 342451 127354, 237741721344263677 127377, 391415342459 127401, 342467 127417, 472711 127459, 197647 127465, 513375365185265481689196124053445980525493 127471, 196709 127474, 263737 127513, 294397 127522, 263761 127606, 263803 127614, 236212694253863807 127651, 1071193 127653, 317512503750942551 127705, 525541 127707, 342569 127726, 263863 127734, 2366112218334936669810472094212894257863867 127786, 218135336270663893 127882, 243861487297463941 127906, 231622063412663953 127915, 525583 127999, 314129 128013, 371213601180342671 128014, 264007 128017, 313409 128026, 264013 128071, 891439 128089, 135916776721719853 128091, 342697 128101, 532417 128131, 373463 128155, 519719535536113491805674525631 128166, 2364182123246521104215633126213614272264083 128182, 264091 128238, 2361122293358666787134174201319402638737957147419141943221138864422582911658213734274664119 128289, 3721411231492874478611043312961091832742763 128323, 139871 128343, 317923953771742781 128371, 3141101127131314141 128382, 236213974279464191 128463, 342821 128479, 139883 128523, 342841 128526, 236316293186691138220734146214214284264263 128533, 791627 128539, 173743 128566, 264283 128581, 711811 128589, 342863 128593, 235591 128602, 264301 128637, 391429342879 128653, 718379 128671, 223577 128697, 342899 128701, 179719 128713, 139901 128787, 342929 128791, 139907 128802, 236214674293464401 128806, 264403 128827, 472741 128838, 2361091972183273945916541182214734294664419 128847, 329871481444342949 128863, 741287449314318409 128893, 612113 128899, 831553 128905, 5729351271452036358891015368344451841525781 128917, 137941 128929, 314159 128967, 342989 128974, 2591181093218664487 128977, 1011277 128989, 718427 128994, 236214994299864497 128997, 3911339913033909117271433342999 129013, 177589 129031, 718433 129057, 343019 129106, 264553 129111, 343037 129133, 263491 129145, 5231151123561525829 129153, 343051 129154, 264577 129163, 227569 129178, 271492271845464589 129199, 718457 129202, 264601 129211, 157823 129261, 3113339171175143087 129271, 257503 129307, 191677 129354, 236215594311864677 129397, 831559 129429, 397319721959165717731438143143 129451, 718493 129511, 671933 129526, 264763 129531, 343177 129565, 525913 129571, 139967 129586, 264793 129622, 264811 129633, 372161731851943211 129642, 23617313441516282931021231862465276971054127113941581209125423162381341827626216074321464821 129691, 532447 129711, 343237 129739, 137947 129741, 359177733219943247 129742, 264871 129777, 318123954371743259 129781, 233557 129783, 343261 129787, 718541 129807, 391442343269 129811, 1111801 129826, 213927846793464913 129838, 264919 129847, 413167 129879, 391443143293 129898, 2107214607121464949 129903, 3194353571291598171007227924513021683743301 129939, 343313 129961, 131697699997 129994, 264997 130006, 265003 130029, 389267487146143343 130129, 373517 130137, 372161971859143379 130138, 231622099419865069 130173, 343391 130177, 349373 130189, 1011289 130233, 343411 130234, 2132650091001865117 130246, 265123 130258, 265129 130263, 372162031860943421 130278, 236217134342665139 130282, 265141 130293, 393193279467140142031447743431 130306, 2112259231184665153 130309, 311419 130311, 391447943437 130357, 612137 130401, 391448943467 130443, 343481 130507, 1310039 130527, 391450343509 130537, 1111867 130549, 196871 130551, 343517 130609, 211619 130614, 2361122336619793958593711874217694353865307 130627, 718661 130629, 343543 130722, 236217874357465361 130734, 236918275481162243269486538807161424214842726314526217894357865367 130737, 343579 130747, 177691 130749, 3411231063318943583 130761, 392729871672615017831503450948431452943587 130762, 265381 130773, 343591 130789, 314219 130803, 359177739221743601 130837, 718691 130846, 265423 130861, 1071223 130867, 1111897 130879, 749267118697 130881, 343627 130903, 791657 130945, 526189 130947, 343649 130971, 314929344787943657 130978, 243861523304665489 130983, 343661 130989, 347141929278743663 131014, 2132650391007865507 131029, 283463 131086, 265543 131107, 433049 131137, 711847 131158, 265579 131167, 294523 131191, 1271033 131209, 1310093 131233, 196907 131245, 526249 131254, 229315862731468991798211722634234452665627 131263, 1111933 131319, 391459143773 131361, 343787 131377, 791663 131389, 831583 131403, 343801 131434, 265717 131458, 265729 131485, 526297 131503, 1071229 131533, 314243 131583, 323691907572143861 131613, 319572309692743871 131622, 236219374387465811 131623, 433061 131662, 265831 131673, 343891 131706, 236918275481162243271486542813162624394878731714634219514390265853 131737, 1031279 131739, 343913 131751, 391463943917 131761, 749268918823 131799, 343933 131809, 891481 131829, 343943 131842, 265921 131853, 343951 131871, 3113339389116743957 131889, 343963 131914, 265957 131935, 526387 131943, 3721611031833094277211281216362831884943981 131983, 592237 131991, 343997 132042, 2365911817735437374611192238220074401466021 132051, 344017 132058, 266029 132063, 344021 132091, 314261 132094, 266047 132115, 526423 132121, 1112011 132159, 344053 132166, 266083 132174, 2367914182142631261049209831476294734394411468618882220294405866087 132178, 266089 132193, 163811 132226, 217343889777866113 132259, 196961 132271, 349379 132274, 266137 132289, 263503 132295, 526459 132333, 344111 132343, 891487 132394, 2531061249249866197 132397, 433079 132433, 718919 132442, 266221 132462, 2369111822273354669919822329744659466913382007245340144906602173591204214718220774415466231 132478, 266239 132505, 526501 132513, 344171 132567, 344189 132586, 266293 132621, 344207 132663, 344221 132718, 266359 132747, 344249 132771, 344257 132789, 344263 132807, 344269 132811, 718973 132819, 344273 132823, 317419 132829, 196991 132865, 526573 132874, 271494911898266437 132877, 891493 132879, 344293 132898, 266449 132913, 1143281473309112083 132973, 1031291 132981, 319572333699944327 132982, 266491 132991, 177823 132997, 179743 133009, 235783 133063, 719009 133113, 344371 133123, 239557 133135, 526627 133165, 526633 133174, 266587 133177, 1112107 133206, 236149298447894222014440266603 133227, 39113131339393101711791480344409 133243, 1112113 133251, 344417 133267, 711877 133291, 413251 133297, 177841 133333, 151883 133339, 472837 133359, 344453 133366, 266683 133369, 197677 133378, 271449981361272295271905466689 133402, 266701 133405, 526681 133449, 344483 133453, 1131181 133477, 1271051 133491, 344497 133539, 372163591907744513 133554, 236222594451866777 133573, 1112143 133585, 526717 133587, 391484344529 133594, 266797 133603, 172927149346077859 133629, 344543 133642, 266821 133663, 731831 133671, 317512621786344557 133681, 373613 133699, 235813 133726, 266863 133729, 173773 133759, 181739 133761, 344587 133789, 337397 133795, 526759 133798, 2714193813326650310063521704295571911466899 133803, 391486744601 133837, 1123253529581912167 133842, 236223074461466921 133863, 344621 133885, 526777 133894, 266947 133927, 199673 133933, 671999 133942, 219334738669466971 133954, 266977 133957, 971381 133966, 271449981367273495691913866983 133989, 359177757227144663 134011, 177883 134029, 741287467326919147 134049, 344683 134073, 391489744691 134091, 394714131742395128531489944697 134098, 267049 134119, 711889 134143, 532531 134155, 573538331916526831 134157, 319722759168144719 134167, 1112197 134202, 236223674473467101 134221, 791699 134259, 344753 134274, 236714212342466913813916127832241748383496697319462919319758386394959119182223794475867137 134278, 267139 134281, 719183 134347, 373631 134374, 267187 134377, 831619 134391, 344797 134413, 139967 134419, 177907 134434, 267217 134454, 236224094481867227 134457, 344819 134509, 314339 134527, 235849 134529, 344843 134542, 267271 134551, 197683 134554, 271449981373274696111922267277 134611, 227593 134614, 267307 134629, 1112239 134659, 719237 134661, 344887 134662, 2112261211224267331 134671, 137983 134679, 344893 134727, 344909 134751, 344917 134755, 526951 134782, 267391 134797, 1310369 134821, 294649 134866, 267433 134869, 719267 134877, 344959 134889, 344963 134959, 1112269 134961, 344987 134962, 267481 134965, 526993 134986, 267493 135022, 267511 135031, 1317471692216117992873794310387 135046, 267523 135061, 1311031 135067, 314357 135103, 167809 135133, 177949 135162, 236918275425035006750915018225274505467581 135169, 295979171122914661 135187, 1310399 135202, 267601 135229, 271499 135259, 413299 135321, 3431291049314745107 135331, 719333 135337, 171932341971237961 135358, 267679 135417, 345139 135478, 271496771935467739 135517, 294673 135526, 267763 135543, 345181 135547, 891523 135553, 1112323 135558, 2369171834511021533064438861329265839877531797415062225934518667779 135595, 547235577288527119 135622, 219384383861668171577163431543569713867811 135658, 267829 135663, 3113341111233345221 135673, 211643 135715, 527143 135739, 149911 135763, 1271069 135777, 345259 135789, 345263 135802, 267901 135823, 711913 135838, 223462953590667919 135895, 527179 135909, 391510145303 135921, 345307 135922, 267961 135931, 181751 135933, 372164731941945311 135943, 672029 135969, 361183743222945323 135987, 345329 135997, 3141107127133174387 136021, 197159 136041, 313733141199345347 136087, 719441 136102, 217344003800668051 136129, 719447 136191, 3113341271238145397 136203, 383249547164145401 136231, 592309 136239, 345413 136306, 217193438211323422646358740097174801868153 136321, 235927 136326, 236227214544268163 136342, 268171 136381, 719483 136387, 294703 136405, 527281 136414, 268207 136446, 236227414548268223 136543, 1112413 136587, 3113341391241745529 136599, 345533 136627, 317431 136663, 178039 136666, 223462971594268333 136683, 391518745561 136714, 217344021804268357 136723, 472909 136741, 1131341401441112431 136797, 345599 136831, 293467 136833, 317512683804945611 136873, 1123253541595112443 136882, 289178769153868441 136933, 197207 136947, 319123957371745649 136953, 391521745651 136959, 371213643192945653 136977, 345659 137002, 268501 137005, 5114753552352655175832491258529151245527401 137014, 268507 137017, 181757 137019, 345673 137023, 263521 137035, 527407 137041, 433187 137062, 268531 137071, 1117187733806312461 137113, 314423 137121, 345707 137166, 236228614572268583 137173, 178069 137179, 719597 137271, 345757 137274, 2361371672743344115018221002228794575868637 137281, 1071283 137317, 353389 137409, 316328148984345803 137451, 345817 137455, 537185743371527491 137458, 268729 137469, 345823 137521, 1131217 137527, 1371149923193710579 137542, 268771 137554, 268777 137559, 345853 137581, 178093 137607, 345869 137617, 197243 137626, 268813 137629, 229601 137638, 268819 137661, 345887 137671, 314441 137677, 376122573721 137689, 157877 137749, 139991 137766, 236229614592268883 137767, 719681 137779, 294751 137794, 268897 137815, 543215641320527563 137817, 391531345939 137818, 268909 137821, 283487 137854, 268927 137859, 345953 137871, 391531945957 137893, 719699 137905, 527581 137935, 573549245563281539411970527587 137937, 345979 137949, 372165691970745983 137958, 236229934598668979 137961, 391532945987 137973, 311333711111333940712211243372941811254345991 137986, 268993 137989, 178117 138019, 719717 138049, 1271087 138057, 317512707812146019 138058, 269029 138066, 236230114602269033 138102, 236230174603469051 138133, 472939 138151, 1310627 138153, 346051 138193, 1117187739812912563 138199, 1131223 138223, 277499 138234, 236230394607869117 138249, 391536146083 138259, 1112569 138262, 273146947189469131 138271, 719753 138273, 346091 138291, 331931487446146097 138399, 346133 138423, 346141 138441, 346147 138442, 269221 138486, 236230814616269243 138505, 527701 138514, 269257 138522, 236230874617469261 138541, 1310657 138553, 349397 138561, 346187 138606, 2361326397817773554533110662231014620269303 138607, 719801 138613, 971429 138634, 269317 138643, 197297 138646, 218136238376669323 138678, 236295887174797159423914782231134622669339 138682, 269341 138691, 719813 138702, 236231174623469351 138706, 222331144662269353 138709, 592351 138721, 1112611 138745, 527749 138751, 891559 138766, 269383 138778, 269389 138783, 346261 138786, 236231314626269393 138823, 294787 138847, 433229 138862, 269431 138897, 3911233361699918320725354967175914032013227742096039126271543346299 138913, 532621 138927, 346309 138946, 269473 138997, 294793 139011, 346337 139015, 527803 139039, 163853 139045, 527809 139047, 346349 139063, 592357 139078, 269539 139101, 319923359769946367 139105, 543215647323527821 139147, 347401 139171, 294799 139183, 1112653 139197, 346399 139219, 236053 139239, 392781191243573729171951571547146413 139246, 269623 139255, 527851 139261, 472963 139266, 236918275425795158773715474232114642269633 139317, 346439 139323, 346441 139341, 346447 139399, 1310723 139471, 211661 139494, 2366713420134740269410412082232494649869747 139495, 5231151213606527899 139522, 269761 139549, 532633 139557, 3113342291268746519 139558, 269779 139567, 233599 139579, 1112689 139582, 2101202691138269791 139611, 317326951980746537 139614, 236232694653869807 139651, 359389 139677, 346559 139705, 527941 139731, 347141991297346577 139767, 346589 139803, 346601 139819, 891571 139863, 323692027608146621 139867, 7132953912033713776891537263948231075919981 139879, 433253 139894, 2113226619123869947 139903, 314513 139906, 2132653811076269953 139915, 527983 139917, 346639 139927, 178231 139942, 2112263611272269971 139945, 5136521531076527989 139947, 346649 140002, 270001 140005, 528001 140011, 197369 140017, 163859 140019, 3113342431272946673 140026, 2531061321264270013 140041, 1129319439482912731 140083, 711973 140101, 1316982910777 140137, 433259 140161, 720023 140166, 23691318263978117234599119817973594539177871078215574233614672270083 140214, 236233694673870107 140229, 391558146743 140233, 1773113124119218249 140242, 270121 140253, 346751 140257, 1310789 140293, 239587 140298, 2366713420134940269810472094233834676670149 140311, 193727 140314, 270157 140326, 270163 140377, 229613 140439, 3133916927750783136011080346813 140446, 270223 140458, 270229 140482, 270241 140485, 528097 140493, 346831 140539, 7171191181826720077 140542, 270271 140554, 231622267453470277 140571, 391561946857 140601, 346867 140623, 720089 140631, 346877 140653, 433271 140674, 237741901380270337 140707, 720101 140758, 270379 140769, 391564146923 140782, 243861637327470391 140799, 346933 140815, 528163 140823, 391564746941 140851, 831697 140857, 791783 140902, 270451 140919, 3107321439131746973 141019, 314549 141031, 1112821 141093, 396118325754977123131567747031 141094, 219384779941588931501178630023713742670547 141097, 111011271111139712827 141109, 731933 141111, 391567947037 141123, 347041 141139, 532663 141153, 347051 141166, 270583 141171, 347057 141177, 347059 141187, 592393 141189, 319572477743147063 141211, 720173 141238, 270619 141247, 1371031 141289, 236143 141331, 791789 141334, 270667 141367, 373379 141387, 347129 141418, 270709 141429, 347143 141445, 528289 141451, 373823 141454, 2107214661132270727 141463, 749288720209 141466, 2132654411088270733 141483, 347161 141487, 151937 141553, 353401 141583, 1310891 141597, 391573347199 141607, 192925755148837453 141654, 236236094721870827 141682, 270841 141726, 23613232639466978791381582372994745988971027179418172054308136345451616210902236214724270863 141753, 347251 141799, 747329431301720257 141805, 579359395179528361 141826, 270913 141847, 831709 141859, 1271117 141861, 347287 141865, 517851669834528373 141874, 270937 141889, 1112899 141891, 347297 141901, 413461 141934, 213265310310620668913391378267854591091870967 141951, 347317 141985, 573365389194528397 141997, 149953 142015, 528403 142021, 1112911 142071, 323296971872136671633200120594899617747357 142126, 217935839779471063 142165, 528433 142179, 383249571171347393 142203, 3107321443132947401 142219, 7117718471292920317 142227, 391580347409 142234, 219381973613947223743748671117 142255, 5231151237618528451 142258, 271129 142267, 1131259 142279, 791801 142321, 314591 142347, 323692063618947449 142351, 1112941 142353, 391581747451 142363, 1347233611302910951 142386, 2361938571141249249837477494237314746271193 142399, 157907 142402, 2132654771095471201 142411, 532687 142413, 3371111283384947471 142419, 329871637491147473 142443, 37917192149515763119133147153171323357399441833931969107111972261249927932907678374978379158272034947481 142447, 181787 142483, 1112953 142489, 891601 142507, 314597 142513, 720359 142522, 271261 142539, 347513 142549, 1112959 142599, 347533 142606, 2113226631126271303 142633, 197507 142651, 294919 142666, 271333 142689, 347563 142693, 314603 142702, 2714101932038671351 142717, 433319 142726, 271363 142741, 349409 142773, 347591 142777, 672131 142795, 528559 142801, 612341 142813, 1112983 142827, 347609 142831, 1310987 142849, 720407 142858, 271429 142887, 347629 142909, 1310993 142942, 271471 142966, 271483 143029, 281509 143071, 173827 143098, 271549 143151, 347717 143155, 528631 143179, 672137 143194, 271597 143206, 27145310619337138674213512702102292045871603 143217, 391591347739 143253, 3911339914474341130231591747751 143322, 236238874777471661 143337, 347779 143349, 371213673201947783 143358, 236238934778671679 143383, 1271129 143386, 271693 143397, 39274711314133942310171269305153111593347799 143473, 1113043 143502, 236239174783471751 143523, 3937111333431129338791594747841 143581, 672143 143598, 23671314212639427891182263273526546789157818413419368255236838102571104620514239334786671799 143599, 178447 143601, 315131745395147867 143611, 1311047 143614, 271807 143631, 391595947877 143662, 2109218659131871831 143673, 383249577173147891 143698, 271849 143707, 1311097 143722, 271861 143734, 271867 143739, 391597147913 143746, 241821753350671873 143757, 391597347919 143758, 271879 143761, 233617 143799, 347933 143851, 971483 143853, 347951 143886, 236239814796271943 143887, 197573 143907, 347969 143929, 163883 143943, 347981 143973, 391751153941282384691599747991 144051, 348017 144097, 1031399 144106, 272053 144118, 2132326462412994825983133554362661108672059 144121, 167863 144133, 1113103 144177, 3111733511872575617712827436984811310748059 144181, 314651 144262, 217344243848672131 144277, 720611 144297, 391603348099 144429, 331931553465948143 144454, 272227 144489, 348163 144493, 1311103 144499, 229631 144517, 178501 144519, 367201719215748173 144523, 433361 144538, 272269 144558, 236918275426775354803116062240934818672279 144574, 272287 144601, 236287 144607, 413527 144631, 612371 144663, 348221 144679, 149971 144682, 272341 144703, 1311131 144706, 272353 144717, 348239 144721, 178513 144741, 348247 144766, 272383 144777, 348259 144783, 391608748261 144799, 197621 144841, 241601 144853, 413533 144858, 2367142142344968981034720694241434828672429 144865, 573541392069528973 144943, 193751 144997, 612377 145039, 433373 145053, 397121322763968120431611748351 145057, 1113187 145059, 348353 145066, 272533 145101, 3113343971319148367 145129, 178537 145131, 372169112073348377 145135, 529027 145147, 173839 145165, 529033 145183, 473089 145186, 222931745863472593 145201, 720743 145221, 348407 145249, 1311173 145269, 391614148423 145279, 1311109 145311, 348437 145357, 1371061 145363, 612383 145389, 348463 145401, 317512851855348467 145411, 720773 145426, 219384386891788171634169133823827765472713 145429, 236323 145438, 272719 145461, 348487 145498, 223463163632672749 145542, 2361271912543813825737621146242574851472771 145567, 236329 145581, 348527 145582, 283166877175472791 145645, 529129 145653, 3471411033309948551 145683, 391618748561 145689, 348563 145699, 367397 145713, 348571 145714, 241821777355472857 145747, 747329443310120821 145761, 3711213377231631189344176941132512082348587 145765, 529153 145774, 223463169633872887 145795, 5136522431121529159 145798, 226927153854272899 145801, 211691 145809, 391751153953285985771620148603 145822, 272911 145837, 413557 145843, 172337339163418579 145891, 373943 145918, 272959 145927, 731999 145983, 348661 145999, 720857 146007, 391622348669 146017, 151967 146043, 392781243601180354091622748681 146049, 389267547164148683 146061, 391622948687 146086, 273043 146089, 1391051 146101, 193757 146107, 1311239 146122, 273061 146131, 295039 146149, 178597 146193, 348731 146209, 720887 146254, 273127 146263, 1311251 146271, 348757 146278, 211226110912221867111991342239866491329873139 146281, 197699 146293, 720899 146311, 1147283517311313301 146331, 397121322963968720611625948777 146337, 348779 146346, 236243914878273173 146353, 178609 146362, 273181 146374, 216332644989873187 146379, 359177827248148793 146398, 2714104572091473199 146413, 314723 146446, 237741979395873223 146482, 2714104632092673241 146517, 372169772093148839 146526, 236244214884273263 146545, 573553792653713955531855276541872093529309 146569, 1031423 146629, 720947 146635, 529327 146649, 348883 146659, 178627 146667, 348889 146671, 723161911637720953 146707, 1113337 146731, 1311287 146778, 2361734511021439287843178634244634892673389 146863, 175316390127718639 146866, 273433 146874, 23671314212639427891182269273538546807161418833497376656496994104911129820982244794895873437 146881, 720983 146911, 1071373 146959, 179821 146967, 348989 146973, 348991 146994, 236244994899873497 147034, 273517 147043, 1311311 147055, 529411 147061, 199739 147079, 197741 147085, 5231151279639529417 147091, 721013 147115, 529423 147129, 349043 147202, 2112266911338273601 147226, 273613 147243, 349081 147286, 273643 147307, 197753 147327, 349109 147349, 295081 147363, 349121 147418, 273709 147421, 197759 147454, 273727 147462, 2367142142351170221053321066245774915473731 147513, 349171 147531, 349177 147577, 178681 147589, 1311353 147597, 349199 147621, 349207 147622, 231622381476273811 147631, 1113421 147633, 349211 147643, 191773 147655, 529531 147681, 396118326954980724211640949227 147691, 1131307 147741, 311333711112136340712211331399344771343149247 147781, 178693 147817, 532789 147838, 219338338676673919 147886, 273943 147894, 236157314471942246494929873947 147895, 5115526891344529579 147961, 1113451 147973, 721139 147979, 1311383 147985, 517851741870529597 147993, 349331 148033, 179827 148107, 349369 148117, 732029 148126, 2112267331346674063 148129, 167887 148141, 721163 148183, 721169 148186, 274093 148203, 3911273399297499149744915489134731646749401 148213, 1316987711401 148219, 192926955151117801 148227, 349409 148231, 227653 148233, 349411 148263, 373219677203149421 148278, 2361326397819013802570311406247134942674139 148281, 372123691613074839212149644770612118349427 148327, 236449 148354, 274177 148369, 131011131313146911413 148402, 274201 148431, 349477 148453, 532801 148474, 2611221217243474237 148497, 349499 148563, 391751153971291387391650749521 148587, 349529 148599, 3911193357799917120923762771186915011881260745037821135091651149533 148615, 529723 148683, 329871709512749561 148686, 236247814956274343 148702, 214929849999874351 148705, 529741 148714, 274357 148722, 2367142142354170821062321246247874957474361 148761, 391652949587 148801, 178753 148803, 319325757977149601 148809, 349603 148849, 473167 148863, 311133339143347429104138174511114511353349621 148882, 274441 148903, 171932346178378759 148906, 274453 148942, 274471 148947, 3131379393113749649 148978, 274489 148981, 721283 148989, 349663 149001, 349667 149041, 1031447 149091, 349697 149095, 529819 149107, 7174911917983312533043877121301 149163, 372171032130949721 149167, 433469 149203, 314813 149218, 274609 149233, 721319 149329, 592531 149353, 233641 149361, 349787 149386, 2113226661132274693 149403, 349801 149437, 295153 149449, 199751 149493, 349831 149527, 741287521364721361 149539, 1311503 149562, 23679141821426312611872374356171228309106831661821366249274985474781 149613, 349871 149635, 529927 149653, 721379 149662, 274831 149686, 274843 149719, 178807 149722, 274861 149739, 3193757711112137031349210926274047788149913 149757, 349919 149779, 721397 149781, 349927 149785, 5291451033516529957 149817, 349939 149901, 329871723516949967 149902, 224131148262274951 149923, 178819 149946, 2366713420137340274611192238249914998274973 149949, 391666149983 149977, 473191 150099, 350033 150121, 2361107140324616527 150127, 178831 150166, 275083 150238, 2112268291365875119 150253, 971549 150261, 350087 150265, 541205733366530053 150279, 350093 150291, 391669950097 150313, 831811 150321, 389267563168950107 150322, 275161 150333, 350111 150334, 275167 150367, 721481 150421, 359419 150438, 236250735014675219 150454, 275227 150463, 379397 150477, 350159 150493, 721499 150529, 1091381 150538, 275269 150541, 473203 150561, 391672950187 Interrupted From simon.plouffe at gmail.com Thu Jul 19 23:10:11 2007 From: simon.plouffe at gmail.com (Simon Plouffe) Date: Thu, 19 Jul 2007 17:10:11 -0400 Subject: Divisors concatenated shape a prime In-Reply-To: References: Message-ID: <33a322bc0707191410x7c82df34qb3b68408bbab7077@mail.gmail.com> Hello, And for the number 339066 the prime generated has 255 digits: here it is : 339066, 2367913141821232627394246546369788191117126138161162182189207234273299322351378414483546567598621702819897966105 311341242144916381794186320932106245726912898372641864347491453826279737180738694125581304114742161461883724219260823767 44843856511113022169533 je continue les calculs. simon plouffe From Eric.Angelini at kntv.be Thu Jul 19 23:19:48 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Thu, 19 Jul 2007 23:19:48 +0200 Subject: =?iso-8859-1?Q?RE=A0=3A_Divisors_concatenated_shape_a_prime?= Message-ID: Geee, Simon ! Simple routine but... great result ! Waow ! Thanks to you and everyone -- this list is a must ;-) Best, ?. ________________________________ De: Simon Plouffe [mailto:simon.plouffe at gmail.com] Date: jeu. 19/07/2007 22:54 ?: Eric Angelini Cc: seqfan at ext.jussieu.fr Objet : Re: Divisors concatenated shape a prime hello I made this simple maple routine : ############################### with(numtheory): for k from 5 to 1e99 do: v0:=divisors(k): nn:=nops(v0): if nn > 3 then v1:=[seq(v0[j],j=2..nn-1)]: v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))): v3:=parse(v2): if isprime(v3) = true then lprint(k,v3) fi: fi: od: ################################# and here is some output from it (see the attachement) ################################# Simon plouffe -------------- next part -------------- An HTML attachment was scrubbed... URL: From njas at research.att.com Fri Jul 20 00:27:53 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Thu, 19 Jul 2007 18:27:53 -0400 (EDT) Subject: Divisors concatenated shape a prime Message-ID: <200707192227.l6JMRr4e351446@fry.research.att.com> sequence A037274, of course? Very similar to yours, Return-Path: X-Ids: 164 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=ojHpFCFCO0JPUDw8u6e0QbCWWB4ELmo8EkO/p69E5/RImJ1GACefhVhqL0l9kBoltrG+z2J5NkD062rXvTxT0n2BCn36T5mrd/J0Nbt9GKnTWygSq+PJA+282yDH99vRdkqTziGV4J+ubgp+1pxcDsIWdmuR3tctJoeQKx4ky9U= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=e8v4Nd18t1fUcgujrOlu60jcqBzALc1bdMcjM5B7ABYRzsOZfvKoKzd5vyB9f/6//78DP4UlqRthk7COCc6bqLtUl2PjQ206cNPDxivaLkVWfjojGMzV31lb7Jz9OGhfSHM/ok2nWKFCszVAKE2r0tl4KePHlwGhmu6WRNczYqI= Message-ID: Date: Thu, 19 Jul 2007 16:13:08 -0700 From: "Max Alekseyev" To: njas at research.att.com Subject: Re: Divisors concatenated shape a prime Cc: seqfan at ext.jussieu.fr, "Eric Angelini" In-Reply-To: <200707192227.l6JMRr4e351446 at fry.research.att.com> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <200707192227.l6JMRr4e351446 at fry.research.att.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.164]); Fri, 20 Jul 2007 01:13:11 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3700/Thu Jul 19 15:13:47 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 469FF006.003 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.387 -> 1 X-Miltered: at shiva.jussieu.fr with ID 469FF006.003 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Neil, It seems that A037274 (and related sequences, e.g., A037275) is missing the "base" keyword. Regards, Max On 7/19/07, N. J. A. Sloane wrote: > Eric, you know about the "home primes" > sequence A037274, of course? Very similar to yours, > and known to be hard! > Neil > From warut822 at gmail.com Fri Jul 20 04:32:50 2007 From: warut822 at gmail.com (Warut Roonguthai) Date: Fri, 20 Jul 2007 09:32:50 +0700 Subject: Lengths Of Runs In The #-Of-Divisors Sequence In-Reply-To: References: Message-ID: <482644420707191932s56b4979p6fc0c36fd3576d31@mail.gmail.com> On 7/17/07, Leroy Quet wrote: > > It seems VERY likely to me that there is no infinite string of 1's, or of > anything else, in sequence A131789 (ie. the terms of A131790 are all > finite). > > Can it be PROVED that all terms of A131790 are finite, possibly using > Hardy and Wright or some other such reference? Since there are infinitely many primes, 1 will appear infinitely often in A131789. But there cannot be an infinite string of 1's in A131789 because there exist infinitely many m such that d(m) = d(m+1) as proved by Roger Heath-Brown in 1984. So all terms of A131790 are finite. Warut Simon Plouffe: > And for the number 339066 the prime generated has 255 digits Looking at just the record values, from here on... {record-index, seed-number, digits-in-target-prime} {41,339066,255} {42,594594,317} {43,902538,328} {44,1750014,341} {45,2254098,346} {46,3174138,352} {47,3467646,354} {48,3818178,446} {49,3913434,447} {50,8795358,501} {51,9489018,502} {52,9522414,503} {53,13891878,511} {54,14139762,514} {55,14167494,515} {56,19803966,522} {57,23978262,529} {58,24478146,594} {59,28289898,673} {60,35837802,1025} I'm adding Eric's two new sequences: they will be A120712 and A120713. I used Simon Plouffe's nice Maple program to generate them, but modified it to give exactly the same terms as Eric had. To get an analogue of the home primes, A037274, I suppose we could iterate the map (k -> concatenation of proper divisors of k) until we reach a prime; then a(n) would be the prime we eventually reach when starting with n, or -1 if we never reach a prime. But what about a(p) where p is prime? I guess we set that to equal p. And we can set a(1) = 1. So the sequence starts 1 2 3 2 5 23 7 ... What is a(8)? I don't know, but I will put it in the OEIS as A120716. Hopefully someone will extend it. Neil Seqfans, for the new sequence A120716 that I mentioned, the analogue of home primes, the big question is, what is a(8)? we have and the divisors of that last number aree 1, 2, 3, 6, 37, 74, 111, 113, 222, 226, 339, 678, 4181, 8362, 12543, 25086, 3192525397, 6385050794, 9577576191, 19155152382, 118123439689, 236246879378, 354370319067, 360755369861, 708740638134, 721510739722, 1082266109583, 2164532219166, 13347948684857, 26695897369714, 40043846054571, 80087692109142, 30132785470246166539693, 60265570940492333079386, 90398356410738499619079, 180796712821476999238158, 1114913062399108161968641, 2229826124798216323937282, 3344739187197324485905923, 3405004758137816818985309, 6689478374394648971811846, 6810009516275633637970618, 10215014274413450456955927, 20430028548826900913911854, 125985176051099222302456433, 251970352102198444604912866, 377955528153297666907369299, 755911056306595333814738598, 96199682896113474519861511083121, 192399365792226949039723022166242, 288599048688340423559584533249363, 577198097376680847119169066498726, 3559388267156198557234875910075477, 7118776534312397114469751820150954, 10678164801468595671704627730226431, 10870564167260822620744350752392673, 21356329602937191343409255460452862, 21741128334521645241488701504785346, 32611692501782467862233052257178019, 65223385003564935724466104514356038, 402210874188650436967540977838528901, 804421748377300873935081955677057802, 1206632622565951310902622933515586703, 2413265245131902621805245867031173406 ] If we throw away the first and last terms and concatenate the rest, is that a prime? Does someone have access to a really good prime tester?! Neil PS I did not check these calculations and it is 05:00 From pxp at rogers.com Fri Jul 20 06:17:12 2007 From: pxp at rogers.com (Hans Havermann) Date: Fri, 20 Jul 2007 00:17:12 -0400 Subject: Divisors concatenated shape a prime In-Reply-To: <33a322bc0707191410x7c82df34qb3b68408bbab7077@mail.gmail.com> References: <33a322bc0707191410x7c82df34qb3b68408bbab7077@mail.gmail.com> Message-ID: On 7/20/07, N. J. A. Sloane wrote: > If we throw away the first and last terms and concatenate the rest, > is that a prime? No, it is not prime. And it is quite a large number that may be hard to factor. I will let the PARI/GP factor() function run overnight... Max From simon.plouffe at gmail.com Fri Jul 20 13:43:16 2007 From: simon.plouffe at gmail.com (Simon Plouffe) Date: Fri, 20 Jul 2007 07:43:16 -0400 Subject: ps Re Divisors concatenated shape a prime In-Reply-To: References: <200707201002.l6KA2ZKE432256@fry.research.att.com> Message-ID: <33a322bc0707200443l833a591gc4abfcff9e172a43@mail.gmail.com> The number is 23637741111132222263396784181836212543250863192525397638\ 5050794957757619119155152382118123439689236246879378\ 3543703190673607553698617087406381347215107397221082\ 2661095832164532219166133479486848572669589736971440\ 0438460545718008769210914230132785470246166539693602\ 6557094049233307938690398356410738499619079180796712\ 8214769992381581114913062399108161968641222982612479\ 8216323937282334473918719732448590592334050047581378\ 1681898530966894783743946489718118466810009516275633\ 6379706181021501427441345045695592720430028548826900\ 9139118541259851760510992223024564332519703521021984\ 4460491286637795552815329766690736929975591105630659\ 5333814738598961996828961134745198615110831211923993\ 6579222694903972302216624228859904868834042355958453\ 3249363577198097376680847119169066498726355938826715\ 6198557234875910075477711877653431239711446975182015\ 0954106781648014685956717046277302264311087056416726\ 0822620744350752392673213563296029371913434092554604\ 5286221741128334521645241488701504785346326116925017\ 8246786223305225717801965223385003564935724466104514\ 3560384022108741886504369675409778385289018044217483\ 7730087393508195567705780212066326225659513109026229\ 33515586703 and divisible by 13 and 47 if I am not mistaking. the rest (%/13/47) is not prime either but I can't determine its factors. simon plouffe From jvospost3 at gmail.com Sat Jul 21 00:35:58 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 20 Jul 2007 15:35:58 -0700 Subject: Concatenated anti-divisors Message-ID: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. There are no anti-divisors of 1 and 2. See A066272 for an equivalent definition and also the number of terms in each row. Now, if we concatenate antidivisors of integers n>2, we have an anti-divisor analogue of A106708. This should be easy for someone to Mathematica-ize and extend, and leads to the same kind of fun questions as its origin does. =========== n a(n) factorization 3 2 prime 4 3 prime 5 23 prime 6 4 2^2 7 235 5 * 47 8 35 5 * 7 9 26 2 * 13 10 347 prime 11 237 3 * 79 12 58 2 * 29 13 2359 7 * 337 14 349 prime 15 2610 2 * 3^2 * 5 * 29 16 311 prime 17 235711 7 * 151 * 223 18 45712 2^4 * 2857 19 2313 3^2 * 257 20 3813 3 * 31 * 41 =========== --- The On-Line Encyclopedia of Integer Sequences wrote: The following is a copy of the email message that was sent to njas Subject: NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813 %N A000001 Replace n by the concatenation of its antidivisors. %C A000001 Number of antidivisors concatened to form a(n) is A066272(n). We may consider prime values of the concatenated antidivisor sequence, and we may iterate it, i.e. n, a(n), a(a(n)), a(a(a(n))) which leads to questions of trajectory, cycles, fixed points. %e A000001 Anti-divisors of 3 through 20: 3: 2, so a(3) = 2. 4: 3, so a(4) = 3. 5: 2, 3, so a(5) = 23. 6: 4, so a(6) = 4. 7: 2, 3, 5, so a(7) = 235. 17: 2, 3, 5, 7, 11, so a(17) = 235711 %Y A000001 Cf. A037278, A066272, A120712, A106708, A130799. %O A000001 3 %K A000001 ,base,easy,more,nonn, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 20 2007 RH RA 192.20.225.32 From maximilian.hasler at gmail.com Sat Jul 21 02:38:38 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Fri, 20 Jul 2007 20:38:38 -0400 Subject: Concatenated anti-divisors In-Reply-To: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> References: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> Message-ID: <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> It appears to me that the definition %C A066272 If an odd number d in the range 1 < d < n divides N where N is any one of 2n-1, 2n or 2n+1 then N/d is called an anti-divisor of n. is not equivalent to your definition: > Non-divisor: a number k which does not divide a given > number x. Anti-divisor: a non-divisor k of x with the > property that k is an odd divisor of 2x-1 or 2x+1, or > an even divisor of 2x. According to the first definition, n=3 cannot have an anti-divisor since there is no odd d, 1 References: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> Message-ID: <3c3af2330707201835n3b6b37c8r1d7594ea8514a132@mail.gmail.com> It first appeared as if "your" definition (the second below) could be found at least on some other web pages. Now I have big doubts. Is there any *serious* reference for this notion ? According to "your" definition, antidiv( 3 ) = { 2, 5, 6, 7 } since none of these numbers divide 3 and they are either even divisors of 6 or odd divisors of 5 or 7. Also, concerning the sequence : A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n. I cannot see any triangular structure (cf. http://www.research.att.com/~njas/sequences/table?a=130799 ) and AFAICS the only way to find out where the anti-divisors of a number n will start is to spot violations of strict increasing monotony (which is of course not failsafe, e.g. if a number >2 would have no antidivisors, or some number would have its largest antidiv. smaller than the least antidiv of its successor....) IMHO all these sequences need much clarification and cleanup of definitions. Insofar more as the "authorative" definition seems to be on an unavailable web page (and the version I can found via the "wayback" machine does not contain a clear definition either - again several "Or, to put it another way..." etc). All in all there is a heavy smell of *very* original research in the air around this. M.H. On 7/20/07, Maximilian Hasler wrote: > It appears to me that the definition > > %C A066272 If an odd number d in the range 1 < d < n divides N where N > is any one of 2n-1, 2n or 2n+1 then N/d is called an anti-divisor of > n. > > is not equivalent to your definition: > > > Non-divisor: a number k which does not divide a given > > number x. Anti-divisor: a non-divisor k of x with the > > property that k is an odd divisor of 2x-1 or 2x+1, or > > an even divisor of 2x. > > According to the first definition, n=3 cannot have an anti-divisor > since there is no odd d, 1 > M.H. > From maxale at gmail.com Sat Jul 21 04:19:05 2007 From: maxale at gmail.com (Max Alekseyev) Date: Fri, 20 Jul 2007 19:19:05 -0700 Subject: Concatenated anti-divisors In-Reply-To: <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> References: <5542af940707201535q1a3f22f5xfd0c2bdb892fab6d@mail.gmail.com> <3c3af2330707201738j2685797cr94e6ce49671e21c2@mail.gmail.com> Message-ID: There are glitches in both Jonathan's definition of anti-divisor and the quoted comment to A066272. Namely, Jonathan forgot to mention that k < x, and in the comment to A066272 it should be "1 < d <= n" not "1 < d < n". After such corrections these two definitions become equivalent and consistent with the numerical values of A066272. Max On 7/20/07, Maximilian Hasler wrote: > It appears to me that the definition > > %C A066272 If an odd number d in the range 1 < d < n divides N where N > is any one of 2n-1, 2n or 2n+1 then N/d is called an anti-divisor of > n. > > is not equivalent to your definition: > > > Non-divisor: a number k which does not divide a given > > number x. Anti-divisor: a non-divisor k of x with the > > property that k is an odd divisor of 2x-1 or 2x+1, or > > an even divisor of 2x. > > According to the first definition, n=3 cannot have an anti-divisor > since there is no odd d, 1 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. But this definition fails for n = 3, as someone mentioned last night. We know from the OEIS that 3 has a single antidivisor, 2. According to this definition 3 has no antidivisors. There is also this program, which I have not checked: %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; Table[ Length[ antid[ n ] ], {n, 1, 100} ] The other definition is: %I A130799 %S A130799 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, %T A130799 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, %U A130799 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 %N A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n. %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. %C A130799 There are no anti-divisors of 1 and 2. %e A130799 Anti-divisors of 3 through 20: %e A130799 3: 2 %e A130799 4: 3 %e A130799 5: 2, 3 %e A130799 6: 4 %e A130799 7: 2, 3, 5 %e A130799 8: 3, 5 %e A130799 9: 2, 6 This definition also fails for n = 3: it gives 5 antidivisors, 2,4,5,6,7. The term anti-divisor seems to be due to Jon Perry. I wish I understood the motivation for the definition! There are links to various webpages of his, but they are all broken and he has not responded to my emails. It seems to me that both of the above definitions are incorrect, and where N is any one of 2n-1, 2n or 2n+1 then d = N/i is called an anti-divisor of n. Equivalently, an anti-divisor of n is a number d in the range [1..n] which does not divide n and is either an odd divisor of 2n-1 or 2n+1, or an even divisor of 2n. Now both definitions seem to work correctly for n=3, giving a single anti-divisor, 2. But I'm not too confident about all this - comments anyone? As I said, I wish I understood the motivation for the definition! Neil From njas at research.att.com Sat Jul 21 13:41:09 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sat, 21 Jul 2007 07:41:09 -0400 (EDT) Subject: definition of anti-divisor Message-ID: <200707211141.l6LBf9dn795643@fry.research.att.com> should be changed to: Definition: If an odd number i in the range 1 < i <= n divides N Return-Path: X-Ids: 168 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:references; b=FVQtQiB9V5EwfrNoVIuMiZRMK92DAedBduoAYxXaXmYMtcDtVUj4dnxD3LIwEpP6hJobwWOtXslZBCZ8nDnh12IxrYMS0RJcKBni8LZFtQ1vIPKoRBth6jOc1z4PERgdcxhGlx+pnc5vviVWIu422lSH4g/0VpigzA5KfDjJl2A= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:references; b=nz4s1msyGFqm3pynX2KwQyUv/Bkw/kVMw9/aVxZ8emEvAiK96nHyi3nLfcSzvjcXSR/GMmjKnJosqHQUfbit6FPWIatVpZxJd40MGa5kdC39xAU628XJLav5ZY8++Wg2wt71cUdGcKFjyJqb1X/bA9GF6KsvhVzK0mYT2A+Aj+0= Message-ID: Date: Sat, 21 Jul 2007 07:31:25 -0500 From: "Diana Mecum" To: njas at research.att.com Subject: Re: definition of anti-divisor Cc: seqfan at ext.jussieu.fr In-Reply-To: <200707211141.l6LBf9dn795643 at fry.research.att.com> MIME-Version: 1.0 Content-Type: multipart/alternative; boundary="----=_Part_148534_11559968.1185021085857" References: <200707211141.l6LBf9dn795643 at fry.research.att.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Sat, 21 Jul 2007 14:31:28 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3714/Sat Jul 21 12:54:24 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46A1FC9F.004 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.311 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46A1FC9F.004 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! ------=_Part_148534_11559968.1185021085857 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline Dr. Sloane, As far as the second definition, and > %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. > This definition also fails for n = 3: it gives 5 antidivisors, 2,4,5,6,7. According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I believe that the second definition is correct as it stands. Diana On 7/21/07, N. J. A. Sloane wrote: > > > Dear seqfans, There are currently two versions > of the definition of anti-divisor in the OEIS: > > %C A066272 If an odd number d in the range 1 < d < n divides N > where N is any one of 2n-1, 2n or 2n+1 > then N/d is called an anti-divisor of n. > > %e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd > divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the > anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. > > But this definition fails for n = 3, as someone mentioned last night. > We know from the OEIS that 3 has a single antidivisor, 2. > According to this definition 3 has no antidivisors. > > There is also this program, which I have not checked: > %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], > OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & > ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; > Table[ Length[ antid[ n ] ], {n, 1, 100} ] > > The other definition is: > > %I A130799 > %S A130799 > 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, > %T A130799 > 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, > %U A130799 > 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 > %N A130799 Triangle read by rows in which row n (n>=3) list the > anti-divisors of n. > %C A130799 Non-divisor: a number k which does not divide a given number x. > Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > %C A130799 There are no anti-divisors of 1 and 2. > %e A130799 Anti-divisors of 3 through 20: > %e A130799 3: 2 > %e A130799 4: 3 > %e A130799 5: 2, 3 > %e A130799 6: 4 > %e A130799 7: 2, 3, 5 > %e A130799 8: 3, 5 > %e A130799 9: 2, 6 > > This definition also fails for n = 3: it gives 5 antidivisors, > 2,4,5,6,7. > > The term anti-divisor seems to be due to Jon Perry. > I wish I understood the motivation for the definition! > > There are links to various webpages of his, but they are all broken > and he has not responded to my emails. > > It seems to me that both of the above definitions are incorrect, and > should be changed to: > > Definition: If an odd number i in the range 1 < i <= n divides N > where N is any one of 2n-1, 2n or 2n+1 > then d = N/i is called an anti-divisor of n. > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > or an even divisor of 2n. > > Now both definitions seem to work correctly for n=3, giving > a single anti-divisor, 2. > > But I'm not too confident about all this - comments anyone? > As I said, I wish I understood the motivation for the definition! > > Neil > > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. ------=_Part_148534_11559968.1185021085857 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Dr. Sloane,

As far as the second definition, and

> %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x.

> This definition also fails for n = 3: it gives 5 antidivisors,
2,4,5,6,7.

According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I believe that the second definition is correct as it stands.

Diana

On 7/21/07, N. J. A. Sloane <njas at research.att.com> wrote:

Dear seqfans, There are currently two versions
of the definition of anti-divisor in the OEIS:

%C A066272 If an odd number d in the range 1 < d < n divides N
where N is any one of 2n-1, 2n or 2n+1
then N/d is called an anti-divisor of n.

%e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4.

But this definition fails for n = 3, as someone mentioned last night.
We know from the OEIS that 3 has a single antidivisor, 2.
According to this definition 3 has no antidivisors.

There is also this program, which I have not checked:
%t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; Table[ Length[ antid[ n ] ], {n, 1, 100} ]

The other definition is:

%I A130799
%S A130799 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11,
%T A130799 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7,
%U A130799 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7
%N A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n.
%C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x.
%C A130799 There are no anti-divisors of 1 and 2.
%e A130799 Anti-divisors of 3 through 20:
%e A130799 3: 2
%e A130799 4: 3
%e A130799 5: 2, 3
%e A130799 6: 4
%e A130799 7: 2, 3, 5
%e A130799 8: 3, 5
%e A130799 9: 2, 6

This definition also fails for n = 3: it gives 5 antidivisors,
2,4,5,6,7.

The term anti-divisor seems to be due to Jon Perry.
I wish I understood the motivation for the definition!

There are links to various webpages of his, but they are all broken
and he has not responded to my emails.

It seems to me that both of the above definitions are incorrect, and
should be changed to:

Definition: If an odd number i in the range 1 < i <= n divides N
where N is any one of 2n-1, 2n or 2n+1
then d = N/i is called an anti-divisor of n.

Equivalently, an anti-divisor of n is a number d in the range [1..n]
which does not divide n and is either an odd divisor of 2n-1 or 2n+1,
or an even divisor of 2n.

Now both definitions seem to work correctly for n=3, giving
a single anti-divisor, 2.

But I'm not too confident about all this - comments anyone?
As I said, I wish I understood the motivation for the definition!

Neil




--
"God made the integers, all else is the work of man."
L. Kronecker, Jahresber. DMV 2, S. 19. ------=_Part_148534_11559968.1185021085857-- From diana.mecum at gmail.com Sat Jul 21 14:38:37 2007 From: diana.mecum at gmail.com (Diana Mecum) Date: Sat, 21 Jul 2007 07:38:37 -0500 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: Dr. Sloane, As far as the second definition, and > %C A130799 Non-divisor: a number k which does not divide a given number x. Anti-divisor: a non-divisor k of x with the property that k is an odd divisor of 2x-1 or 2x+1, or an even divisor of 2x. > This definition also fails for n = 3: it gives 5 antidivisors, 2,4,5,6,7. According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I believe that the second definition is correct as it stands. Diana On 7/21/07, N. J. A. Sloane wrote: > > > Dear seqfans, There are currently two versions > of the definition of anti-divisor in the OEIS: > > %C A066272 If an odd number d in the range 1 < d < n divides N > where N is any one of 2n-1, 2n or 2n+1 > then N/d is called an anti-divisor of n. > > %e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd > divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the > anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. > > But this definition fails for n = 3, as someone mentioned last night. > We know from the OEIS that 3 has a single antidivisor, 2. > According to this definition 3 has no antidivisors. > > There is also this program, which I have not checked: > %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], > OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & > ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; > Table[ Length[ antid[ n ] ], {n, 1, 100} ] > > The other definition is: > > %I A130799 > %S A130799 > 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, > %T A130799 > 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, > %U A130799 > 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 > %N A130799 Triangle read by rows in which row n (n>=3) list the > anti-divisors of n. > %C A130799 Non-divisor: a number k which does not divide a given number x. > Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > %C A130799 There are no anti-divisors of 1 and 2. > %e A130799 Anti-divisors of 3 through 20: > %e A130799 3: 2 > %e A130799 4: 3 > %e A130799 5: 2, 3 > %e A130799 6: 4 > %e A130799 7: 2, 3, 5 > %e A130799 8: 3, 5 > %e A130799 9: 2, 6 > > This definition also fails for n = 3: it gives 5 antidivisors, > 2,4,5,6,7. > > The term anti-divisor seems to be due to Jon Perry. > I wish I understood the motivation for the definition! > > There are links to various webpages of his, but they are all broken > and he has not responded to my emails. > > It seems to me that both of the above definitions are incorrect, and > should be changed to: > > Definition: If an odd number i in the range 1 < i <= n divides N > where N is any one of 2n-1, 2n or 2n+1 > then d = N/i is called an anti-divisor of n. > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > or an even divisor of 2n. > > Now both definitions seem to work correctly for n=3, giving > a single anti-divisor, 2. > > But I'm not too confident about all this - comments anyone? > As I said, I wish I understood the motivation for the definition! > > Neil > > -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From maxale at gmail.com Sat Jul 21 17:37:16 2007 From: maxale at gmail.com (Max Alekseyev) Date: Sat, 21 Jul 2007 08:37:16 -0700 Subject: definition of anti-divisor In-Reply-To: <200707211141.l6LBf9dn795643@fry.research.att.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: On 7/21/07, N. J. A. Sloane wrote: > The term anti-divisor seems to be due to Jon Perry. > I wish I understood the motivation for the definition! > > There are links to various webpages of his, but they are all broken > and he has not responded to my emails. Neil, I believe your corrections are correct ;) Jon Perry's page on anti-divisors is available from archive.org: http://web.archive.org/web/20070406031719/www.users.globalnet.co.uk/~perry/maths/antidivisor.htm Max When I posted my version of the correct definition of anti-divisor earlier this morning, I should have given credit to Maximilian Hasler and Max Alekseyev for saying exactly the same thing in earlier postings (which I had not read). Maximilian, Max - my apologies! Neil From njas at research.att.com Sat Jul 21 18:00:32 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sat, 21 Jul 2007 12:00:32 -0400 (EDT) Subject: credit for corrected definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: <200707211600.l6LG0WWW831020@fry.research.att.com> > According to the second definition, above, an antidivisor must first be a non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. I was assuming that a non-divisor would be <= n by default. Diana On 7/21/07, Diana Mecum wrote: > > Dr. Sloane, > > As far as the second definition, and > > > %C A130799 Non-divisor: a number k which does not divide a given number > x. Anti-divisor: a non-divisor k of x with the property that k is an odd > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > > > This definition also fails for n = 3: it gives 5 antidivisors, > 2,4,5,6,7. > > According to the second definition, above, an antidivisor must first be a > non-divisor of x. {4, 5, 6, 7} are not non-divisors of 3. Therefore, I > believe that the second definition is correct as it stands. > > Diana > > On 7/21/07, N. J. A. Sloane wrote: > > > > > > Dear seqfans, There are currently two versions > > of the definition of anti-divisor in the OEIS: > > > > %C A066272 If an odd number d in the range 1 < d < n divides N > > where N is any one of 2n-1, 2n or 2n+1 > > then N/d is called an anti-divisor of n. > > > > %e A066272 For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd > > divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the > > anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4. > > > > But this definition fails for n = 3, as someone mentioned last night. > > We know from the OEIS that 3 has a single antidivisor, 2. > > According to this definition 3 has no antidivisors. > > > > There is also this program, which I have not checked: > > %t A066272 antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 > > ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 > > & ], 2n/Select[ Divisors[ 2*n ], OddQ[ # ] && # != 1 & ] ] ] }, # < n & ] ]; > > Table[ Length[ antid[ n ] ], {n, 1, 100} ] > > > > The other definition is: > > > > %I A130799 > > %S A130799 > > 2,3,2,3,4,2,3,5,3,5,2,6,3,4,7,2,3,7,5,8,2,3,5,9,3,4,9,2,6,10,3,11, > > %T A130799 > > 2,3,5,7,11,4,5,7,12,2,3,13,3,8,13,2,6,14,3,4,5,9,15,2,3,5,9,15,7, > > %U A130799 > > 16,2,3,7,10,17,3,4,17,2,5,6,11,18,3,5,8,11,19,2,3,19,4,12,20,2,3,7 > > %N A130799 Triangle read by rows in which row n (n>=3) list the > > anti-divisors of n. > > %C A130799 Non-divisor: a number k which does not divide a given number > > x. Anti-divisor: a non-divisor k of x with the property that k is an odd > > divisor of 2x-1 or 2x+1, or an even divisor of 2x. > > %C A130799 There are no anti-divisors of 1 and 2. > > %e A130799 Anti-divisors of 3 through 20: > > %e A130799 3: 2 > > %e A130799 4: 3 > > %e A130799 5: 2, 3 > > %e A130799 6: 4 > > %e A130799 7: 2, 3, 5 > > %e A130799 8: 3, 5 > > %e A130799 9: 2, 6 > > > > This definition also fails for n = 3: it gives 5 antidivisors, > > 2,4,5,6,7. > > > > The term anti-divisor seems to be due to Jon Perry. > > I wish I understood the motivation for the definition! > > > > There are links to various webpages of his, but they are all broken > > and he has not responded to my emails. > > > > It seems to me that both of the above definitions are incorrect, and > > should be changed to: > > > > Definition: If an odd number i in the range 1 < i <= n divides N > > where N is any one of 2n-1, 2n or 2n+1 > > then d = N/i is called an anti-divisor of n. > > > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > > or an even divisor of 2n. > > > > Now both definitions seem to work correctly for n=3, giving > > a single anti-divisor, 2. > > > > But I'm not too confident about all this - comments anyone? > > As I said, I wish I understood the motivation for the definition! > > > > Neil > > > > > > > -- > "God made the integers, all else is the work of man." > L. Kronecker, Jahresber. DMV 2, S. 19. -- "God made the integers, all else is the work of man." L. Kronecker, Jahresber. DMV 2, S. 19. -------------- next part -------------- An HTML attachment was scrubbed... URL: From maxale at gmail.com Sat Jul 21 22:17:53 2007 From: maxale at gmail.com (Max Alekseyev) Date: Sat, 21 Jul 2007 13:17:53 -0700 Subject: definition of anti-divisor In-Reply-To: <200707211141.l6LBf9dn795643@fry.research.att.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: On 7/21/07, N. J. A. Sloane wrote: > Definition: If an odd number i in the range 1 < i <= n divides N > where N is any one of 2n-1, 2n or 2n+1 > then d = N/i is called an anti-divisor of n. > > Equivalently, an anti-divisor of n is a number d in the range [1..n] > which does not divide n and is either an odd divisor of 2n-1 or 2n+1, > or an even divisor of 2n. Yet another definition: k is a non-divisor of n iff: 1 < k < n and | (n mod k) - k/2 | <= 1. Max From maxale at gmail.com Sat Jul 21 22:19:27 2007 From: maxale at gmail.com (Max Alekseyev) Date: Sat, 21 Jul 2007 13:19:27 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: On 7/21/07, Max Alekseyev wrote: > Yet another definition: > > k is a non-divisor of n iff: > 1 < k < n > and > | (n mod k) - k/2 | <= 1. Oops. It should be | (n mod k) - k/2 | < 1. Max From jvospost3 at gmail.com Sun Jul 22 08:54:59 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sat, 21 Jul 2007 23:54:59 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> Message-ID: <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> Thank you Neil, for putting the cached John Perry Page where we can get it. Thank you Max, Diana, et al for corrections and clarifications. To extend, then, eliminating the "more" (though anyone is welcome to submit mathematica or equivalent, and a b-list): COMMENT FROM Jonathan Vos Post RE A130846 %I A130846 %S A130846 2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813, 2614, 345915, 235915, 716, 2371017, 3417, 2561118, 3581119, 2319, 41220, 237921, 35791321, 2561322, 3423, 23101423, 824, 2351525, 3457111525, 2671126, 391627, 23927, 45121728, 2351729, 3829, 26710131830, 3471331, 2351931, 51932, 239111433, 349112033 %N A130846 Replace n by the concatenation of its anti-divisors. %H A130846 Jon Perry, The Anti-Divisor, cached copy. %e A130846 a(21)-a(50) adapted from cached Perry page. %Y A130846 Cf. A037278, A066272, A120712, A106708, A130799. %O A130846 3 %K A130846 ,base,easy,nonn, %A A130846 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 22 2007 Next, the matters of iteration, fixed points, primes in A130846 can commence, subject to Neil's taste as bounded by "less"itude. From jvospost3 at gmail.com Sun Jul 22 09:02:55 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Sun, 22 Jul 2007 00:02:55 -0700 Subject: definition of anti-divisor In-Reply-To: <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> Message-ID: <5542af940707220002l4ca17d60i426f4a982d006d0b@mail.gmail.com> Even the number of digits of, for n>2, A130846(n) = 1, 1, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 4, 3, 6, 5, 4, 4, 4, 6, 6, 3... is nontrivial. Raiding the spectre of indices n of record values of number of digits of A130846(n). I wonder if switching to base 2 or other bases is lessitudinal? Or, if tried, are there any interesting things to see? What is the behavior of A130846(n)/n? Since I don't really know what Jon Perry was getting at, I don't know how dumb these questions and derived sequences are, hence I rely on the judgment of seqfans. From davidwwilson at comcast.net Sun Jul 22 09:19:49 2007 From: davidwwilson at comcast.net (David Wilson) Date: Sun, 22 Jul 2007 03:19:49 -0400 Subject: 919 conjecture References: <200707171512.AA1076494578@TanyaKhovanova.com> Message-ID: <004b01c7cc30$b15ae890$6501a8c0@yourxhtr8hvc4p> The graph of A002375 strongly indicates that the number of Goldbach partitions of even n >= 4 remains positive. Similarly, the graph of A014085 strongly indicates that the number of primes between adjacent positive squares remains positive. Though neither conjecture is proved, and a freak departure from the visible pattern is theoretically possible, the trends in the empirical evidence suggest that both conjectures are a very safe bet. Conway suggests calling such conjectures, with ample empirical evidence and little reason to doubt that evidence, "sureties". Thus Goldbach's and Legendre's conjectures are "sure" if not provably true. I suggest that you count and graph the number of primes strictly between adjacent palindromes. I suspect that, except for anomalous adjacent palindrome pairs (10^k-1, 10^k+1) (which cannot be adjacent palindromic primes), the number of intervening primes will exhibit a visually convincing growth pattern that will convince you that (919, 929) is indeed the last pair of consecutive palindromes and consecutive primes. ----- Original Message ----- From: "Tanya Khovanova" To: Sent: Tuesday, July 17, 2007 6:12 PM Subject: 919 conjecture > Hello all, > > I was looking at A069803 - Smaller of two consecutive palindromic primes: > 2, 3, 5, 7, 181, 787, 919 > Conjectured to be complete. > > I am interested in seeing a proof that 919 is actually the largest > palindromic prime such that the next prime is palindromic. > I checked up to 10^8 with Mathematica coding. > > Also, it is obvious that the distance from a palindrome n to the next one > is more than Sqrt(n/10). It is clear that prime gaps grow slower than > that. Looking at the prime gaps sequence A053303, it is easy to prove that > 919 is the last number like that up to 10^16. > > Is there a bound for prime gaps that proves that the gaps are less than > Sqrt(n/10) starting from some n? > > Tanya > > > _________________________________________________________________ > Need personalized email and website? Look no further. It's easy > with Doteasy $0 Web Hosting! Learn more at www.doteasy.com > > > -- > No virus found in this incoming message. > Checked by AVG Free Edition. > Version: 7.5.476 / Virus Database: 269.10.8/906 - Release Date: 7/17/2007 > 6:30 PM > From pauldhanna at juno.com Sun Jul 22 13:21:57 2007 From: pauldhanna at juno.com (Paul D. Hanna) Date: Sun, 22 Jul 2007 07:21:57 -0400 Subject: A006336 - Unexpected Relation to Golden Ratio? Message-ID: <20070722.072158.944.1.pauldhanna@juno.com> Seqfans, Consider the nice sequence A006336: a(n) = a(n-1) + a(n-1 - number of even terms so far). http://www.research.att.com/~njas/sequences/A006336 begins: [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. My COMMENT (NOT submitted to OEIS): ----------------------------------------------------------- It seems that A006336 can be generated by a rule using the golden ratio: a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, i.e., the number of even terms up to position n-1 equals: n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. (PARI): a(n) = if(n==1,1, a(n-1) + a( floor(n/((sqrt(5)+1)/2)) ) ) ----------------------------------------------------------- Would someone verify if these are indeed equivalent definitions, at least empirically? Or, what is the first position in which terms are NOT equal? If these are equivalent, then this is another unexpected appearance of that ubiquitous constant. Thanks, Paul -------------- next part -------------- An HTML attachment was scrubbed... URL: From tanyakh at TanyaKhovanova.com Sun Jul 22 18:16:59 2007 From: tanyakh at TanyaKhovanova.com (Tanya Khovanova) Date: Sun, 22 Jul 2007 09:16:59 -0700 Subject: sequence joke In-Reply-To: <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> Message-ID: <200707220916.AA2126905490@TanyaKhovanova.com> So, extending the table of my 20 July 2007 email: =========== n a(n) factorization 3 2 prime 4 3 prime 5 23 prime 6 4 2^2 7 235 5 * 47 8 35 5 * 7 9 26 2 * 13 10 347 prime 11 237 3 * 79 12 58 2 * 29 13 2359 7 * 337 14 349 prime 15 2610 2 * 3^2 * 5 * 29 16 311 prime 17 235711 7 * 151 * 223 18 45712 2^4 * 2857 19 2313 3^2 * 257 20 3813 3 * 31 * 41 21 2614 2 * 1307 22 345915 3^2 * 5 * 7687 23 235915 5 * 29 * 1627 24 716 2^2 * 179 25 2371017 3 * 11 * 71849 26 3417 3 * 17 * 67 27 2561118 2 * 3 * 7 * 17^2 * 211 28 3581119 37 * 96787 29 2319 3 * 773 30 41220 2^2 * 3^2 * 5 * 229 31 237921 3 * 71 * 1117 32 35791321 37 * 967333 33 2561322 2 * 3 * 17 * 25111 34 3423 3 * 7 * 163 35 23101423 97 * 238159 36 824 2^3 * 103 37 2351525 5^2 * 11 * 17 * 503 38 3457111525 5^2 * 7 * 97 * 203659 39 2671126 2 * 1335563 40 391627 prime 41 23927 71 * 337 42 45121728 2^6 * 3 * 235009 43 2351729 17 * 138337 44 3829 7 * 547 45 26710131830 2 * 5 * 41^2 * 757 * 2099 46 3471331 prime 47 2351931 3 * 523 * 1499 48 51932 2^2 * 12983 49 239111433 3^4 * 11 * 43 * 79^2 50 349112033 12119 * 28807 51 2634 2 * 3 * 439 52 3578152135 5 * 79 * 9058613 53 2357152135 5 * 13 * 36263879 54 41236 2^2 * 13^2 * 61 55 23102237 73 * 316469 56 31637 17 * 1861 57 2562338 2 * 23 * 53 * 1051 58 3459132339 3 * 13 * 1229 * 72169 59 2379131739 3^2 * 877 * 301423 60 7811172440 2^3 * 5 * 195279311 61 231141 3 * 77047 62 3452541 3 * 1150847 ... Dear Seqfans, My old friend Bernardo Recaman Santos just %I A116700 %S A116700 12,21,23,31,32,34,41,42,43 %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... Sequence gives numbers which occur in the string ahead of their natural place. %C A116700 Based on an idea by Argentinian puzzle creator Jaime Poniachik, these numbers were MAA. %e A116700 "12" appears at the start of the string, ahead of its position after "11", so is a %K A116700 nonn,base,more,nice,new %O A116700 1,1 %A A116700 Bernardo Recaman Santos (ignotus(AT)hotmail.com), Jul 22 2007 One needs to be a subscriber to have on-line access to Math Horizons - can anyone get me a copy of the Martin Gardner article? Neil From njas at research.att.com Mon Jul 23 05:41:32 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Sun, 22 Jul 2007 23:41:32 -0400 (EDT) Subject: Early Bird numbers Message-ID: <200707230341.l6N3fWM9861587@fry.research.att.com> sent a really nice sequence: introduced by Martin Gardner in the November 2005 issue of Math. Horizons, published by the member. Return-Path: X-Ids: 166 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=dxL4nFdgSkL1JeLhv7+CbTGvBKIIkTl52rdBuqT7xJQUM1rIZwfrcwNRwROIEH9YUSCzzW8gQQ2WKgpPnCYyVZkK81B39gfd34UyVwtg1mn9+hxbqStgoEajXEk+K5xv4bOgSgM/rH/ZAFm37OFhhJ3p5lRHD8wDoK9wAJ6wZWo= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=rIF/pNzzOy5T+wpqtaj+IMWyQnNQCq6INohW/mxAu5xW3OFt+6ma5Ifm1duCplgqa3Hso2FgyIidtz6eFhCuKuKMqgorDwYmtS8BXTnjJqr/Fo8Ki9y0IXbW+0zpnKnzRaO8knyEshLN0H0YdLiP2YW2F+zg/AocJDimZ5jzFP0= Message-ID: <482644420707230039r7e3eec65u2c9ec1956bf006e at mail.gmail.com> Date: Mon, 23 Jul 2007 14:39:19 +0700 From: "Warut Roonguthai" To: seqfan at ext.jussieu.fr Subject: Re: Early Bird numbers In-Reply-To: <200707230341.l6N3fWM9861587 at fry.research.att.com> MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <200707230341.l6N3fWM9861587 at fry.research.att.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Mon, 23 Jul 2007 09:39:20 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3740/Mon Jul 23 05:50:50 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46A45B28.000 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.536 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46A45B28.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Here are the first 157 terms of the early bird sequence: 12,21,23,31,32,34,41,42,43,45,51,52,53,54,56,61,62,63,64,65, 67,71,72,73,74,75,76,78,81,82,83,84,85,86,87,89,91,92,93,94, 95,96,97,98,99,101,110,111,112,121,122,123,131,132,141,142, 151,152,161,162,171,172,181,182,191,192,201,202,210,211, 212,213,214,215,216,217,218,219,220,221,222,223,231,232, 233,234,241,242,243,251,252,253,261,262,263,271,272,273, 281,282,283,291,292,293,301,302,303,310,311,312,313,314, 315,316,317,318,319,320,321,322,323,324,325,326,327,328, 329,330,331,332,333,334,341,342,343,344,345,351,352,353, 354,361,362,363,364,371,372,373,374,381,382,383,384,391, 392,393,394 Note that the natural place of n begins at dn + 1 - (10^d - 1)/9 where d is the number of decimal digits of n, i.e., d = floor(log10(n)) + 1 Can this be a new sequence too? BTW, I don't have access to Martin Gardner's article. Warut On 7/23/07, N. J. A. Sloane wrote: > > Dear Seqfans, My old friend Bernardo Recaman Santos just > sent a really nice sequence: > > %I A116700 > %S A116700 12,21,23,31,32,34,41,42,43 > %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... > Sequence gives numbers which occur in the string ahead of their natural place. > %C A116700 Based on an idea by Argentinian puzzle creator Jaime Poniachik, these numbers were > introduced by Martin Gardner in the November 2005 issue of Math. Horizons, published by the > MAA. > %e A116700 "12" appears at the start of the string, ahead of its position after "11", so is a > member. > %K A116700 nonn,base,more,nice,new > %O A116700 1,1 > %A A116700 Bernardo Recaman Santos (ignotus(AT)hotmail.com), Jul 22 2007 > > One needs to be a subscriber to have on-line access to > Math Horizons - can anyone get me a copy of the Martin Gardner > article? > > Neil > From jeremy.gardiner at btinternet.com Mon Jul 23 09:45:37 2007 From: jeremy.gardiner at btinternet.com (JEREMY GARDINER) Date: Mon, 23 Jul 2007 08:45:37 +0100 (BST) Subject: Early Bird numbers In-Reply-To: <200707230341.l6N3fWM9861587@fry.research.att.com> Message-ID: <886534.93581.qm@web86607.mail.ukl.yahoo.com> I found some interesting references through Google: http://www.itsoc.org/publications/nltr/it1202.pdf http://www.itsoc.org/publications/nltr/it0303web.pdf http://membership.kcatm.org/pub/summ2-06.pdf Jeremy ---------------------------------------------------------------------------------------- "N. J. A. Sloane" wrote: Dear Seqfans, My old friend Bernardo Recaman Santos just sent a really nice sequence: %I A116700 %S A116700 12,21,23,31,32,34,41,42,43 %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... -------------- next part -------------- An HTML attachment was scrubbed... URL: From warut822 at gmail.com Mon Jul 23 14:35:22 2007 From: warut822 at gmail.com (Warut Roonguthai) Date: Mon, 23 Jul 2007 19:35:22 +0700 Subject: Early Bird numbers In-Reply-To: <450839.70489.qm@web86611.mail.ukl.yahoo.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> Message-ID: <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> FYI, here's my Ubasic program for generating the early bird sequence: 10 X="" 20 for N=1 to 396 30 A=cutspc(str(N)) 40 if instr(X,A)>0 then print N; 50 X+=A 60 next N Warut From jeremy.gardiner at btinternet.com Mon Jul 23 13:53:35 2007 From: jeremy.gardiner at btinternet.com (JEREMY GARDINER) Date: Mon, 23 Jul 2007 12:53:35 +0100 (BST) Subject: Early Bird numbers In-Reply-To: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> Message-ID: <450839.70489.qm@web86611.mail.ukl.yahoo.com> I checked the parity of Warut's early bird values and there *may* be a connection with the following sequences: I have no idea why this should be the case and my apology if this is a red herring !!! A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals. A128138 A000012 * A128132. A128219 A000012 * A127701. a(1) = 1, a(2) = 2, a(3) = 2; by rows, n-1 terms of 2, 3, 4...followed by "n". Parity values below; note these fail to match in a couple of places, suggesting I may have made an editing error, or that perhaps Warut's values should be checked? Jeremy 0,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1, A091264 ,0,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0, 1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0, A128138 ,1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0, A128219 ,1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0, A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals. A128138 A000012 * A128132. A128219 A000012 * A127701. a(1) = 1, a(2) = 2, a(3) = 2; by rows, n-1 terms of 2, 3, 4...followed by "n". ------------------------------------------------------------------------------------------ Warut Roonguthai wrote: Here are the first 157 terms of the early bird sequence: 12,21,23,31,32,34,41,42,43,45,51,52,53,54,56,61,62,63,64,65, 67,71,72,73,74,75,76,78,81,82,83,84,85,86,87,89,91,92,93,94, 95,96,97,98,99,101,110,111,112,121,122,123,131,132,141,142, 151,152,161,162,171,172,181,182,191,192,201,202,210,211, 212,213,214,215,216,217,218,219,220,221,222,223,231,232, 233,234,241,242,243,251,252,253,261,262,263,271,272,273, 281,282,283,291,292,293,301,302,303,310,311,312,313,314, 315,316,317,318,319,320,321,322,323,324,325,326,327,328, 329,330,331,332,333,334,341,342,343,344,345,351,352,353, 354,361,362,363,364,371,372,373,374,381,382,383,384,391, 392,393,394 -------------- next part -------------- An HTML attachment was scrubbed... URL: From joshua.zucker at gmail.com Mon Jul 23 15:58:50 2007 From: joshua.zucker at gmail.com (Joshua Zucker) Date: Mon, 23 Jul 2007 06:58:50 -0700 Subject: Early Bird numbers In-Reply-To: <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> Message-ID: <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> I wrote my own program and let it run to make all the terms up to 1000. Up to 394 they match the terms Warut's program produced. --Joshua Zucker 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 On 7/23/07, Warut Roonguthai wrote: > FYI, here's my Ubasic program for generating the early bird sequence: > > 10 X="" > 20 for N=1 to 396 > 30 A=cutspc(str(N)) > 40 if instr(X,A)>0 then print N; > 50 X+=A > 60 next N > > Warut > From maximilian.hasler at gmail.com Mon Jul 23 18:00:24 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 12:00:24 -0400 Subject: Early Bird numbers In-Reply-To: <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> Message-ID: <3c3af2330707230900y56c82727tfae0564679ae8746@mail.gmail.com> This is another example of how computers can denature things. "Early birds" seem interesting when you do it by hand, for n<199, say ; but from then on it would be more interesting to study the complementary sequence ("late birds" ? which appear not before their "regular" place) - e.g. among 500..999 only about 50 terms are not present. At a first glance, I'd almost be tempted to conjecture that from a certain rank on, the only late birds are of the form d*10^k with d in {1,...,9 }, and all other numbers are early birds... M.H. On 7/23/07, Joshua Zucker wrote: > I wrote my own program and let it run to make all the terms up to > 1000. Up to 394 they match the terms Warut's program produced. > > --Joshua Zucker > > 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 > 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 > 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 > 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 > 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 > 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 > 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 > 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 > 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 > 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 > 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 > 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 > 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 > 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 > 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 > 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 > 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 > 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 > 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 > 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 > 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 > 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 > 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 > 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 > 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 > 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 > 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 > 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 > 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 > 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 > 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 > 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 > 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 > 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 > 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 > 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 > 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 > 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 > 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 > > On 7/23/07, Warut Roonguthai wrote: > > FYI, here's my Ubasic program for generating the early bird sequence: > > > > 10 X="" > > 20 for N=1 to 396 > > 30 A=cutspc(str(N)) > > 40 if instr(X,A)>0 then print N; > > 50 X+=A > > 60 next N > > > > Warut > > > From warut822 at gmail.com Mon Jul 23 18:10:00 2007 From: warut822 at gmail.com (Warut Roonguthai) Date: Mon, 23 Jul 2007 23:10:00 +0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: <20070722.072158.944.1.pauldhanna@juno.com> References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: <482644420707230910s22b233aeg6b06cf2dcf0d2fe7@mail.gmail.com> Very interesting observation, Paul. Your conjecture is too beautiful to be wrong! However, it seems to be very difficult to prove. I've checked the first 65,000 terms, but I think it would be easy for some seqfan programmers to extend the calculation to 10,000,000 terms or so with C or some other powerful tools. Note that we only have to keep track of the parity of a(n), not its entire value. Warut On 7/22/07, Paul D. Hanna wrote: > > Seqfans, > Consider the nice sequence A006336: > a(n) = a(n-1) + a(n-1 - number of even terms so far). > http://www.research.att.com/~njas/sequences/A006336 > begins: > [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. > > My COMMENT (NOT submitted to OEIS): > ----------------------------------------------------------- > It seems that A006336 can be generated by a rule using the golden ratio: > > a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, > > i.e., the number of even terms up to position n-1 equals: > n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. > > (PARI): > a(n) = if(n==1,1, a(n-1) + a( floor(n/((sqrt(5)+1)/2)) ) ) > ----------------------------------------------------------- > > Would someone verify if these are indeed equivalent definitions, at least > empirically? > Or, what is the first position in which terms are NOT equal? > > If these are equivalent, then this is another unexpected appearance of that > ubiquitous constant. > Thanks, > Paul From Eric.Angelini at kntv.be Mon Jul 23 18:25:48 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 23 Jul 2007 18:25:48 +0200 Subject: Divisor d is the total number of divisors Message-ID: Hello SeqFans, Is this seq of interest? If yes could someone check and compute a few more terms? 1,8,9,12,18,24,36,... Integers I having one divisor which is also the total number of divisors of I. 1 has 1 divisor which is 1 8 has 4 divs and 4 is one of them 9 has 3 divs and 3 is one of them 12 has 6 divs and 6 is one of them 18 has 6 divs and 6 is one of them 24 has 8 divs and 8 is one of them 36 has 9 divs and 9 is one of them ... 30 is not a member because 30 has 8 divs but not 8 itself : [1,2,3,5,6,10,15,30] Best, ?. From Eric.Angelini at kntv.be Mon Jul 23 18:33:29 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 23 Jul 2007 18:33:29 +0200 Subject: Divisor d is the total number of divisors Message-ID: Sorry, this is A033950 Best, ?. (had forgotten "2" in my list -- no hit then in the OEIS :-( -----Message d'origine----- De : Eric Angelini Envoy? : lundi 23 juillet 2007 18:26 ? : seqfan at ext.jussieu.fr Objet : Divisor d is the total number of divisors Hello SeqFans, Is this seq of interest? If yes could someone check and compute a few more terms? 1,8,9,12,18,24,36,... Integers I having one divisor which is also the total number of divisors of I. 1 has 1 divisor which is 1 8 has 4 divs and 4 is one of them 9 has 3 divs and 3 is one of them 12 has 6 divs and 6 is one of them 18 has 6 divs and 6 is one of them 24 has 8 divs and 8 is one of them 36 has 9 divs and 9 is one of them ... 30 is not a member because 30 has 8 divs but not 8 itself : [1,2,3,5,6,10,15,30] Best, ?. From maximilian.hasler at gmail.com Mon Jul 23 18:28:27 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 12:28:27 -0400 Subject: Early Bird numbers In-Reply-To: <3c3af2330707230900y56c82727tfae0564679ae8746@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> <3c3af2330707230900y56c82727tfae0564679ae8746@mail.gmail.com> Message-ID: <3c3af2330707230928g2bbb5ce9u165e91d66b0e3eef@mail.gmail.com> at the second glance, I take back my premature proposal concerning a "late bird" conjecture - as shows the following PHP 1-liner, Late birds: wrote: > This is another example of how computers can denature things. > "Early birds" seem interesting when you do it by hand, for n<199, say > ; but from then on it would be more interesting to study the > complementary sequence ("late birds" ? which appear not before their > "regular" place) - e.g. among 500..999 only about 50 terms are not > present. > At a first glance, I'd almost be tempted to conjecture that from a > certain rank on, the only late birds are of the form d*10^k with d in > {1,...,9 }, and all other numbers are early birds... > M.H. > > On 7/23/07, Joshua Zucker wrote: > > I wrote my own program and let it run to make all the terms up to > > 1000. Up to 394 they match the terms Warut's program produced. > > > > --Joshua Zucker > > > > 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 > > 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 > > 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 > > 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 > > 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 > > 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 > > 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 > > 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 > > 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 > > 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 > > 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 > > 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 > > 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 > > 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 > > 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 > > 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 > > 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 > > 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 > > 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 > > 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 > > 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 > > 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 > > 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 > > 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 > > 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 > > 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 > > 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 > > 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 > > 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 > > 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 > > 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 > > 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 > > 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 > > 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 > > 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 > > 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 > > 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 > > 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 > > 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 > > > > On 7/23/07, Warut Roonguthai wrote: > > > FYI, here's my Ubasic program for generating the early bird sequence: > > > > > > 10 X="" > > > 20 for N=1 to 396 > > > 30 A=cutspc(str(N)) > > > 40 if instr(X,A)>0 then print N; > > > 50 X+=A > > > 60 next N > > > > > > Warut > > > > > > From rayjchandler at sbcglobal.net Mon Jul 23 18:31:23 2007 From: rayjchandler at sbcglobal.net (Ray Chandler) Date: Mon, 23 Jul 2007 11:31:23 -0500 Subject: Divisor d is the total number of divisors In-Reply-To: References: Message-ID: <021101c7cd46$e9b55b50$6600000a@HPm400y> > > Is this seq of interest? > If yes could someone check and compute a few more terms? > > 1,8,9,12,18,24,36,... > > > Best, > ?. > Apparently a number of people thought so, see A033950. (2 is also in the sequence). Ray >Is this seq of interest? >If yes could someone check and compute a few more terms? > >1,8,9,12,18,24,36,... > >Integers I having one divisor which is also the total number of divisors of I. > > 1 has 1 divisor which is 1 > 8 has 4 divs and 4 is one of them > 9 has 3 divs and 3 is one of them >12 has 6 divs and 6 is one of them >18 has 6 divs and 6 is one of them >24 has 8 divs and 8 is one of them >36 has 9 divs and 9 is one of them >... > >30 is not a member because 30 has 8 divs but not 8 itself : >[1,2,3,5,6,10,15,30] See A033950. Tony From noe at sspectra.com Mon Jul 23 18:30:49 2007 From: noe at sspectra.com (T. D. Noe) Date: Mon, 23 Jul 2007 09:30:49 -0700 Subject: Divisor d is the total number of divisors In-Reply-To: References: Message-ID: ------=_Part_151547_12232578.1185210638925 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline Following Neil's suggestion to add the complement and his suggestion for naming it "punctual birds" : Subject: PRE-NUMBERED NEW SEQUENCE A131881 FROM Maximilian F. Hasler %I A131881 %S A131881 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 44, 46, 47, 48, 49, 50, 55, 57, 58, 59, 60, 66, 68, 69, 70, 77, 79, 80, 88, 90, 100, 102, 103, 104, 105, 106, 107, 108, 109, 113 %N A131881 "punctual birds" - numbers which are not in A116700 %C A131881 Numbers n that do not occur in the concatenation of 1,2,3...,n-1. There is no punctual bird larger than 9*10^k and smaller than 10^(k+1), for any integer k. %D A131881 Gardner, Martin. (November 2005). Transcendentals and early birds. Math Horizons XIII(2), pp 5, 34. %H A131881 Solomon W. Golomb, "EARLY BIRD NUMBERS", in IEEE Information TheorySociety Newsletter, Vol. 52, No. 4, December 2002 %H A131881 R. Barger (editor), "Brain Teaser" in Volume 1, Issue 1 of KANSAS CITY AREA TEACHERS OF MATHEMATICS" %e A131881 The first number not in this sequence is the early bird "12" which occurs as concatenation of 1 and 2. %o A131881 < ?php $s="."; for(; ++$i < 2000; $s .= $i ) if(!strpos($s,"$i")) echo $i,", "; %Y A131881 Cf. A116700 (early birds) %O A131881 1 %K A131881 ,base,easy,nonn, %A A131881 Maximilian F. Hasler (Maximilian.Hasler at gmail.com), Jul 23 2007 ------=_Part_151547_12232578.1185210638925 Content-Type: text/plain; name=b131881.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4h7slzn Content-Disposition: attachment; filename="b131881.txt" MSAxCjIgMgozIDMKNCA0CjUgNQo2IDYKNyA3CjggOAo5IDkKMTAgMTAKMTEg MTEKMTIgMTMKMTMgMTQKMTQgMTUKMTUgMTYKMTYgMTcKMTcgMTgKMTggMTkK MTkgMjAKMjAgMjIKMjEgMjQKMjIgMjUKMjMgMjYKMjQgMjcKMjUgMjgKMjYg MjkKMjcgMzAKMjggMzMKMjkgMzUKMzAgMzYKMzEgMzcKMzIgMzgKMzMgMzkK MzQgNDAKMzUgNDQKMzYgNDYKMzcgNDcKMzggNDgKMzkgNDkKNDAgNTAKNDEg NTUKNDIgNTcKNDMgNTgKNDQgNTkKNDUgNjAKNDYgNjYKNDcgNjgKNDggNjkK NDkgNzAKNTAgNzcKNTEgNzkKNTIgODAKNTMgODgKNTQgOTAKNTUgMTAwCjU2 IDEwMgo1NyAxMDMKNTggMTA0CjU5IDEwNQo2MCAxMDYKNjEgMTA3CjYyIDEw OAo2MyAxMDkKNjQgMTEzCjY1IDExNAo2NiAxMTUKNjcgMTE2CjY4IDExNwo2 OSAxMTgKNzAgMTE5CjcxIDEyMAo3MiAxMjQKNzMgMTI1Cjc0IDEyNgo3NSAx MjcKNzYgMTI4Cjc3IDEyOQo3OCAxMzAKNzkgMTMzCjgwIDEzNAo4MSAxMzUK ODIgMTM2CjgzIDEzNwo4NCAxMzgKODUgMTM5Cjg2IDE0MAo4NyAxNDMKODgg MTQ0Cjg5IDE0NQo5MCAxNDYKOTEgMTQ3CjkyIDE0OAo5MyAxNDkKOTQgMTUw Cjk1IDE1Mwo5NiAxNTQKOTcgMTU1Cjk4IDE1Ngo5OSAxNTcKMTAwIDE1OAox MDEgMTU5CjEwMiAxNjAKMTAzIDE2MwoxMDQgMTY0CjEwNSAxNjUKMTA2IDE2 NgoxMDcgMTY3CjEwOCAxNjgKMTA5IDE2OQoxMTAgMTcwCjExMSAxNzMKMTEy IDE3NAoxMTMgMTc1CjExNCAxNzYKMTE1IDE3NwoxMTYgMTc4CjExNyAxNzkK MTE4IDE4MAoxMTkgMTgzCjEyMCAxODQKMTIxIDE4NQoxMjIgMTg2CjEyMyAx ODcKMTI0IDE4OAoxMjUgMTg5CjEyNiAxOTAKMTI3IDE5MwoxMjggMTk0CjEy OSAxOTUKMTMwIDE5NgoxMzEgMTk3CjEzMiAxOTgKMTMzIDE5OQoxMzQgMjAw CjEzNSAyMDMKMTM2IDIwNAoxMzcgMjA1CjEzOCAyMDYKMTM5IDIwNwoxNDAg MjA4CjE0MSAyMDkKMTQyIDIyNAoxNDMgMjI1CjE0NCAyMjYKMTQ1IDIyNwox NDYgMjI4CjE0NyAyMjkKMTQ4IDIzMAoxNDkgMjM1CjE1MCAyMzYKMTUxIDIz NwoxNTIgMjM4CjE1MyAyMzkKMTU0IDI0MAoxNTUgMjQ0CjE1NiAyNDUKMTU3 IDI0NgoxNTggMjQ3CjE1OSAyNDgKMTYwIDI0OQoxNjEgMjUwCjE2MiAyNTQK MTYzIDI1NQoxNjQgMjU2CjE2NSAyNTcKMTY2IDI1OAoxNjcgMjU5CjE2OCAy NjAKMTY5IDI2NAoxNzAgMjY1CjE3MSAyNjYKMTcyIDI2NwoxNzMgMjY4CjE3 NCAyNjkKMTc1IDI3MAoxNzYgMjc0CjE3NyAyNzUKMTc4IDI3NgoxNzkgMjc3 CjE4MCAyNzgKMTgxIDI3OQoxODIgMjgwCjE4MyAyODQKMTg0IDI4NQoxODUg Mjg2CjE4NiAyODcKMTg3IDI4OAoxODggMjg5CjE4OSAyOTAKMTkwIDI5NAox OTEgMjk1CjE5MiAyOTYKMTkzIDI5NwoxOTQgMjk4CjE5NSAyOTkKMTk2IDMw MAoxOTcgMzA0CjE5OCAzMDUKMTk5IDMwNgoyMDAgMzA3CjIwMSAzMDgKMjAy IDMwOQoyMDMgMzM1CjIwNCAzMzYKMjA1IDMzNwoyMDYgMzM4CjIwNyAzMzkK MjA4IDM0MAoyMDkgMzQ2CjIxMCAzNDcKMjExIDM0OAoyMTIgMzQ5CjIxMyAz NTAKMjE0IDM1NQoyMTUgMzU2CjIxNiAzNTcKMjE3IDM1OAoyMTggMzU5CjIx OSAzNjAKMjIwIDM2NQoyMjEgMzY2CjIyMiAzNjcKMjIzIDM2OAoyMjQgMzY5 CjIyNSAzNzAKMjI2IDM3NQoyMjcgMzc2CjIyOCAzNzcKMjI5IDM3OAoyMzAg Mzc5CjIzMSAzODAKMjMyIDM4NQoyMzMgMzg2CjIzNCAzODcKMjM1IDM4OAoy MzYgMzg5CjIzNyAzOTAKMjM4IDM5NQoyMzkgMzk2CjI0MCAzOTcKMjQxIDM5 OAoyNDIgMzk5CjI0MyA0MDAKMjQ0IDQwNQoyNDUgNDA2CjI0NiA0MDcKMjQ3 IDQwOAoyNDggNDA5CjI0OSA0NDYKMjUwIDQ0NwoyNTEgNDQ4CjI1MiA0NDkK MjUzIDQ1MAoyNTQgNDU3CjI1NSA0NTgKMjU2IDQ1OQoyNTcgNDYwCjI1OCA0 NjYKMjU5IDQ2NwoyNjAgNDY4CjI2MSA0NjkKMjYyIDQ3MAoyNjMgNDc2CjI2 NCA0NzcKMjY1IDQ3OAoyNjYgNDc5CjI2NyA0ODAKMjY4IDQ4NgoyNjkgNDg3 CjI3MCA0ODgKMjcxIDQ4OQoyNzIgNDkwCjI3MyA0OTYKMjc0IDQ5NwoyNzUg NDk4CjI3NiA0OTkKMjc3IDUwMAoyNzggNTA2CjI3OSA1MDcKMjgwIDUwOAoy ODEgNTA5CjI4MiA1NTcKMjgzIDU1OAoyODQgNTU5CjI4NSA1NjAKMjg2IDU2 OAoyODcgNTY5CjI4OCA1NzAKMjg5IDU3NwoyOTAgNTc4CjI5MSA1NzkKMjky IDU4MAoyOTMgNTg3CjI5NCA1ODgKMjk1IDU4OQoyOTYgNTkwCjI5NyA1OTcK Mjk4IDU5OAoyOTkgNTk5CjMwMCA2MDAKMzAxIDYwNwozMDIgNjA4CjMwMyA2 MDkKMzA0IDY2OAozMDUgNjY5CjMwNiA2NzAKMzA3IDY3OQozMDggNjgwCjMw OSA2ODgKMzEwIDY4OQozMTEgNjkwCjMxMiA2OTgKMzEzIDY5OQozMTQgNzAw CjMxNSA3MDgKMzE2IDcwOQozMTcgNzc5CjMxOCA3ODAKMzE5IDc5MAozMjAg Nzk5CjMyMSA4MDAKMzIyIDgwOQozMjMgODkwCjMyNCA5MDAKMzI1IDEwMDAK MzI2IDEwMDIKMzI3IDEwMDMKMzI4IDEwMDQKMzI5IDEwMDUKMzMwIDEwMDYK MzMxIDEwMDcKMzMyIDEwMDgKMzMzIDEwMDkKMzM0IDEwMTAKMzM1IDEwMTIK MzM2IDEwMTMKMzM3IDEwMTQKMzM4IDEwMTUKMzM5IDEwMTYKMzQwIDEwMTcK MzQxIDEwMTgKMzQyIDEwMTkKMzQzIDEwMjAKMzQ0IDEwMjIKMzQ1IDEwMjMK MzQ2IDEwMjQKMzQ3IDEwMjUKMzQ4IDEwMjYKMzQ5IDEwMjcKMzUwIDEwMjgK MzUxIDEwMjkKMzUyIDEwMzAKMzUzIDEwMzIKMzU0IDEwMzMKMzU1IDEwMzQK MzU2IDEwMzUKMzU3IDEwMzYKMzU4IDEwMzcKMzU5IDEwMzgKMzYwIDEwMzkK MzYxIDEwNDAKMzYyIDEwNDIKMzYzIDEwNDMKMzY0IDEwNDQKMzY1IDEwNDUK MzY2IDEwNDYKMzY3IDEwNDcKMzY4IDEwNDgKMzY5IDEwNDkKMzcwIDEwNTAK MzcxIDEwNTIKMzcyIDEwNTMKMzczIDEwNTQKMzc0IDEwNTUKMzc1IDEwNTYK Mzc2IDEwNTcKMzc3IDEwNTgKMzc4IDEwNTkKMzc5IDEwNjAKMzgwIDEwNjIK MzgxIDEwNjMKMzgyIDEwNjQKMzgzIDEwNjUKMzg0IDEwNjYKMzg1IDEwNjcK Mzg2IDEwNjgKMzg3IDEwNjkKMzg4IDEwNzAKMzg5IDEwNzIKMzkwIDEwNzMK MzkxIDEwNzQKMzkyIDEwNzUKMzkzIDEwNzYKMzk0IDEwNzcKMzk1IDEwNzgK Mzk2IDEwNzkKMzk3IDEwODAKMzk4IDEwODIKMzk5IDEwODMKNDAwIDEwODQK NDAxIDEwODUKNDAyIDEwODYKNDAzIDEwODcKNDA0IDEwODgKNDA1IDEwODkK NDA2IDEwOTAKNDA3IDEwOTIKNDA4IDEwOTMKNDA5IDEwOTQKNDEwIDEwOTUK NDExIDEwOTYKNDEyIDEwOTcKNDEzIDEwOTgKNDE0IDEwOTkKNDE1IDExMTMK NDE2IDExMTQKNDE3IDExMTUKNDE4IDExMTYKNDE5IDExMTcKNDIwIDExMTgK NDIxIDExMTkKNDIyIDExMjAKNDIzIDExMjMKNDI0IDExMjQKNDI1IDExMjUK NDI2IDExMjYKNDI3IDExMjcKNDI4IDExMjgKNDI5IDExMjkKNDMwIDExMzAK NDMxIDExMzMKNDMyIDExMzQKNDMzIDExMzUKNDM0IDExMzYKNDM1IDExMzcK NDM2IDExMzgKNDM3IDExMzkKNDM4IDExNDAKNDM5IDExNDMKNDQwIDExNDQK NDQxIDExNDUKNDQyIDExNDYKNDQzIDExNDcKNDQ0IDExNDgKNDQ1IDExNDkK NDQ2IDExNTAKNDQ3IDExNTMKNDQ4IDExNTQKNDQ5IDExNTUKNDUwIDExNTYK NDUxIDExNTcKNDUyIDExNTgKNDUzIDExNTkKNDU0IDExNjAKNDU1IDExNjMK NDU2IDExNjQKNDU3IDExNjUKNDU4IDExNjYKNDU5IDExNjcKNDYwIDExNjgK NDYxIDExNjkKNDYyIDExNzAKNDYzIDExNzMKNDY0IDExNzQKNDY1IDExNzUK NDY2IDExNzYKNDY3IDExNzcKNDY4IDExNzgKNDY5IDExNzkKNDcwIDExODAK NDcxIDExODMKNDcyIDExODQKNDczIDExODUKNDc0IDExODYKNDc1IDExODcK NDc2IDExODgKNDc3IDExODkKNDc4IDExOTAKNDc5IDExOTMKNDgwIDExOTQK NDgxIDExOTUKNDgyIDExOTYKNDgzIDExOTcKNDg0IDExOTgKNDg1IDExOTkK NDg2IDEyMDAKNDg3IDEyMDMKNDg4IDEyMDQKNDg5IDEyMDUKNDkwIDEyMDYK NDkxIDEyMDcKNDkyIDEyMDgKNDkzIDEyMDkKNDk0IDEyMTQKNDk1IDEyMTUK NDk2IDEyMTYKNDk3IDEyMTcKNDk4IDEyMTgKNDk5IDEyMTkKNTAwIDEyMjAK NTAxIDEyMjMKNTAyIDEyMjQKNTAzIDEyMjUKNTA0IDEyMjYKNTA1IDEyMjcK NTA2IDEyMjgKNTA3IDEyMjkKNTA4IDEyMzAKNTA5IDEyMzMKNTEwIDEyMzUK NTExIDEyMzYKNTEyIDEyMzcKNTEzIDEyMzgKNTE0IDEyMzkKNTE1IDEyNDAK NTE2IDEyNDMKNTE3IDEyNDQKNTE4IDEyNDUKNTE5IDEyNDYKNTIwIDEyNDcK NTIxIDEyNDgKNTIyIDEyNDkKNTIzIDEyNTAKNTI0IDEyNTMKNTI1IDEyNTQK NTI2IDEyNTUKNTI3IDEyNTYKNTI4IDEyNTcKNTI5IDEyNTgKNTMwIDEyNTkK NTMxIDEyNjAKNTMyIDEyNjMKNTMzIDEyNjQKNTM0IDEyNjUKNTM1IDEyNjYK NTM2IDEyNjcKNTM3IDEyNjgKNTM4IDEyNjkKNTM5IDEyNzAKNTQwIDEyNzMK NTQxIDEyNzQKNTQyIDEyNzUKNTQzIDEyNzYKNTQ0IDEyNzcKNTQ1IDEyNzgK NTQ2IDEyNzkKNTQ3IDEyODAKNTQ4IDEyODMKNTQ5IDEyODQKNTUwIDEyODUK NTUxIDEyODYKNTUyIDEyODcKNTUzIDEyODgKNTU0IDEyODkKNTU1IDEyOTAK NTU2IDEyOTMKNTU3IDEyOTQKNTU4IDEyOTUKNTU5IDEyOTYKNTYwIDEyOTcK NTYxIDEyOTgKNTYyIDEyOTkKNTYzIDEzMDAKNTY0IDEzMDMKNTY1IDEzMDQK NTY2IDEzMDUKNTY3IDEzMDYKNTY4IDEzMDcKNTY5IDEzMDgKNTcwIDEzMDkK NTcxIDEzMTMKNTcyIDEzMTUKNTczIDEzMTYKNTc0IDEzMTcKNTc1IDEzMTgK NTc2IDEzMTkKNTc3IDEzMjAKNTc4IDEzMjQKNTc5IDEzMjUKNTgwIDEzMjYK NTgxIDEzMjcKNTgyIDEzMjgKNTgzIDEzMjkKNTg0IDEzMzAKNTg1IDEzMzMK NTg2IDEzMzQKNTg3IDEzMzUKNTg4IDEzMzYKNTg5IDEzMzcKNTkwIDEzMzgK NTkxIDEzMzkKNTkyIDEzNDAKNTkzIDEzNDMKNTk0IDEzNDQKNTk1IDEzNDUK NTk2IDEzNDYKNTk3IDEzNDcKNTk4IDEzNDgKNTk5IDEzNDkKNjAwIDEzNTAK NjAxIDEzNTMKNjAyIDEzNTQKNjAzIDEzNTUKNjA0IDEzNTYKNjA1IDEzNTcK NjA2IDEzNTgKNjA3IDEzNTkKNjA4IDEzNjAKNjA5IDEzNjMKNjEwIDEzNjQK NjExIDEzNjUKNjEyIDEzNjYKNjEzIDEzNjcKNjE0IDEzNjgKNjE1IDEzNjkK NjE2IDEzNzAKNjE3IDEzNzMKNjE4IDEzNzQKNjE5IDEzNzUKNjIwIDEzNzYK NjIxIDEzNzcKNjIyIDEzNzgKNjIzIDEzNzkKNjI0IDEzODAKNjI1IDEzODMK NjI2IDEzODQKNjI3IDEzODUKNjI4IDEzODYKNjI5IDEzODcKNjMwIDEzODgK NjMxIDEzODkKNjMyIDEzOTAKNjMzIDEzOTMKNjM0IDEzOTQKNjM1IDEzOTUK NjM2IDEzOTYKNjM3IDEzOTcKNjM4IDEzOTgKNjM5IDEzOTkKNjQwIDE0MDAK NjQxIDE0MDMKNjQyIDE0MDQKNjQzIDE0MDUKNjQ0IDE0MDYKNjQ1IDE0MDcK NjQ2IDE0MDgKNjQ3IDE0MDkKNjQ4IDE0MTQKNjQ5IDE0MTYKNjUwIDE0MTcK NjUxIDE0MTgKNjUyIDE0MTkKNjUzIDE0MjAKNjU0IDE0MjMKNjU1IDE0MjUK NjU2IDE0MjYKNjU3IDE0MjcKNjU4IDE0MjgKNjU5IDE0MjkKNjYwIDE0MzAK NjYxIDE0MzMKNjYyIDE0MzQKNjYzIDE0MzUKNjY0IDE0MzYKNjY1IDE0MzcK NjY2IDE0MzgKNjY3IDE0MzkKNjY4IDE0NDAKNjY5IDE0NDMKNjcwIDE0NDQK NjcxIDE0NDUKNjcyIDE0NDYKNjczIDE0NDcKNjc0IDE0NDgKNjc1IDE0NDkK Njc2IDE0NTAKNjc3IDE0NTMKNjc4IDE0NTQKNjc5IDE0NTUKNjgwIDE0NTYK NjgxIDE0NTcKNjgyIDE0NTgKNjgzIDE0NTkKNjg0IDE0NjAKNjg1IDE0NjMK Njg2IDE0NjQKNjg3IDE0NjUKNjg4IDE0NjYKNjg5IDE0NjcKNjkwIDE0NjgK NjkxIDE0NjkKNjkyIDE0NzAKNjkzIDE0NzMKNjk0IDE0NzQKNjk1IDE0NzUK Njk2IDE0NzYKNjk3IDE0NzcKNjk4IDE0NzgKNjk5IDE0NzkKNzAwIDE0ODAK NzAxIDE0ODMKNzAyIDE0ODQKNzAzIDE0ODUKNzA0IDE0ODYKNzA1IDE0ODcK NzA2IDE0ODgKNzA3IDE0ODkKNzA4IDE0OTAKNzA5IDE0OTMKNzEwIDE0OTQK NzExIDE0OTUKNzEyIDE0OTYKNzEzIDE0OTcKNzE0IDE0OTgKNzE1IDE0OTkK NzE2IDE1MDAKNzE3IDE1MDMKNzE4IDE1MDQKNzE5IDE1MDUKNzIwIDE1MDYK NzIxIDE1MDcKNzIyIDE1MDgKNzIzIDE1MDkKNzI0IDE1MTUKNzI1IDE1MTcK NzI2IDE1MTgKNzI3IDE1MTkKNzI4IDE1MjAKNzI5IDE1MjMKNzMwIDE1MjQK NzMxIDE1MjYKNzMyIDE1MjcKNzMzIDE1MjgKNzM0IDE1MjkKNzM1IDE1MzAK NzM2IDE1MzMKNzM3IDE1MzQKNzM4IDE1MzUKNzM5IDE1MzYKNzQwIDE1MzcK NzQxIDE1MzgKNzQyIDE1MzkKNzQzIDE1NDAKNzQ0IDE1NDMKNzQ1IDE1NDQK NzQ2IDE1NDUKNzQ3IDE1NDYKNzQ4IDE1NDcKNzQ5IDE1NDgKNzUwIDE1NDkK NzUxIDE1NTAKNzUyIDE1NTMKNzUzIDE1NTQKNzU0IDE1NTUKNzU1IDE1NTYK NzU2IDE1NTcKNzU3IDE1NTgKNzU4IDE1NTkKNzU5IDE1NjAKNzYwIDE1NjMK NzYxIDE1NjQKNzYyIDE1NjUKNzYzIDE1NjYKNzY0IDE1NjcKNzY1IDE1NjgK NzY2IDE1NjkKNzY3IDE1NzAKNzY4IDE1NzMKNzY5IDE1NzQKNzcwIDE1NzUK NzcxIDE1NzYKNzcyIDE1NzcKNzczIDE1NzgKNzc0IDE1NzkKNzc1IDE1ODAK Nzc2IDE1ODMKNzc3IDE1ODQKNzc4IDE1ODUKNzc5IDE1ODYKNzgwIDE1ODcK NzgxIDE1ODgKNzgyIDE1ODkKNzgzIDE1OTAKNzg0IDE1OTMKNzg1IDE1OTQK Nzg2IDE1OTUKNzg3IDE1OTYKNzg4IDE1OTcKNzg5IDE1OTgKNzkwIDE1OTkK NzkxIDE2MDAKNzkyIDE2MDMKNzkzIDE2MDQKNzk0IDE2MDUKNzk1IDE2MDYK Nzk2IDE2MDcKNzk3IDE2MDgKNzk4IDE2MDkKNzk5IDE2MTYKODAwIDE2MTgK ODAxIDE2MTkKODAyIDE2MjAKODAzIDE2MjMKODA0IDE2MjQKODA1IDE2MjUK ODA2IDE2MjcKODA3IDE2MjgKODA4IDE2MjkKODA5IDE2MzAKODEwIDE2MzMK ODExIDE2MzQKODEyIDE2MzUKODEzIDE2MzYKODE0IDE2MzcKODE1IDE2MzgK ODE2IDE2MzkKODE3IDE2NDAKODE4IDE2NDMKODE5IDE2NDQKODIwIDE2NDUK ODIxIDE2NDYKODIyIDE2NDcKODIzIDE2NDgKODI0IDE2NDkKODI1IDE2NTAK ODI2IDE2NTMKODI3IDE2NTQKODI4IDE2NTUKODI5IDE2NTYKODMwIDE2NTcK ODMxIDE2NTgKODMyIDE2NTkKODMzIDE2NjAKODM0IDE2NjMKODM1IDE2NjQK ODM2IDE2NjUKODM3IDE2NjYKODM4IDE2NjcKODM5IDE2NjgKODQwIDE2NjkK ODQxIDE2NzAKODQyIDE2NzMKODQzIDE2NzQKODQ0IDE2NzUKODQ1IDE2NzYK ODQ2IDE2NzcKODQ3IDE2NzgKODQ4IDE2NzkKODQ5IDE2ODAKODUwIDE2ODMK ODUxIDE2ODQKODUyIDE2ODUKODUzIDE2ODYKODU0IDE2ODcKODU1IDE2ODgK ODU2IDE2ODkKODU3IDE2OTAKODU4IDE2OTMKODU5IDE2OTQKODYwIDE2OTUK ODYxIDE2OTYKODYyIDE2OTcKODYzIDE2OTgKODY0IDE2OTkKODY1IDE3MDAK ODY2IDE3MDMKODY3IDE3MDQKODY4IDE3MDUKODY5IDE3MDYKODcwIDE3MDcK ODcxIDE3MDgKODcyIDE3MDkKODczIDE3MTcKODc0IDE3MTkKODc1IDE3MjAK ODc2IDE3MjMKODc3IDE3MjQKODc4IDE3MjUKODc5IDE3MjYKODgwIDE3MjgK ODgxIDE3MjkKODgyIDE3MzAKODgzIDE3MzMKODg0IDE3MzQKODg1IDE3MzUK ODg2IDE3MzYKODg3IDE3MzcKODg4IDE3MzgKODg5IDE3MzkKODkwIDE3NDAK ODkxIDE3NDMKODkyIDE3NDQKODkzIDE3NDUKODk0IDE3NDYKODk1IDE3NDcK ODk2IDE3NDgKODk3IDE3NDkKODk4IDE3NTAKODk5IDE3NTMKOTAwIDE3NTQK OTAxIDE3NTUKOTAyIDE3NTYKOTAzIDE3NTcKOTA0IDE3NTgKOTA1IDE3NTkK OTA2IDE3NjAKOTA3IDE3NjMKOTA4IDE3NjQKOTA5IDE3NjUKOTEwIDE3NjYK OTExIDE3NjcKOTEyIDE3NjgKOTEzIDE3NjkKOTE0IDE3NzAKOTE1IDE3NzMK OTE2IDE3NzQKOTE3IDE3NzUKOTE4IDE3NzYKOTE5IDE3NzcKOTIwIDE3NzgK OTIxIDE3NzkKOTIyIDE3ODAKOTIzIDE3ODMKOTI0IDE3ODQKOTI1IDE3ODUK OTI2IDE3ODYKOTI3IDE3ODcKOTI4IDE3ODgKOTI5IDE3ODkKOTMwIDE3OTAK OTMxIDE3OTMKOTMyIDE3OTQKOTMzIDE3OTUKOTM0IDE3OTYKOTM1IDE3OTcK OTM2IDE3OTgKOTM3IDE3OTkKOTM4IDE4MDAKOTM5IDE4MDMKOTQwIDE4MDQK OTQxIDE4MDUKOTQyIDE4MDYKOTQzIDE4MDcKOTQ0IDE4MDgKOTQ1IDE4MDkK OTQ2IDE4MTgKOTQ3IDE4MjAKOTQ4IDE4MjMKOTQ5IDE4MjQKOTUwIDE4MjUK OTUxIDE4MjYKOTUyIDE4MjcKOTUzIDE4MjkKOTU0IDE4MzAKOTU1IDE4MzMK OTU2IDE4MzQKOTU3IDE4MzUKOTU4IDE4MzYKOTU5IDE4MzcKOTYwIDE4MzgK OTYxIDE4MzkKOTYyIDE4NDAKOTYzIDE4NDMKOTY0IDE4NDQKOTY1IDE4NDUK OTY2IDE4NDYKOTY3IDE4NDcKOTY4IDE4NDgKOTY5IDE4NDkKOTcwIDE4NTAK OTcxIDE4NTMKOTcyIDE4NTQKOTczIDE4NTUKOTc0IDE4NTYKOTc1IDE4NTcK OTc2IDE4NTgKOTc3IDE4NTkKOTc4IDE4NjAKOTc5IDE4NjMKOTgwIDE4NjQK OTgxIDE4NjUKOTgyIDE4NjYKOTgzIDE4NjcKOTg0IDE4NjgKOTg1IDE4NjkK OTg2IDE4NzAKOTg3IDE4NzMKOTg4IDE4NzQKOTg5IDE4NzUKOTkwIDE4NzYK OTkxIDE4NzcKOTkyIDE4NzgKOTkzIDE4NzkKOTk0IDE4ODAKOTk1IDE4ODMK OTk2IDE4ODQKOTk3IDE4ODUKOTk4IDE4ODYKOTk5IDE4ODcKMTAwMCAxODg4 CjEwMDEgMTg4OQoxMDAyIDE4OTAKMTAwMyAxODkzCjEwMDQgMTg5NAoxMDA1 IDE4OTUKMTAwNiAxODk2CjEwMDcgMTg5NwoxMDA4IDE4OTgKMTAwOSAxODk5 CjEwMTAgMTkwMAoxMDExIDE5MDMKMTAxMiAxOTA0CjEwMTMgMTkwNQoxMDE0 IDE5MDYKMTAxNSAxOTA3CjEwMTYgMTkwOAoxMDE3IDE5MDkKMTAxOCAxOTE5 CjEwMTkgMTkyMwoxMDIwIDE5MjQKMTAyMSAxOTI1CjEwMjIgMTkyNgoxMDIz IDE5MjcKMTAyNCAxOTI4CjEwMjUgMTkzMAoxMDI2IDE5MzMKMTAyNyAxOTM0 CjEwMjggMTkzNQoxMDI5IDE5MzYKMTAzMCAxOTM3CjEwMzEgMTkzOAoxMDMy IDE5MzkKMTAzMyAxOTQwCjEwMzQgMTk0MwoxMDM1IDE5NDQKMTAzNiAxOTQ1 CjEwMzcgMTk0NgoxMDM4IDE5NDcKMTAzOSAxOTQ4CjEwNDAgMTk0OQoxMDQx IDE5NTAKMTA0MiAxOTUzCjEwNDMgMTk1NAoxMDQ0IDE5NTUKMTA0NSAxOTU2 CjEwNDYgMTk1NwoxMDQ3IDE5NTgKMTA0OCAxOTU5CjEwNDkgMTk2MAoxMDUw IDE5NjMKMTA1MSAxOTY0CjEwNTIgMTk2NQoxMDUzIDE5NjYKMTA1NCAxOTY3 CjEwNTUgMTk2OAoxMDU2IDE5NjkKMTA1NyAxOTcwCjEwNTggMTk3MwoxMDU5 IDE5NzQKMTA2MCAxOTc1CjEwNjEgMTk3NgoxMDYyIDE5NzcKMTA2MyAxOTc4 CjEwNjQgMTk3OQoxMDY1IDE5ODAKMTA2NiAxOTgzCjEwNjcgMTk4NAoxMDY4 IDE5ODUKMTA2OSAxOTg2CjEwNzAgMTk4NwoxMDcxIDE5ODgKMTA3MiAxOTg5 CjEwNzMgMTk5MAoxMDc0IDE5OTMKMTA3NSAxOTk0CjEwNzYgMTk5NQoxMDc3 IDE5OTYKMTA3OCAxOTk3CjEwNzkgMTk5OAoxMDgwIDE5OTkKMTA4MSAyMDAw CjEwODIgMjAwMwoxMDgzIDIwMDQKMTA4NCAyMDA1CjEwODUgMjAwNgoxMDg2 IDIwMDcKMTA4NyAyMDA4CjEwODggMjAwOQoxMDg5IDIwMjAKMTA5MCAyMDIz CjEwOTEgMjAyNAoxMDkyIDIwMjUKMTA5MyAyMDI2CjEwOTQgMjAyNwoxMDk1 IDIwMjgKMTA5NiAyMDI5CjEwOTcgMjAzMAoxMDk4IDIwMzMKMTA5OSAyMDM0 CjExMDAgMjAzNQoxMTAxIDIwMzYKMTEwMiAyMDM3CjExMDMgMjAzOAoxMTA0 IDIwMzkKMTEwNSAyMDQwCjExMDYgMjA0MwoxMTA3IDIwNDQKMTEwOCAyMDQ1 CjExMDkgMjA0NgoxMTEwIDIwNDcKMTExMSAyMDQ4CjExMTIgMjA0OQoxMTEz IDIwNTAKMTExNCAyMDUzCjExMTUgMjA1NAoxMTE2IDIwNTUKMTExNyAyMDU2 CjExMTggMjA1NwoxMTE5IDIwNTgKMTEyMCAyMDU5CjExMjEgMjA2MAoxMTIy IDIwNjMKMTEyMyAyMDY0CjExMjQgMjA2NQoxMTI1IDIwNjYKMTEyNiAyMDY3 CjExMjcgMjA2OAoxMTI4IDIwNjkKMTEyOSAyMDcwCjExMzAgMjA3MwoxMTMx IDIwNzQKMTEzMiAyMDc1CjExMzMgMjA3NgoxMTM0IDIwNzcKMTEzNSAyMDc4 CjExMzYgMjA3OQoxMTM3IDIwODAKMTEzOCAyMDgzCjExMzkgMjA4NAoxMTQw IDIwODUKMTE0MSAyMDg2CjExNDIgMjA4NwoxMTQzIDIwODgKMTE0NCAyMDg5 CjExNDUgMjA5MAoxMTQ2IDIwOTMKMTE0NyAyMDk0CjExNDggMjA5NQoxMTQ5 IDIwOTYKMTE1MCAyMDk3CjExNTEgMjA5OAoxMTUyIDIwOTkKMTE1MyAyMjI0 CjExNTQgMjIyNQoxMTU1IDIyMjYKMTE1NiAyMjI3CjExNTcgMjIyOAoxMTU4 IDIyMjkKMTE1OSAyMjMwCjExNjAgMjIzNAoxMTYxIDIyMzUKMTE2MiAyMjM2 CjExNjMgMjIzNwoxMTY0IDIyMzgKMTE2NSAyMjM5CjExNjYgMjI0MAoxMTY3 IDIyNDQKMTE2OCAyMjQ1CjExNjkgMjI0NgoxMTcwIDIyNDcKMTE3MSAyMjQ4 CjExNzIgMjI0OQoxMTczIDIyNTAKMTE3NCAyMjU0CjExNzUgMjI1NQoxMTc2 IDIyNTYKMTE3NyAyMjU3CjExNzggMjI1OAoxMTc5IDIyNTkKMTE4MCAyMjYw CjExODEgMjI2NAoxMTgyIDIyNjUKMTE4MyAyMjY2CjExODQgMjI2NwoxMTg1 IDIyNjgKMTE4NiAyMjY5CjExODcgMjI3MAoxMTg4IDIyNzQKMTE4OSAyMjc1 CjExOTAgMjI3NgoxMTkxIDIyNzcKMTE5MiAyMjc4CjExOTMgMjI3OQoxMTk0 IDIyODAKMTE5NSAyMjg0CjExOTYgMjI4NQoxMTk3IDIyODYKMTE5OCAyMjg3 CjExOTkgMjI4OAoxMjAwIDIyODkKMTIwMSAyMjkwCjEyMDIgMjI5NAoxMjAz IDIyOTUKMTIwNCAyMjk2CjEyMDUgMjI5NwoxMjA2IDIyOTgKMTIwNyAyMjk5 CjEyMDggMjMwMAoxMjA5IDIzMDQKMTIxMCAyMzA1CjEyMTEgMjMwNgoxMjEy IDIzMDcKMTIxMyAyMzA4CjEyMTQgMjMwOQoxMjE1IDIzMjUKMTIxNiAyMzI2 CjEyMTcgMjMyNwoxMjE4IDIzMjgKMTIxOSAyMzI5CjEyMjAgMjMzMAoxMjIx IDIzMzQKMTIyMiAyMzM1CjEyMjMgMjMzNgoxMjI0IDIzMzcKMTIyNSAyMzM4 CjEyMjYgMjMzOQoxMjI3IDIzNDAKMTIyOCAyMzQ0CjEyMjkgMjM0NgoxMjMw IDIzNDcKMTIzMSAyMzQ4CjEyMzIgMjM0OQoxMjMzIDIzNTAKMTIzNCAyMzU0 CjEyMzUgMjM1NQoxMjM2IDIzNTYKMTIzNyAyMzU3CjEyMzggMjM1OAoxMjM5 IDIzNTkKMTI0MCAyMzYwCjEyNDEgMjM2NAoxMjQyIDIzNjUKMTI0MyAyMzY2 CjEyNDQgMjM2NwoxMjQ1IDIzNjgKMTI0NiAyMzY5CjEyNDcgMjM3MAoxMjQ4 IDIzNzQKMTI0OSAyMzc1CjEyNTAgMjM3NgoxMjUxIDIzNzcKMTI1MiAyMzc4 CjEyNTMgMjM3OQoxMjU0IDIzODAKMTI1NSAyMzg0CjEyNTYgMjM4NQoxMjU3 IDIzODYKMTI1OCAyMzg3CjEyNTkgMjM4OAoxMjYwIDIzODkKMTI2MSAyMzkw CjEyNjIgMjM5NAoxMjYzIDIzOTUKMTI2NCAyMzk2CjEyNjUgMjM5NwoxMjY2 IDIzOTgKMTI2NyAyMzk5CjEyNjggMjQwMAoxMjY5IDI0MDQKMTI3MCAyNDA1 CjEyNzEgMjQwNgoxMjcyIDI0MDcKMTI3MyAyNDA4CjEyNzQgMjQwOQoxMjc1 IDI0MjQKMTI3NiAyNDI2CjEyNzcgMjQyNwoxMjc4IDI0MjgKMTI3OSAyNDI5 CjEyODAgMjQzMAoxMjgxIDI0MzUKMTI4MiAyNDM2CjEyODMgMjQzNwoxMjg0 IDI0MzgKMTI4NSAyNDM5CjEyODYgMjQ0MAoxMjg3IDI0NDQKMTI4OCAyNDQ1 CjEyODkgMjQ0NgoxMjkwIDI0NDcKMTI5MSAyNDQ4CjEyOTIgMjQ0OQoxMjkz IDI0NTAKMTI5NCAyNDU0CjEyOTUgMjQ1NQoxMjk2IDI0NTYKMTI5NyAyNDU3 CjEyOTggMjQ1OAoxMjk5IDI0NTkKMTMwMCAyNDYwCjEzMDEgMjQ2NAoxMzAy IDI0NjUKMTMwMyAyNDY2CjEzMDQgMjQ2NwoxMzA1IDI0NjgKMTMwNiAyNDY5 CjEzMDcgMjQ3MAoxMzA4IDI0NzQKMTMwOSAyNDc1CjEzMTAgMjQ3NgoxMzEx IDI0NzcKMTMxMiAyNDc4CjEzMTMgMjQ3OQoxMzE0IDI0ODAKMTMxNSAyNDg0 CjEzMTYgMjQ4NQoxMzE3IDI0ODYKMTMxOCAyNDg3CjEzMTkgMjQ4OAoxMzIw IDI0ODkKMTMyMSAyNDkwCjEzMjIgMjQ5NAoxMzIzIDI0OTUKMTMyNCAyNDk2 CjEzMjUgMjQ5NwoxMzI2IDI0OTgKMTMyNyAyNDk5CjEzMjggMjUwMAoxMzI5 IDI1MDQKMTMzMCAyNTA1CjEzMzEgMjUwNgoxMzMyIDI1MDcKMTMzMyAyNTA4 CjEzMzQgMjUwOQoxMzM1IDI1MjUKMTMzNiAyNTI3CjEzMzcgMjUyOAoxMzM4 IDI1MjkKMTMzOSAyNTMwCjEzNDAgMjUzNAoxMzQxIDI1MzYKMTM0MiAyNTM3 CjEzNDMgMjUzOAoxMzQ0IDI1MzkKMTM0NSAyNTQwCjEzNDYgMjU0NAoxMzQ3 IDI1NDUKMTM0OCAyNTQ2CjEzNDkgMjU0NwoxMzUwIDI1NDgKMTM1MSAyNTQ5 CjEzNTIgMjU1MAoxMzUzIDI1NTQKMTM1NCAyNTU1CjEzNTUgMjU1NgoxMzU2 IDI1NTcKMTM1NyAyNTU4CjEzNTggMjU1OQoxMzU5IDI1NjAKMTM2MCAyNTY0 CjEzNjEgMjU2NQoxMzYyIDI1NjYKMTM2MyAyNTY3CjEzNjQgMjU2OAoxMzY1 IDI1NjkKMTM2NiAyNTcwCjEzNjcgMjU3NAoxMzY4IDI1NzUKMTM2OSAyNTc2 CjEzNzAgMjU3NwoxMzcxIDI1NzgKMTM3MiAyNTc5CjEzNzMgMjU4MAoxMzc0 IDI1ODQKMTM3NSAyNTg1CjEzNzYgMjU4NgoxMzc3IDI1ODcKMTM3OCAyNTg4 CjEzNzkgMjU4OQoxMzgwIDI1OTAKMTM4MSAyNTk0CjEzODIgMjU5NQoxMzgz IDI1OTYKMTM4NCAyNTk3CjEzODUgMjU5OAoxMzg2IDI1OTkKMTM4NyAyNjAw CjEzODggMjYwNAoxMzg5IDI2MDUKMTM5MCAyNjA2CjEzOTEgMjYwNwoxMzky IDI2MDgKMTM5MyAyNjA5CjEzOTQgMjYyNgoxMzk1IDI2MjgKMTM5NiAyNjI5 CjEzOTcgMjYzMAoxMzk4IDI2MzQKMTM5OSAyNjM1CjE0MDAgMjYzNwoxNDAx IDI2MzgKMTQwMiAyNjM5CjE0MDMgMjY0MAoxNDA0IDI2NDQKMTQwNSAyNjQ1 CjE0MDYgMjY0NgoxNDA3IDI2NDcKMTQwOCAyNjQ4CjE0MDkgMjY0OQoxNDEw IDI2NTAKMTQxMSAyNjU0CjE0MTIgMjY1NQoxNDEzIDI2NTYKMTQxNCAyNjU3 CjE0MTUgMjY1OAoxNDE2IDI2NTkKMTQxNyAyNjYwCjE0MTggMjY2NAoxNDE5 IDI2NjUKMTQyMCAyNjY2CjE0MjEgMjY2NwoxNDIyIDI2NjgKMTQyMyAyNjY5 CjE0MjQgMjY3MAoxNDI1IDI2NzQKMTQyNiAyNjc1CjE0MjcgMjY3NgoxNDI4 IDI2NzcKMTQyOSAyNjc4CjE0MzAgMjY3OQoxNDMxIDI2ODAKMTQzMiAyNjg0 CjE0MzMgMjY4NQoxNDM0IDI2ODYKMTQzNSAyNjg3CjE0MzYgMjY4OAoxNDM3 IDI2ODkKMTQzOCAyNjkwCjE0MzkgMjY5NAoxNDQwIDI2OTUKMTQ0MSAyNjk2 CjE0NDIgMjY5NwoxNDQzIDI2OTgKMTQ0NCAyNjk5CjE0NDUgMjcwMAoxNDQ2 IDI3MDQKMTQ0NyAyNzA1CjE0NDggMjcwNgoxNDQ5IDI3MDcKMTQ1MCAyNzA4 CjE0NTEgMjcwOQoxNDUyIDI3MjcKMTQ1MyAyNzI5CjE0NTQgMjczMAoxNDU1 IDI3MzQKMTQ1NiAyNzM1CjE0NTcgMjczNgoxNDU4IDI3MzgKMTQ1OSAyNzM5 CjE0NjAgMjc0MAoxNDYxIDI3NDQKMTQ2MiAyNzQ1CjE0NjMgMjc0NgoxNDY0 IDI3NDcKMTQ2NSAyNzQ4CjE0NjYgMjc0OQoxNDY3IDI3NTAKMTQ2OCAyNzU0 CjE0NjkgMjc1NQoxNDcwIDI3NTYKMTQ3MSAyNzU3CjE0NzIgMjc1OAoxNDcz IDI3NTkKMTQ3NCAyNzYwCjE0NzUgMjc2NAoxNDc2IDI3NjUKMTQ3NyAyNzY2 CjE0NzggMjc2NwoxNDc5IDI3NjgKMTQ4MCAyNzY5CjE0ODEgMjc3MAoxNDgy IDI3NzQKMTQ4MyAyNzc1CjE0ODQgMjc3NgoxNDg1IDI3NzcKMTQ4NiAyNzc4 CjE0ODcgMjc3OQoxNDg4IDI3ODAKMTQ4OSAyNzg0CjE0OTAgMjc4NQoxNDkx IDI3ODYKMTQ5MiAyNzg3CjE0OTMgMjc4OAoxNDk0IDI3ODkKMTQ5NSAyNzkw CjE0OTYgMjc5NAoxNDk3IDI3OTUKMTQ5OCAyNzk2CjE0OTkgMjc5NwoxNTAw IDI3OTgKMTUwMSAyNzk5CjE1MDIgMjgwMAoxNTAzIDI4MDQKMTUwNCAyODA1 CjE1MDUgMjgwNgoxNTA2IDI4MDcKMTUwNyAyODA4CjE1MDggMjgwOQoxNTA5 IDI4MjgKMTUxMCAyODMwCjE1MTEgMjgzNAoxNTEyIDI4MzUKMTUxMyAyODM2 CjE1MTQgMjgzNwoxNTE1IDI4MzkKMTUxNiAyODQwCjE1MTcgMjg0NAoxNTE4 IDI4NDUKMTUxOSAyODQ2CjE1MjAgMjg0NwoxNTIxIDI4NDgKMTUyMiAyODQ5 CjE1MjMgMjg1MAoxNTI0IDI4NTQKMTUyNSAyODU1CjE1MjYgMjg1NgoxNTI3 IDI4NTcKMTUyOCAyODU4CjE1MjkgMjg1OQoxNTMwIDI4NjAKMTUzMSAyODY0 CjE1MzIgMjg2NQoxNTMzIDI4NjYKMTUzNCAyODY3CjE1MzUgMjg2OAoxNTM2 IDI4NjkKMTUzNyAyODcwCjE1MzggMjg3NAoxNTM5IDI4NzUKMTU0MCAyODc2 CjE1NDEgMjg3NwoxNTQyIDI4NzgKMTU0MyAyODc5CjE1NDQgMjg4MAoxNTQ1 IDI4ODQKMTU0NiAyODg1CjE1NDcgMjg4NgoxNTQ4IDI4ODcKMTU0OSAyODg4 CjE1NTAgMjg4OQoxNTUxIDI4OTAKMTU1MiAyODk0CjE1NTMgMjg5NQoxNTU0 IDI4OTYKMTU1NSAyODk3CjE1NTYgMjg5OAoxNTU3IDI4OTkKMTU1OCAyOTAw CjE1NTkgMjkwNAoxNTYwIDI5MDUKMTU2MSAyOTA2CjE1NjIgMjkwNwoxNTYz IDI5MDgKMTU2NCAyOTA5CjE1NjUgMjkyOQoxNTY2IDI5MzQKMTU2NyAyOTM1 CjE1NjggMjkzNgoxNTY5IDI5MzcKMTU3MCAyOTM4CjE1NzEgMjk0MAoxNTcy IDI5NDQKMTU3MyAyOTQ1CjE1NzQgMjk0NgoxNTc1IDI5NDcKMTU3NiAyOTQ4 CjE1NzcgMjk0OQoxNTc4IDI5NTAKMTU3OSAyOTU0CjE1ODAgMjk1NQoxNTgx IDI5NTYKMTU4MiAyOTU3CjE1ODMgMjk1OAoxNTg0IDI5NTkKMTU4NSAyOTYw CjE1ODYgMjk2NAoxNTg3IDI5NjUKMTU4OCAyOTY2CjE1ODkgMjk2NwoxNTkw IDI5NjgKMTU5MSAyOTY5CjE1OTIgMjk3MAoxNTkzIDI5NzQKMTU5NCAyOTc1 CjE1OTUgMjk3NgoxNTk2IDI5NzcKMTU5NyAyOTc4CjE1OTggMjk3OQoxNTk5 IDI5ODAKMTYwMCAyOTg0CjE2MDEgMjk4NQoxNjAyIDI5ODYKMTYwMyAyOTg3 CjE2MDQgMjk4OAoxNjA1IDI5ODkKMTYwNiAyOTkwCjE2MDcgMjk5NAoxNjA4 IDI5OTUKMTYwOSAyOTk2CjE2MTAgMjk5NwoxNjExIDI5OTgKMTYxMiAyOTk5 CjE2MTMgMzAwMAoxNjE0IDMwMDQKMTYxNSAzMDA1CjE2MTYgMzAwNgoxNjE3 IDMwMDcKMTYxOCAzMDA4CjE2MTkgMzAwOQoxNjIwIDMwMzAKMTYyMSAzMDM0 CjE2MjIgMzAzNQoxNjIzIDMwMzYKMTYyNCAzMDM3CjE2MjUgMzAzOAoxNjI2 IDMwMzkKMTYyNyAzMDQwCjE2MjggMzA0NAoxNjI5IDMwNDUKMTYzMCAzMDQ2 CjE2MzEgMzA0NwoxNjMyIDMwNDgKMTYzMyAzMDQ5CjE2MzQgMzA1MAoxNjM1 IDMwNTQKMTYzNiAzMDU1CjE2MzcgMzA1NgoxNjM4IDMwNTcKMTYzOSAzMDU4 CjE2NDAgMzA1OQoxNjQxIDMwNjAKMTY0MiAzMDY0CjE2NDMgMzA2NQoxNjQ0 IDMwNjYKMTY0NSAzMDY3CjE2NDYgMzA2OAoxNjQ3IDMwNjkKMTY0OCAzMDcw CjE2NDkgMzA3NAoxNjUwIDMwNzUKMTY1MSAzMDc2CjE2NTIgMzA3NwoxNjUz IDMwNzgKMTY1NCAzMDc5CjE2NTUgMzA4MAoxNjU2IDMwODQKMTY1NyAzMDg1 CjE2NTggMzA4NgoxNjU5IDMwODcKMTY2MCAzMDg4CjE2NjEgMzA4OQoxNjYy IDMwOTAKMTY2MyAzMDk0CjE2NjQgMzA5NQoxNjY1IDMwOTYKMTY2NiAzMDk3 CjE2NjcgMzA5OAoxNjY4IDMwOTkKMTY2OSAzMzM1CjE2NzAgMzMzNgoxNjcx IDMzMzcKMTY3MiAzMzM4CjE2NzMgMzMzOQoxNjc0IDMzNDAKMTY3NSAzMzQ1 CjE2NzYgMzM0NgoxNjc3IDMzNDcKMTY3OCAzMzQ4CjE2NzkgMzM0OQoxNjgw IDMzNTAKMTY4MSAzMzU1CjE2ODIgMzM1NgoxNjgzIDMzNTcKMTY4NCAzMzU4 CjE2ODUgMzM1OQoxNjg2IDMzNjAKMTY4NyAzMzY1CjE2ODggMzM2NgoxNjg5 IDMzNjcKMTY5MCAzMzY4CjE2OTEgMzM2OQoxNjkyIDMzNzAKMTY5MyAzMzc1 CjE2OTQgMzM3NgoxNjk1IDMzNzcKMTY5NiAzMzc4CjE2OTcgMzM3OQoxNjk4 IDMzODAKMTY5OSAzMzg1CjE3MDAgMzM4NgoxNzAxIDMzODcKMTcwMiAzMzg4 CjE3MDMgMzM4OQoxNzA0IDMzOTAKMTcwNSAzMzk1CjE3MDYgMzM5NgoxNzA3 IDMzOTcKMTcwOCAzMzk4CjE3MDkgMzM5OQoxNzEwIDM0MDAKMTcxMSAzNDA1 CjE3MTIgMzQwNgoxNzEzIDM0MDcKMTcxNCAzNDA4CjE3MTUgMzQwOQoxNzE2 IDM0MzYKMTcxNyAzNDM3CjE3MTggMzQzOAoxNzE5IDM0MzkKMTcyMCAzNDQw CjE3MjEgMzQ0NQoxNzIyIDM0NDYKMTcyMyAzNDQ3CjE3MjQgMzQ0OAoxNzI1 IDM0NDkKMTcyNiAzNDUwCjE3MjcgMzQ1NQoxNzI4IDM0NTcKMTcyOSAzNDU4 CjE3MzAgMzQ1OQoxNzMxIDM0NjAKMTczMiAzNDY1CjE3MzMgMzQ2NgoxNzM0 IDM0NjcKMTczNSAzNDY4CjE3MzYgMzQ2OQoxNzM3IDM0NzAKMTczOCAzNDc1 CjE3MzkgMzQ3NgoxNzQwIDM0NzcKMTc0MSAzNDc4CjE3NDIgMzQ3OQoxNzQz IDM0ODAKMTc0NCAzNDg1CjE3NDUgMzQ4NgoxNzQ2IDM0ODcKMTc0NyAzNDg4 CjE3NDggMzQ4OQoxNzQ5IDM0OTAKMTc1MCAzNDk1CjE3NTEgMzQ5NgoxNzUy IDM0OTcKMTc1MyAzNDk4CjE3NTQgMzQ5OQoxNzU1IDM1MDAKMTc1NiAzNTA1 CjE3NTcgMzUwNgoxNzU4IDM1MDcKMTc1OSAzNTA4CjE3NjAgMzUwOQoxNzYx IDM1MzUKMTc2MiAzNTM3CjE3NjMgMzUzOAoxNzY0IDM1MzkKMTc2NSAzNTQw CjE3NjYgMzU0NgoxNzY3IDM1NDcKMTc2OCAzNTQ4CjE3NjkgMzU0OQoxNzcw IDM1NTAKMTc3MSAzNTU1CjE3NzIgMzU1NgoxNzczIDM1NTcKMTc3NCAzNTU4 CjE3NzUgMzU1OQoxNzc2IDM1NjAKMTc3NyAzNTY1CjE3NzggMzU2NgoxNzc5 IDM1NjcKMTc4MCAzNTY4CjE3ODEgMzU2OQoxNzgyIDM1NzAKMTc4MyAzNTc1 CjE3ODQgMzU3NgoxNzg1IDM1NzcKMTc4NiAzNTc4CjE3ODcgMzU3OQoxNzg4 IDM1ODAKMTc4OSAzNTg1CjE3OTAgMzU4NgoxNzkxIDM1ODcKMTc5MiAzNTg4 CjE3OTMgMzU4OQoxNzk0IDM1OTAKMTc5NSAzNTk1CjE3OTYgMzU5NgoxNzk3 IDM1OTcKMTc5OCAzNTk4CjE3OTkgMzU5OQoxODAwIDM2MDAKMTgwMSAzNjA1 CjE4MDIgMzYwNgoxODAzIDM2MDcKMTgwNCAzNjA4CjE4MDUgMzYwOQoxODA2 IDM2MzYKMTgwNyAzNjM4CjE4MDggMzYzOQoxODA5IDM2NDAKMTgxMCAzNjQ1 CjE4MTEgMzY0NwoxODEyIDM2NDgKMTgxMyAzNjQ5CjE4MTQgMzY1MAoxODE1 IDM2NTUKMTgxNiAzNjU2CjE4MTcgMzY1NwoxODE4IDM2NTgKMTgxOSAzNjU5 CjE4MjAgMzY2MAoxODIxIDM2NjUKMTgyMiAzNjY2CjE4MjMgMzY2NwoxODI0 IDM2NjgKMTgyNSAzNjY5CjE4MjYgMzY3MAoxODI3IDM2NzUKMTgyOCAzNjc2 CjE4MjkgMzY3NwoxODMwIDM2NzgKMTgzMSAzNjc5CjE4MzIgMzY4MAoxODMz IDM2ODUKMTgzNCAzNjg2CjE4MzUgMzY4NwoxODM2IDM2ODgKMTgzNyAzNjg5 CjE4MzggMzY5MAoxODM5IDM2OTUKMTg0MCAzNjk2CjE4NDEgMzY5NwoxODQy IDM2OTgKMTg0MyAzNjk5CjE4NDQgMzcwMAoxODQ1IDM3MDUKMTg0NiAzNzA2 CjE4NDcgMzcwNwoxODQ4IDM3MDgKMTg0OSAzNzA5CjE4NTAgMzczNwoxODUx IDM3MzkKMTg1MiAzNzQwCjE4NTMgMzc0NQoxODU0IDM3NDYKMTg1NSAzNzQ4 CjE4NTYgMzc0OQoxODU3IDM3NTAKMTg1OCAzNzU1CjE4NTkgMzc1NgoxODYw IDM3NTcKMTg2MSAzNzU4CjE4NjIgMzc1OQoxODYzIDM3NjAKMTg2NCAzNzY1 CjE4NjUgMzc2NgoxODY2IDM3NjcKMTg2NyAzNzY4CjE4NjggMzc2OQoxODY5 IDM3NzAKMTg3MCAzNzc1CjE4NzEgMzc3NgoxODcyIDM3NzcKMTg3MyAzNzc4 CjE4NzQgMzc3OQoxODc1IDM3ODAKMTg3NiAzNzg1CjE4NzcgMzc4NgoxODc4 IDM3ODcKMTg3OSAzNzg4CjE4ODAgMzc4OQoxODgxIDM3OTAKMTg4MiAzNzk1 CjE4ODMgMzc5NgoxODg0IDM3OTcKMTg4NSAzNzk4CjE4ODYgMzc5OQoxODg3 IDM4MDAKMTg4OCAzODA1CjE4ODkgMzgwNgoxODkwIDM4MDcKMTg5MSAzODA4 CjE4OTIgMzgwOQoxODkzIDM4MzgKMTg5NCAzODQwCjE4OTUgMzg0NQoxODk2 IDM4NDYKMTg5NyAzODQ3CjE4OTggMzg0OQoxODk5IDM4NTAKMTkwMCAzODU1 CjE5MDEgMzg1NgoxOTAyIDM4NTcKMTkwMyAzODU4CjE5MDQgMzg1OQoxOTA1 IDM4NjAKMTkwNiAzODY1CjE5MDcgMzg2NgoxOTA4IDM4NjcKMTkwOSAzODY4 CjE5MTAgMzg2OQoxOTExIDM4NzAKMTkxMiAzODc1CjE5MTMgMzg3NgoxOTE0 IDM4NzcKMTkxNSAzODc4CjE5MTYgMzg3OQoxOTE3IDM4ODAKMTkxOCAzODg1 CjE5MTkgMzg4NgoxOTIwIDM4ODcKMTkyMSAzODg4CjE5MjIgMzg4OQoxOTIz IDM4OTAKMTkyNCAzODk1CjE5MjUgMzg5NgoxOTI2IDM4OTcKMTkyNyAzODk4 CjE5MjggMzg5OQoxOTI5IDM5MDAKMTkzMCAzOTA1CjE5MzEgMzkwNgoxOTMy IDM5MDcKMTkzMyAzOTA4CjE5MzQgMzkwOQoxOTM1IDM5MzkKMTkzNiAzOTQ1 CjE5MzcgMzk0NgoxOTM4IDM5NDcKMTkzOSAzOTQ4CjE5NDAgMzk1MAoxOTQx IDM5NTUKMTk0MiAzOTU2CjE5NDMgMzk1NwoxOTQ0IDM5NTgKMTk0NSAzOTU5 CjE5NDYgMzk2MAoxOTQ3IDM5NjUKMTk0OCAzOTY2CjE5NDkgMzk2NwoxOTUw IDM5NjgKMTk1MSAzOTY5CjE5NTIgMzk3MAoxOTUzIDM5NzUKMTk1NCAzOTc2 CjE5NTUgMzk3NwoxOTU2IDM5NzgKMTk1NyAzOTc5CjE5NTggMzk4MAoxOTU5 IDM5ODUKMTk2MCAzOTg2CjE5NjEgMzk4NwoxOTYyIDM5ODgKMTk2MyAzOTg5 CjE5NjQgMzk5MAoxOTY1IDM5OTUKMTk2NiAzOTk2CjE5NjcgMzk5NwoxOTY4 IDM5OTgKMTk2OSAzOTk5CjE5NzAgNDAwMAoxOTcxIDQwMDUKMTk3MiA0MDA2 CjE5NzMgNDAwNwoxOTc0IDQwMDgKMTk3NSA0MDA5CjE5NzYgNDA0MAoxOTc3 IDQwNDUKMTk3OCA0MDQ2CjE5NzkgNDA0NwoxOTgwIDQwNDgKMTk4MSA0MDQ5 CjE5ODIgNDA1MAoxOTgzIDQwNTUKMTk4NCA0MDU2CjE5ODUgNDA1NwoxOTg2 IDQwNTgKMTk4NyA0MDU5CjE5ODggNDA2MAoxOTg5IDQwNjUKMTk5MCA0MDY2 CjE5OTEgNDA2NwoxOTkyIDQwNjgKMTk5MyA0MDY5CjE5OTQgNDA3MAoxOTk1 IDQwNzUKMTk5NiA0MDc2CjE5OTcgNDA3NwoxOTk4IDQwNzgKMTk5OSA0MDc5 CjIwMDAgNDA4MAoyMDAxIDQwODUKMjAwMiA0MDg2CjIwMDMgNDA4NwoyMDA0 IDQwODgKMjAwNSA0MDg5CjIwMDYgNDA5MAoyMDA3IDQwOTUKMjAwOCA0MDk2 CjIwMDkgNDA5NwoyMDEwIDQwOTgKMjAxMSA0MDk5CjIwMTIgNDQ0NgoyMDEz IDQ0NDcKMjAxNCA0NDQ4CjIwMTUgNDQ0OQoyMDE2IDQ0NTAKMjAxNyA0NDU2 CjIwMTggNDQ1NwoyMDE5IDQ0NTgKMjAyMCA0NDU5CjIwMjEgNDQ2MAoyMDIy IDQ0NjYKMjAyMyA0NDY3CjIwMjQgNDQ2OAoyMDI1IDQ0NjkKMjAyNiA0NDcw CjIwMjcgNDQ3NgoyMDI4IDQ0NzcKMjAyOSA0NDc4CjIwMzAgNDQ3OQoyMDMx IDQ0ODAKMjAzMiA0NDg2CjIwMzMgNDQ4NwoyMDM0IDQ0ODgKMjAzNSA0NDg5 CjIwMzYgNDQ5MAoyMDM3IDQ0OTYKMjAzOCA0NDk3CjIwMzkgNDQ5OAoyMDQw IDQ0OTkKMjA0MSA0NTAwCjIwNDIgNDUwNgoyMDQzIDQ1MDcKMjA0NCA0NTA4 CjIwNDUgNDUwOQoyMDQ2IDQ1NDcKMjA0NyA0NTQ4CjIwNDggNDU0OQoyMDQ5 IDQ1NTAKMjA1MCA0NTU2CjIwNTEgNDU1NwoyMDUyIDQ1NTgKMjA1MyA0NTU5 CjIwNTQgNDU2MAoyMDU1IDQ1NjYKMjA1NiA0NTY4CjIwNTcgNDU2OQoyMDU4 IDQ1NzAKMjA1OSA0NTc2CjIwNjAgNDU3NwoyMDYxIDQ1NzgKMjA2MiA0NTc5 CjIwNjMgNDU4MAoyMDY0IDQ1ODYKMjA2NSA0NTg3CjIwNjYgNDU4OAoyMDY3 IDQ1ODkKMjA2OCA0NTkwCjIwNjkgNDU5NgoyMDcwIDQ1OTcKMjA3MSA0NTk4 CjIwNzIgNDU5OQoyMDczIDQ2MDAKMjA3NCA0NjA2CjIwNzUgNDYwNwoyMDc2 IDQ2MDgKMjA3NyA0NjA5CjIwNzggNDY0NgoyMDc5IDQ2NDgKMjA4MCA0NjQ5 CjIwODEgNDY1MAoyMDgyIDQ2NTcKMjA4MyA0NjU4CjIwODQgNDY1OQoyMDg1 IDQ2NjAKMjA4NiA0NjY2CjIwODcgNDY2NwoyMDg4IDQ2NjgKMjA4OSA0NjY5 CjIwOTAgNDY3MAoyMDkxIDQ2NzYKMjA5MiA0Njc3CjIwOTMgNDY3OAoyMDk0 IDQ2NzkKMjA5NSA0NjgwCjIwOTYgNDY4NgoyMDk3IDQ2ODcKMjA5OCA0Njg4 CjIwOTkgNDY4OQoyMTAwIDQ2OTAKMjEwMSA0Njk2CjIxMDIgNDY5NwoyMTAz IDQ2OTgKMjEwNCA0Njk5CjIxMDUgNDcwMAoyMTA2IDQ3MDYKMjEwNyA0NzA3 CjIxMDggNDcwOAoyMTA5IDQ3MDkKMjExMCA0NzQ3CjIxMTEgNDc0OQoyMTEy IDQ3NTAKMjExMyA0NzU2CjIxMTQgNDc1OAoyMTE1IDQ3NTkKMjExNiA0NzYw CjIxMTcgNDc2NgoyMTE4IDQ3NjcKMjExOSA0NzY4CjIxMjAgNDc2OQoyMTIx IDQ3NzAKMjEyMiA0Nzc2CjIxMjMgNDc3NwoyMTI0IDQ3NzgKMjEyNSA0Nzc5 CjIxMjYgNDc4MAoyMTI3IDQ3ODYKMjEyOCA0Nzg3CjIxMjkgNDc4OAoyMTMw IDQ3ODkKMjEzMSA0NzkwCjIxMzIgNDc5NgoyMTMzIDQ3OTcKMjEzNCA0Nzk4 CjIxMzUgNDc5OQoyMTM2IDQ4MDAKMjEzNyA0ODA2CjIxMzggNDgwNwoyMTM5 IDQ4MDgKMjE0MCA0ODA5CjIxNDEgNDg0OAoyMTQyIDQ4NTAKMjE0MyA0ODU2 CjIxNDQgNDg1NwoyMTQ1IDQ4NTkKMjE0NiA0ODYwCjIxNDcgNDg2NgoyMTQ4 IDQ4NjcKMjE0OSA0ODY4CjIxNTAgNDg2OQoyMTUxIDQ4NzAKMjE1MiA0ODc2 CjIxNTMgNDg3NwoyMTU0IDQ4NzgKMjE1NSA0ODc5CjIxNTYgNDg4MAoyMTU3 IDQ4ODYKMjE1OCA0ODg3CjIxNTkgNDg4OAoyMTYwIDQ4ODkKMjE2MSA0ODkw CjIxNjIgNDg5NgoyMTYzIDQ4OTcKMjE2NCA0ODk4CjIxNjUgNDg5OQoyMTY2 IDQ5MDAKMjE2NyA0OTA2CjIxNjggNDkwNwoyMTY5IDQ5MDgKMjE3MCA0OTA5 CjIxNzEgNDk0OQoyMTcyIDQ5NTYKMjE3MyA0OTU3CjIxNzQgNDk1OAoyMTc1 IDQ5NjAKMjE3NiA0OTY2CjIxNzcgNDk2NwoyMTc4IDQ5NjgKMjE3OSA0OTY5 CjIxODAgNDk3MAoyMTgxIDQ5NzYKMjE4MiA0OTc3CjIxODMgNDk3OAoyMTg0 IDQ5NzkKMjE4NSA0OTgwCjIxODYgNDk4NgoyMTg3IDQ5ODcKMjE4OCA0OTg4 CjIxODkgNDk4OQoyMTkwIDQ5OTAKMjE5MSA0OTk2CjIxOTIgNDk5NwoyMTkz IDQ5OTgKMjE5NCA0OTk5CjIxOTUgNTAwMAoyMTk2IDUwMDYKMjE5NyA1MDA3 CjIxOTggNTAwOAoyMTk5IDUwMDkKMjIwMCA1MDUwCjIyMDEgNTA1NgoyMjAy IDUwNTcKMjIwMyA1MDU4CjIyMDQgNTA1OQoyMjA1IDUwNjAKMjIwNiA1MDY2 CjIyMDcgNTA2NwoyMjA4IDUwNjgKMjIwOSA1MDY5CjIyMTAgNTA3MAoyMjEx IDUwNzYKMjIxMiA1MDc3CjIyMTMgNTA3OAoyMjE0IDUwNzkKMjIxNSA1MDgw CjIyMTYgNTA4NgoyMjE3IDUwODcKMjIxOCA1MDg4CjIyMTkgNTA4OQoyMjIw IDUwOTAKMjIyMSA1MDk2CjIyMjIgNTA5NwoyMjIzIDUwOTgKMjIyNCA1MDk5 CjIyMjUgNTU1NwoyMjI2IDU1NTgKMjIyNyA1NTU5CjIyMjggNTU2MAoyMjI5 IDU1NjcKMjIzMCA1NTY4CjIyMzEgNTU2OQoyMjMyIDU1NzAKMjIzMyA1NTc3 CjIyMzQgNTU3OAoyMjM1IDU1NzkKMjIzNiA1NTgwCjIyMzcgNTU4NwoyMjM4 IDU1ODgKMjIzOSA1NTg5CjIyNDAgNTU5MAoyMjQxIDU1OTcKMjI0MiA1NTk4 CjIyNDMgNTU5OQoyMjQ0IDU2MDAKMjI0NSA1NjA3CjIyNDYgNTYwOAoyMjQ3 IDU2MDkKMjI0OCA1NjU4CjIyNDkgNTY1OQoyMjUwIDU2NjAKMjI1MSA1NjY3 CjIyNTIgNTY2OAoyMjUzIDU2NjkKMjI1NCA1NjcwCjIyNTUgNTY3NwoyMjU2 IDU2NzkKMjI1NyA1NjgwCjIyNTggNTY4NwoyMjU5IDU2ODgKMjI2MCA1Njg5 CjIyNjEgNTY5MAoyMjYyIDU2OTcKMjI2MyA1Njk4CjIyNjQgNTY5OQoyMjY1 IDU3MDAKMjI2NiA1NzA3CjIyNjcgNTcwOAoyMjY4IDU3MDkKMjI2OSA1NzU3 CjIyNzAgNTc1OQoyMjcxIDU3NjAKMjI3MiA1NzY4CjIyNzMgNTc2OQoyMjc0 IDU3NzAKMjI3NSA1Nzc3CjIyNzYgNTc3OAoyMjc3IDU3NzkKMjI3OCA1Nzgw CjIyNzkgNTc4NwoyMjgwIDU3ODgKMjI4MSA1Nzg5CjIyODIgNTc5MAoyMjgz IDU3OTcKMjI4NCA1Nzk4CjIyODUgNTc5OQoyMjg2IDU4MDAKMjI4NyA1ODA3 CjIyODggNTgwOAoyMjg5IDU4MDkKMjI5MCA1ODU4CjIyOTEgNTg2MAoyMjky IDU4NjcKMjI5MyA1ODY5CjIyOTQgNTg3MAoyMjk1IDU4NzcKMjI5NiA1ODc4 CjIyOTcgNTg3OQoyMjk4IDU4ODAKMjI5OSA1ODg3CjIzMDAgNTg4OAoyMzAx IDU4ODkKMjMwMiA1ODkwCjIzMDMgNTg5NwoyMzA0IDU4OTgKMjMwNSA1ODk5 CjIzMDYgNTkwMAoyMzA3IDU5MDcKMjMwOCA1OTA4CjIzMDkgNTkwOQoyMzEw IDU5NTkKMjMxMSA1OTY3CjIzMTIgNTk2OAoyMzEzIDU5NzAKMjMxNCA1OTc3 CjIzMTUgNTk3OAoyMzE2IDU5NzkKMjMxNyA1OTgwCjIzMTggNTk4NwoyMzE5 IDU5ODgKMjMyMCA1OTg5CjIzMjEgNTk5MAoyMzIyIDU5OTcKMjMyMyA1OTk4 CjIzMjQgNTk5OQoyMzI1IDYwMDAKMjMyNiA2MDA3CjIzMjcgNjAwOAoyMzI4 IDYwMDkKMjMyOSA2MDYwCjIzMzAgNjA2NwoyMzMxIDYwNjgKMjMzMiA2MDY5 CjIzMzMgNjA3MAoyMzM0IDYwNzcKMjMzNSA2MDc4CjIzMzYgNjA3OQoyMzM3 IDYwODAKMjMzOCA2MDg3CjIzMzkgNjA4OAoyMzQwIDYwODkKMjM0MSA2MDkw CjIzNDIgNjA5NwoyMzQzIDYwOTgKMjM0NCA2MDk5CjIzNDUgNjY2OAoyMzQ2 IDY2NjkKMjM0NyA2NjcwCjIzNDggNjY3OAoyMzQ5IDY2NzkKMjM1MCA2Njgw CjIzNTEgNjY4OAoyMzUyIDY2ODkKMjM1MyA2NjkwCjIzNTQgNjY5OAoyMzU1 IDY2OTkKMjM1NiA2NzAwCjIzNTcgNjcwOAoyMzU4IDY3MDkKMjM1OSA2NzY5 CjIzNjAgNjc3MAoyMzYxIDY3NzgKMjM2MiA2Nzc5CjIzNjMgNjc4MAoyMzY0 IDY3ODgKMjM2NSA2NzkwCjIzNjYgNjc5OAoyMzY3IDY3OTkKMjM2OCA2ODAw CjIzNjkgNjgwOAoyMzcwIDY4MDkKMjM3MSA2ODY4CjIzNzIgNjg3MAoyMzcz IDY4NzkKMjM3NCA2ODgwCjIzNzUgNjg4OAoyMzc2IDY4ODkKMjM3NyA2ODkw CjIzNzggNjg5OAoyMzc5IDY4OTkKMjM4MCA2OTAwCjIzODEgNjkwOAoyMzgy IDY5MDkKMjM4MyA2OTY5CjIzODQgNjk3OAoyMzg1IDY5ODAKMjM4NiA2OTg4 CjIzODcgNjk4OQoyMzg4IDY5OTAKMjM4OSA2OTk4CjIzOTAgNjk5OQoyMzkx IDcwMDAKMjM5MiA3MDA4CjIzOTMgNzAwOQoyMzk0IDcwNzAKMjM5NSA3MDc4 CjIzOTYgNzA3OQoyMzk3IDcwODAKMjM5OCA3MDg4CjIzOTkgNzA4OQoyNDAw IDcwOTAKMjQwMSA3MDk4CjI0MDIgNzA5OQoyNDAzIDc3NzkKMjQwNCA3Nzgw CjI0MDUgNzc4OQoyNDA2IDc3OTAKMjQwNyA3Nzk5CjI0MDggNzgwMAoyNDA5 IDc4MDkKMjQxMCA3ODgwCjI0MTEgNzg4OQoyNDEyIDc4OTAKMjQxMyA3ODk5 CjI0MTQgNzkwMAoyNDE1IDc5MDkKMjQxNiA3OTc5CjI0MTcgNzk5MAoyNDE4 IDc5OTkKMjQxOSA4MDAwCjI0MjAgODAwOQoyNDIxIDgwODAKMjQyMiA4MDg5 CjI0MjMgODA5MAoyNDI0IDgwOTkKMjQyNSA4ODkwCjI0MjYgODkwMAoyNDI3 IDkwMDAKMjQyOCA5MDkwCg== ------=_Part_151547_12232578.1185210638925-- From keynews.tv at skynet.be Mon Jul 23 19:17:28 2007 From: keynews.tv at skynet.be (Eric Angelini) Date: Mon, 23 Jul 2007 19:17:28 +0200 Subject: Early Bird numbers In-Reply-To: <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> Message-ID: What about doing recursively the same with the "early bird" seq? We would then have to compare the concatenation of the "early bird" integers to 12345678910111213141516... and ask ourselves "what integers come ahead now?" By hand I get this (N = naturals, EB = Early Birds): N=12345678910111213141516171819202122232425262728293031323334353637383940... EB=122123313234414243455152535456616263646567717273747576788182838485868789. .. EB(2)=12,13,14,21,22,23,24,25,26,31,32,33,34,35,36,37,38,41,42,43,44,45, 46,47,48,51... We could start again from there to compute EB(3), etc. Could we bump into a "fixed point seq"? What would that mean? Best, ?. -----Message d'origine----- De : Joshua Zucker [mailto:joshua.zucker at gmail.com] Envoy? : lundi 23 juillet 2007 15:59 ? : Warut Roonguthai Cc : seqfan at ext.jussieu.fr Objet : Re: Early Bird numbers I wrote my own program and let it run to make all the terms up to 1000. Up to 394 they match the terms Warut's program produced. --Joshua Zucker 12 21 23 31 32 34 41 42 43 45 51 52 53 54 56 61 62 63 64 65 67 71 72 73 74 75 76 78 81 82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 101 110 111 112 121 122 123 131 132 141 142 151 152 161 162 171 172 181 182 191 192 201 202 210 211 212 213 214 215 216 217 218 219 220 221 222 223 231 232 233 234 241 242 243 251 252 253 261 262 263 271 272 273 281 282 283 291 292 293 301 302 303 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 341 342 343 344 345 351 352 353 354 361 362 363 364 371 372 373 374 381 382 383 384 391 392 393 394 401 402 403 404 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 451 452 453 454 455 456 461 462 463 464 465 471 472 473 474 475 481 482 483 484 485 491 492 493 494 495 501 502 503 504 505 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 561 562 563 564 565 566 567 571 572 573 574 575 576 581 582 583 584 585 586 591 592 593 594 595 596 601 602 603 604 605 606 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 671 672 673 674 675 676 677 678 681 682 683 684 685 686 687 691 692 693 694 695 696 697 701 702 703 704 705 706 707 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 781 782 783 784 785 786 787 788 789 791 792 793 794 795 796 797 798 801 802 803 804 805 806 807 808 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 891 892 893 894 895 896 897 898 899 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 On 7/23/07, Warut Roonguthai wrote: > FYI, here's my Ubasic program for generating the early bird sequence: > > 10 X="" > 20 for N=1 to 396 > 30 A=cutspc(str(N)) > 40 if instr(X,A)>0 then print N; > 50 X+=A > 60 next N > > Warut > From maximilian.hasler at gmail.com Mon Jul 23 19:17:23 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 13:17:23 -0400 Subject: Early Bird numbers In-Reply-To: <3c3af2330707231010g931f3cfl50118a3a07020f3b@mail.gmail.com> References: <482644420707230039r7e3eec65u2c9ec1956bf006e@mail.gmail.com> <450839.70489.qm@web86611.mail.ukl.yahoo.com> <482644420707230535h41b06b78u11273f7c8804bf41@mail.gmail.com> <721e81490707230658g33f6d925k8d0c7d0f7b80bf4e@mail.gmail.com> <200707231623.l6NGNZMN1224353@fry.research.att.com> <200707231659.l6NGxGe81231836@fry.research.att.com> <3c3af2330707231010g931f3cfl50118a3a07020f3b@mail.gmail.com> Message-ID: <3c3af2330707231017j1b99c155ga7514f3430c3b302@mail.gmail.com> Definitely, I did too much administrative work this morning. As the last line of my B-file shows, the comment is wrong. Once again public apologies and Neil, please delete the 2nd line of the %C... (9090 is a punctual bird.) Maximilian On 7/23/07, Maximilian Hasler wrote: > Following Neil's suggestion to add the complement and his suggestion > for naming it "punctual birds" : > > Subject: PRE-NUMBERED NEW SEQUENCE A131881 FROM Maximilian F. Hasler > > %I A131881 > %S A131881 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, > 19, 20, 22, 24, 25, 26, 27, > 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 44, 46, 47, 48, 49, 50, 55, > 57, 58, 59, 60, > 66, 68, 69, 70, 77, 79, 80, 88, 90, 100, 102, 103, 104, 105, 106, 107, > 108, 109, 113 > %N A131881 "punctual birds" - numbers which are not in A116700 > %C A131881 Numbers n that do not occur in the concatenation of 1,2,3...,n-1. > There is no punctual bird larger than 9*10^k and smaller than > 10^(k+1), for any integer k. > %D A131881 Gardner, Martin. (November 2005). Transcendentals and early birds. > Math Horizons XIII(2), pp 5, 34. > %H A131881 Solomon > W. Golomb, "EARLY BIRD NUMBERS", in IEEE Information TheorySociety > Newsletter, Vol. 52, No. 4, December 2002 > %H A131881 R. > Barger (editor), "Brain Teaser" in Volume 1, Issue 1 of KANSAS CITY > AREA TEACHERS OF MATHEMATICS" > %e A131881 The first number not in this sequence is the early bird > "12" which occurs as concatenation of 1 and 2. > %o A131881 < ?php $s="."; for(; ++$i < 2000; $s .= $i ) > if(!strpos($s,"$i")) echo $i,", "; > %Y A131881 Cf. A116700 (early birds) > %O A131881 1 > %K A131881 ,base,easy,nonn, > %A A131881 Maximilian F. Hasler (Maximilian.Hasler at gmail.com), Jul 23 2007 From maxale at gmail.com Mon Jul 23 19:29:13 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 10:29:13 -0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: <20070722.072158.944.1.pauldhanna@juno.com> References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: On 7/22/07, Paul D. Hanna wrote: > > > Seqfans, > Consider the nice sequence A006336: > a(n) = a(n-1) + a(n-1 - number of even terms so far). > http://www.research.att.com/~njas/sequences/A006336 > begins: > [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. > > My COMMENT (NOT submitted to OEIS): > ----------------------------------------------------------- > It seems that A006336 can be generated by a rule using the golden ratio: > > a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, > > > i.e., the number of even terms up to position n-1 equals: > n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. To simplify notation, let p = Phi = (sqrt(5)+1)/2. Lemma. The sets { [n*p] : n=1,2,3,... } and { [n*p^2] : n=1,2,3,... } are disjoint, and every positive integer belongs to one (and only one!) of these sets. I leave the proof of this Lemma to the reader as a challenge. Theorem. The number of even terms in A006336 up to position n-1 equals n-1 - [n/p]. Proof by induction: Suppose that the number of even terms in A006336(1..n) equal n - [(n+1)/p] for every n=2..m. In other words, A006336(n) is even iff n - [(n+1)/p] = (n-1 - [n/p]) + 1, that is equivalent to: A006336(n) == [(n+1)/p] - [n/p] (mod 2). We will prove that the same statement is true for n=m+1. By the definition of A006336 and our induction hypothesis, we have a(m+1) = a(m) + a([(m+1)/p]) == [(m+1)/p] - [m/p] + [([(m+1)/p]+1)/p] - [[(m+1)/p]/p] (mod 2). Therefore, we need to prove that [(m+2)/p] - [(m+1)/p] == [(m+1)/p] - [m/p] + [([(m+1)/p]+1)/p] - [[(m+1)/p]/p] (mod 2) or [(m+2)/p] + [m/p] + [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] == 0 (mod 2). Let m+1 = q*p + r, where q is integer and 0 < r < p, and q = s*p + t, where s is integer and 0 < t < p. Then m+1 = (s*p + t)*p + r = s*p^2 + t*p + r. It is easy to see that [(m+2)/p] + [m/p] = 0 (mod 2) if and only if p-1 < r < 1. Similarly, [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] == 0 (mod 2) if and only if t < p-1. There are three cases when [(m+2)/p] + [m/p] and [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] may have different oddness: 1) If p-1 < r < 1 and t > p-1 then m = [q*p] and m+1 = [(q+1)*p]. We also have m+1 = s*p^2 + t*p + r > s*p^2 + (p-1)*p + p - 1 = (s+1)*p^2 - 1 and m+1 = s*p^2 + t*p + r < s*p^2 + p*p + 1 = (s+1)*p^2 + 1, implying that [(s+1)*p^2] = m+1 or [(s+1)*p^2] = m, a contradiction to Lemma. 2) If t < p-1 and r < p-1 then m = [q*p] and m+2 = [(q+1)*p]. We also have m+1 = s*p^2 + t*p + r > s*p^2 and m+1 = s*p^2 + t*p + r < s*p^2 + (p-1)*p + p-1 = (s+1)*p^2 - 1, implying that either [s*p^2] = m or [(s+1)*p^2] = m+2, a contradiction to Lemma. 3) If t < p-1 and r > 1 then m-1 = [q*p], m+1 = [(q+1)*p]. We also have m+1 = s*p^2 + t*p + r > s*p^2 + 1 and m+1 = s*p^2 + t*p + r < s*p^2 + (p-1)*p + p = (s+1)*p^2 implying that either [s*p^2] = m-1 or [(s+1)*p^2] = m+1, a contradiction to Lemma. Therefore, [(m+2)/p] + [m/p] = 0 (mod 2) if and only if [(m+2)/p] + [m/p] = 0 (mod 2), implying that [(m+2)/p] + [m/p] + [([(m+1)/p]+1)/p] + [[(m+1)/p]/p] == 0 (mod 2). Q.E.D. Max From davidwwilson at comcast.net Mon Jul 23 19:56:08 2007 From: davidwwilson at comcast.net (David Wilson) Date: Mon, 23 Jul 2007 13:56:08 -0400 Subject: Divisor d is the total number of divisors References: Message-ID: <002c01c7cd52$bf849ce0$6501a8c0@yourxhtr8hvc4p> These are the refactorable numbers, A033950. ----- Original Message ----- From: "Eric Angelini" To: Sent: Monday, July 23, 2007 12:25 PM Subject: Divisor d is the total number of divisors > > > Hello SeqFans, > > Is this seq of interest? > If yes could someone check and compute a few more terms? > > 1,8,9,12,18,24,36,... > > Integers I having one divisor which is also the total number of divisors > of I. > > 1 has 1 divisor which is 1 > 8 has 4 divs and 4 is one of them > 9 has 3 divs and 3 is one of them > 12 has 6 divs and 6 is one of them > 18 has 6 divs and 6 is one of them > 24 has 8 divs and 8 is one of them > 36 has 9 divs and 9 is one of them > ... > > 30 is not a member because 30 has 8 divs but not 8 itself : > [1,2,3,5,6,10,15,30] > > Best, > ?. > > > > > > > -- > No virus found in this incoming message. > Checked by AVG Free Edition. > Version: 7.5.476 / Virus Database: 269.10.14/912 - Release Date: 7/22/2007 > 7:02 PM > At 10:40 AM -0700 7/23/07, Max Alekseyev wrote: >On 7/22/07, Paul D. Hanna wrote: >> >> >> Seqfans, >> Consider the nice sequence A006336: >> a(n) = a(n-1) + a(n-1 - number of even terms so far). >> http://www.research.att.com/~njas/sequences/A006336 >> begins: >> [1,2,3,5,8,11,16,21,29,40,51,67,88,109,138,167,207,258,309,376,...]. >> >> My COMMENT (NOT submitted to OEIS): >> ----------------------------------------------------------- >> It seems that A006336 can be generated by a rule using the golden ratio: >> >> a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = (sqrt(5)+1)/2, >> >> >> i.e., the number of even terms up to position n-1 equals: >> n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. > >To simplify notation, let p = Phi = (sqrt(5)+1)/2. Nice, Max. What does this sequence count? It is similar to A00123 and A005704, which both have a recursion a(n)=a(n-1)+a([n/k]), where k is 2 and 3, respectively. Those sequences count "number of partitions of k*n into powers of k". For sequence A006336, k=Phi. Does A006336(n) count the number of partitions of n*Phi into powers of Phi? Tony From noe at sspectra.com Mon Jul 23 20:39:32 2007 From: noe at sspectra.com (T. D. Noe) Date: Mon, 23 Jul 2007 11:39:32 -0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: Dear seqfans, I#ve been surprised not to find sequences of the following form in the OEIS: a(n)=min(k in N: sigma(r,n)=sigma(r,k)) with sigma(r,n)=sum of the r-th power of the divisors of n: new[r_, n_] := (If[Head[#1] === rep, #1 = n, #1] & )[rep[DivisorSigma[r, n]]] for r=0 (number of divisors) Clear[rep]; (new[0, #1] & ) /@ Range[0, 100] {0, 1, 2, 2, 4, 2, 6, 2, 6, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 6, 12, 2, 24, 2, 12, 6, 6, 6, 36, 2, 6, 6, 24, 2, 24, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 24, 2, 12, 6, 24, 2, 60, 2, 6, 12, 12, 6, 24, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2, 60, 6, 12, 6, 6, 6, 60, 2, 12, 12, 36} for r=1 (sum of divisors) Clear[rep]; (new[1, #1] & ) /@ Range[0, 100] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 12, 13, 14, 14, 16, 10, 18, 19, 20, 21, 22, 14, 24, 16, 20, 27, 28, 29, 30, 21, 32, 33, 34, 33, 36, 37, 24, 28, 40, 20, 42, 43, 44, 45, 30, 33, 48, 49, 50, 30, 52, 34, 54, 30, 54, 57, 40, 24, 60, 61, 42, 63, 64, 44, 66, 67, 68, 42, 66, 30, 72, 73, 74, 48, 76, 42, 60, 57, 80, 81, 68, 44, 84, 85, 86, 54, 88, 40, 90, 91, 60, 93, 66, 54, 96, 52, 98, 99, 100} r=2 (sum of squares of divisors) Clear[rep]; (new[2, #1] & ) /@ Range[0, 100] {0, 1, 2, 3, 4, 5, 6, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 24, 27, 28, 29, 30, 31, 32, 33, 34, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 40, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 66, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 78, 92, 93, 94, 95, 96, 97, 98, 99, 100} and so on. Are these of interest? And if so, up to which exponent r? Peter >What does this sequence count? It is similar to A00123 and A005704, which >both have a recursion a(n)=a(n-1)+a([n/k]), where k is 2 and 3, >respectively. Those sequences count "number of partitions of k*n into >powers of k". For sequence A006336, k=Phi. Does A006336(n) count the >number of partitions of n*Phi into powers of Phi? Answering my own question. If the recursion starts with a(0)=1, then I think we obtain "number of partitions of n*Phi into powers of Phi". That sequence is 1, 2, 4, 6, 10, 16, 22,..., which I just submitted as A131882. We need negative powers of Phi also, letting p=Phi and q=1/Phi n=0: 0*p = {} for 1 partition n=1: 1*p = p = 1+q for 2 partitions n=2: 2*p = p+p = 1+p+q = 1+1+q+q = p^2+q for 4 partitions etc. tedious! So A006336(n), which starts with a(1)=1, counts 1/2 of the "number of partitions of n*Phi into powers of Phi" Tony From noe at sspectra.com Mon Jul 23 21:39:53 2007 From: noe at sspectra.com (T. D. Noe) Date: Mon, 23 Jul 2007 12:39:53 -0700 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: ------=_Part_156860_32560920.1185232257325 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Content-Disposition: inline concerning the "duplicates" http://www.research.att.com/~njas/sequences/?q=id:A087186|id:A087189 I think all terms of the second one are wrong. A087189(1) should be = (A005191(3)-1)/2/3^2 = 1 A087189(2) should be = (A005191(7)-1)/2/7^2 = 83 etc, instead of what is listed : A087189 2,4,31,304,40044,500522,86094668,1167752848,225001039696, Thus these are no duplicates at all. PARI code : A087189(n) = local(p=prime(n+2-(n==1))); (A005191(p)-1)/2/p^2 A005191(n) = sum(k=0,(2*n)\5,binomial(n,k)*binomial(-n,2*n-5*k)) attached both sequences up to n=100 ; below the corrected entry for the wrong one. M.H. %I A087189 %S A087189 1, 83, 16907, 279021, 89444018, 1695011087, 658067703933, 5768410509553937, 122108313460051500, 1226978854222034501448, 593538703869555995238872, 13175226571428140572866093, 6594852118968926152838341468, 76339779380132942579800334346403 %N A087189 (P(p)-1)/2/p^2 where p runs through the odd primes different from 5 and P(k) is the k-th central pentanomial coefficient (A005191). %o A087189 (PARI) A087189(n) = local(p=prime(n+2-(n==1))); (A005191(p)-1)/2/p^2 \\ - M.F. Hasler %Y A087189 Adjacent sequences: A087186 A087187 A087188 this_sequence A087190 A087191 A087192 %Y A087189 Sequence in context: A018294 A051569 A087186 this_sequence A051759 A051570 A082913 %K A087189 nonn %O A087189 1,1 %A A087189 Benoit Cloitre (abmt(AT)wanadoo.fr), Oct 19 2003 %E A087189 Corrected and extended by Maximilian F. Hasler (Maximilian.Hasler at gmail.com), Jul 23 2007 ------=_Part_156860_32560920.1185232257325 Content-Type: text/plain; name=b087186.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4hkqnyy Content-Disposition: attachment; filename="b087186.txt" MSAyCjIgNAozIDMxCjQgMzA0CjUgNDAwNDQKNiA1MDA1MjIKNyA4NjA5NDY2 OAo4IDExNjc3NTI4NDgKOSAyMjUwMDEwMzk2OTYKMTAgNjUyNDk4Mjg4MTU0 ODIwCjExIDk0NTE3MzU3NjE2MjY4ODAKMTIgMjk3MzE2MDUzMTQ5NjkwMTc3 NzIKMTMgNjUyOTY3MzQ5NjcwMjg3NjYwNTA3MgoxNCA5NzMwMDgwNTgwMzQ0 NTc1OTQ2MDM2NAoxNSAyMTgwOTM0MDIyNTgxNTQ4NTk1Nzk5MDQ2NAoxNiA3 NDY0NzYwMjMzNzYxMDE0MDg3MjQ5MzMwMzE4NgoxNyAyNjA0NTY0NjY3MTk4 ODcxOTU2NzE1NzkxNzM5NTI5NzYKMTggMzk2NDYzNDU3NjY1MTc0Mjc1NTc3 NDE3MjM1NDY0NDI5NgoxOSAxNDExMjkxODYwNDQ1MTI5ODg2NzY4MDg2NjAx OTg4Mjk0MTQyNAoyMCAzMzEyNjgwNjI5ODkwNDI4NTQxNTMwNjI4OTM2ODc5 ODY2MzM4ODgwCjIxIDUwODQ0OTQ3NzYyMzk5NjM2MDY2NTkxOTE5ODU3NTMz MTY0NzM0ODk2CjIyIDE4NTA0MzA3MDA5OTEzNDQ2MDEwMjYwODE0NTM0NTc3 NTE0Mjc1ODgxMzQ0MAoyMyA0Mzk5NTQyMzU4MzE5NjYxMjQzNDk3Njg3MzMx NTEwMzIyMjEyNDMwMjg0MDM4NAoyNCAxNjIzMjgzNjgzNzE0MTQ1OTIzMzYx ODg3NjIxNzgyNzkxOTkzNDc1NzQyMTgyMzMwMDQKMjUgOTM1MjExODUzNTI1 OTc1NzIwMjg5NTk2NTgwNDcwNzI3MDI0MDQzNjUxMjI4OTc2OTU5Mjg2OAoy NiAyMjUzNTgxMTk1OTQ2ODQ5OTIwODU5MDg0ODYzNTcyODI5Nzk3MzgwMjA5 OTkxMDYxMjEwMjQwNjQ0CjI3IDM1MDE0MDEyMzIzMzkyNDAxNjYxODI5OTM4 MzE5NDQ1NzAxNzIyNzQ2NzU1MTM4NDI5Nzk1NTcxNzc2CjI4IDg0NjY1MTAw NTcyODk2NjY2Nzk0NDgzODYzODM4ODkzNDU2NDQyNTY0MzI4NDU0MDI3NDg1 MzE3Mzg4NTYKMjkgMTMxNzU5MDI0Nzg1OTYyMzg0NTE3MTM0NTUxMzAwMDky MTQwMDg3MDkxMTU4MjgxNDE3OTQ1MDAzMzQ0Nzk2CjMwIDMxOTU4MDU3NjMz ODA4ODkxMjIzOTE0MTM0MTQ1Njk3ODgyOTc5NDA1NzE2NzM0MTk2NjExNTY4 NjE3OTY2MDA4CjMxIDcyMDE4ODgzNTkzMzUxMTI1MTM1MzE5MDQ3NzA1NzEz MDYyNzgwNTMxNjcyMjk4NTA4MTIzNDcyMjI4NzU5MTE3NzczODI0MDAKMzIg MTc2MDAwMTc1ODU5OTQ5NzU5MTQwNzIxNDI2MTk5ODQyOTI1NDY2OTQ0MTkz MzM1NTA1NTk1NzI4ODQyNzM0NTY0ODAxNTEzNTYwMAozMyA2NzQxMjE1OTM3 ODMwMzEzMTA5NDY2NjI5NTEzOTMyNzQwMzgzMDExNDYzODc5ODc1NjI2MjU3 MDk5NzI5Mjk2MjEyMjY3MTIxMDgzNzYwCjM0IDEwNTU0MjkzMjA0MjYzMDA3 MTU5NzgwODg4Nzg3MzQ2NDkyNzAyNDcxNDY5OTAwOTAwMTM5NDU0NDI1OTE3 MjQwODExMzAzNDgzMTI4NjE2MAozNSA5OTczMDU3OTE1NDAyNjY5NTYzODYw ODY1OTU2Mzc1OTMwNjk0MDE5MTIzMDQzNjM1MTgyMjQ3NzM4NDkxMDUyODY2 NDUyMzkxMTQxODIwNTA3ODIyMAozNiAxNTY0MTI5NDg4NjIyNDY1NjM3Njkz MTMxODM2MDU1MDIzODg0Njc3Mjg1MTEzMjU4MzM0MjM2NDY1MDk0NjgyNjgw NzQwODUyNzQxOTA5NDM3NzE4MDgwCjM3IDYwNDMzNTYzMjc4NDYxODU4OTE3 NjE5ODQ4OTk5NzI4ODc2ODMxODM4NTk2Mjk3MDA3MjQyMTU1NzE1MjYxMDQw MTA3Mjg4OTMwNTM1ODQ0NDU1MjQ1NTExMjAKMzggMjM0MDA5NTg4MTA1OTc5 MzgyMzU4MDQxMTIyNDQyNjE1NTEzNDM5Mzg1NzkwMzM4NTk0Mzk5ODM4Mjcw NTM0Mjc3OTI3MTE1OTI4OTMwMDIyODI3MjczNTk2MTA1NjAKMzkgNTc3Njkz NTM5MTEyMDMyODgxNzI1NDI0MDEwMDY5NjcyMzI3NjI3NTczNzI2Njg3ODQ1 NDA4MTg5NDY2MDA1NDU4NDA1NjA3NDkwNzA1NTI1OTA4NzE5MjkzNjU5NjIy NAo0MCAyMjQ0MzMzMDgwNzU3MDQxMzU5OTY4MTUxMzU5MDc2MDIwMjk0OTAz MjgwMzU2NzA0ODEwNDA5ODUyNjMzMDYxNDA0MTExNTAwNTU3NTYwODUzNTU3 Njc3MzU4NDA1NTU0MDk5NAo0MSA4NzM0OTMyMjM0MDI0OTQwNzIxMDcwOTA3 MDUzNTAyMjc5NzY0MDcwMzI2MjAxNjcwOTYxNzM4NjA5NjIyMTUzNDg1MzMx MTY3MDAwMDE5MDc0MjgwMTA5NTA0MzkzMzgyNjk3MDgwMAo0MiAxMzc0NTEx NjY3OTU5ODI4MzEyNTQzNDc0NzA3NzE5MzA4MDQyMTk1MTIwNTE0Nzc3ODUy NzcyMzM4NjQzNjQxODc5NjQ2MDgwMzQ1NDg2NDI2NDcwMTI4MzcyNDc0NjA1 NDcyODQxOTMwCjQzIDEzMjk2ODg3OTIyNTUxOTYwMzY1ODQ2MzEwMjQ5MDg2 MDk3NTE0Nzc5NTk0NTE5NTk4NzU4MDE3MDI1Njg0MzQ1ODg3NTk4NDczODg5 ODI3MzEzMTAyMDk2ODI3NTM3MzUwNjM4NjgyMDAyMzE5MzYKNDQgMjA5NDU0 ODUzNDE2NDM2NjE2OTU5MjM3MjkxNDEwMzQ3MjEwNjQ3NzQ4MDA0MDA4MzQ4 NzU1MDk1MzY4Nzk3NzkzOTQyMTE3NjY2ODg4NjMyOTg1MTQ0Mjc3NzgwNTcx MTk4ODYxMDI4MDQwMTU0OTIKNDUgNTE5OTcxMjQ5NjE4NzA1NzczMDA3NDQ4 MTY0MzIxMzk5NTIxNzE1ODExNzMzMTM2ODA4NDAxMTc4NzIxODkxNjEwNDA4 OTY0NjczNzUyMTg4MjA0MzM0ODMwOTcyODE4MjE2NzQ3Mzg4Nzc2NjE5MDg5 Mgo0NiA4MTk0NTQ4MTE3OTMxOTQ1MzAwNDQ1MTYwNDE0NzkyMjkyNjAzOTQ0 MDg2NzA1OTA0NTYyMzIwMDI4MTg1Njc3MjE5MDM4Mzc5MTk4MzE1OTMyMDQ0 MzE0NTMyNjc0ODk5MDI0OTE0NDIxNTU2NTkwMjI3Mgo0NyAxMjU5MzE0NzQ4 OTI5NzIxMDkyNTkwMjM0NTEzMzg1MTk5NDQ2MTQxMjczMDg5MDI1NTQ1NTQ2 ODk0OTU2ODQ0MzgwNjMzMDUzODg4ODEwNTE3ODM1NDU1Mjg1NDQxNTMwNzY1 MzQ1OTA2ODcyMTk2MTQ0NzQ5MDA5MDg4CjQ4IDE5NDQ2OTAyMTU5NjkxNDUy MjU0NjE0MTA2NzIxODc0MzM1NDE4OTU1NDc5NDQzNjc0MzM0MTA5NzU4NDI3 ODU3MTQ5NTEyNzYzMTM0MzI0NTQwMjM5NjIxNDY3NTg0MDQyMzUxNjY3NzEy MzMzNDk5OTE3NjM4NDQ0NjkxNDkwMzA0CjQ5IDQ4NDc1MDM3NTQ0MzU4NTIw NTkzMjIxMzc0MjEzMDgwMDY0MTM4NzQyNTg2MTgwOTI3NzA3MDQ4MjkyODA3 MDk0MTI1MjE2MDg3MzYyOTk3NzE5ODUwNzE0NjIxNDA4NTk2OTQzNzYxMjgy OTUxNjAzOTMyNzU1NzkxOTQ1MDYzNDQxNjAKNTAgNzY1NDcwMDUwNTgwODcx OTMzOTk5Mjg5ODc5OTU4NzgwNDEzMDU1MTc5MzQwMDI1ODI3NzQ2NTk1MDA3 NDE1MjM0NjY4MTA1MTgwODQ4MTcwMjI3ODQwOTUzOTcyMzUzNDM3OTEyNDk3 NTQxMjQwNTU3NjkxMTkyMjE0MDM4MDg3MzU5NjAKNTEgMTkwOTM5NzIyNjg2 MDM3NTg4NDU5NDQxODc2MDIxNDg4MTYwMDM0NzM1NjAzOTU5MzQ2NTg2OTE4 NDc4OTU1MDkyNzA3Njc1Nzg5NTg2NTU5NzkyOTc2NDE3MzU1MjY2MzQyODA4 NjY0NTk2Mjk1NTczMTMxNDcxMTU2ODk3Njk3ODg4ODE5NTIKNTIgNzUyODQ1 NTM3MzQzMDkxNjc1MTkxODIwNzAzMzk0MzY4Njg1OTI5NTEzODI2MTM1NDUy NzA3OTM0MTkwNzMyNDMwNzY5MjE2NzM2ODgyMDAzODY2NTU5NTc5NTIxMzQ4 NDg3NTI3MzQzODAyNTI4MDI5MjU3MTM3NTUwNTkyOTA5NTY1MTY0MjU0NzIK NTMgMTE4OTYwMDcxMzYzMTI0MDYwMTcyNjg0NzkwNjcwMDQyODAwMDI1MTM1 MzM4NDc4NTA3NTU5NzcyMzYyMTUyMzg0MDE3NTc1NzcyODk3MjcyNTc5Njcz NjU4MDg5MzM1NTExOTIyMTMzOTY1NDY3NTE5OTQzNzQ1MDg2MDIyODkwMDY0 MTc2NjE5ODE5Mgo1NCAxMTczNjQxNTI1Mjg2Mzk0NTA1NzU2MDA4NjM5NjE0 ODQ5MDQyNTU4NDI0NDUyMTkxMzg2ODQ5MDg3NDgwMTIxODE4MjgyNjgyMjE5 NzIwMjAzMjg3NDg2MTg1OTkzNTA2Mzc0MjM5Njc1MjExODA0OTYwMjQxNzM0 MzEyNTgxMTMyMjM5Nzc0MDIyODI5NDgyMzA0CjU1IDQ2Mzk5OTE2OTc5Mzcz NjcwMDcyNTI1OTA3NTg2MzM3NTkzNjg3NzE1MDQ0NjU5OTc5Nzc3OTMzNjEz OTkwODA5ODk4MDI1MDM1NDE3OTcyMDE0Mjc2MDQ2NDY4Njg3NDcxMjI2MDY1 MTgxMDE5MDYxNTAyMDA2OTk5NjUwMzM4NjE5MDE5NTcwNDQ3NzIwODA4OTU1 MTYKNTYgMTgzNTkxOTM4ODU2NzMwMjYzNzU5NzYwOTcyNjg0MTkyNTY1NDI3 MDgyNjk0NTU5ODY4NTEzMzM3MjM2NDIxMjQ5NDU3MDQwMzUzOTE1NjY3MjE2 MDYxNjI3MTEzNDU3NjU5Nzk4MDM4NTU1NTIzNjYxNTMwMDUwNTY1MjQ1NzA0 NDIzNzYwMDk2OTM4ODMxNDE3Nzc3NzM4ODgKNTcgNzI2OTkwNDIzNzk5OTE1 MTU5NTg5OTYxNzUwNzY5NDQ3MjgxNjA3NzIzNjY5OTUzMTA5NzQyNzE5MDgw OTc2MzgwMTA3MzgzMTYxNDg3OTkwMDUxNTkzMjg1ODU2MTMyODQxOTEyODU4 MTkxNzg2ODQ4MTczMzM3MDU2NjU1ODkwMjUzNTIwMzQzMjI2Mjc5MTU5OTE0 NTY2MzY2MzIKNTggMTE1MDM0MDM5MTQ5NjQ5MDc0OTkzNjQ4MTkxMzU1MzY1 NzA4NzQ4OTEwMzA2Mzc2MTg4MDkwOTM0MjUwNTQ4NDA1ODIwMTcwNjIzNTgw Njk5NTk4ODgwNjc1NTI4NDczNjk2OTQ5OTkxNzcwODYxMTMxNTgyNTU5OTU4 MjA0NjExOTU3NjY4MDQ5Nzg5NzYwMDY0NDg1ODQxNTY1NzIxNgo1OSA0NTU5 NjMzNzU0MjE5NzI5OTIzMTExMDUwMjEzNzMxMjMzMjU5Mzg1NTQwMDk3OTYw Mzc1NjkxMzQ1NzA3NjE4NTczMzQzMzE0MzI3MTMwOTM4MDQ3MjIzMDc5ODM3 NjY4NjAyNjY1Njk4MzczMjA2NTI2OTY5NjkxMzY5MDIwNzcxODA0OTAyODMz NDYyNDQwODIwMzczNTkwNjAwOTA1NzgwCjYwIDExNDI0NDcxNDYyMzYwMzQy MTY5NjMyNjg2MTkzMjE5NTgyODIxMTUxMjI2ODg0MTczNzE0NjgxNzA2OTMx MzcyNzE0NjUyMTU2MDMyNTc2NjQxOTcyMjYzMDUyNjEzMjI3MDg3MjA2MDg2 Nzk3Nzk4NzA5NzkwMDQyNDY3NTMxMDUwMDk1ODY1MzAzOTU2NzU4MzI5NTA5 MjU4NzI0MDY4MzExMjAKNjEgMTgwODU4NDc3OTczMzAxNjY0NjY2NTA3NTI3 ODE1ODcxNDEyMzMwODAzMTY4ODAyMTg5NjI1NzI4ODYzNDM2NDU3MDQ0MjMy MDcxNTExNzYxNDY0NTMxNTg5MjgwNjczNjU0NjQxNzA5MzEwMjcyMDkxMTg0 ODg1NDk2MTQ4NDIyOTM0MDg0MzcyOTIwNjAwNDk3ODA1NTIxMjk2MDQ2NTY3 MDU4ODgKNjIgMTgwMDI0MzAwMjIzNjU4Njk3Njg1OTgzMjg2ODQwNTkzNDMw MTMxMTEzNjAwMjExNDQ2NDgxMzU5MTQxNTM4NjgwNzU3Nzg4MTIxNzUyNDY2 ODc2MDU5MDgwOTY3MDUwODA2NDM2NTU0OTEzODU5OTExOTI5OTU2NDc3MjIz MTM1ODE5OTY3NDE3Nzk1MTAyMjA0NjM0NjExODI0NDUzMTE5MDc0OTI4OTIx NzYKNjMgNDUwNTkxNjE0OTM5NjY4ODkwNDY5OTE1MDMyMTIyNjQxNjU1OTY0 OTQ4NjgyMTkxNDQ3MDYwNTc4MjMxMTAxODQ4MDY3NjEzNDY2MTM1MzE5NDE4 ODgwNDgxNzUxNTI3MjI1OTkwMDgxMTkzNzEzNjc3MzkwMDcyMjg1MzIxMDc0 NTQ5MzI4ODU0NDQ3MjI4NjUzNzg5ODY2MzQyMDk3MDYwMjg5NDQyMzM0NjI5 NTY5MjIyNAo2NCAxMTMxMzQ0NzI4MjQwMzUzODcyOTg0NTk5Njk0Mjc0OTAw MjkzNDU1MDMzNTQzMjUwNDUxODQ4OTQ4OTQyNjYxMTk1NzcyMDYwNDE0NDUz NjE4MTQ3Nzc5ODUzOTYyMDgyNTg3NzQ2MzgwODMyNzA2NDE5NzI5NDgxMjQ5 NTM3MTI2MjY2NTAyMDQ5NzIwOTcwMzI3ODYzNTM4ODk5ODUxOTU0MDY3OTQy MTY5MzkyNDc4MjU0NDY0CjY1IDE3OTI4Mzk1NDg0NzczMDQ3NDYyNjIyMzA3 MjY4NTgzMTI0ODcyMTM1MjUzOTk0OTU1MDI5ODQzMDUyMTMwMzE2MDE5Nzc2 MDc0ODQwOTIzNzYzMzQxMzcwMjg3MTYzODY3NDkxODE0Mjg3NjMwMzgyMDkx OTQxNDI3MTcyNzUyNTE4NDI2NTM0Mjc1ODY5NTkxNTcwMDcwNDg5ODA0MDE2 OTAyNjE1MzkxMjkzNzA3MDg5NjI3NTUyCjY2IDQ1MDMxMjIxMTExMTczMzQy MjUwNzMwMTQxMTUzODIyMDg4MTE3MDUzNjM2NzM5NDczMzcyNjk0OTI1NzM5 MDQwMDUxNTQzNjY5MzcxMzExNjMxNDEzODUxMTIwODAwMzg4MDI4NzgxMTk4 ODUxMTMzNjA5OTQ2Mzg0MDI5MjYzMzkwNjMzNjMxNTMwMzE4OTYyNTgyNjU4 NjEyNjU0MTc0MTcyODc4NTAyMjY0MTMwMzI4NjAwMDI5NzYKNjcgMTEzMjk2 NDA1OTUzNjA3NjQxMTQ2NjUyMzc2OTcwNTcyODQyNDAzMDIzNTc3MjYxMDg5 NzUyODUyMTQwMzE2MjU0MzI3Mjg0NTMzNDg4MTA5NDg2ODk2NzcyNjY2OTE0 MzQxNjY4MTQ1NTY2OTk0MjkzNzM3NTczMTY1MTg3OTcwNTMyNjE4MjE4MTkw MzY4MDEyMjI4NTQ3MDgyNDI0ODc3MDA5MTE1NTYzNDc1ODY5Njg2NTg2MTM5 MDA3Mjk1MzI4MAo2OCA0NTE3MzA2MTA5MjMzMjc0NTAxNjE0MTYyNTcxODY1 NTQzNzYxODc4MjY3OTQ5OTE4MjM0MzU4NzU5MDM0MjgwOTQwMjQ2MjUyMjYy NzYwNDU5MjM0MzgwMDEwMDAyNDM1MzczODYwMDI3ODE0NTczMDUxMjM4NzQy OTkzNzI4ODA3MDYzNDMzMDE3NjIxNjYxMzcwNTEzNDg4NzYxNTg0MDAzOTc1 MTM5NDk3MjcwMzkwMTc0MTk0NTAyMDMyMTQ5MjM1MzkyCjY5IDQ1MzM1Njc1 NDAzNzMxNjk3Njc5MjU1MTEyOTQxNjEwNDc4OTkzNTY5Njg1NDgwMDM2MzIx MjcwMzUxOTY1OTc1ODEwNjM3OTI1MDM1MTMxOTU5Mzk5OTgxMzkxMDI2Mzg4 MzgxMTc3MzQ0NTU3MjU5MjU1NjgxMzkwNzg4NDkzMzMzMTE3MzA1MjY3MDI5 ODEyNjkxMzI0MDYxOTA5MDAyNzU4Mjc2MTkzNzUyNzQyNjc0NTMwMTc3NjA4 MzA4NTA2MjY1NjQwMTYxMDQKNzAgNzE5MTQ3NjcyMjkxMjY2MjYxNDEyODIx NjEyOTI5OTkyNDg2ODExMTAwNzU3OTExOTM3NTM5MzQxMTk5NDMwNDM3NTIw NDM4ODU0MzY2OTI5ODY2NTA3MDcyODk4NjA0Nzk3ODcwNzIxNzkzNDgzMTE5 NzAxMTE4MjU5MjU0ODY2OTUyMzY5Njc3MTY1NTIzMzk1MjMzNTg4MTg3NTAy ODI4MzQwNzE2NTM2Nzg0MTE3MzE2Mjk5NTY5NTU3MzgyMTczOTcxNjE2NTA5 NjQKNzEgMTgwOTgzMDYxMzM4OTMyMTA5NzQ4MjA2OTE1NDE1MDM0NjgxMzA0 NTkzNTYwODAyODUyMTM0MDgzMDcyNjUwMDg5NDk2MzczMDYyMzk4ODgxNjcw NjE1Mzc2NTQ3OTEzNzM0NDM4MTgwOTQ5Njc3OTA0Njg0NjEzNzIyOTM4MTY3 ODYxNDcxOTUzMzIxOTQ0MzY0MjA1Nzk4MDcyNjQyMDg3NDM0MzIwMzk4NDUx MjU1MjE2Mzc1MDMxODg5MzA2NTM1MzE5MjM4NDQ3NDM5NDAKNzIgNzIyODA5 NDI5MTUxNzA5NzA0NTg2NTU5MjcxNTExODM0Nzg5MjQ4MjE4MjEwNDQ5NDEy MjY1MTc2MDcwNDg4Nzk1MzE4ODk0NjU1NzcxMjEyNjgyOTI4MzUwNzkwODY5 NzI5ODM0Njc3MzY1NjUzNTU5NzU0NTU2OTI5NjcyOTA0NzQ3OTA2NTI3ODQy MzE4NDMzNzY5NTcyNDk5MzM5NDI0MjQxMTU3ODY2NjcyODc0NjA4MDc5NDUz MzA2NjEyNDUzNTM0MzY1NzQwNzcxOTA3MjAKNzMgNDU4MzAzNzY5NTY1ODY1 NTEwMDAzOTQzNjYxNTYwNzU0Mzg1ODc2NzIzNDg5ODgyNDAwMjM3MTEwOTY0 NTk1NTQzNTE0NDU1OTcxNjQ5MzY4NzcxMjI2OTgyMDY0MzU4Nzc0MDc0ODc0 MDQ2NzA5MzkwMzM4NjM2MDAwODI0NDQzODY1NTk3MTM2OTQwODg0ODQwNzIy MTc2ODg4MjcxNDY0NTE0NTY5NDQwNzM3NDY2NzIyNDUzNTAyMjExMzk0MDgw NTM3NDA0NDg4OTQ4NjE0ODU0NjQzMgo3NCAxODMyMTIxODc2NzMyMzUzMjk1 NTUwODAxNTE0ODY5NjE0Njc4MzgxMTYxNDQwNjkwNzcwMjk2MDIzNjQwMzE0 MDgwNDQxOTk3MTAxOTE4NDkzNzI5NjgzNjYzMDIxNzYxMzIyMDIyMzgyODEx MDA2NDA2MzY4MTA1MzQ5NzkxNTQ2NzU3OTI4MDQyNDc1MTMyMjg4MDYyODQx ODY3NTUxOTI4ODEzMzc3NTYwNjAzNTA3NzEyMzE2ODEyNTQ1OTE5NTA4ODcw NTg0NjM2MzY4OTIwMjIyMDMzNTQ5Mgo3NSA3MzI2OTU4MTg5MDk1MjA4ODIz MTM3MzM2Njg1MTI3OTQxNjYxMzI2MDQxODQ1OTU3Mzg3MjU1NTUzNzc2NzYz NDI5Njg4NDMwOTI1OTkwOTU5MTg0Njk5Nzk3NDUyOTE0NDA5MDcxODQ4NzQy MjAzMDMxNTg0NDIwNzc0NzM1OTQ0ODYyMjE1MTcwNDM5OTI4NjczNDQ4MDEz OTAxMTU1MzI1NzY4NDU3NDA5NDk5NjMzOTY4Njk2OTkyMTQ0NjYwMzk5NzE5 Mjk2Nzg0NDkwNjAyMzI2MDc2MjY3NjAwMAo3NiAxODQ2NDA3NTIyMTIzNDEy OTIxOTc5MDc5NDIyNDk1Nzk0MTM2ODUzMDI2MTYzNDkyMzg4NDE4MjM4NjAw ODA1NDcwMDE3NzI4ODU0MTk3MDg4MzY0MjY4MDYxOTAwNTE1OTM0MzcyNTM2 NDY4OTk1MTAzOTk1OTQ4OTM1NTgxMjY0NDk1MjUzMzkyMDc0NDU5NjcwMjg0 NTU0Njc4NDI4MTQ5MDkwMTY2NTYwMzkxNzk2MDc3MTE0Njc3Mzk5NTY1Mjc3 MTM5OTY2MDE2NjQ2NTM3NzgzNDI4OTk1NDU5MDcyMAo3NyA3Mzg4NjY1MTU4 NzY0NDc1MzAyMDczNzkyNTQ1MTUzNzAwMzAyMjA1NTk3NzEwNDY0ODQ4NTIy NzIwMTQxMzgwMzc0MjUyOTc0MDc5OTI5NjEyNjU5OTM2MTM0MTcyMTIxMTQ4 OTM2MDUwMDM3MTU2NDE2NjcxNTM5MzQyNjEyNjYyODgyODQ2OTkwOTAxNDUz NjMyNzQ1MjMzNjM0MDQwNDcyOTAyMzE0MjMzMDY3NzgwMTQ0NzQzMDc5OTQ5 NzY4OTE1MjY2MTA3NDAwNTAwNDQyMTk4OTI0ODYyNzg3NDE2NTAyMAo3OCA0 Njk2Njc2MjczODkxMTU4NDI2OTE4ODI1NTY1MDY1MDE5NTUxNjgzNTYyOTM3 ODkzMTk1NjM4MjE3MDUyMzM2OTc0OTY0MDMxMzk2MjQ5MzkyMDM1NjEzNDgx MTI0NTI4MDQxMDY4NDY1ODcwNTY0MDk2MDY4MjgzMjY4NjQ4MzE4MjcyMzEy NTk0NDIxMTI5MTU2NjY1MjExODQ2Mzg5MjcwMDg1Mzk1NzQxMjc1Nzg1MDY3 NjEzODgzODQxNzM3NTY3MjQ3MjkyNjA4MTI0NzEzMDAxNTg3MDYyOTg3MDQ0 NjU4MjUzNjQwCjc5IDExODQ0MTE4MzEwNDM5NDczMzg0NDQyODE0Mjg4NjU2 MTE2ODMyNDA4ODc1NzM0NDM4OTgxMTQ1MDk2ODk5NzA3NzA4ODU3MDY4MzE4 MzMwNDE5MDUzNjYzMTc3NjkzNjI1MzAxOTExNDEwNTAxMDU4MTQ1MjcwNDAw OTEzNDQ0NjA3ODk0ODk1MDQzNTk4MDczMTE2Njg1Mzg5OTE2MDE3NzYyNTQy NTkxNTEyMTU1MTAyNTg1MDQxMTk4OTEyNTAzNjcwNDY4NjExODIxNzgzMTE5 NzcwMTU5NDk4MjA1Mjc0NTA2NjUzMjk1MjAKODAgNzUzNTYzNzE1ODgwOTAx NTYxMjQyNzg2NzE5ODA3MDE1Njk5NzEzMDExNDkzNzk4Nzc3NTExMzE3NTA3 NzY3MDE0ODE0MDA1NDYwOTY5OTI3NjI3NjAyMDg1Mjg1OTQyMDY4NDE2OTEy NjEwNzg0MDc5MjU5ODA2MDQ2MTMxMTExNjkxNzIxOTcxOTM0MTYxNDQwMDgz ODEwMDMwNDQwMTA5NjQ0NDM0MTUyNjkwMzUxNjI4MzQxNTI4MTY3NDE4NzU4 ODY5MTAzNjUwOTMyNTgzNTUxMjg3ODI0MjYwMDYzNzk0MzkzNDQ3NjIwMTI4 ODAKODEgNzYyMDYyNjE0MzI5MzU1MDI5OTcwNjQ5MDk5MDE2ODEzNjcxOTA0 NzM3MTU2NzkxMjk1Njg4MTkxMzg5ODM1OTE3ODU1NTI3MzIyMTg3MzY1MTIw OTk5MzAwMzk0NjUxNTQ1NzU2MTgxNjk4MzQ2NzUwMDk0NDAxMDU2OTgwODk2 MDA0NjgxMjI3NDgyNjA3NTM2OTQ1NTM5Njg1OTIyMDQ0Mjk1NjAyMjM3OTQ0 MjY2NTQyNjMzNDExNDg0NjM3ODkwNDQ1MTM4MjU2NTMyODQ3ODExNjM2NjU0 ODY1MDMwMDY1NDA2OTcwNDQ1MDQ0OTU2ODEwODgKODIgMTIxMDYyNTYxMzA2 MDg1NzQyMDY5Njc2NzI5ODI1NTI4ODcyMzkzMjI2MjAzNTYyMDM2NjMyMTc5 ODkwNjU5Mjc5NDIxMDI3NjAxNzY1MjY2NjkxNjkyMjM2NjI5NDA1MTY4NzA5 MjI3MDU3MzM1NjYxNDU0MjkwOTc3MTI5NzQxNDM4MTA0ODY0NTA1MTg5MzA0 NjAxNDE3NzQ4Mjk4MDM1NjU4NzI2MzI4NTY2ODQ1MzMxNTM1MDEyNTM3NTA2 NzE4MTc0NzEwMDUxNTE5OTg3NDA0MzI2MDA1MzI1MTI3NjQ2MzQ4NTkzMjE0 ODMxOTk5NjMyNzA1Ngo4MyAxMjI1NTI4NjQ0NzE2NjA4ODA3MTY4NzEyNTY5 NjM0NTI1NTU1MDE2MjU1MTQzMTQ0MTkzNzk5NzIwMTU1OTgzNjk0NDY5NzAz NTc0NTg4NjAzNjA3MjkyMjE4NzQwMjAwMDQwODA0MTk5OTkzNTYzMjMzOTU1 MTM2NjY3NTEyNTIzODM4NTc2MTkzNzQ0MzI4MjQ0NTE3MzgxMDEwNjQ2Mjkw OTQ2ODY2OTMwNzEwNjc2NDQ2NjY2ODMwNjUyMDEyOTU0MzE1MjgyMzI0OTIy NTA0MjU4NDY1ODc5MDc3NDU5ODAxOTU1OTAwOTAzMDA0NDUxMDcwNTg3OTky OTYwCjg0IDE5NDcyODE2MjQxOTg3OTI2MDk1ODQ4NTI5NTU0OTQ5OTk1Mzg4 MTA3ODQ5NDM0NzEyODI0MDk2MjU5MTA0MTIyODkxMzE0MTU0Njg5Nzc5MTYw NjQwNTgyODgwNDE2OTcyMTUxNzgwOTgwMjU4NDkwNTUzMjc3Njc2MjAyNjU5 MDI3NDc2MTE4OTAxODgxODkzMTEwMDM1MDk2MzU5NzM4MjUzNzY0Mzg1ODgx MTQ5ODg0NDU1ODcyODI5MDg2MzI0NjgwNDgzNjY2NDc2MjU2MDA0NjUwNjQz NTEzNjExMDMyMjI2MDk0MDA0NTQ5MTM0OTQwMDYwMjI5OTQ4NjMyCjg1IDc4 MTMxNzM2MzQ4Njc0MjExNjIwODk1ODY0MDYyMzE4NzYzMTA0NzQwMjQ5NDQy NTIyMjY2MDM0ODI5OTk2NzE4MzUzMzk2NjM2NzA3OTUxMDAzMzQyMTMzNjA2 MTI0MjY4NjkyMjUyOTU5Mzg3Njc5MTc1MDMyODU1OTYxMTQyODc0ODM0NjI3 NTQ1MTI4Nzg1OTg2NTUwMjM2Mzg1MjU2MzY5ODEwMzgwODA0MjkzNjgwOTYy MDAzNjgzOTg5MjA2NjkzMzUxODQ5MDU0OTk4NzU1NTE1NDcwODg4NjQxMjg4 NTgxODk3NjM3MjQzMDE1NzI3OTAyODg2NDU1Mzc4NzUyCjg2IDE5NzMxNTQy NzE3Nzk1Nzg5OTYxMDI0MzkzNTM1Nzk2NTk4Mzg0NjIwMzUxODYzODk2Njc1 MzcwMTc0MTA5OTk3NDg0MDQ5MTEzNDE5NTkwOTUxMzE4NzIyMTQ3Mjc0OTcy ODU0ODc5NDk1OTkwMjI4NTYyMzI1OTc0ODU5ODYwMTM3Mzg4MDA5OTA1OTc5 NzI1Nzc0ODY4NDg3MTA5Mzk5NzQ2MDU1MzMwNDU3MzcyNzY0NDA2MDYwODUz Nzc2ODczOTQzMzYzNTUxMzU0NzI4OTIxOTQxMzk4NDM4NjI0ODI1MjQzODY5 NDY1ODE1MzQyODQ0NTY2NTEzOTk3MjAzNjg5MTg0Cjg3IDc5MjA2NDU5NzE1 NDEwMDEyMjYwMDU0NTYzMjUwNDY4NDAwODc5NTI5ODc0MzUwODY2MjU3MzM4 MjYzMTcxMzk2MjcxNDgwMzI3NzMzOTA2MDY0MjMwODAxMDcyMDc3NjcwMTkx ODcyNzEzODMyNjA0MDIxNDY0NjY3MjE3ODc4ODIzNjIxNjM5NDI1OTY3NDUw OTYzMzA2NTY0ODY5NzMyOTQ1MTY0MzI3NDg1NjI0NjYwMjM4NjUyNTkwNzA5 OTE3NTUwODE5MzA4NTAwMzQyNTY2NzA1MjMxNjcyMzY5NDg3NzExODY1ODg1 NjMzMzcwMDA1MTQyODM4NzY0MzI1MDk1MTg1OTQ0Cjg4IDUwNTUyMjI5Mjg1 NjA0OTEzNTE3NjI4Mzg1NDAyMTUyMzAxNjUxNDA1MzA4MDMzOTcwODUzMTM4 MzI3NzMwNTM0NzUyOTA2OTg1NDU5NTczNzA0MTIzMTQ1MzA1NDU0Mjg0MTc0 NTc0MjQ4MDE4MjEzNzg1MzY3NjcxNTY2MjkxMjIxNTA3MTA5NTg5NzcyOTY3 NTIzNDc5NDY3MTg2NjQ4NjIxMzU0NDA0MjIwODkzNTc5NzE0ODEzMjExOTE1 NTk5OTcwMTY4MTcyNTI4OTM5ODc3MjM0MDQzMDMyMzUyMTk5NDc3NTkzOTc0 MTM1Mzg3MTc0MTQ2NDMxMDg2NTY3MTI5MTk3MDgzNzcwNTYKODkgMTI3NzMz Njc2OTc1NDc3ODY4NDM2NTQyMjY3MzA4MDExMTExNjIxMDY3ODg2NTMyOTI4 NzYyNDM3OTYxMTA2Mjk3Mjc5OTUyMjk0MzE5OTA4NTA2MzA3MjEzNzU5NDAx Mjg3NjUyMzUxMjYzMjE2NDY3NTU5Njc4NjAwMTg1MjMxODY4NjM0MjM2MTkw MzYxNjM2NDkxMTIwMTM1NTAwOTY5MjIwNzM1ODcwMTA4Mjg5MzYxODM2MDMx NjEzNzk4NTcyMTI0MzQ4NzAwMTMwNTIwNTQ0NjU1MDIzMjk2NTAwNTMyMjM2 NDEyNDk4NDg3NzA1OTExMTk4NjA1ODc0NDk2MjYyNDg1MzE5OTg3MjAxNgo5 MCAyMDMwNTE1OTA3Mzc0MDgxOTQ3Mjk2MjUwMDE3MzMwOTc5MDQ0MDc0Njcz MjU4NTA2MDY5MzY5NDgwNDc5MzY5MDM4NzI0MDgxMTQyMzUwNDczNTU3NzA0 OTA3NDk4ODIwOTk2OTg2NzkzMDg4MTEyNjEyNTUzNjYyNjM4ODk1MjEzMjgz NzExODUwNDI1NTk3Nzg1OTUzNDYwNTUyNDE2MTA2MTAxMTQ4MTIxNzY1MDMz NTIzMTY1OTY4MTM1OTI5NTI0Njk5NDM5MzIyMTI4MjAyODEyODczODU2MTE0 NzkyMzgzMTM0ODMxMTIxNDMwMDg2MDg1Mjc5Nzk5Mzg3NDk5MDUzNjAzNzk2 MDk2OTcyOAo5MSA1MTMxNTA0MjcxMjE2NzIxNTQ1MDY0MTg4Mjk5ODMxMzUy MTA5Njk5OTkzNzY2NzAzNTUzNzM3OTYwNDIyOTQ4MDc5NTAwMTA0OTQwOTQx OTQzMjgxODIwMjcyMzkyNDA5NjEzNzIyNTEwOTc3NjAxMTgyNDQ2ODUyNDky MTg2Mzk3NjAwMTc5MTM1MzQ2ODQ1NDQ2Njg2NTA1NTc5NjgzOTM5MTMzMDg4 ODI2ODc0MDE4MTUzNTUzNDIyNzM2Mzc5MzA2MDM5NjYxOTg0NDYwMDY4MDg5 NTM2MTEyNzc5NjUyODI5NTU4MjE5OTIwMjYzNzI3MzczNzc0NzUzMDczNjA1 NDEyNTAxOTgzNDkzMTkzODU2CjkyIDgyODc4Njk5MzY0NDMwNDUyNDcyNDUz ODQxMjU2NzQ3NzkzNjI4NDE5NjUxMTc3ODQwMjYzNTM0NzA5NDA3MzMyMTAz Mjc1ODYzNTcxMTU2MzYyNDQyMDA0MjIyNDI5NzM2Nzg1MzUxNjkwODg2NjMz NjYzNjA1NTQ5NzM4MjQ5ODA5OTg5MTQ0NTM2NzQyNjk2ODY2OTAyMjEwNzc4 NDExMzczNTAyNTk1NzYzMzM0ODIzNDI5ODA4NTA1NzQ2Njk2MzkyMDI5ODIy NDMyNTU1Mzg1NTIyNDE1OTQyODg5Mzc4NTE4NDgyNDkyOTY4MjI5NjY3NzY4 Njk4MTUzOTg0ODM5NDQ5MjM1OTc1NTM3NTI5NjU4MjE5NTIwCjkzIDUyOTgz MDE5Mzk3MTk3NDg2MTgwMDgzODgxNjc0ODY5NTA0OTI1ODA1Nzc5NTIxMTA5 NDgyOTIyMTQ1MDU4MTMxMTY5NzAzMzI1OTU0NDU2NTEyODU0Nzk2MjMyMTM3 MDM0NDkxMjkyNzgwODYxNDkwNjM5MjY0NzE2NTkzMTY0MjMyNjc4MjIzNDEy MTYzNzYwMTk5NTA1NjUwNTY4OTU3MjU2MDYwNzg0NzIyMzU4NDE0OTc4NDM3 MDcyNjQ1MDE3NjU3MTcwMzc1MjY3MDY2NDI4MjQ2OTU5NjIzNDYwMTY4MTg5 NzI1NzA0NTEzOTAzNTM1OTUzMDY1MzMzNjIzNjI0MTQ5NzIwMjg2NzQ4NzI3 MTQ1ODUzNjY4NzU5MDQKOTQgMTMzOTgzMDQxNzk3MDczNzQyMDQ5Mzk0NDQ3 NTQxODY1ODUxODI0MTk0MDYzNjk4MDYxNjEyODc3MTM2Nzg1OTUwNzQ0NzU2 MjAyNjA1NDM3NzEzMzQ1ODg3Njc0MTM5Njk2NTcxODQxMzEzNTEyNDIyMDIy NTc5NDc4MzUyODM3NzI0MTU5MzI1NDE3NTA1OTgxODUxOTk1NzkwNDgwODU4 MDQ4ODY3MjEzMDc0MTI5OTU1MDIyOTg5NTMxNjIzNzM5NjQ5Mzg4MjIwMzk3 NTE1MDczODIxNjc2Nzk1OTk3ODk1Mjg2MTQ0ODgyNTgzNTAyNjE3MTUyMTky MzYwNzk1ODc3MDkwMTE2Nzg2NDc5NTc4MDYxNDgyMDM5NTM2MzEwNAo5NSA4 NTcwNDc3MzEyNjUxNzI1MzU1NDg5OTAzOTM3OTIxMzYwNzk1ODYxODc2NDc1 OTA4OTc0NjYyOTQxMDk3NjEyODg1NDIzODY2ODQwMDMwNzQyOTQzODg1OTgw OTk5NDg5NTM4NTUzMzQ0NTE4MDk3OTYyNDI3NjAxNzE1MTA2NzU4ODYwMDkw ODgwMTAxNDI4MzMwMTA2MTEwNTE3MDE3NTE0ODc4MzY5NzEzNjk2NTU3MDkx MjIwODM2MjM0NzIyMzIyMTI2NDA0NTIxMjk1NTA3NjQ3OTQ4MTY0ODE4NzY1 NzcwMDQ2NzQyMjQ0ODAyODg4Mzg1OTI2MjcyNjk2OTEyNjY3OTU3NDc0NDEy MzYzNDQ4NzY1NzE2MDkzMzEwOTA0NTg4OAo5NiAyMTY3OTMyMTM2MDU2MjAy NTY3MzMzNzc0OTQ4NjQ4ODkwMzY1MjA4NjYyMjYxMDc0MjEyMzUwMjY0MzE0 MDE5Mjc4MTMyNDc0OTYyNTk3MjUyOTUyNjI1ODAyMDU4MjgyOTQ0ODkxNTQ4 NzE0MDYxMTY3NDU2OTQ1NTIwMzY5NzEyNzg2MTUyODI4ODA1ODAzNjYxNzE1 OTc2MzI4NjgyNjg0OTg5MTI1MTMyMjQzOTQ5OTAyMzg5NzM4MzI2OTY4MDg1 NTQ0MjA5OTM4MjMwOTI5ODM2Njg0NTIwNzI4MjI2MDA4ODgzMTQ1MTk0Nzk4 NzE0MDQwMjM2MDc1NjE3NjAzMzI4MzY1ODM2MjM3NDI3OTg0NDM4ODQzNTI2 MTYyNjE2MzQ5OTc3Ngo5NyA4NzIzMzU3NzAzMzc2MzA3NDU4OTU4MDk3Njk3 MzAwMTM3MTQ4MTQ5NDMwMzAxMDMyMTk3NjQ0NTQ1NjQ3NDgxMjQwMjI5NjQ0 MDkxNDc0MjE3MzUyNzU0MTc4OTA5ODc4NzcxMjY2OTY2NDU4MTEyNjczOTAx MTY2ODg2MjIyMjY5OTM5NzM4OTk5Mjk5MTYzOTEzMjM5OTUxODIzODgxNDE3 ODAzNzM0NTU2Njk4NjA0OTIzOTMwNTEzODM5Njc5NzkwOTYyOTU0MzIyODQz NjgwNDM3NjA3NzgxNzU3NjI3NjQyMzU0MjQyMTc2ODI5NDk1MTc3OTA5MzQz NTk3MDM4OTE5ODA2Njc1MzUyOTU4NTIyNzMwODU1MjI5MTA3MzQ4NzIyMjIw NjAxNgo5OCAxNDEzMjgyNDU2NzQ4NzI0NTA2NDk5NjkzNzczOTc2ODMzNDcw NzI1NDM2ODI2OTY1Njk5NDEyNDM3OTg2MDQwMTEzMTgwMDQyNzY3NDg3OTY3 MDAzMzE1Njc5MzcxMTEzMTkyODQ2MDQ1ODIzOTUyMjA4Mjc1NzgxNzEwNTU5 MDg0MzkyMzgxNTg0MjM2NjI2MTk1NTUwNDc0NTM5MTMxMjg3OTA1MDQxMzE0 ODI2MDk0MDIwOTUzMjY4ODcxNzIyMDUwNDI5Njg5NzY4MjcyMjA4Mjk5Mzg4 NDgwMjA1OTAzODk3OTAyNzk3MjY1MjU0NzMxNzU1NzM2MDY5NTU5ODM2NDE0 NzQxOTU0ODE5NTczMzU4NDY3NjMyNTMxMDAyMjU0MjM2MTM0MjEwMjc2MTQ3 Njk2Cjk5IDIyNDgyOTc5MzkzMDI1NzE5MjQwODcwMDg5ODg5ODQxNzU3MDgx MDUyNDQyMjM4ODc1MTk2ODY4Mjc5MjU2NTM0ODgxMDYxMjMzOTczMzA2NTE2 NTM2OTc5MTc4MzM2NjM0NzcwNzQyMjk5NDU0NjY4MTk1NTE3MTQyNTQ0NzYw NTAzNDk1MzEyNDQ5MTc5MDI5MzQ3MjQ2OTczMjQ2NTIxMDU5MjcwMzE5MDEw ODQ1NTI5MTk2OTQ5ODI1OTA1OTQ4MTQ3MzU2ODMwOTM5MTczNTE4OTYyNDM0 NjE1MTkzNjk0MDU3MDI5MTUxOTI2NjU0NzQ2MDc3NDAyNjY1NTA4MzA0NDcy MTAyMTE1NjM1MDY4ODg5NzQ5NDI0MzEyMTExNzQ0MDM3OTYyOTA2MzE0NDQx NDI0CjEwMCAxNDY4NTgwNjMyOTM2MDA5OTk5NjcyNzg1Njc1NjI4NDA5NTgx ODc1NDc2NjAxMDU4NTU0MzcyOTIwMjE2MTYyNzA2MDI0NzgwNDg5ODI5NzIx ODg2MzY3ODMzNjY3NjE0MjIwOTQ1NTQ1NjA3ODQxMjA3OTY3NDE0MTU2MzI1 OTY3MDg1MTkzOTU2NDUyMDU2MzkxMjQ1ODQzMjc0NjI1MTk0MTYwNTE0ODE5 MjEyNTk4MjY3NDM3NzA2NzQ3NDg3MDcyNTIwMzIyMzg1NjUzMzYwMjY3MzEw MzYyMTU2NzgzNTEwOTY2MzAyMzA0OTYxODQ0ODQxNzIxNTUwNTM2MjQzMDU5 MzM0MjczNzc4MjI0MjUzNDYwNjAwNjk4NDg0NjMyMTU4Njk5MzYzNjMwNzQ4 OTI1MTEwMTgzODg1ODA4Cg== ------=_Part_156860_32560920.1185232257325 Content-Type: text/plain; name=b087189.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4hkqzvy Content-Disposition: attachment; filename="b087189.txt" MSAxCjIgODMKMyAxNjkwNwo0IDI3OTAyMQo1IDg5NDQ0MDE4CjYgMTY5NTAx MTA4Nwo3IDY1ODA2NzcwMzkzMwo4IDU3Njg0MTA1MDk1NTM5MzcKOSAxMjIx MDgzMTM0NjAwNTE1MDAKMTAgMTIyNjk3ODg1NDIyMjAzNDUwMTQ0OAoxMSA1 OTM1Mzg3MDM4Njk1NTU5OTUyMzg4NzIKMTIgMTMxNzUyMjY1NzE0MjgxNDA1 NzI4NjYwOTMKMTMgNjU5NDg1MjExODk2ODkyNjE1MjgzODM0MTQ2OAoxNCA3 NjMzOTc3OTM4MDEzMjk0MjU3OTgwMDMzNDM0NjQwMwoxNSA5MTI1NzA4NTI4 MDU0MDQ3NTk1MTUyNjMzNDg4MDkyMzU4NTIKMTYgMjA5OTE4ODQzOTU2NjYx MjkyNDg1NzA1MDAwNzQ3ODg2Njk1MjIKMTcgMjU5NDg1NDcxMzAwOTM0NjMx Njg3Nzk1NDEyOTkwMDI3MzQ4Nzk5MzQzCjE4IDE0MDMxMTY1ODM4NzM3MjYy MzM4MTcwMTAyOTIxNTk4Njk4OTY1NzY3NjE3NwoxOSAzMjcyNjUxOTE1NzUz OTU1MjQ1ODUwODY0NDc5NDA1NTI0NDQ2NjIxMTkyMTg4CjIwIDQxOTc5MDgx NDQ1NDU1MTYyMzU2ODU4ODAzMTUyODUyOTc1NzY1ODg4OTAwNjA3NzUyCjIx IDIzMTkxNDg4OTMzMzQxNTE5ODQ3ODkwNDA1MDgxNDYxNDQ1Mzg1MTQzOTI0 MTYxOTA3MzkzCjIyIDMwNDM4NzE4Mzc0NTQ1OTc0NzYyMzEwNTE4NDgxNTQ4 NTQxODMwMTg2NTEyNTYwOTY0OTA2MDEzNwoyMyA5NTg5NTM3MzI3NTAwMjMy ODc4MTY4MDA2NDE0NzUyMzA4NzcwMjkwMDExMjA0ODU3MjU4NDExOTQzMTQ0 MwoyNCA1NDE3OTE4NDAzNzA4ODgwMTUxNjIwOTA1MDg4NjQ2NTgwMzc2NDM5 MTM4NjM2NjgwODMwMjIwOTcwNzkwNTA5NwoyNSAxMjg5NzIyOTk0MDQ5NDcy MDgwMjQ2ODI2MjcyNDUyMzI0Nzc5MTIxODE2NjMzMjQ5MTU5MjA3MzQxNTEz NjMzMDI4CjI2IDczMjg4NDg2NTMxMzgzMDk0Mjc0MjYzMDU5NjMyMDYyNDc0 NjI2NDE4NTMwMTc5OTkwOTI1ODkwNDY1NDQ0NDA4MTQzOAoyNyAxNzQ5MzY3 NjUxODIxNDIwNDg4NzEzMzY4OTg5MzMxMTQ0NTQxNTc4MDEyNTgyOTY2Nzk5 NDA5MzQ1ODU4MjQxMDI0MjgwMgoyOCA5OTkyMDQxMTk5MDcyMjc5NDIzNTQ1 NDA2ODY2ODcxOTczNDcxOTc4NjA3MzMyMzI1OTE4ODQ4ODMzMTc2NDI3MTc2 OTU4NjUzCjI5IDQ1NTUwMTc3NjY0MTY1ODAwNjA5NjQ3NTMyNDcyNzQ2MTA2 NTg5MTMzMTIwMzYxNTc0Mjc0NTQ0NzIyNTYzNjUyNzc1NjI5MjgzNzA1MDAx MzYzCjMwIDI2MzQ2MjEwNDYwNDU4MTM3NDE2MzEzODQxMDk3Mzg2MzA2NTYy ODI0OTkxODk4NDMzMTc3NTM3MTA2MTgyNjUyMTU0NDIyODAwNDg3NzU3NTU1 MjE1CjMxIDM2ODA3Njk2NzU2NDkyOTcxMDU3NjA0NDE0NTcyNDQzMzQ0NjMx MjI0NzkzNDcyMDM0NjA0NDc5NTM5NDE0OTY4NDE3NzY4NTg0ODY2NjY0NDU3 NDg2ODc0OAozMiA4ODc0NjM0ODY3NDQzOTQzMDI3OTIwNzI5NjAxMTU4Njgy Nzg4MDYwNTA4ODg1MzA5MDQyNDYzNzk5MzY4ODg5MjY1NjE0MzA3NTgyOTgy OTI3NDE5MTkwMTM3CjMzIDcyODU0NDM2MjAwMzg5MzA2MTM5NjY3MzY1NjEz MTQ5OTQ1OTc1MTQ3MDgwNTg3NTE3NDQ4NTk5NjY5OTMwMzkyNTcxOTQ4ODE3 MjQ0NzU3Nzk0MjM3MzU0NjAyMzAxNjYyCjM0IDE3NjE2NzQyMTIzODc1NDQw MTM4NTgzNzE4NDk3ODIzODIwMDI3OTk0ODk2Mzg4MjYwNzc4NzA3NTcxOTE1 MzAyMTM1ODY5NjUxNTkzODIzNjY5Mjk3NjU1NDYzMDIyODUzMTUKMzUgMjQ5 NzIxOTY5MjE2NTUwODA5NTU1Njk5NDY1NjUxOTIyNjY2MTY4NDU1MTAzMjAy MzI0OTc1NzI1ODk4NDIyOTY4NTI5OTgyNTE1NzU1MzU0NjQxODAzODcyNTc3 NjU4ODIxMzYxODMKMzYgMzU1MjgyMjE2Mzk3MTAxNDgzNjM4MDQ4NTE5Njc2 ODA1NDc4NjE0MTYzOTIyNjAxODgyNjk4NzYwMTAwNjgxMzIwNzU3NTgyNTYz NTcyMDU1ODU2MDk0MzU1NTc0MzgzMzA4NDU1MTE1MDczCjM3IDIwODk5Nzc5 NTk4Mzc5NDI4MTQ3NzAyOTgwOTc4NTgwODE0MjcxOTU1NjUyNjIwOTIwMDcx NDA5MzUyNTk3MDk2MzEzMzE5MzUxOTMyMDY5NzQyODkzNzcwODgxMDMyNjMw MDI4Njk3MTU2NDY4MwozOCAyOTg5ODcwMTcxNTY3NzMwNjc4Njg1Mjc1NjI5 OTQ0MzMyNDI5NTQ5MTg0NzI2NjA5MjAyNDU3MzM2MjgxMDI1NDgxNDQzMzE0 OTAzMTkwMDE4OTI3Njc3NjQxOTY2ODgzNjMyOTM1OTk1ODM0OTc1MzUzCjM5 IDQyOTAxMTI5ODg1NDg4NDU2NTM4ODU1MTQ1MTQ2MzU1Mjg1OTEwOTQ4NTk0 NDI4NTc5NDY5NDMyOTA4MTgxODcwODg3NTUxMDUwMDQ3NTUwOTU2OTc4NTE2 MDc3MjgxNTI0Mzk0NjIxODUyOTYzNDgzNjU4MDMyCjQwIDEwNDMxNTU5NTU2 MTg3NjQxOTIwNTg0NzQxODk2MDU5MDEwMTM4NzQyODA2MzQ4MjE1MTQ3NDA0 NTIzNDI3NjU2MjQ2NzgyMTk1NjI2OTQ0NjgzOTkxMzQ3ODk4MzkxMTQ1MTAw ODI2MjYyOTQwNDcyNTUwMzEzMTcKNDEgODkwNjAwMTEzMTcwNjA2Mjk4NjY4 MzMxMzgzNzAyOTc4NDM5MjE3MTQxNjU2MTcyNzg2NzEzMjQ3Njc0NTU0NTM3 MzM5NzcwMDU4NjkzMjg5ODE5MDMyMjUyMDE0OTAyMTEyOTQ0NDg1NzI0NjMy OTcxMzM2OTA0MTE4OTM0Nwo0MiAyMTY5Mjg1NjA0MzMwNTc5ODk5Mjg2NTI1 NDExNDc5NzU1Nzk0NTgyNDI0Nzc0NTQwMjM0MDQ3MDg0MjI1MTI1MDg1Njg1 ODc1NjA4Nzg5Njk5NzU0OTY3NTM2NTcxNTAyMzQ2MzM1NzA4MTI5MDI1MzEz MTU0ODQ1Mjc3NzA2NDMKNDMgMTI4ODA0NzU0MTI3ODMwMjE2NzU5OTg0NDQz NDA5OTk3ODIyMTU5MjE1OTEyMzI3ODU3NjA3MTQ4NzI2NTMzMDg5NjMxNTg1 MTA0MDA1Njg1NTA2MjY0OTU2ODQ1MTc4ODA0ODI5NDIxOTE2MjEwMjM3NzI3 MTk3NjQ5ODEyNDQ4ODkzCjQ0IDMxMzk4NDYyNDAxNTU0MjM3Njc3NTg0OTgy MTY1NjU0MDY0ODEwNzQ4NTI5MzIyODU0NDE3ODg2OTM5NDEzOTIzMDk2NDI0 NTIxMjAzNjkwMjI1NDA4Njk5NjA0NzUxODc1MDUzNzQzMjEyMDMwMjg0NDU3 MDcwNzk5OTgxMTU1MjUxMTIKNDUgNjYyMjA5MTUzNjQ5NDcxNTUzMDk1Nzk3 ODMwMzA1MDM0NjI0MTMyMzY1Njc5Njg4NTcxMTc2MDI1MzYxMTg5MzI2NDEy NjM4MDQ0MTk5OTU1MjU1NjA2NDI5ODMyNzM2OTYwMjEwMzQ0NDU3NjEwNzI2 NDM1OTc3MzA1NzY0MDYxODk1MDQyMzYwMzIyCjQ2IDE0MDc5ODI0MTc5ODcz MjQ3OTg3NTA4NDI1MjgwNzMzOTIyMzIyNjMxMzAzNTU4Nzc5ODkxNjM3NzYx MDMyNDA1NjE2NjU0MzgwMzg0OTAwNjM1OTIwNDI1NzE5NTQxNDYyODUyNzMw NjEzNjA5NDA2NTUxNjg4ODQzNzg5MTE1MDAzNzI4NjIwNjcwOTk0NjYyMTc1 Mwo0NyA4NDE3NDQ2MTQ1Mzg4NDM2NzU3NjIwMjc4ODEzNjYwMzYxODk1ODI1 NzA5NzE4NDI5NTkxNDQzOTc1MjQ0OTY5MTMzNjQzNjE5MjU4MTgzMjY0OTcw MDcwOTA3NTA4ODg0Nzg3ODM1NTI2MjU2OTc0MDIzNDY0MDQ2ODUyNTEyNDk5 NDAzNzkyNDc1MDc2NjE2MzY2NTUyOAo0OCAyMDU4NzI4MTg2MTYzMzUyNTE1 MDE5NjIzMzkwNTI3MTM0MDc3MjM0MDkyNjUxMzg4OTY0NjkzNzk1NjQ0NDM4 MjkxNDExNzQ2ODE5NTg2MTI4MzQ2MzU1NzA5MjAyMDI0MzI2NTE4OTkxNzA0 MzQ2NTk4MzU3MTQ5NzQwNTEyOTU4OTAwODY3MjUzMjUxMzcyNTA0MTc3NjA3 CjQ5IDEyMzIyMDU3NDAwNDIwODY3NDk2MDcxNDQ1ODI5ODI0MDk1NjMyMTQ3 ODExODc1NjM2NjQ1OTk5ODI1MTUyNjI3ODQ5NDM0Njc1Mzg5Mjg2ODE5MjIx Njc0MzQ5NzMzODkwMzczMDM5ODM5NDQ3MzE0MzU0MjA0Mjc5NzQzMDQ4NDEz MzQxNTIwODM5MTgyMjA0NDA0NDA1MzYzODMKNTAgMTgwNjc4MjY2Nzg3NDg3 MzkwMTYyNzEyMDEwMDUxMzE4MzUwNjY5MzAzMDI5ODk5ODc1NTAwMjc0MTA2 MzQ1NjA5NzEyMDM1OTkzMDE2NzAwNzg4OTEzMjUxMDg1ODAwNjM5NzYwMDA0 MzU4MzkzOTc5MDg2MDkzNDUzMDkzOTc5Mjc5NDA4NTgxNDczNzgxMjAwMjAy NTU5NDI0ODg1NDcKNTEgNDQyMzg1MTMzMDQ0NjM4NTA1NjI1MDY1NTMwNzM0 NDMxNTA5NzA4MDQ2NTQ4NzA2MzU2MTY0NDQxOTg1NTI2MDkwMTA1MzAzMzY1 MjUxOTMyODk2NTk5NzY5MzAwNTMxNjY5MTUyODAwOTgxNDgzNDA4NjM3OTUz MTUxNzY4ODU3MzQxNjczMDAxMjg1MjgyODMxNzk0OTU1NTg0MjYzNDUyCjUy IDM5MDI3NDgzNDUyODEyNjE1MzcwMzk0OTIwODIyNzQ3ODA0MjMwMTU1NzA5 NTUwNzc4MDk5MjgzNDM5MDQ3Nzk0MDE4NDE3MzgwNzMxNzE5MTIzNTkwMDk1 NzYzODU0MjgzMjIwNTYxMjg4MzgwNjc1NTMxMjE5ODUzNzAxNTYxMjI0ODU4 NjUyNzIxMjYxOTMwMjkzODAwMDM5NDYwNzI0NzM2NzQzNDcKNTMgNTc0ODQy MTk2ODAwOTUzNTkzMDAxNjM5NjcwOTg5MTk3NDEwOTgwOTA3NTU3ODc5MjU1 Nzc1NTA2NDc4NDk0MzY1NTY1NzcyOTk5NzczMjY4MDgzMzY5ODQyMTg4ODk5 NDAwOTIzNTY2NDY3Nzc4NjM1OTQ4ODgyMjU2ODc4NDIxMTM5ODg2NDg4Nzky MzQxNDk4NDExMzQyNTY5NzE2MTgxMDAzNjE0MDE3MzgKNTQgODQ3ODQ4NzMw Njg5MDY1NTMzNzQzMTkwNDk5NDAwOTE3MjQwMDg5OTU1NzE5NzIyMTMxNzIz MTM1MzY4ODI2OTA3NTg0MjU5MTkyNzQyNzM1NTU0NTQ4ODY2NDM3OTMxMjY2 OTUxOTk1OTAwMTk4NzE4Mjg1MDMwNDQwNjQ1MjU2MzA2NDQ3OTYzNjYwNzgx ODE5MDE4ODE0NDYzMDgyOTMwMjkxMDYxMDAwMjIzMDMzCjU1IDEyNTIxNDA0 OTg5MjY0NDQyNTE4ODY5NTExNTUyMzg2MDYxOTMwNDA5NjY5NDMyMTU1NDc5 MTU3MjU5MDgwNjkyMzY5MDQ0Nzg0Mjc2MTYzMTE0MzYwMTAwMjM1ODY3Nzkz OTc2ODc4MjcwOTI3MjUxNjA5MDI2NzA3NzEwNTI2Mjk1NTQ3NzQ1Mzc4OTIx NzUzMzE3NTIwMTUyMTUzNjE1NDYzMDYyNzY1OTgwMzc3OTQzNDY3CjU2IDMw NzI5Mjg2ODg1MDY5NDUxMjI4MjUxNzUzOTAzODMzMTA1MDUwOTg3MjM3Nzk5 NDE0MDMxOTAwMjc3NzI3NDY0NzA4OTIyNjQzODA3MDYwOTk3ODAzNzI2MTI3 OTk0MzA1MzE0OTcyOTg5ODYyOTQxNjk4ODU4NzAwNzkxODM0NjAzMzg5MzI1 MDAwMTczNjQ3NzYyNTUyOTkxNTA1MzQ5OTAxNDA1NjIzNjE5NzkxODc5OTQz Mgo1NyA0NTQ1NzEyNDM1NDU4MjczNTE1NDQ1ODQ4ODM5OTEwNzY1NjE0MTAw MjI3NzQxNzI5Mzc2MzU1NTI0NjEyNjY4Mzg3NjczODExMzYzNzE2MjUwNTI4 MzIyNzQ5ODI0NDY4NTgzMzg5Njc2NTg0MTQ1MDA0NTk3Mzc4ODYwNDY3Mzcz NjU4ODAwODk4NzU0NTQyMTEzOTQ3MTc3NzE0MTc2MjM5ODk0Mjg4ODgzMTYy NTAyNTg1NDIwMDc4CjU4IDI3NDEwNjQzMzQwOTUwNjg1NTEwMDQwNTY3MDc1 NDEwMzAxNjQ2Mjc5OTc0NTY1NTcwNzAwMTU5MjEwMTQzMjQ3ODU5MTkxNDE4 MTMzMzA5MzI0ODE5NzI5NjU2MDUzNDEwNzUzODQ3MDQ1OTA5OTMxNzAwMzE0 NjU5NDgwMzAyMDkzMzIyMTExMDg5MjIyOTY4OTYwMDEzMzM2MjUwMTY0NTk1 MjMzNzQwNjQ3ODI1Mjg5MzQ5NDg1ODIwNzcKNTkgNjczMjI1NzU5NDA0ODQy NzMyNDc1MjQxMzE0MzcyNTg5MDU5ODM3NzgyNTQxNDk5NTQzMjAzMTgzNzE1 MzQ0NDkzNzM4MTQ0NTA3NzQ2Njg3NjM2NzczNDc1Mzc5NzQyNzU5OTQ1NzU1 NTUzNDkxNDU1OTg0OTIzODQxNzc0MTQ2NjMzNjIwMjM2MDc2NzgzNjQzNTkx MjUwMjQyMDIyMTM3OTExOTQyMzU3ODk3MTU0NTE0MjI2MjM2MTM5MDgKNjAg NjAyNzkwMzk2NjE2OTQwOTYwNzk2MDM5NDUzMDc5NjYwNTY5NTE0MTI5OTQx NjIyNzU2MjM3ODEwOTAwMTUwOTUzNjA0NjkwMzY0NTUyNDYyMjI0NTk2OTIz NzA5Njk1ODM3MTA2OTYzMTg0MjY2MDIxMjk3NjcwNzE4Njg1NTA5NTI2MjA4 ODMzNjI2NDkyMTMxNjU3MTc1OTMwOTMwNDg1NTMxMzMwMjE2NDM4MDY2MjI0 NTI2Mjk1NTMzMjUwMTk4MTM4CjYxIDMyNzQwMTM2ODg3MDQ2NjM4NjE2MzE4 NjEyNDYzOTk4OTM5MzM1ODgxMTE3NzAzMTIwMTc0ODAwNzYxMjkyNTIyNDI2 NjQxOTc5MjA5ODgxMjg4MDc1MTg1MjkwMjA3MjU5MTY5ODk0ODA3ODc5NTgz MzQ2MjY4MTkyMzEzMTQ3NTUxOTQzNjU4NTQ1MjY2ODQ2MzExOTgwOTY2MDA2 MjY4MTY0MTQ3MzQ4OTExNTg5NjkxODQzNDExNDMwNDAxMjI4Mzk3NDI4OTA0 OTgxODgKNjIgMTk4MTEwOTI4NDk1MTMzNzkxMTQ0NDk2ODMyNDA3MjIyMjcy MjAwOTMyODY0NDAzNjcwMTI1NjE5MjA3MzU3MTAyNDI3MjE1ODA2MjAyNTA4 MzQzNTIxODM5MjkwOTk1OTEwODc4MTQwNDA5NDE5NDEwMjM2MTEyMTEyODE2 MzAyMDg3MTI0MjE1MTM1NjExNjk5Mzc5ODQyOTY0ODQ4MzczNzA5NTYzNjQz NTE2ODMzOTU1NjA0MzA5NTYxNzI2Mzc0OTUxOTgzMzcwNzYwMjQ3Mgo2MyA0 ODc0MDUwNDcwMjUwNTA5MTI4MjY4MTM0Njc2MzE3MTE1NDUzODEwNjEwMDky OTY1MTE2MjgxOTkyODUxOTkzODY3MjkzMTgzNjIzMTA5NzI5ODA1ODkwNTc4 Mzc4OTA1MzczODc2MTQ1Mjk4OTEwMTYzNzM3MDQ3MjYzMzMzMzQ5NzI2NTM0 MDYwMTAyNDkyMjA2Mzg5MTcxMjkwOTk2NDQ3MjgwNzQ1NjgxNDY1NzQ3NTIz ODkwNjAyNTU3MjQyNDE2MzA3MDAwOTIyODMyNTM3MQo2NCAyOTUxMTExMjA0 MzI3NDc2MTg4ODM1NzQwMTg2MDQ2Mzk5OTI2MDk0NjAxNjYwNTU4NDY5MzIy NTc2NTYyNDk0NDkyNjY1MTg0MzEzMjUwODU0ODAxNTIyMzIwNjgyMDA1MzEx Nzc3MTEyNjQ2NDAzMjE5NDkyNjM4NjY1NjA4NzcwOTk4Njg4ODgyNDIzNjMw Mzc2OTg5NjM5NjQ2ODAxMzE3NjE1NTg2MzkxNjAxMjA2MTg3MDA1NTMwNzE3 MTQxNzIwMDczNjE4MDU0NjE4ODU1ODQ2OAo2NSAxNjE2Nzg4NTcwNjI4NDM5 NDY5MDgxODUxNTkzMzUzMzk5NDYyMjc1NDMyNjcxNTM0MDc0Mzk4Nzc0MTM3 NDMwMTIyMzM4OTk4NzUyMDc0MjU1NjAzMzcyOTkzOTczMDIyMzk4NDE3Nzc2 MzY5MjE1MjU3NDg3MTc3OTAyMzE0MTU0NTMwODkyNjc5MDQ2Mzc1OTYwNDUy OTIzODQ0ODM0MDcxNzE2MDA1NzA4MDkzOTg0MDQ0NzM5NzQyOTcwMTI0NDM0 NzY2OTYzMjE5OTI3NDM5MzAxMTgzOTQxNjYwMTkKNjYgMjQxNTMwNjcwODQ4 MzkxNTA3MTUwNjA3MDgwNzYwNjg2MzcxNjA1MjkzNDUzNzg1MzI1ODI1OTI1 MTMzNzM4NTYyMTcwMjQ0MjA3MDk1NjI2OTE5NzQ0NTEwMDc0MTY4Mzg3NTEx NTAwNzU0OTM2MDU1ODgwOTgxNDg3MDQyNDI5OTI0MTgyMTUyODI4MzM4NjIy ODIyNTE1OTY2MjU3NzI2NDY4NjM5MzE1NDIzNDg4ODc3Mzk5OTIyMTY4MTA3 MDYzMDYxMTMxODAyNzMwMjkyNDk3ODUwODAxMzIxODg4NTk5OAo2NyAyMTky NDQ4Njc2NDczMTQ5OTE1Njk3MjM0NjAwNjU5MzM3NzI2NjI0Nzg5NjIzMDI5 NTAwNzg2MzUwODAxMDMzNTc4MTYwMzE2NTYzMjM0NjIzNjUzNjA1MTI5MTAz MzA3ODM4NTkzNTM4MzM0MjM2NzIxNDk2MTIwNTU1MTYwMTQ3NjUyMjQ2MTU1 ODQxNzM5NDM2NDMwNTkyMTA3NjY0OTMyNDQ4MjA4MjM4MTE3MTA4MTI2Njg0 MDUwNTQxNzY0MzYxNDk2MjMzODQ2MjcyMDY4MDIyNjExNDMwNDY4NDg3MjM1 MDEwMTMxOAo2OCA1NDAyOTQ3Mjg0ODM3MzI0Nzg0Njc1MDU1NzI1MTYwNDgy MTcyNjIzNDI5MjkxNTk3Nzk2NzkyMzc3NzA1NDMzNTQ5MzQ1MTMyMjc2MDc3 NzU4Mjc3ODI0MzE0NTE0MDg0MTcyNjU5MDM3NzM0OTc1MDY3OTI1Njk4NDYx ODQ4NzI2MDE3Mzc0NTgzMjU5MTU5ODU1NDYxNTEzMTA0NTg0NDY2ODY5NjY3 ODU4MTM3MzU5MDcwNTgwNDQwMDQwMzYyMTY4OTMwNTgxNDYyOTU0MjgwNTEw NTEyNTA0MDAwMDY4ODU5MjM3NjE4MzcKNjkgMzI4MjAwOTU4MTI4MzM1NDk5 NDU4MTcwMjYwNDk1NTIwNDA0MzM0MjkxOTkzMDU4NzIzNTA0ODc4ODQwOTE3 NDYyMzcxNjgxMDYwOTIzMDIwNjMxODA0OTc2NzQxNzk5MzM3OTM4MDQ2ODc5 NTMwMTMyNDE3MzQzNDY0Mjg3OTg4NDc5MjM4NzAwMDY0NzkyMjQ0MDAxMjI3 NjI4ODAxMTMyMzUxMzg1MTU4OTI0NDczNjUzMDExNzQxMzg1MjIzNTc3NTAz Njg1MDA0OTExODI5MDc3OTc1MzgxNjQ2NDE1MDYxOTE5ODc1MTkyNjEzCjcw IDQ5MTY1ODg0NDcxMDg3MjYyNTU5NDAzNjIwMTEzNTMwMDk0NjA1NDM3NzQx OTQ5Nzk4ODc1NDQ3NzI0MTExNzg0MjI1OTQxNjg5OTAyMTIxOTYxNDY1NDgz MTI4NzU5OTU2MzAxODc2MDkzMzIwNTgxOTU0NjI1NDU3NTM3MTExNzI3MTc2 NzgxMzU4MzU3NTIxMzc2ODg1MDg4MDU4MDQxMTg3NDQ3MjgxMzI3OTQ1NTY3 NDc3NTUxODYzNjAxNzIxMjc0NjExMjE5MTIwNzA1NTExNDE2MDIwNTk5OTEy MjkwODY3NzkzODg4ODQ1NjI4MDIKNzEgMTgxNzYwMzQ1Njc0MDczODM0ODMx NDYyMDE4MzUyOTAzODUwMTI3NTI5MDA1NTEwMTE5ODg3NjI1MDc4NjcwNDY5 MDQxMzYyMTg2NTczOTAyMTUxMzA1NTMwMjk2MTkyNTc3MjU2NjIyMzcwNzgz OTU1MTc4NjUwOTcxNzU5ODczNjIwNDE3Nzk5NzA5OTcyODc5MTk0ODg4NzUy MDE5NTQ5NjQ1NTI3NzczMzA2NzY1MzA2MzU1ODUzOTAwMTA2MTE5MDY5MzIw NDQxNDc2MDc2MTY0MzkwNDg5NjQ3MDgxODc2OTY4MTAxMjI4NjgyNTUyNDIw Mzc4Mwo3MiAyNzI3MTg5NjY1MzEzNTA2ODE4NzAxNjY1NzM4MTk1NjY2MTU2 MjkxNjUxMjIzNDQzODUyNDU5ODE0MTg5MTk1MjkyODMwMDYyNjk3MTY4Mjgz NjY0NjExODc1MTI1NDI4MzA2NDIwNTU0MDg3MDI4NDU2MzM4MzEyMzYzNDM4 MDgwNDExMDE0NzIwNTQ3MDE2MjAxNzQ2NDE3Mzk3OTI5NzQwMzk1MTA1Nzgw Njg4ODY4NjI4NzU2NzUwMDkxNzk3OTU3MzQxMDI2OTEzMDkyMjMzNjU2MTc2 NzE0MjA5OTg3ODgzODk3ODEyMDkyODk5OTg3NDc4MTIzODI1Mwo3MyA0MDk0 NjA4ODQ2NTM2NDU4MDQ0MDQyNzY2NjE3MTA2OTIyNTEzMDUwNzYyMTU3Mzg3 NTQ3NTU5MTA3NTgwMDE3OTkzOTk3MjAwNzAxMTgyNzUwNzQ3MDg3MjQ0NDQ2 Nzc1MjEwNDIyODc0OTc2MzY1NzAzMTUyMDA4OTcwODM0NTY1NTAxODUxMjk0 NjIzOTE2NDQ5OTQ3Nzg5NTc5MjU2NjA3ODczMjQ1MzE4MTEzMzk4NjAxNzA1 NjIzNTg0MjgwNDM5NDY0NTU1MDk4MDU1OTg0NTE1NTk1MDY5MDc2OTc1Mjc2 NzMxMzE2MDAzMDczMzIwNTUwMDM0NDU1MjI5MjcKNzQgMjQ5Mjg0NjEzNjM1 ODg1MDk1MjEyODI1NTk4MDcwMDU3OTk2ODM5MTI0MDE2MTQzNjMyOTIxNDcy NzgwMjAzNTk2Mjg4Mzc5MjYwMDk0NjMwODQwMjI4MzU3MzQ2MTQ0NTMyMTcz NTY4MjU4MTAwNzI2NzU5Njk5NzU3MDUyNTU3MDI2MDM4NTI4NzUyMTY2NTMy MzcxMDE2MDkzMzk4MDQ3Mjg1OTg2Nzc2MTUzOTIyNzA4ODAzMDkyMzM4NzAy MTQxNDQ2Mjg1NTUyMzU4MTIwMzM5NTQwMTEwMjIyNTU5NDEyMDMyNTM1MTE5 MzQ4MDk1OTI5ODYzOTA4MzM1NzA5ODUzCjc1IDM3NDY2MzQwNDY4MjI5MDc5 NDg4MTIxNDg0NzA5NzI1NDc1ODU2OTAwNjAwNjkwMjQ3NzgyODEzOTE4ODI0 ODk0ODQ1NTA3Mjc1NDg5OTI0NTQyODMxNTU4MzM2Mjk4MDQ4ODIzNDIxNDIx MDQ4OTI0Njc3NzAzMTg0MjE4ODA2OTAyMzMxNzU0MzQ4MDIyNzY5NTY5NTk2 NjE5MDk1MTU4MTQ4NDg0OTQ0MDYwNTA4ODkxMTg0OTQ0NjQ5NjAzMTk4OTk0 MzYxMzkxNzY2Mjk1NjI1NTQyMDAzNDcxNjAxOTQzMzUxNTU0NTgyNDA3OTc4 MzMxMjQ1NDQ5NDIwMjE2ODY1NzI1NTcKNzYgMTM5MDkyMTc3MDQyNzEwNDk0 NjEwMjQ4NTk5NjU5NzgzMTkwMjk3NTAyNjM3MzM3NzQzNzI2MzMxNDI0ODg4 OTE5ODg3NjEyNDg4NDU3MzM1NzY1NTMzMjQxNTY0NzY4NDEyOTI5MDA2NzAy MDA0NjAwODE3MzAyOTI2NDczMzQzMDYzNDk0NTQyNDgxNDg4Njc3Mzg3NzA4 Njc0NjEwMTIwNzU4NzI2OTAwMTM4NjYwNDEwNjgwMjg1Nzc2NTg5MzU2MDIw MDgzMzc1ODY1NTM0Mjk4MTY5MDY2MDQyODU0NTYzMDIzMTgzODcyNzgyMjQx MTExNTMzNTI3MzYwMzE1MTEzMTQwNTU5MDkxOAo3NyA4NDc4MTI1MzE3Njkx MTQyODE2MDc1MzUwNTMyOTk4NjkyNTczOTA4MjU4MjM4NjU4MTgxNTUzMTI2 NjcxMTc2NTAyMDk3MjM5ODE5NDU4NzYwNzkwMTIyMTkwMjgwNjYzODk2ODQ2 OTIwODc4NDA1NzQzMzE0NzYyNTI4NjcxNDY0MDQ0Nzg1NjI3OTMwNjE0NTQy NzIzODQ3NDc0NjM2ODkxMTE3MDI4MjM0MDk0ODc4NzAxMDQwNzI0OTI4ODI0 MzQ1NzQ1NDk3MzgwMTY0NzQyMzk2MTM5MTQxMzY4NTAyODA4OTM5MTM3Mzg5 Mjg4NDI2MzEwNDgyMzA5MjUxNTgyMjYzMjQ1MTUzMTU4MjkKNzggMzE1MjIx NjAyNDU2ODY4NDc4NDQzMDk2MDY1ODUxNTEyMTQxODU2NTk5OTkxMzA5Mjg5 Njc5MjgyNjY1MDc2MDIwNDU1NjQ1NDU1MjcwNTc0MDE1NTcwODIxNzU1MDIy Mjc1MTYwNDU2NTk1MjEzMzQ3NTYwNjY0MTM2NTU3MTkzMDU2NDc1Nzc1OTYw NTQwOTU4NjIxNzQxNzgzOTM5OTQ3MzU5NzA1NjM1NzgxMjA5MDEyOTYzMTQ1 NTI0MjQ0NDg1MDM4OTI4NTA0MzUyNTE1ODMyODU2ODIyNTkyNTEwNjYzMjg1 NjgxNDA1ODkyMzUxMDAzMjIwOTg4MTY0NDc2ODIzMDUyMjMxOTQxODM3MDMw MjUyCjc5IDI4OTc5NjY0MjE5NTAzMTc1MzIzNjA1ODEwNjUwNTc5NDcxMDMy MzQ2NjQ1MDI3MjQxMjEzODI2MDk3NzUyOTQwMDMxOTcwNzEzMjEzMzc4MDEx NDU0NzUyNTAyMjg3OTk3MjMwMzM1MzI1MDU1NzEzNzk1NzgzMjkzODgxMTEy OTk4MTExMTU4NTQ4NzY0MjEyOTY0NTM5MjQ5NjU0Mjc2MzI0OTk2NzA1MDk0 NjMwODQxODEwODExMTQ0Njg2MzE1MTU5MjExMjQ3OTM3Nzc4MzI5MTM1OTY0 NzUyOTE1MjM5ODY4Mzc2Mzg3NjMwMzcxMzg4MTM1ODE5NDMwMzkyNDkyMjM5 NTgwMTk0ODE0OTQ2MzA3NjkyNzE0NDIKODAgNzE1OTE5MTQ0NzAyMjM4NjE2 MDA1NjUzODkzMzkwNzk2ODM4NjQ5NjE4MTUwMTM2ODg3MjY1NjcwNTYzNDQy OTg1NDU0Nzg0MTU2MjQ2NTEyMDg3NTI5NzAzMjQ1NDcyNjcyMDYzMTEzNzUz MzE1NzAwMTc0ODI3MzM0MjA3ODM0NjY1NDE2NjE0MzI3MzE0MTk1NTcwNzU3 OTY1OTU2MDQ5NDc1NjA2NDQ0ODMwNDA5ODQzNTExMjE2NjQzOTc3NDk1Nzcz MTU4OTYxMjE5NjkwMjM1MTkxODY4NTkxMDE4MzY1OTU1NzcxNjIxOTI5NDg0 ODEzNzUzNjI2Mzk4NTAyNjIwNTI0ODE5MjA5NzUwNzIyMzY1MjY4ODA1NTcK ODEgNjU5Mjk1MjkzNDgyNDg5MTk3MTY5ODg0NzUwNTQ4MDg1MDQwODkxNzIw NzM2MDA2Mzk3NzMzMjIxMDQ0NzE1NzE4NTIzMjI1NTIyMTY2NTEzNjQ1MDM3 MTM3NjM1NjM4NTY4Mzc1MzI0Njc0OTc5ODY5MDQ1NzEyMTYzNTM3MTMzNzUw MTAyODkyNTAwNzc1OTA5OTAzNzAzNzExODE1NDkzOTQ4NTMyMzMwMzgxMTAy OTYzOTI5MTk5NDkzMzQ1NzM4OTI5OTEyMzAyMTI2NTYyNjg1NDc0MzMxOTU3 MDE2NTExMDIwODAyNTgyMzk4NTYzNzk4ODkxMjE4NzI0NTU2Mzg4MjA1NzE3 NDAwMjExNTA3NTU0NzcwOTgzNzk2OTU2NzM3CjgyIDE2MjkyNzQxODEyNjQ5 NjExMzcxMDc2OTY5MjYxMTA4MzcwMjM1OTA2ODE3MzI2MDIzNTg0NDQ1MDE0 MTcwNzMwMzc5MTg5ODgyNjY4ODQxMDgyNTg4NjY4NDEwODEzNDQ5NDkxNDgy NzgzMjQ2ODgwMzczMjUzOTA2NzYwMjk3NDY0NzM2NDMzODI0ODYzODkwNzQ4 MDM5NzAxNjUzMzE1NzIxMDUzODY5OTEzMTA3NTkzMTU3NjkyNDExMjM0NjY4 MzU3NDMzNzM2MzI3NzE4MzU4MjkzMjE1ODQ5NDIyMDE2MDM4OTQzOTQyODQ1 OTkzNzQ4NjA1OTc2NzIzNTUyMzY5NzUwODgwMjI1MzQzNjkwNDA0NDU4MjA1 NjIwMjQ4NDM2NDA4CjgzIDI0NTk2NTg4MjIzOTAyMTkzMTcyMDcwNjI0ODc1 NDM0NzcxMjYyNzY1NDI3Njk4MDcyODY5OTM0ODk1OTIyMzAwMjk2MzM2MzA4 MzA4MzA3MTA5OTUwMTc1Nzc4OTA3NTMxNDI2ODc3NzYwOTU2OTg2ODUwMDI1 Mjk5MTM5MzA3MjMyOTM3MTM4NDcwOTE4NDE2NjUzMjIwNjk0ODkxNzk3ODMx MjczNzU1MzMyMTIxNzY2ODYwMjQ2MTM5NTMxMzAyNTk2Mzc3NDAxNzUyMTQz ODE4MTUyNTI1MDUyNTAxNzAxMzc4OTc3MjQxODU3NzkwMjAzMDc3NDAwNjU1 NzU5OTM2NjYyMTgxNTQ0MTk5MzkxNTQ1ODM2NDAwMjA4MzY0NzczMTcyNTEz Nwo4NCAxNTAyODI0NzAzMzM2NDI2MDAyMDI3Mzg2MDkwNzYxOTk1NjA2NzY3 NzcxNzgzMjg3NjI2NTY2NTgwMjA4ODE0MjI2Mjk5MzE5OTQxODA3MDQ4NDQx Nzk3NTYyODg3NzkzMDYxNzU4NDY2NzQ4NDU5MTQ2NzI5ODczOTE0NDAxMjM2 NTExNTc2NjQ4OTY2NDU2ODg5NTYwODY3MDkwNTAwOTc4MTAwNDIzOTkwMDUz NDEzOTM5OTgzODEzODM3MTA0MjY2MTAwNDQ5NTc5MDcxNjM4Mzc5OTc1NDQx ODQzMTc0OTMyNzM3OTQ0NzA1NjgyOTQ2MzcyMzEzMjk3Mzg5MzMxODMwNDU2 MDcyMzY3NTc0MzExMzQ5MDI2NDY0OTM2NzUyNTYzOTM0MzMyNDEKODUgMjI3 MDUxMjc0NzA2MTUxNDQzMjc3NTQ3Mjg0NTYzNDUxMTIwMTM5ODg5NDQyNzA5 MTg4Njc1NDI1Mjc1ODQzOTg2MjA3NzQwNDk1NzA3NTQ3NTU5MTgyNjc2Mzg0 NDI0MjEwNjk2ODE1OTY1MjY4NzkwMzc3MzQzMTMxNjE3MTM3MTQ5MjQzNTc0 NTM2NjI2NTM3MDk5MDcxNjAxMjc1OTA5OTQzMDUxMzQzMTc2NzAxMjU1MjM1 NDAzOTU2MDM4OTU4MDk1MzAwMDI3NTk0MjI3ODk1NjYxMDQyNTUwNjIwNDk3 MTIyOTMxNDM5NTI4NDUxNjk3NDY0MjUyNTEyMzc5NzAyNjIzMTAzOTI4MTYw NTMwODIzMjg3MTg1NDU1MjA1MjgzMzIxNjEzMzkzMzIzNwo4NiA4NDg2MTc2 OTc0Mjg4ODQ4NzAzODYxOTE5NDAxMzcyMTk4ODcwNjg0MzgwODAwOTIzNDIw ODk3ODE1MDU1OTQ3Mzc0Njk0NjQ1MzQxNTczNjUwNjA0MDUzMjYwNjk0MzAx MDA0NTE4NjkyNDUwMTQ2MDYxMzExMDc2NTAyNzY1NjU1MzU3MjIyMTU4NDE1 ODk0NTIxNTcxNzIzMTkyNzkyMTM1NjUzMDk4OTAzOTcyMjQ4MTcyOTQ5NjU2 MjAyMDM4NjgyNTYzNTMyMTA0NjQzNDkxOTA2MzY0ODIzMjI0MTE0MjA4NTI4 NjAzMTE2MDk5NzE2MjA4Nzg3NDA0MzAzMzIyMjg2NjUzNzIxNTAxODIyNzIw NDUxNDI5NDAyNzA2MTU2NzYxNzkwODk5Mzk3OTU5ODEyNDMKODcgNTE4OTU3 MzA0NTI1NDg2MzY4Njc3NzgwMDQ5MTA3NjUwNjM5MzgzOTk4MTE0Mzc4NTY4 OTQ2NjIxMDQ4NzkxODQ4NTYzNTA3MzIwODQ2ODExMDMyMDA4MjgxODgxOTg4 MjU5NzQ2NzMyMTUyNzMzMTU3MTQ3MjY5NzQzNjY3NTc0MTMxNjcyMjY0NDU0 NTcyOTIwMTgzNzQyMTQ3MDgxNTc3MDM2OTg5Mjc3NTgzOTAxMTAxMTEyNzU1 Mzc0NTkyMDIxNDk4OTY4MjEzMjA4MjUyMjQyMDQzNTYyNTg3ODgwNDczNjM5 Mzc0NjI1NDIxMzMxMTg1MTQ4MzI4NjQ4Mjc1NjUzMTc3MDkzODcxNzg1OTU3 Mjc4NTk4NDQ0NDI0NzcwNTgxMzQ1NTMyNzIyMDE3NDA1OTgxNjkyCjg4IDEy ODM0Mjk4NDg2NjY1NjE2NDUyNzM4MzM0MDgzMzQ1MDM1MDIxMTM5MDUyMjg1 NzY3ODI1NDI5NDA3NDIyNjA2Mjc2NzE5MzMxMjgyNzE2NTE2NDM3NjMyOTc2 ODEzNzQ0ODgzMjg0NDAyNDE5Nzg0MjM1MTE2Njk0NjkzNzkyMDEwODI0MjI4 NDMwNDc5NzQ5MzE0OTg4NjUyNDA0ODQ5Mjc2Mzc4NTEzNDMxOTI1MDYyMDcw MTQ4OTUzMjg4Njc0NjU4MTU2Nzk3MDI1OTk5MzE1OTU1Mzc5NjIxODExODY5 ODU1MzcxNTExNjQ4NzQ5ODYyNjI3NTc1NzA2MzMwNTczMDY3NTkzMDA5OTEx NTE3NTkyMDY4Mjg0NjAwOTYzNjYyMjc1Mjg0Mzc2NTEyMDk2NzkxNDQxNTkx Cjg5IDc4NTA3OTY3NzEyOTA0NzIxNjI1Mzk0NjI0NDA3NTEwMTczNDYyMTY4 ODc4NDQ1OTM5MTY2OTM2NTk3MTExNTU1OTUyNDE2MzcxNzU4NDA0Mzg4NjY2 MTMyMzYyNTI1MDI2NTMzMjIyMzkwODcwOTg4MzYwMDI0NDkxNDQwMjgyMTEx MDc1MDg2NjA0MTg4NDQ4MDU4OTE5NTY5MzYzNjMyNzc2MjAyMzU5MzUzODg3 MDgxNDQwNDg0MTkwNjg2ODIxMTkxOTAxMzUyODI3MDgzMTM3MTI4MjIzNDcz OTQ4MjkyMjg5MjI5MzgzMDM5NjUwMTc2MjkxNDcxMDQ4MjQxMDQ4MTM0NzM1 NTkzNzYyNjgzOTMzOTAwMTU1OTIxMjgxNDA5Mjc2NDU1NTg5NDAzMTcwNjkz Mzg4MzA3MTgKOTAgMTc5ODkxNjQ0OTM0MjgwMzEwMTI3MDkyMTk5NTAwNDc2 Njc1MjE1MDE0NTg4MTc4NzE4MTgwODYxMzIxNjQ1MTUwMzkxMTAxODY1ODAw NjM1Mjc1ODc5NzIwMjA0MzM3MjU1NDAxODQ0MzE3OTE3ODE3MzQyNzEyNTQ4 ODAzNjkwNjk5Nzk3ODMxNzA0NjY0ODM0MTAzOTA4ODIwNTE3MDUyODA5NDMz Njg3NjM0MTYzMDY2NjA0NzMwMDE0OTI0MjIzNDU1NTI2Njk1Nzk3OTAyMzYx NTk1MDkwMDk2MTU1NTg0ODQ5ODc3NDQwODMwMzg0Nzk5ODgwNjM3OTU0Mzc0 ODc5MjMwMTYxNDYzOTk2NzE0MDUxMDgyMDQ2MTk0OTUyNTUyNDkxODg3NTg3 ODQ5ODk4OTU4NzIxMTM4MzIxNjUzNjM1Nwo5MSA2NzQyMDE2NzkwMDQ5MDQ5 MjU1NjU2NTIwOTY4Njc5NzM4MzAxMjU0NzA0NjExNTc5MzE4NDkyODgwMTQ5 MDY2MDU4NDg5Njc1MzcyNzM4OTQ2ODI4NDEzMzk5OTYwMTk2MzI3OTU1NjQz MjU1NjAwNTc0NjQ2MTk4NTAzMzc5MDIyMzI0MzYxNDUzMzY5NTIyNTc4MDU3 NDM1MjMxNjM0MDA2ODE3MDQ2NDk4MjI1NzUzNzQ3Mzg0MjA4MDA1NzYxODA0 MTA0MTgwODYxNTgzMzk5MjM4MjQyOTA0NjEzNjc3NjM2NjQyNDA0ODc5Nzc5 ODIwMjc5MTg4MjYxODA5MjY3NTIzMTcwNDQ1MzkwMjY5MTEwNzQzNjQ3ODU5 NDU3MzgzMzE2MjM1Mzk5NTQyMDc2MTEwMTE0NjAxODUxNjE3OTU5MDA0MjE3 MjMKOTIgNDEyODQ3NTM5ODQxNjM0NjU3ODQ1NjI5NzU4OTkwNzQwMTQ5MjUw NzUyNjI5MDY4MDQwNDgyODE2NjA5MTY0ODQwMjYzNTA0NzE5MTg5Mzg5MzE5 OTk0MjIwMDQ3MDQwMTUwODYxNzAzNzQ1NDg4MTA3NzY4NjkxODAxNzg2Njc1 OTA0MzI4OTQ3Mzk3MzYxNjg4MzM5MzQ4OTM2NzYwNDM4NjYxMTgyNDU4Nzk2 NDUzMzIyMTk3NTkwMzQzNTgxOTIxNjY0NTMzNDM0NTgxOTQxNTMxOTQ1NzI3 ODM2NzE1NTg0MTg5MTM5OTkzOTE0MTEzNTYyMzYyMDcyODU3OTg2NzgyMjg2 ODEzNjQxMDA5NzgwMzI1OTY4MzYzNDkxMTA4MTQ0MTAyNDQwNDA0NzMyNTg1 ODM0NjkxNzcxMjQ5MTM3MTE2ODczMDk3Mzc3CjkzIDE1NDg4MzIzMzcxMzYw NDMzNTI5MTg1MjUzMzI3MTc2MDIyNDYxMDk0MjEyMDk4OTcxOTM1NDMxMTg0 NjgzNTc3OTg1OTM3NTE3OTY0MjMzNjg2MTQ3MTE0NzY4MzY4OTQ0MTIzODA2 NDMyNzg4OTkwMzk0MDc1Nzk2NzA1OTgwMTkwNTA3NjM0NjQzMzY1OTI2MzUw MzgwMzE5OTM2ODYzMjY4Nzc5MTQ2Mjk5ODU4MDg4MjQxNTk2NTk3OTUyNTg3 NTQ0MjIxNDI5Nzk3ODE2NTc3MTI1NDQyNTIzMzgwMjc5NzAyMjU5NDg1NjAx MTg1MTk1NTU1NzczNzExNjU2NjkyNDA3OTc1Njg0NTA4NTEyNzE4MDc4NDYx MDc3MTA4NjU1MzAyOTgyMTIwODUyMDQ0ODAzMjk2NTA0NzcyNzI4MzM2MTUy NTc4MjU5MTExNjY4Nwo5NCA5NDg4OTIzNjMzMDYzMTkzNzI3NDM3NTMwMjQ2 NDE3NDYwMzY5NDI2NjUyMDk4NjcyMzI2MjI0MDcwNTA2NTk5ODYyMDM2Mjg1 NjQwMzg3MzMxNDc1Mzc3MTAxOTY0MTAyNDMxMzUwMzY4NzA5NzI3OTc1MzM1 Nzg0OTUxMDI5NDY5MjQxMjczOTcwMDcxMDQ3NTk1MDkwNDQxODM0MzE5MjA5 OTQyNzA4OTk2Mzc0MzU3MjEwMTM5NDYwNTQ1ODM4MTU0ODkwNjA1MDg1OTc3 OTIwOTg4MjE2NTUyMTczNjg1NDAwNzQwOTYzNTA0OTY5Nzc2NjQ5MzkyOTMy MDY1NjY1MDc3NzgzNzU2OTk5MDkzMjkyNzM4ODQ4Nzk3NDI2NzczMTU5MDg3 Nzc0NzgyMDIyMDAxMDk0OTEzNzYxMzI2NzgzMzY3NDA0MTExODI3MDM4MDQ1 Mwo5NSAxNDM5MzQyNDY2MjE4NjY0MTc2OTYxOTY0NDYxMDkxNTA4MzQwMzE0 MzM2NDczNzExMzE4ODIyNDYwMDY3NDg2NjcxOTcwMDU4Mzg2OTQyMDc3NjQy NDM4MDAxNTUyMDEwMjE5MjczMTI1NzU5MzU3NjMyNDI3NDM5NDcxODQ3NDQ2 ODQwNTc1MjMyMjc4OTUwMzcyMjkxOTczOTQ1NTM2MDg1MDkxMjg4MTQ3ODY4 MjYwNjExNTQ1MTExMDA4ODI2NjI0ODg4ODg3NTk3OTQxMzE3MzkxODUzNzkx Nzg3OTk5MDQ2ODgxNTAxOTk3MDMzNTExOTA3ODg0NDM3MzYxNjU2MDY0NzE0 ODA2Njg2MTI3NDc1MTc5NjQ2NjEwODgxNDM0ODY1OTkyNjAyMjk2NjUyMDQy MDg3NTI4MjY1MTIwOTcyMTA1OTc0NjQ2MDE1NjI2MDY1NzM3Nzc3Cjk2IDMz MTUxODMyMDU1NjE0Nzc5NzIzNTIyMjg4NzI4Mzc2ODUzOTE4NDMzMTkyOTA3 ODg3MjMzMDk4NzM4MjAyMzczMTkzOTM3NjUxMzQxOTg5MDA3MzkwODU0Nzc3 ODM3NDUxMDM4MzE1MDkwOTgzOTU5NzEwMTQwODMyMTk1MTAyNTI5NDA4MTM5 MjAyNzc1NjMxMDI3MDc5OTUzMjAxMzU5MTM2NTczMTU0MjMzNjQ2NTM1OTUx NDc2NDYwNjMyNTAxMzcyMTk0NTM4ODc5MDU4MTY5MDIwNDgwODE1MTc4MDQ0 MzE1NTcxNjYxODEzNDAxNTI5NjQ4ODY5OTQyMzY4ODA0NTg4ODU0NTEzMTk0 MDgzMTc5MTI0MTk3MjE3NjQ3MDI5Mzk1MzA0MDc2MTU1ODQyNjYzMjYyMjMy OTI1Njk5OTk1Mjk0NjI1MzcyNjI3MzU3ODIwMDUwMTUyOTQ4ODkzMgo5NyA4 MjA4OTYwMTM1NDE2NDA0NzExMTM0ODQwNjg4MDg2Mzc5MjI1MDEzODIwNTM1 MDg3OTU4MzQ3ODcxNTczNDY0MTQ5NTU4NzIxODU5OTgyMjA4MDAxNDI0Mjg3 NzAzNjc3MTE0MTIzMjg0MTkxNDkzMzIzMzUyMDEwODQxNzc1NjE0NzgxNDEw MzU1NDU2MDk3Njg5OTcwMzAwNzM5ODUzNTQ4MTgwNDY5MTg3NDc2NzQxMTc5 Njg2MjQ1MjQ0Mjk3NzM4NzU0OTI1Nzk1MjAxNjU1OTE5NTcyNzU2ODkyMTQz NDIzMjExMzIyMTE4NTYyOTU0MjAyNjM1MjM5MTcwNzg1MTY1MjQ1ODY3NzAw NDg3OTExMTM4ODQ4NjQ1NDIzOTY2OTUzMzc4NDg1MzE0MDc1MTcyMTE4OTkx MjgwNTM5ODkzNDM1OTkyMDM5NzAwNzEzNzg2ODAwMzQ2OTc2NDQyNzUzCjk4 IDI4Nzc0ODk2ODc1NTYyODkyODYzOTI1MTc2NDE2NTI5Mjk5MTU2OTI4NTYy MTIyNTk5NzQ2NDY3MTgwOTI2MjY5MDI0MzIxNDMwNzU1NDYyOTU2OTA1Mzk4 OTg0NTY3MDI2MTM0MjczOTc0NjgwNDAzNzYwODcwNDkzNzE4MDU2NzgwMzUx NDkyNTMyOTY3MTIxNDAzMTE3MzE5NDAzOTIxNDI1MzcyOTQxMjE2NDg5MDE4 NDM4MDY3NjU5NDQyNjA4Njg5OTA2MTA1NjY3NTY0Njc3MTg3NTQ0MDQyNjQy ODYyMjc4ODc5MDg3OTMwNjkzMzgyNzY0NzcxNzQ2Njg5MjQ3ODM1NjUxODk0 MTE5OTg4NTU0OTQwMzQwMjU4NDY0MjI3OTQ1MDkyMTc3NzM2MDgyMzgxMjMw MTg5OTg2OTkyODc5Mzk5OTcwNTgyNzk4NTA5OTc5MjYzOTM5OTg1MjI4Njk1 NzgwMTgyNDMwMTI3Cjk5IDQzNzM4MTE2ODM2MjM5ODYyMDU0MjM3MjQ2ODAz Mjc5NDU4MjEzNTEyMjc3Mjc5NzQzNDc1MDY3MTcyNzUxMTAxMDY5MzA3Mjkx NDc5NTkzNjQ3OTQ4Njc2NjQ5MzQzMDMyNjkzMDAzMzg0OTMzMzg0MzU4MzYy MDkxNzg2MjY3MDU1Mzc0MzM1NTM2MDc4MDI1NDgxOTM5MTQ4NjU4NjI4NzQ0 MTE2OTQxMzU0NjI2ODQ0Nzc2MTI0ODk4NjI3MzQzMTIyMzAyODA1MTYzNTA0 MTczNzM2MDA1MTI4MDEwMjYxNzg2NDA1MDA0NTI1NzY4MTg2MDUwMTY5ODk5 MTMzNDc2Mzg5MDU5NjUwOTU3NDM4NjI3NjY2NDY1MDA0NjM2Njk4NjkzOTMx MjE5OTg5OTY1MzE3Njc0MDk5ODg2Nzk3ODYzOTEyMzk2OTIyOTg5OTgzOTgx MTIwODkyNDI5NDAxMTM1MDEwNDY1Nzg3ODA1ODA5MwoxMDAgNDA4MjE4NTgx MjQxMTM5Njg4ODAyNzgyMzY1ODQ2MDE5Mzg5NDAyNTM4Njk4NTMxMzk0NjU4 ODU1Nzg4Mzc1MzMwMDQzNTA0NjI3MDMxNjg4Mjk4ODcyMTI0MDMxNzM2MTc2 ODk5NjMzMjg0Mjc5Nzc0MTc3MjM2OTMzNTYwMTYxMzkwMjQzNjc2MTM2Nzg5 MDE0MzM2MTkxMDc4NDk5OTk1Mjg1MDg4MTIzMDA3Mzc5NjcxMDk3NzM0ODgy NDQ4ODMzNDI5Mzg2NzIwNTM2MTk1NzA2NzkzMzc0MjAyNzk0MTAxOTUxOTI4 MzExNTkzMTE5NjgyOTkzMjMyMDU3OTA4NTAwOTI0NTY2ODU4MDE4NTgwMDkw MzY2MzUwMDI5NTE2MzAzMzUzMjA5MTIyOTkxNTg4NDMyMzUxMjkyNTQ4MjY0 MjQ1MjMzODExNzI0NzIyNDAxNTc3Njg4MDMzMzkwNTM0NzEyMzMyMzAwNjkw NDg1ODA0NjU0NTgxMwo= ------=_Part_156860_32560920.1185232257325-- From maximilian.hasler at gmail.com Tue Jul 24 01:37:12 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Mon, 23 Jul 2007 19:37:12 -0400 Subject: Outstanding duplicates In-Reply-To: <46a5200f.17bb720a.66c6.ffffffabSMTPIN_ADDED@mx.google.com> References: <46a5200f.17bb720a.66c6.ffffffabSMTPIN_ADDED@mx.google.com> Message-ID: <3c3af2330707231637i456739e7u74d5b064e8c5135@mail.gmail.com> These : http://www.research.att.com/~njas/sequences/?q=id:A023237|id:A105434 can be moved to the section "STRAIGHTFORWARD DUPES": A023237 Numbers n such that n and 10n + 1 both prime. A105434 Primes which with a 1 appended stay prime. obviously the same. M.H. From alec at mihailovs.com Tue Jul 24 02:52:14 2007 From: alec at mihailovs.com (Alec Mihailovs) Date: Mon, 23 Jul 2007 19:52:14 -0500 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: References: <20070722.072158.944.1.pauldhanna@juno.com> Message-ID: <1846E28BE6ED4805A69C8A9D6954FEA6@AlecPC> From: "Max Alekseyev" Sent: Monday, July 23, 2007 12:29 PM > On 7/22/07, Paul D. Hanna wrote: >> Consider the nice sequence A006336: >> a(n) = a(n-1) + a(n-1 - number of even terms so far). >> http://www.research.att.com/~njas/sequences/A006336 >> ----------------------------------------------------------- >> It seems that A006336 can be generated by a rule using the golden ratio: >> a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where Phi = >> (sqrt(5)+1)/2, > > Lemma. The sets { [n*p] : n=1,2,3,... } and { [n*p^2] : n=1,2,3,... } > are disjoint, and every positive integer belongs to one (and only > one!) of these sets. > I leave the proof of this Lemma to the reader as a challenge. > > Theorem. The number of even terms in A006336 up to position n-1 equals > n-1 - [n/p]. Another proof is based on the fact that A006336 mod 2 is A005614. The proof is rather simple, but I don't have time to write it in a simple way at the moment. I hope that Max can write a simple version of it based on his proof of the Theorem above. By the way, looking at that, and searching for the initial terms of A001950, I found that A090909 seems to be a duplicate of A001950. Again, I don't have much of free time at the moment and I live it to Max to prove that. Alec From jvospost3 at gmail.com Tue Jul 24 03:11:31 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Mon, 23 Jul 2007 18:11:31 -0700 Subject: definition of anti-divisor In-Reply-To: <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> Message-ID: <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Any work since 2001 on whether or not there is a 6th anti-prime? How far has this been searched? Any proofs or disproofs as to finiteness of A066466? COMMENT FROM Jonathan Vos Post RE A066466 %I A066466 %S A066466 3, 4, 6, 96, 393216 %N A066466 Numbers having just one anti-divisor. %C A066466 Jon Perry calls these anti-prime numbers, saying that these are the only 5 known. This sequence is worth extending, if possible, or proving finite. %F A066466 A066272(a(n)) = 1. %Y A066466 Cf. A066272. %O A066466 1 %K A066466 ,more,nonn, %A A066466 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 23 2007 From alec at mihailovs.com Tue Jul 24 03:16:57 2007 From: alec at mihailovs.com (Alec Mihailovs) Date: Mon, 23 Jul 2007 20:16:57 -0500 Subject: A006336 - Unexpected Relation to Golden Ratio? In-Reply-To: <1846E28BE6ED4805A69C8A9D6954FEA6@AlecPC> References: <20070722.072158.944.1.pauldhanna@juno.com> <1846E28BE6ED4805A69C8A9D6954FEA6@AlecPC> Message-ID: <707C3179321F466FAC06D9EDA30EF672@AlecPC> I forgot to mention that n-1- (number of even terms thus far) = number of odd terms thus far and number of odd terms = the sum of the terms in a 0-1 sequence. Alec From maxale at gmail.com Tue Jul 24 03:57:27 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 18:57:27 -0700 Subject: definition of anti-divisor In-Reply-To: <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: Except element 4, the elements of A066466 have form 2^k*p where p is odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin primes). In other words, A066466 without element 4 is a subsequence of A040040, containing elements of the form 2^k*p with prime p. Max On 7/23/07, Jonathan Post wrote: > Any work since 2001 on whether or not there is a 6th anti-prime? How > far has this been searched? Any proofs or disproofs as to finiteness > of A066466? > > COMMENT FROM Jonathan Vos Post RE A066466 > > %I A066466 > %S A066466 3, 4, 6, 96, 393216 > %N A066466 Numbers having just one anti-divisor. > %C A066466 Jon Perry calls these anti-prime numbers, saying that these > are the only 5 known. This sequence is worth extending, if possible, > or proving finite. > %F A066466 A066272(a(n)) = 1. > %Y A066466 Cf. A066272. > %O A066466 1 > %K A066466 ,more,nonn, > %A A066466 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 23 2007 > From maxale at gmail.com Tue Jul 24 04:29:49 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 19:29:49 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: Furthermore, since 2^(k+1)*p-1, 2^(k+1)*p+1 must equal -1 and +1 modulo 3, the number 2^(k+1)*p must be 0 modulo 3, implying that p=3. Therefore, every element of A066466, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. There no such new k (i.e., except known 1,2,6,18) below 1000. Max On 7/23/07, Max Alekseyev wrote: > Except element 4, the elements of A066466 have form 2^k*p where p is > odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin > primes). > In other words, A066466 without element 4 is a subsequence of A040040, > containing elements of the form 2^k*p with prime p. > > Max > > On 7/23/07, Jonathan Post wrote: > > Any work since 2001 on whether or not there is a 6th anti-prime? How > > far has this been searched? Any proofs or disproofs as to finiteness > > of A066466? > > > > COMMENT FROM Jonathan Vos Post RE A066466 > > > > %I A066466 > > %S A066466 3, 4, 6, 96, 393216 > > %N A066466 Numbers having just one anti-divisor. > > %C A066466 Jon Perry calls these anti-prime numbers, saying that these > > are the only 5 known. This sequence is worth extending, if possible, > > or proving finite. > > %F A066466 A066272(a(n)) = 1. > > %Y A066466 Cf. A066272. > > %O A066466 1 > > %K A066466 ,more,nonn, > > %A A066466 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 23 2007 > > > From maxale at gmail.com Tue Jul 24 07:02:50 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 23 Jul 2007 22:02:50 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: On 7/23/07, Max Alekseyev wrote: > Therefore, every element of A066466, except 4, must be of the form > 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. There no > such new k (i.e., except known 1,2,6,18) below 1000. Small corrections: 1,2,6,18 above correspond to k+1 not k. In other words, 3*2^n - 1, 3*2^n + 1 are twin primes for n=1,2,6,18. According to these tables: http://www.prothsearch.net/riesel.html http://www.prothsearch.net/riesel2.html there are no other such n up to 1200000. Therefore, the next element of A066466 (if it exists) is greater than 3*2^1200000 ~= 10^361236. Max From jeremy.gardiner at btinternet.com Tue Jul 24 11:35:35 2007 From: jeremy.gardiner at btinternet.com (JEREMY GARDINER) Date: Tue, 24 Jul 2007 10:35:35 +0100 (BST) Subject: early bird sequence In-Reply-To: Message-ID: <836624.76115.qm@web86605.mail.ukl.yahoo.com> Cf. A048991 and A048992 (Rollman numbers) -------------- next part -------------- An HTML attachment was scrubbed... URL: From maximilian.hasler at gmail.com Tue Jul 24 21:52:51 2007 From: maximilian.hasler at gmail.com (Maximilian Hasler) Date: Tue, 24 Jul 2007 15:52:51 -0400 Subject: early bird sequence In-Reply-To: <836624.76115.qm@web86605.mail.ukl.yahoo.com> References: <836624.76115.qm@web86605.mail.ukl.yahoo.com> Message-ID: <3c3af2330707241252g52e73c0awb1ad943f7562cb7a@mail.gmail.com> thanks for the reference. someone could add an explanation to either of those to explain why they are not the same (e.g. 12 being omitted, 21 is no more "earlier in the sequence"). M.H. On 7/24/07, JEREMY GARDINER wrote: > Cf. A048991 and A048992 (Rollman numbers) From maxale at gmail.com Wed Jul 25 05:30:36 2007 From: maxale at gmail.com (Max Alekseyev) Date: Tue, 24 Jul 2007 20:30:36 -0700 Subject: stapled intervals (following A090318) Message-ID: SeqFans, I'm about to submit the following sequences you may find entertaining. A090318 defines stapled sequence as an interval of positive integers that does not contain an element coprime to every other element of the interval. In other word, a sequence is stapled if for every element x there is another element y (different from x) such that gcd(x,y)>1. The shortest stapled interval has length 17 and starts with the number 2184. A090318 gives the smallest stapled interval of the given length n>=17. In particular, it is interesting to notice that the intervals [27829,27846] and [27828,27846] are stapled while the interval [27828,27845] is not. It is clear that a stapled interval [a,b] may not contain a prime number greater than b/2 (as such a prime would be coprime to every other element of the interval). Together with Bertrand's Postulate that implies a>b/2 or b<2a. And it follows that * a stapled interval may not contain prime numbers at all; * for any particular positive integer a, we can determine if it is a starting point of some stapled interval. Sequence of starting points of stapled intervals is: 2184, 27828, 27829, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 151059, 151060, 151061, 151062, 152334, 163488, 171054, 177980, 182364, 185924, 185925, 185926, 208010, 212394, 238040, 242424, 249678, 260810, 260811, 260812, 260813, 260814, 264498, 268070, 272454, 298100, 302484, 320870, 320871, 320872, 323510, 324564, 328130, 332514, 339434, 339435, 339436, 339437, 339438, 347004, 358160, 362544, 388190, 392574, 399500, 409188, 409189, 409190, 418220, 422600, 422601, 422602, 422603, 422604, 448250, 452634, 471014, 471015, 471016, 478280, 482664 Call a stapled interval "maximum" if it is not a proper sub-interval of any other stapled interval. Starting points of maximum stapled intervals are: 2184, 27828, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 152334, 163488, 171054, 177980, 182364, 185924, 208010, 212394, 238040, 242424, 249678, 260810, 264498, 268070, 272454, 298100, 302484, 320870, 323510, 324564, 328130, 332514, 339434, 347004, 358160, 362544, 388190, 392574, 399500, 409188, 418220, 422600, 448250, 452634, 471014, 478280, 482664 Similarly, call a stapled interval "minimum" if it does not contain any stapled proper subinterval. Starting points of minimum stapled intervals are: 2184, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151062, 152334, 163488, 171054, 177980, 182364, 185926, 208010, 212394, 238040, 242424, 249678, 260814, 264498, 268070, 272454, 298100, 302484, 320872, 323510, 324564, 328130, 332514, 339438, 347004, 358160, 362544, 388190, 392574, 399500, 409190, 418220, 422604, 448250, 452634, 471016, 478280, 482664 Max From maxale at gmail.com Wed Jul 25 05:48:56 2007 From: maxale at gmail.com (Max Alekseyev) Date: Tue, 24 Jul 2007 20:48:56 -0700 Subject: full rank designs over Z_m Message-ID: SeqFans, Does the following sounds familiar to anybody? Fix an integer m>=2. For any positive integer n consider a matrix k x n over Z_m such that any n rows (out of k) are linearly independent. Define a(n) as the maximum possible k. From practical point of view such construction gives rise to a number of sequences for different m. Are they in OEIS? I'm also interested in the theory behind. I believe such matrices should have been studied. Thanks, Max From bdm at cs.anu.edu.au Wed Jul 25 06:23:33 2007 From: bdm at cs.anu.edu.au (Brendan McKay) Date: Wed, 25 Jul 2007 14:23:33 +1000 Subject: full rank designs over Z_m In-Reply-To: References: Message-ID: <20070725042333.GA8211@cs.anu.edu.au> In the case of m not prime, one has to be cautious because several equivalences from the prime case do not hold. In particular, being linearly independent is different from having a full-sized submatrix (in your case, n*n) of non-zero determinant. I wrote a paper long ago with Richard Brent that counts integer matrices with given rank defined by the submatrix-determinant method: http://cs.anu.edu.au/~bdm/papers/BrentMcKayZm.pdf I don't see how it applies to your problem easily, but maybe some of the ideas are useful. Also, regardless of your problem, that paper seems to provide any number of sequences not in OEIS (so this is an invitation for some enterprising oeiser to jump in). The paper refers to probabilities but of course you just need to multiply by the total number of matrices to turn it into a count. Brendan. * Max Alekseyev [070725 13:49]: > SeqFans, > > Does the following sounds familiar to anybody? > > Fix an integer m>=2. For any positive integer n consider a matrix k x > n over Z_m such that any n rows (out of k) are linearly independent. > Define a(n) as the maximum possible k. > > >From practical point of view such construction gives rise to a number > of sequences for different m. Are they in OEIS? > > I'm also interested in the theory behind. I believe such matrices > should have been studied. > > Thanks, > Max From jvospost3 at gmail.com Wed Jul 25 06:26:38 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Tue, 24 Jul 2007 21:26:38 -0700 Subject: definition of anti-divisor In-Reply-To: References: <200707211141.l6LBf9dn795643@fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b@mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8@mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc@mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154@mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562@mail.gmail.com> Message-ID: <5542af940707242126q68201c55pf5c674ce6848194f@mail.gmail.com> NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 2, 6, 36, 144, 4320, 64800, 777600, 65318400, 2743372800 %N A000001 Anti-divisorial; the product of all anti-divisors of all integers equal or less than n. %C A000001 Different from the anti-primorial, which is the partial products of anti-primes. %F A000001 a(n) = PRODUCT[k=3..n] {anti-divisors(k)} = PRODUCT[k=3..n] PRODUCT[j=1..A066272(k)] (j-th element of k-th row of A130799) = partial products of A091507. %e A000001 a(11) = anti-divisors of 3 * anti-divisors of 4 * ... * anti-divisors of 11 = (2) * (3) * (2 * 3) * (4) * (2 * 3 * 5) * (3 * 5) * (2 * 6) * (3 * 4 * 7) * (2 * 3 * 7) = 2743372800. %Y A000001 Cf. A066272, A091507, A130799. %O A000001 3,1 %K A000001 ,easy,nonn, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 25 2007 RH RA 192.20.225.32 From maxale at gmail.com Wed Jul 25 11:49:44 2007 From: maxale at gmail.com (Max Alekseyev) Date: Wed, 25 Jul 2007 02:49:44 -0700 Subject: ps Re Divisors concatenated shape a prime In-Reply-To: <33a322bc0707200443l833a591gc4abfcff9e172a43@mail.gmail.com> References: <200707201002.l6KA2ZKE432256@fry.research.att.com> <33a322bc0707200443l833a591gc4abfcff9e172a43@mail.gmail.com> Message-ID: Three more prime divisors have been found with ECM: 1303590319, 2029994921, and 2635016943923513073981336313737132619. The co-factor is still composite and requires further factorization. Regards, Max On 7/20/07, Simon Plouffe wrote: > The number is > 23637741111132222263396784181836212543250863192525397638\ > 5050794957757619119155152382118123439689236246879378\ > 3543703190673607553698617087406381347215107397221082\ > 2661095832164532219166133479486848572669589736971440\ > 0438460545718008769210914230132785470246166539693602\ > 6557094049233307938690398356410738499619079180796712\ > 8214769992381581114913062399108161968641222982612479\ > 8216323937282334473918719732448590592334050047581378\ > 1681898530966894783743946489718118466810009516275633\ > 6379706181021501427441345045695592720430028548826900\ > 9139118541259851760510992223024564332519703521021984\ > 4460491286637795552815329766690736929975591105630659\ > 5333814738598961996828961134745198615110831211923993\ > 6579222694903972302216624228859904868834042355958453\ > 3249363577198097376680847119169066498726355938826715\ > 6198557234875910075477711877653431239711446975182015\ > 0954106781648014685956717046277302264311087056416726\ > 0822620744350752392673213563296029371913434092554604\ > 5286221741128334521645241488701504785346326116925017\ > 8246786223305225717801965223385003564935724466104514\ > 3560384022108741886504369675409778385289018044217483\ > 7730087393508195567705780212066326225659513109026229\ > 33515586703 > > and divisible by 13 and 47 if I am not mistaking. > > the rest (%/13/47) is not prime either but I can't determine > its factors. > > simon plouffe > From zakseidov at yahoo.com Wed Jul 25 15:42:55 2007 From: zakseidov at yahoo.com (zak seidov) Date: Wed, 25 Jul 2007 06:42:55 -0700 (PDT) Subject: A005589: Number of letters in the English name of n, excluding spaces and hyphens Message-ID: <320334.92018.qm@web38204.mail.mud.yahoo.com> Dear seqfans, I'm going to submit b005589.txt and a005589.txt (after end of OEIS vacation?). In the process, I've found that numbers 800 and 900 (with their English names) are missed in G. Schildberger's file http://www.research.att.com/~njas/sequences/a000027.txt If someone's interested I can send both files - for checking/extending. Thanks, Zak A005589 Number of letters in the English name of n, excluding spaces and hyphens. %%%%%%%%%%% b005589.txt 0 4 1 3 2 3 3 5 4 4 1017 20 1018 20 1019 19 1020 17 1021 20 1022 20 %%%%%%%%%%%% a005589.txt zero one two three four onethousandseventeen onethousandeightteen onethousandnineteen onethousandtwenty onethousandtwentyone onethousandtwentytwo ____________________________________________________________________________________ Got a little couch potato? Check out fun summer activities for kids. http://search.yahoo.com/search?fr=oni_on_mail&p=summer+activities+for+kids&cs=bz I will be doing occasional updates, but that's all. Neil From njas at research.att.com Wed Jul 25 18:51:08 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Wed, 25 Jul 2007 12:51:08 -0400 (EDT) Subject: The OEIS "vacation" continues through the end of Sept. In-Reply-To: <320334.92018.qm@web38204.mail.mud.yahoo.com> References: <320334.92018.qm@web38204.mail.mud.yahoo.com> Message-ID: <200707251651.l6PGp8YP2000882@fry.research.att.com> Zak is right. I'd found that a year ago, when I built a table of the alphabetical reversal of the standard names of nonnegative integers from G. Schildberger's draft. He also had one or two misspellings, as I recall. On 7/25/07, zak seidov wrote: > Dear seqfans, > > I'm going to submit > b005589.txt and a005589.txt > (after end of OEIS vacation?). > > In the process, I've found that > numbers 800 and 900 (with their English names) > are missed in G. Schildberger's file > http://www.research.att.com/~njas/sequences/a000027.txt > > > If someone's interested I can send both files - > for checking/extending. > > Thanks, > Zak > > > A005589 Number of letters in the English name of n, > excluding spaces and hyphens. > %%%%%%%%%%% > > b005589.txt > 0 4 > 1 3 > 2 3 > 3 5 > 4 4 > > 1017 20 > 1018 20 > 1019 19 > 1020 17 > 1021 20 > 1022 20 > %%%%%%%%%%%% > > a005589.txt > zero > one > two > three > four > > onethousandseventeen > onethousandeightteen > onethousandnineteen > onethousandtwenty > onethousandtwentyone > onethousandtwentytwo > > > > ____________________________________________________________________________________ > Got a little couch potato? > Check out fun summer activities for kids. > http://search.yahoo.com/search?fr=oni_on_mail&p=summer+activities+for+kids&cs=bz > From petsie at dordos.net Thu Jul 26 02:36:09 2007 From: petsie at dordos.net (Peter Pein) Date: Thu, 26 Jul 2007 02:36:09 +0200 Subject: Link to Mathematica script is outdated (says an advertising pest) Message-ID: <46A7EC79.4000406@dordos.net> The link to a Mma-script to easy put sequences in the OEIS-format on the page http://www.research.att.com/~njas/sequences/Submit.html which should link to a Mma-file http://www.seqfan.net/EISFormat.m leads me to a strange (hijacking?) site full of advertising which states that "seqfan.net expired on 07/12/2007 and is pending renewal or deletion." If I remember correctly, there's a package at mathworld.wolfram.com with some utilities needed for Eric's project which include some EISFormat functionality. From jvospost3 at gmail.com Thu Jul 26 04:23:36 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Wed, 25 Jul 2007 19:23:36 -0700 Subject: A005589: Number of letters in the English name of n, excluding spaces and hyphens In-Reply-To: <793412.80456.qm@web38202.mail.mud.yahoo.com> References: <5542af940707251527x10cfb2c8sefbebd8546c11f59@mail.gmail.com> <793412.80456.qm@web38202.mail.mud.yahoo.com> Message-ID: <5542af940707251923u5e8e02c4ua885db0f05bceffe@mail.gmail.com> Zak: You are right. Same misspellings that I found. =================== Source: Webster's Revised Unabridged Dictionary (1913) Eighteen \Eight"een`\, a. [AS. eahtat?ne, eahtat?ne. See Eight, and Ten, and cf. Eighty.] Eight and ten; as, eighteen pounds. Eighteen \Eight"een`\, n. 1. The number greater by a unit than seventeen; eighteen units or objects. 2. A symbol denoting eighteen units, as 18 or xviii. =================== * Is Amendment Eighteen Treason? by Joshua Grozier Author(s) of Review: Charles Hall Davis Virginia Law Review, Vol. 17, No. 2 (Dec., 1930), pp. 211-214 doi:10.2307/1066265 =================== From petsie at dordos.net Thu Jul 26 05:19:41 2007 From: petsie at dordos.net (Peter Pein) Date: Thu, 26 Jul 2007 05:19:41 +0200 Subject: a propos divisors... In-Reply-To: <46A50268.3040307@dordos.net> References: <46A50268.3040307@dordos.net> Message-ID: <46A812CD.60303@dordos.net> Peter Pein schrieb: > Dear seqfans, > > I#ve been surprised not to find sequences of the following form in the OEIS: > > a(n)=min(k in N: sigma(r,n)=sigma(r,k)) with sigma(r,n)=sum of the r-th > power of the divisors of n: ... > Are these of interest? And if so, up to which exponent r? > > Peter > Although the interst seems to be bounded by a fairly small n (0 until now), I would like to ask you if you could please help me. I decided to publish the sequences in two forms: a) n such there is at least one x0: sigma(r,k)=sigma(r,n)}) The issue with these is that they behave in a surprising way for r=3 (I think, sequences for higher exponents are too hard to calculate without tricks) for r = 0 the type-a-seq starts: 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20 for r = 1: 11, 15, 17, 23, 25, 26, 31, 35, 38, 39, 41, 46, 47, 51 for r = 2 7, 26, 35, 47, 77, 91, 119, 130, 133, 141, 157, 161, 175 but for r = 3 the air becomes very thin. If I did not make a mistake, this seq starts(!): 194315, 295301, 590602, 1181204, 1476505, 1886920, 2067107, 2362408, 2526095, 2953010, 3248311, 3691985, 3838913, 4134214, 4469245, 4724816, 5020117, 5610719, 5635135, 5906020 If any of you with some Mathematica knowledge could please confirm, that the following lines calculate the sequence described above? Timing[Block[{spa, nmax = 6*10^6, expo = 3}, Reap[For[n = 1, n <= nmax, n++, (If[Head[#1] === spa, #1 = n, Sow[{n, #1}]] & )[ spa[DivisorSigma[expo, n]]]]][[2,1]]]] the name spa is an artefact; I tried this with SparseArrays, but the allowed range of indices has not been sufficient. I use it as an initially undefined function (Block[{spa..}]). For each n to test I look wether spa[sigma(r,n)] has been defined. If not, the Head is still spa and I set spa[sigma(r,n)] to n; else the remembered value together with n will go to the result via the Sow-Reap mechanism. This way I get type-a and a hint for type-b sequences in one run of the proggie. And if you want to make me really happy (I have had birthday on July 24th ;-) (http://www.stevesbeatles.com/songs/when_im_sixty_four.asp this age will be reached in 20 years, but the symptoms... )): If you've got Mathematica and more RAM (4GB or so) than I do (1.5 GB), could you please run this code with, say nmax=10 or 20 million? On my machine it swapped heavily with nmax=6 million and I had to kill MathKernel as I tried nmax=10^7. The lines above took ~181 seconds to evaluate (nmax=10^7 has been stopped by me after 15 minutes). I do not expect any runtimes of more than 7 minutes. Would this be possible, please? Alternatively any hints how to calculate these sequences more efficient would be highly appreciated (AFAIK there exists no kind of "inverse function" to sigma(r,n) w.r.t. n which could be calculated without this brute-force method). Thank you for your attention and in advance for CPU-time, Peter * Peter Pein [Jul 26. 2007 08:51]: > The link to a Mma-script to easy put sequences in the OEIS-format on the > page http://www.research.att.com/~njas/sequences/Submit.html which > should link to a Mma-file http://www.seqfan.net/EISFormat.m leads me to > a strange (hijacking?) site full of advertising which states that > "seqfan.net expired on 07/12/2007 and is pending renewal or deletion." This is not a domain grabber but "network solutions" > > If I remember correctly, there's a package at mathworld.wolfram.com with > some utilities needed for Eric's project which include some EISFormat > functionality. http://www.aboutus.org/Seqfan.net ogerard at ext.jussieu.fr (CC) The domain should simply be renewed. Else at some point in time a domain grabber will get it. From arndt at jjj.de Thu Jul 26 10:50:45 2007 From: arndt at jjj.de (Joerg Arndt) Date: Thu, 26 Jul 2007 10:50:45 +0200 Subject: Link to Mathematica script is outdated (says an advertising pest) In-Reply-To: <46A7EC79.4000406@dordos.net> References: <46A7EC79.4000406@dordos.net> Message-ID: <20070726085045.GA8464@amd32.purzl.net> On 6/9/06, Max wrote: > On 6/9/06, Graeme McRae wrote: > > > It took me quite some time to understand how Ranier Rosenthal is counting > > rounds, before I obtained A112088 as the number of rounds necessary to kill > > all but one of n players of the Josephus Game with every third man out. I > > first tried using Hugo Pfoertner's idea where the final survivor counts the > > times he was passed by the executioner including the final rendezvous. But > > that method gives an entirely different sequence (A005428: > > 1,2,3,4,6,9,14,21,31,47,70,105,158,...). > > I've also ended up with this exactly sequence in my computations. I have found an old draft message where I was explaining the details of my computation. I reproduce them below in hope that someone will find them useful. Suppose that we have x persons at the circle (enumerated from 0 to x-1) and the executioner stands at the person number s. After one round we will eliminate 1+[(x-s-1)/3] persons and will end up at the person number (s-x) mod 3. This observation leads to the following algorithm (stated in the form of PARI/GP program) counting the required number of rounds: { a(n) = local(count = 0, s = 0, x = n, x_new); while(x>1, x_new = x - 1 - (x-s-1)\3; s = (s-x) % 3; x = x_new; count++; ); count } For n=1..50, PARI/GP gives: ? vector(50,n,a(n)) %1 = [0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9] This sequence (counting the number of rounds) seems to be missing in OEIS. Now we want to "reverse" this algorithm, i.e., starting with a single person make the given number of rounds r and output n. This involves solving of the following system of equations: x_new = x_old - 1 - [(x_old - s_old - 1)/3]; s_new = (s_old - x_old) mod 3; with respect to x_old and s_old. It is useful to notice that [(x_old - s_old - 1)/3] = (x_old - s_old + s_new)/3 - 1, implying x_new = x_old - (x_old - s_old + s_new)/3. Therefore, x_old = (3*x_new + s_new)/2 - s_old/2. From this equation we get value of s_old modulo 2 (it must make x_old integer). However, that does not uniquely define s_old since it can take 3 values: 0, 1, and 2. But we can follow greedy strategy here (though I'm not going to prove that) making x_old the smallest possible on each round. In other words, we can limit values of s_old to 1 and 2, and state that x_old = [(3*x_new + s_new - 1)/2]. s_old = (s_new + x_old) mod 3; That leads to the following PARI/GP implementation: { b(n) = local( x=1, s=0 ); for(r=1,n, x = (3*x + s)\2; s = (s + x) % 3; ); x } The first 50 values are: ? vector(50,n,b(n)) %1 = [1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 70, 105, 158, 237, 355, 533, 799, 1199, 1798, 2697, 4046, 6069, 9103, 13655, 20482, 30723, 46085, 69127, 103691, 155536, 233304, 349956, 524934, 787401, 1181102, 1771653, 2657479, 3986219, 5979328, 8968992, 13453488, 20180232, 30270348, 45405522, 68108283, 102162425, 153243637, 229865456, 344798184, 517197276] That is exactly the sequence A005428. Based on our method of computing, we can give an alternative description of A005428: Define a mapping f over vectors with two integer components as follows: f: (x,s) --> ( [(3*x + s) / 2], (s + x) mod 3 ) Then A005428(n) is the first component of the n-th iteration of f on the vector (1,0). Regards, Max From r.rosenthal at web.de Thu Jul 26 22:24:34 2007 From: r.rosenthal at web.de (Rainer Rosenthal) Date: Thu, 26 Jul 2007 22:24:34 +0200 Subject: Sequence A112088 Motivation and Example? In-Reply-To: References: <4489D93F.3080902@web.de> <020401c68c0a$9470a650$6900000a@mcraeclan.com> <02a801c68c1c$1421f320$6900000a@mcraeclan.com> Message-ID: <46A90302.8020905@web.de> Max Alekseyev wrote: > On 6/9/06, Max wrote: >>On 6/9/06, Graeme McRae wrote: >>>It took me quite some time to understand how Ranier Rosenthal is counting Rainer (please) >>>rounds, before I obtained A112088 as the number of rounds necessary to kill >>>all but one of n players of the Josephus Game with every third man out. Many many thanks for this post! Some days ago I found my last scribblings, which were meant for another comment to A112088. But it's all that long ago ... I didn't understand anything of what I wrote :-( I'm going to print your mail now and maybe I will find the energy to get back to all these lovely round-countings. As far as I remember I wasn't able to really grasp the idea of the original submitter (Simon Strandgaard). From the discussions in de.sci.mathematik and de.rec.denksport I remember that there were some remarks giving hints to Knuth. Oops ... long time ago. Friendly greetings, Rainer From petsie at dordos.net Fri Jul 27 02:26:33 2007 From: petsie at dordos.net (Peter Pein) Date: Fri, 27 Jul 2007 02:26:33 +0200 Subject: [Fwd: SEQ FROM Peter Pein] Message-ID: <46A93BB9.1010209@dordos.net> Dear Neil, I obviously made a mistake, when entering the sequence number which I've got from the dispenser. This should become A131903. sorry, Peter The following is a copy of the email message that was sent to njas containing the sequence you submitted. All greater than and less than signs have been replaced by their html equivalents. They will be changed back when the message is processed. This copy is just for your records. No reply is expected. Subject: NEW SEQUENCE FROM Peter Pein %I A000001 %S A000001 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63 %N A000001 Those integers for which a smaller positive integer exists which has the same number of divisors %F A000001 a(n)= n-th element of {x>0, there exists a k with 0<k<x and the same number of divisors as x) %e A000001 a(4)=8 because it is the fourth integer for which a smaller integer with the same number of divisors exists (after 3, 5 and 7). divisors of 8 are 1,2,4,8 which are four and the divisors of 6 which is less than 8 are (1, 2, 3, 6) which are four. %t A000001 Clear[tmp]; Function[n, If[Head[#1] === tmp, #1 = n; Unevaluated[Sequence[]], n] & [tmp[DivisorSigma[0, n]]]] /@ Range[64] %Y A000001 Cf. A069822, A131902-A131908 %O A000001 1 %K A000001 ,easy,nonn, %A A000001 Peter Pein (petsie at dordos.net), Jul 26 2007 RH RA 192.20.225.32 RU RI From petsie at dordos.net Fri Jul 27 03:38:21 2007 From: petsie at dordos.net (Peter Pein) Date: Fri, 27 Jul 2007 03:38:21 +0200 Subject: a propos divisors... In-Reply-To: <46A812CD.60303@dordos.net> References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> Message-ID: <46A94C8D.4090109@dordos.net> Peter Pein schrieb: > > Although the interst seems to be bounded by a fairly small n (0 until > now), I would like to ask you if you could please help me. > .... > > Thank you for your attention and in advance for CPU-time, > > Peter > Well, there are other groups on the net... THX for ignoring me completely Peter Peter, I at least did not ignore you! I saved all your messages to be read later. (I just didn't reply yet!) Neil >%I A000001 >%S A000001 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, >23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, >43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63 >%N A000001 Those integers for which a smaller positive integer exists >which has the same number of divisors >%F A000001 a(n)= n-th element of {x>0, there exists a k with >0<k<x and the same number of divisors as x) >%e A000001 a(4)=8 because it is the fourth integer for which a smaller >integer with the same number of divisors exists (after 3, 5 and 7). >divisors of 8 are 1,2,4,8 which are four and the divisors of 6 which is >less than 8 are (1, 2, 3, 6) which are four. >%t A000001 Clear[tmp]; >Function[n, If[Head[#1] === tmp, #1 = n; Unevaluated[Sequence[]], n] & > [tmp[DivisorSigma[0, n]]]] /@ Range[64] >%Y A000001 Cf. A069822, A131902-A131908 >%O A000001 1 >%K A000001 ,easy,nonn, >%A A000001 Peter Pein (petsie at dordos.net), Jul 26 2007 >RH >RA 192.20.225.32 >RU >RI Appears to be the complement of A007416. Tony From njas at research.att.com Fri Jul 27 04:02:35 2007 From: njas at research.att.com (N. J. A. Sloane) Date: Thu, 26 Jul 2007 22:02:35 -0400 (EDT) Subject: a propos divisors... In-Reply-To: <46A93BB9.1010209@dordos.net> References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> Message-ID: <200707270202.l6R22ZH92491631@fry.research.att.com> On 7/25/07, Peter Pein wrote: > a) n such there is at least one x because there exists such a series for r=1 (A069822) > > and > > b) a(n)=min({k>0: sigma(r,k)=sigma(r,n)}) [...] > but for r = 3 the air becomes very thin. If I did not make a mistake, > this seq starts(!): > > 194315, 295301, 590602, 1181204, 1476505, 1886920, 2067107, 2362408, > 2526095, 2953010, 3248311, 3691985, 3838913, 4134214, 4469245, 4724816, > 5020117, 5610719, 5635135, 5906020 [...] > And if you want to make me really happy (I have had birthday on July > 24th ;-) (http://www.stevesbeatles.com/songs/when_im_sixty_four.asp this > age will be reached in 20 years, but the symptoms... )): My congratulations! Better late than never ;) > If you've got Mathematica and more RAM (4GB or so) than I do (1.5 GB), > could you please run this code with, say nmax=10 or 20 million? On my > machine it swapped heavily with nmax=6 million and I had to kill > MathKernel as I tried nmax=10^7. The lines above took ~181 seconds to > evaluate (nmax=10^7 has been stopped by me after 15 minutes). I do not > expect any runtimes of more than 7 minutes. Would this be possible, please? These are the values below 10^7 that I got with my C++ program using LiDIA library: 194315 184926 295301 291741 590602 583482 1181204 1166964 1476505 1458705 1886920 1880574 2067107 2042187 2362408 2333928 2526095 2404038 2953010 2917410 3248311 3209151 3691985 3513594 3838913 3792633 4134214 4084374 4469245 4253298 4724816 4667856 5020117 4959597 5610719 5543079 5635135 5362854 5906020 5834820 6023765 5732706 6496622 6418302 6791923 6710043 7382525 7293525 7677826 7585266 7966915 7581966 8268428 8168748 8355545 7951818 8563729 8460489 9132805 8691522 9449632 9335712 Each here line contains a pair: n k such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your notations above). I will let my program to run for a couple more days to reach 10^8 bound. > (AFAIK there exists no kind of "inverse > function" to sigma(r,n) w.r.t. n which could be calculated without this > brute-force method). I disagree with this statement. There is a more or less clever way to reconstruct the inverse of m=sigma(r,n) w.r.t. n, using integer factorization of m and a kind of brute-force but of the magnitude of the number of divisors of m. Regards, Max From petsie at dordos.net Fri Jul 27 16:32:12 2007 From: petsie at dordos.net (Peter Pein) Date: Fri, 27 Jul 2007 16:32:12 +0200 Subject: [Fwd: SEQ FROM Peter Pein] In-Reply-To: References: <46A93BB9.1010209@dordos.net> Message-ID: <46AA01EC.2070906@dordos.net> T. D. Noe schrieb: >> %I A000001 >> %S A000001 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, >> 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, >> 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63 >> %N A000001 Those integers for which a smaller positive integer exists >> which has the same number of divisors >> %F A000001 a(n)= n-th element of {x>0, there exists a k with >> 0<k<x and the same number of divisors as x) >> %e A000001 a(4)=8 because it is the fourth integer for which a smaller >> integer with the same number of divisors exists (after 3, 5 and 7). >> divisors of 8 are 1,2,4,8 which are four and the divisors of 6 which is >> less than 8 are (1, 2, 3, 6) which are four. >> %t A000001 Clear[tmp]; >> Function[n, If[Head[#1] === tmp, #1 = n; Unevaluated[Sequence[]], n] & >> [tmp[DivisorSigma[0, n]]]] /@ Range[64] >> %Y A000001 Cf. A069822, A131902-A131908 >> %O A000001 1 >> %K A000001 ,easy,nonn, >> %A A000001 Peter Pein (petsie at dordos.net), Jul 26 2007 >> RH >> RA 192.20.225.32 >> RU >> RI > > Appears to be the complement of A007416. > > Tony > Thank you, Tony for this hint. I ask a bit too late, but: is it common to let the superseeker have a look at the sequence before publishing it? I have published seven sequences last night. At the rate of one request per hour this would last too long. Peter * Peter Pein [Jul 27. 2007 17:36]: > [...] > Thank you, Tony for this hint. > I ask a bit too late, but: > is it common to let the superseeker have a look at the sequence before > publishing it? I have published seven sequences last night. At the rate > of one request per hour this would last too long. > > Peter I strongly support to super-seek all new sequences before having them in the database. How much resources does one super-seek take? (CPU & memory) Peter, I have put you on the list of "good guys" who are not subject to the one per hour limit! Neil From arndt at jjj.de Fri Jul 27 17:40:29 2007 From: arndt at jjj.de (Joerg Arndt) Date: Fri, 27 Jul 2007 17:40:29 +0200 Subject: [Fwd: SEQ FROM Peter Pein] In-Reply-To: <46AA01EC.2070906@dordos.net> References: <46A93BB9.1010209@dordos.net> <46AA01EC.2070906@dordos.net> Message-ID: <20070727154029.GA22447@amd32.purzl.net> While preparing to submit to OEIS the decimal digits of two constant used in the Ramanujan-Lodge Harmonic Number approximation and the DeTemple-Wang Harmonic Number approximation, I ran into trouble. I must be doing something really stupid. Both the low-res Google calculator and the high-res WIMS calculator tell me that ((12 * gamma) - 11 - (12 * ln(2))) / (1 - gamma - ln(2^0.5)) = -162.5909 where gamma is Euler's constant. But Theorem 6 of the arXiv citation, formula (1.13), page 6, insists that this constant is roughly 1.12150934. http://arxiv.org/pdf/0707.3950 Title: Ramanujan's Harmonic Number Expansion into NegativePowers of a Triangular Number Authors: Mark B. Villarino Comments: sharp error estimates and general formulas for Ramanujan's harmonic number expansion Subjects: Classical Analysis and ODEs (math.CA); General Mathematics (math.GM) An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas. As Harminic numbers and Ramanujan appear to popular on EIS, may I ask for someone to help me in my befuddlement? From jvospost3 at gmail.com Fri Jul 27 20:48:04 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 27 Jul 2007 11:48:04 -0700 Subject: Ramanujan-Lodge's Harmonic Number approximation In-Reply-To: <563222.67756.qm@web86610.mail.ukl.yahoo.com> References: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> <563222.67756.qm@web86610.mail.ukl.yahoo.com> Message-ID: <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> Thank you, Ray and Martin. I have emailed Mark B. Villarino, using the most recent Costa Rica email address I could find by Googling (oddly, one is not given in the arXiv paper), saying, before including your comments (but not giving out your email addresses nor that of Seqfans): I enjoyed your paper (and several earlier papers as well on Decartes' Perfect Lens, On the Archimedean or Semiregular Polyhedra, Mertens' Proof of Mertens' Theorem, ...), and initiated an online conversation that provides you a correction and a simplification. From martin_n_fuller at btinternet.com Fri Jul 27 19:49:50 2007 From: martin_n_fuller at btinternet.com (Martin Fuller) Date: Fri, 27 Jul 2007 18:49:50 +0100 (BST) Subject: Ramanujan-Lodge's Harmonic Number approximation In-Reply-To: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> Message-ID: <563222.67756.qm@web86610.mail.ukl.yahoo.com> It looks like a typo in the paper. It should be: ((12 * gamma) - 11 + (12 * ln(2^0.5))) / (1 - gamma - ln(2^0.5)) or more simply: 1 / (1 - gamma - ln(2^0.5)) - 12 The second constant is more simply written as: 1 / (1 - gamma - ln(3/2)) - 54 --- Jonathan Post wrote: > While preparing to submit to OEIS the decimal digits of two constant > used in the Ramanujan-Lodge Harmonic Number approximation and the > DeTemple-Wang Harmonic Number approximation, I ran into trouble. > > I must be doing something really stupid. > > Both the low-res Google calculator and the high-res WIMS calculator > tell me that > > ((12 * gamma) - 11 - (12 * ln(2))) / (1 - gamma - ln(2^0.5)) = > -162.5909 > > where gamma is Euler's constant. > > But Theorem 6 of the arXiv citation, formula (1.13), page 6, insists > that this constant is roughly 1.12150934. > > http://arxiv.org/pdf/0707.3950 > Title: Ramanujan's Harmonic Number Expansion into NegativePowers > of a Triangular Number > Authors: Mark B. Villarino > Comments: sharp error estimates and general formulas for > Ramanujan's harmonic number expansion > Subjects: Classical Analysis and ODEs (math.CA); General > Mathematics (math.GM) > > An algebraic transformation of the DeTemple-Wang half-integer > approximation to the harmonic series produces the general formula and > error estimate for the Ramanujan expansion for the nth harmonic > number > into negative powers of the nth triangular number. We also discuss > the > history of the Ramanujan expansion for the nth harmonic number as > well > as sharp estimates of its accuracy, with complete proofs, and we > compare it with other approximative formulas. > > As Harminic numbers and Ramanujan appear to popular on EIS, may I ask > for someone to help me in my befuddlement? > I'm curious how a sieve, similar to the sieve of Erosthanese, would "perform". The basic idea is this: suppose that n is some number that you want to factor. Assume that you can map, for x = 0 to some upper bound less than the smallest factor of n, n == a mod x --> f == b mod x, where f is a factor of n. Say, for instance: n == 2 mod 3, therefore f == 1 mod 3 n == 1 mod 4, therefore f == 3 mod 4 n == 4 mod 5, therefore f == 2 mod 5 & etc. Thus we could establish a "profile" for f, which can be turned into a sieve by finding all integers congruent to 1 mod 3, then a subset congruent to 3 mod 4, then a subset of that congruent to 2 mod 5, etc. My question is how "quickly" can we narrow in on possible values for f by using this sieve? I think something like this may be possible for values of n with certain properties, but I'm not sure how well it'd perform. From aplewe at sbcglobal.net Fri Jul 27 21:28:30 2007 From: aplewe at sbcglobal.net (Andrew Plewe) Date: Fri, 27 Jul 2007 12:28:30 -0700 Subject: A theoretical question -- sieving via n mod x In-Reply-To: <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> References: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> <563222.67756.qm@web86610.mail.ukl.yahoo.com> <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> Message-ID: <200707271935.l6RJZCci090307@shiva.jussieu.fr> I just submitted 4 related sequences, A131915 through A131918, which are the digits (1st 100) of the decimal expansions of, and the continued fraction expansions (100 integers) of the two formulae, in all cases crediting Martin Fuller's simplifications and/or corrections of Mark B. Villarino's paper. From jvospost3 at gmail.com Sat Jul 28 02:38:51 2007 From: jvospost3 at gmail.com (Jonathan Post) Date: Fri, 27 Jul 2007 17:38:51 -0700 Subject: Ramanujan-Lodge's Harmonic Number approximation In-Reply-To: <5542af940707271735t4ea8f890y39802dd9c657193@mail.gmail.com> References: <5542af940707270852l3682b86dxdcd8d6dbdabd7ee4@mail.gmail.com> <563222.67756.qm@web86610.mail.ukl.yahoo.com> <5542af940707271148j2dfc833al93434b370451e97d@mail.gmail.com> <5542af940707271735t4ea8f890y39802dd9c657193@mail.gmail.com> Message-ID: <5542af940707271738m4533a2e7rbe837493872723c8@mail.gmail.com> Synchronicity strikes! At the same minute, I received this email from the author of the arXiv paper which Ray Chandler helped me determine had a typo, and Martin Fuller corrected and simplified the formulae: ============== Dear Jonathan Vos Post, Thank you so very much for your letter. You are quite right, and I have incorporated the correction/simplification into my preprint. It should appear on lanl.xxx on Monday. I am very grateful for the trouble you took and, as a naturally prejudiced author, I thank you for your kind words about my other preprints. The paper on semiregular polyhedra will appear in Elemente der Mathematik...it has been accepted for publication as part of the "Euler year." The paper on "The Probability of a Run" was published in the March, 2007, issue of the Mathematical Gazette. Finally, the paper on the accuracy or Ramanujan's approximation to the arc length of an ellipse was published in the online journal JIPAM (Journal of Inequalities in Pure and Applied Mathematics) in January of 2006. I would be delighted to join into any further dialogue about the paper. Again, thank you very much. Sincerely yours, MARK B. VILLARINO MARK B. VILLARINO Escuela de matem?tica Universidad de Costa Rica San Jos?, Costa RicaTelephone: 506-857-4679 email: mvillari at cariari.ucr.ac.cr email: mark.villarino at gmail.com ============== From franktaw at netscape.net Sat Jul 28 02:43:56 2007 From: franktaw at netscape.net (franktaw at netscape.net) Date: Fri, 27 Jul 2007 20:43:56 -0400 Subject: A theoretical question -- sieving via n mod x In-Reply-To: <200707271935.l6RJZCci090307@shiva.jussieu.fr> References: <200707271935.l6RJZCci090307@shiva.jussieu.fr> Message-ID: <8C99EC783AE068B-5F0-7232@mblk-d13.sysops.aol.com> Assuming that evaluating your function is fast, this should be very efficient. Combining results in different moduli is essentially just Euclid's algorithm (for the GCD) -- which is quite fast -- followed by a couple of multiplications and an addition. Franklin T. Adams-Watters -----Original Message----- From: Andrew Plewe I'm curious how a sieve, similar to the sieve of Erosthanese, would "perform". The basic idea is this: suppose that n is some number that you want to factor. Assume that you can map, for x = 0 to some upper bound less than the smallest factor of n, n == a mod x --> f == b mod x, where f is a factor of n. Say, for instance: n == 2 mod 3, therefore f == 1 mod 3 n == 1 mod 4, therefore f == 3 mod 4 n == 4 mod 5, therefore f == 2 mod 5 & etc. Thus we could establish a "profile" for f, which can be turned into a sieve by finding all integers congruent to 1 mod 3, then a subset congruent to 3 mod 4, then a subset of that congruent to 2 mod 5, etc. My question is how "quickly" can we narrow in on possible values for f by using this sieve? I think something like this may be possible for values of n with certain properties, but I'm not sure how well it'd perform. ________________________________________________________________________ Check Out the new free AIM(R) Mail -- Unlimited storage and industry-leading spam and email virus protection. There are three seqs titled "Number of weighted voting procedures" http://www.research.att.com/~njas/sequences/A005254 http://www.research.att.com/~njas/sequences/A005256 http://www.research.att.com/~njas/sequences/A005257 Could somebody define the term "weighted voting procedure" and add the information to differentiate the seqs? Hello seqfans, Here I see two entries with the same name: A030225 Number of n-celled polyhexes (hexagonal polyominoes) with bilateral symmetry. A002215 Number of polyhexes with n hexagons, having reflectional symmetry. Probably, the second one should be about "restricted" polyhexes, BUT, there are two entries about restricted polyhexes: A002216 Harary-Read numbers: restricted hexagonal polyominoes (cata-polyhexes) with n cells. A002212 Number of restricted hexagonal polyominoes with n cells. On top of that, if a2216 is the number of cata-polyhexes, then what is A038142 Number of planar cata-polyhexes with n cells. I am completely confused. Best, Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com You did such a great job removing duplicate sequences. How about duplicate definitions: A002212 Number of restricted hexagonal polyominoes with n cells. A005963 Number of restricted hexagonal polyominoes with n cells. Tanya _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com A001168 Number of fixed polyominoes with n cells. A006762 Number of fixed polyominoes with n cells. _________________________________________________________________ Need personalized email and website? Look no further. It's easy with Doteasy $0 Web Hosting! Learn more at www.doteasy.com Let me remind folks that the primary purpose of the OEIS is to give pointers to the literature, you can find out who else has studied the same sequence. I don't claim to give precise definitions for every single If you find two sequences with the same definition ("Related to the enumeration of ***", say), feel free to track down the references and Neil From arndt at jjj.de Sat Jul 28 12:06:39 2007 From: arndt at jjj.de (Joerg Arndt) Date: Sat, 28 Jul 2007 12:06:39 +0200 Subject: weighted voting sequences Message-ID: <20070728100639.GA15382@amd32.purzl.net> so that when you come across a sequence in your work, sequence - that would take more time than I have available. send me more precise definitions. Return-Path: X-Ids: 165 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=rtbvWqQNL0y7upsL3gKBcNxhUDGa0Lj+cR+bNeMa8uWvu+bUk1P6xAwv7NWzPfUgqLUh7vortlAQh4yY3/kk9T64EjwhZFlA4I/dEjYxYRaxN1iz714wIa1lgwnw6JYDDwevoMDMzx5q/nOCtgwVzJMazJh/PngHfku0d4Lte58= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=DMQOxaWf8bqYEWoE14TvyaJZe9rOb4s9ObMoAvNuV/witTIBZUtBZFMHYEpxjB+e7MfxoofytCHs8K8egX6FFqeiVNTPLIOEdThyCFWhdk5MHrNULTwl8RRNBihnCWDxOZb0JBYzoR/S4qN4nf57zGK0iWm36mAbEtKeAQdZ5/g= Message-ID: <5542af940707281505n357500fbu2fada9399c6b518c at mail.gmail.com> Date: Sat, 28 Jul 2007 15:05:59 -0700 From: "Jonathan Post" To: "Max Alekseyev" Subject: Re: definition of anti-divisor Cc: "Maximilian Hasler" , "Sequence Fans" , jvospost2 at yahoo.com In-Reply-To: <5542af940707242126q68201c55pf5c674ce6848194f at mail.gmail.com> MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <200707211141.l6LBf9dn795643 at fry.research.att.com> <5542af940707212354t4b733f7cof101bc0b7960d64b at mail.gmail.com> <5542af940707221117t4e411e40o840c9228f2e9b7f8 at mail.gmail.com> <3c3af2330707231221y5690ec3cm473f38b5f2bc6adc at mail.gmail.com> <5542af940707231709n330ca0ffkc581bb34984b1154 at mail.gmail.com> <5542af940707231811t4044fa14rcdc33c9a227a9562 at mail.gmail.com> <5542af940707242126q68201c55pf5c674ce6848194f at mail.gmail.com> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.165]); Sun, 29 Jul 2007 00:06:02 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3797/Sat Jul 28 21:36:26 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46ABBDC9.002 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.569 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46ABBDC9.002 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! NEW SEQUENCE FROM Jonathan Vos Post %I A000001 %S A000001 3, 18, 1728, 679477248 %N A000001 Anti-primorials, partial products of anti-primes A092680. %C A000001 This is to primorial (A002110) as anti-prime (A092680) is to prime (A000040). Max Alekseyev points out that every element of A066466, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. There no such new k+1 (i.e., except known 1,2,6,18) below 1000. In other words, 3*2^n - 1, 3*2^n + 1 are twin primes for n=1,2,6,18. According to these tables: http://www.prothsearch.net/riesel.html http://www.prothsearch.net/riesel2.html there are no other such n up to 1200000. Therefore, the next element of A066466 (if it exists) is greater than 3*2^1200000 ~= 10^361236. Hence the next element of the anti-primorials (if it exists) is greater than 679477248 *3*2^1200000 ~= 679477248 * 10^361236 ~= 6 * 10^361245. %D A000001 1. %F A000001 a(n) = PRODUCT[k = 1..n] A092680(k). %e A000001 a(1) = 3. a(2) = 3 * 6 = 18. a(3) = 3 * 6 * 96 = 1728. a(4) = 3 * 6 * 96 * 393216 = 679477248. %Y A000001 Cf. A000040, A002110, A092680, A130874. %O A000001 1,1 %K A000001 ,nonn,unkn, %A A000001 Jonathan Vos Post (jvospost2 at yahoo.com), Jul 28 2007 RH RA 192.20.225.32 From petsie at dordos.net Sun Jul 29 01:04:43 2007 From: petsie at dordos.net (Peter Pein) Date: Sun, 29 Jul 2007 01:04:43 +0200 Subject: a propos divisors... In-Reply-To: References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> Message-ID: <46ABCB8B.2090809@dordos.net> Max Alekseyev schrieb: > On 7/25/07, Peter Pein wrote: > >> a) n such there is at least one x> because there exists such a series for r=1 (A069822) >> >> and >> >> b) a(n)=min({k>0: sigma(r,k)=sigma(r,n)}) > > [...] > >> but for r = 3 the air becomes very thin. If I did not make a mistake, >> this seq starts(!): >> >> 194315, 295301, 590602, 1181204, 1476505, 1886920, 2067107, 2362408, >> 2526095, 2953010, 3248311, 3691985, 3838913, 4134214, 4469245, 4724816, >> 5020117, 5610719, 5635135, 5906020 > > [...] > >> And if you want to make me really happy (I have had birthday on July >> 24th ;-) (http://www.stevesbeatles.com/songs/when_im_sixty_four.asp this >> age will be reached in 20 years, but the symptoms... )): > > My congratulations! > Better late than never ;) Thank you! > >> If you've got Mathematica and more RAM (4GB or so) than I do (1.5 GB), >> could you please run this code with, say nmax=10 or 20 million? On my >> machine it swapped heavily with nmax=6 million and I had to kill >> MathKernel as I tried nmax=10^7. The lines above took ~181 seconds to >> evaluate (nmax=10^7 has been stopped by me after 15 minutes). I do not >> expect any runtimes of more than 7 minutes. Would this be possible, please? > > These are the values below 10^7 that I got with my C++ program using > LiDIA library: > > 194315 184926 > 295301 291741 > 590602 583482 > 1181204 1166964 > 1476505 1458705 > 1886920 1880574 > 2067107 2042187 > 2362408 2333928 > 2526095 2404038 > 2953010 2917410 > 3248311 3209151 > 3691985 3513594 > 3838913 3792633 > 4134214 4084374 > 4469245 4253298 > 4724816 4667856 > 5020117 4959597 > 5610719 5543079 > 5635135 5362854 > 5906020 5834820 > 6023765 5732706 > 6496622 6418302 > 6791923 6710043 > 7382525 7293525 > 7677826 7585266 > 7966915 7581966 > 8268428 8168748 > 8355545 7951818 > 8563729 8460489 > 9132805 8691522 > 9449632 9335712 > > Each here line contains a pair: > n k > such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your > notations above). > > I will let my program to run for a couple more days to reach 10^8 bound. > >> (AFAIK there exists no kind of "inverse >> function" to sigma(r,n) w.r.t. n which could be calculated without this >> brute-force method). > > I disagree with this statement. There is a more or less clever way to > reconstruct the inverse of m=sigma(r,n) w.r.t. n, using integer > factorization of m and a kind of brute-force but of the magnitude of > the number of divisors of m. > > Regards, > Max > Dear Max, :-) thank you very much! :-) I just entered the extension to A13190{7|8} and of course mentioned your name. When your program gives more results, please extend the sequences or if you've got a lot of numbers, send Neil a b-file. The method you mention sounds mangeable - I will look for that algorithm. Thanks again, Peter Dear seqfans, I'd appreciate information (including references) about conditions (necessary and/or sufficient) on a sequence of positive numbers a1, a2, a3, ... in order that their Hankel matrix be positive definite. Thanks, Emeric Dear seqfans, I'd appreciate information (including references) about conditions (necessary and/or sufficient) on a sequence of positive numbers a1, a2, a3, ... in order that their Hankel matrix be positive definite. Thanks, Emeric From deutsch at duke.poly.edu Sun Jul 29 06:12:09 2007 From: deutsch at duke.poly.edu (deutsch) Date: Sun, 29 Jul 2007 04:12:09 GMT Subject: positive definiteness of Hankel matrices In-Reply-To: <200707280825.AA3347841186@TanyaKhovanova.com> References: <200707280825.AA3347841186@TanyaKhovanova.com> Message-ID: <46ac1399.275.718.7202@duke.poly.edu> A006762 is counting only polyominoes that are strictly 2-dimensional - it excludes those where all the squares are in a single line. Thus, for n>1, A006762(n) = A001168(n) - 2. Franklin T. Adams-Watters -----Original Message----- From: Tanya Khovanova A001168 Number of fixed polyominoes with n cells. A006762 Number of fixed polyominoes with n cells. ________________________________________________________________________ Check Out the new free AIM(R) Mail -- Unlimited storage and industry-leading spam and email virus protection. From neoneye at gmail.com Sun Jul 29 19:13:08 2007 From: neoneye at gmail.com (Simon Strandgaard) Date: Sun, 29 Jul 2007 19:13:08 +0200 Subject: Sequence A112088 Motivation and Example? In-Reply-To: <46A90302.8020905@web.de> References: <4489D93F.3080902@web.de> <020401c68c0a$9470a650$6900000a@mcraeclan.com> <02a801c68c1c$1421f320$6900000a@mcraeclan.com> <46A90302.8020905@web.de> Message-ID: On 7/26/07, Rainer Rosenthal wrote: > Max Alekseyev wrote: > > On 6/9/06, Max wrote: > >>On 6/9/06, Graeme McRae wrote: > >>>It took me quite some time to understand how Ranier Rosenthal is counting > Rainer (please) > >>>rounds, before I obtained A112088 as the number of rounds necessary to kill > >>>all but one of n players of the Josephus Game with every third man out. > > Many many thanks for this post! > > Some days ago I found my last scribblings, which were meant for > another comment to A112088. But it's all that long ago ... I > didn't understand anything of what I wrote :-( > > I'm going to print your mail now and maybe I will find the > energy to get back to all these lovely round-countings. > > As far as I remember I wasn't able to really grasp the idea of > the original submitter (Simon Strandgaard). From the discussions > in de.sci.mathematik and de.rec.denksport I remember that there > were some remarks giving hints to Knuth. Oops ... long time ago. I wrote a step-by-step guide to how a112088 works, see http://www.research.att.com/~njas/sequences/a112088.html maybe it can be useful to you? -- Simon Strandgaard From Eric.Angelini at kntv.be Mon Jul 30 00:11:35 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 30 Jul 2007 00:11:35 +0200 Subject: Substrings in A046043 Message-ID: Hello SeqFans, Integers of A046043 are interpreted like this: 0123 1210 = one 0 two 1 one 2 zero 3 -> one,two,one,zero = 1210 0123 2020 = two 0 zero 1 two 2 zero 3 -> two,zero,two,zero = 2020 01234 21200 = two 0 one 1 two 2 zero 3 zero 4 -> two,one,two,zero,zero = 21200 0123456 3211000 = three 0 two 1 one 2 one 3 zero 4 zero 5 zero 6 -> etc. = 3211000 ... 0123456789 6210001000 = six 0 two 1 one 2 zero 3 zero 4 zero 5 one 6 zero 7 zero 8 zero 9 Now if we add an extra string "10" in the upper line we could perhaps go on in the sequence like this: 012345678910 53110100002 ... meaning that we have in the integer 53110100002: - five (sub)strings "0" - three strings "1" - one string 2 - one string 3 - zero string 4 - one string 5 - zero string 6 - zero string 7 - zero string 8 - zero string 9 - two strings 10 What would be the next integers in the sequence? Best, E. -------------- next part -------------- An HTML attachment was scrubbed... URL: From Eric.Angelini at kntv.be Mon Jul 30 00:45:48 2007 From: Eric.Angelini at kntv.be (Eric Angelini) Date: Mon, 30 Jul 2007 00:45:48 +0200 Subject: =?iso-8859-1?Q?RE=A0=3A_Substrings_in_A046043_?= Message-ID: ... > meaning that we have in the integer 53110100002 (...) ... The length of such an integer indicates obviously how many (sub)strings have to be discribed: 53110100002 has 11 digits thus the 11 substrings "0", "1"... to "10" must be described > What would be the next integers in the sequence? ... I don't know if there is something before 62200010001: 012345678910 62200010001 Best, E. -------------- next part -------------- An HTML attachment was scrubbed... URL: From qq-quet at mindspring.com Mon Jul 30 16:23:05 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Mon, 30 Jul 07 08:23:05 -0600 Subject: Do any integers occur in both sequences? In-Reply-To: <46ABCB8B.2090809@dordos.net> References: <46A50268.3040307@dordos.net> <46A812CD.60303@dordos.net> <46ABCB8B.2090809@dordos.net> Message-ID: ------=_Part_17373_17766144.1185831725052 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 7bit Content-Disposition: inline On 7/28/07, Peter Pein wrote: > > Each here line contains a pair: > > n k > > such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your > > notations above). > > > > I will let my program to run for a couple more days to reach 10^8 bound. I stopped the program after it reached 7*10^7 as it started to eat too much memory. The results are attached. Please format them and submit to OEIS as you feel appropriate. P.S. Eventually I've defended Ph.D. in Computer Science ;) Regards, Max ------=_Part_17373_17766144.1185831725052 Content-Type: text/plain; name=sigma3.txt; charset=ANSI_X3.4-1968 Content-Transfer-Encoding: base64 X-Attachment-Id: f_f4rhifo0 Content-Disposition: attachment; filename="sigma3.txt" MTk0MzE1IDE4NDkyNgoyOTUzMDEgMjkxNzQxCjU5MDYwMiA1ODM0ODIKMTE4 MTIwNCAxMTY2OTY0CjE0NzY1MDUgMTQ1ODcwNQoxODg2OTIwIDE4ODA1NzQK MjA2NzEwNyAyMDQyMTg3CjIzNjI0MDggMjMzMzkyOAoyNTI2MDk1IDI0MDQw MzgKMjk1MzAxMCAyOTE3NDEwCjMyNDgzMTEgMzIwOTE1MQozNjkxOTg1IDM1 MTM1OTQKMzgzODkxMyAzNzkyNjMzCjQxMzQyMTQgNDA4NDM3NAo0NDY5MjQ1 IDQyNTMyOTgKNDcyNDgxNiA0NjY3ODU2CjUwMjAxMTcgNDk1OTU5Nwo1NjEw NzE5IDU1NDMwNzkKNTYzNTEzNSA1MzYyODU0CjU5MDYwMjAgNTgzNDgyMAo2 MDIzNzY1IDU3MzI3MDYKNjQ5NjYyMiA2NDE4MzAyCjY3OTE5MjMgNjcxMDA0 Mwo3MzgyNTI1IDcyOTM1MjUKNzY3NzgyNiA3NTg1MjY2Cjc5NjY5MTUgNzU4 MTk2Ngo4MjY4NDI4IDgxNjg3NDgKODM1NTU0NSA3OTUxODE4Cjg1NjM3Mjkg ODQ2MDQ4OQo5MTMyODA1IDg2OTE1MjIKOTQ0OTYzMiA5MzM1NzEyCjEwMDQw MjM0IDk5MTkxOTQKMTAyOTg2OTUgOTgwMTA3OAoxMDMzNTUzNSAxMDIxMDkz NQoxMDkyNjEzNyAxMDc5NDQxNwoxMTIyMTQzOCAxMTA4NjE1OAoxMTQ2NDU4 NSAxMDkxMDYzNAoxMTgxMjA0MCAxMTY2OTY0MAoxMTg1MzIxNSAxMTI4MDQ4 NgoxMjEwNzM0MSAxMTk2MTM4MQoxMjY5Nzk0MyAxMjU0NDg2MwoxMjk5MzI0 NCAxMjgzNjYwNAoxMzAxOTEwNSAxMjM5MDA0MgoxMzU4Mzg0NiAxMzQyMDA4 NgoxMzc5NjM2NSAxMzEyOTc0NgoxNDE4NDk5NSAxMzQ5OTU5OAoxNDQ2OTc0 OSAxNDI5NTMwOQoxNDc2NTA1MCAxNDU4NzA1MAoxNTM1MDg4NSAxNDYwOTE1 NAoxNTM1NTY1MiAxNTE3MDUzMgoxNTY1MDk1MyAxNTQ2MjI3MwoxNjEyODE0 NSAxNTM0ODg1OAoxNjI0MTU1NSAxNjA0NTc1NQoxNjUzNjg1NiAxNjMzNzQ5 NgoxNzEyNzQ1OCAxNjkyMDk3OAoxNzI5NDAzNSAxNjQ1ODQxNAoxNzQyMjc1 OSAxNzIxMjcxOQoxODg0ODU1NSAxNzkzNzgyMgoxODg5OTI2NCAxODY3MTQy NAoxOTE5NDU2NSAxODk2MzE2NQoxOTYyNTgxNSAxODY3NzUyNgoxOTc4NTE2 NyAxOTU0NjY0NwoyMDAxNDQ0NSAxOTA0NzM3OAoyMDA4MDQ2OCAxOTgzODM4 OAoyMDY3MTA3MCAyMDQyMTg3MAoyMDc1NjEyMCAyMDY4NjMxNAoyMDc5MTcw NSAxOTc4NzA4MgoyMDk2NjM3MSAyMDcxMzYxMQoyMTE4MDMzNSAyMDE1Njkz NAoyMTU1Njk3MyAyMTI5NzA5MwoyMTg1MjI3NCAyMTU4ODgzNAoyMTk1NzU5 NSAyMDg5NjYzOAoyMjQ0Mjg3NiAyMjE3MjMxNgoyMjczODE3NyAyMjQ2NDA1 NwoyMzMyODc3OSAyMzA0NzUzOQoyMzYyNDA4MCAyMzMzOTI4MAoyNDIxNDY4 MiAyMzkyMjc2MgoyNDUwOTk4MyAyNDIxNDUwMwoyNDUyOTk2MCAyNDQ0NzQ2 MgoyNDY3ODAwNSAyMzQ4NTYwMgoyNTEwMDU4NSAyNDc5Nzk4NQoyNTM5NTg4 NiAyNTA4OTcyNgoyNTQ1NTI2NSAyNDIyNTMwNgoyNTk4NjQ4OCAyNTY3MzIw OAoyNjI4MTc4OSAyNTk2NDk0OQoyNjYyMTE1NSAyNTMzNDg2MgoyNjg3MjM5 MSAyNjU0ODQzMQoyNzAwOTc4NSAyNTcwNDcxNAoyNzE2NzY5MiAyNjg0MDE3 MgoyODA1MzU5NSAyNzcxNTM5NQoyODY0NDE5NyAyODI5ODg3NwoyODkzOTQ5 OCAyODU5MDYxOAoyODk1MjkzNSAyNzU1Mzk3NAoyOTM0MTU2NSAyNzkyMzgy NgoyOTUzMDEwMCAyOTE3NDEwMAoyOTgyNTQwMSAyOTQ2NTg0MQozMDUwNzQ1 NSAyOTAzMzM4MgozMDcxMTMwNCAzMDM0MTA2NAozMTMwMTkwNiAzMDkyNDU0 NgozMTU5NzIwNyAzMTIxNjI4NwozMTY3MzM0NSAzMDE0MjkzOAozMjE4Nzgw OSAzMTc5OTc2OQozMjQ1MDYwNSAzMDg4MjY0MgozMjQ4MzExMCAzMjA5MTUx MAozMjgzOTIzNSAzMTI1MjQ5NAozMzA3MzcxMiAzMjY3NDk5MgozMzM2OTAx MyAzMjk2NjczMwozMzYxNjQ5NSAzMTk5MjE5OAozMzk1OTYxNSAzMzU1MDIx NQozNDI1NDkxNiAzMzg0MTk1NgozNDc4MjM4NSAzMzEwMTc1NAozNDg0NTUx OCAzNDQyNTQzOAozNTE0MDgxOSAzNDcxNzE3OQozNTE3MTAxNSAzMzQ3MTYw NgozNTczMTQyMSAzNTMwMDY2MQozNTg1MTQ4MCAzNTczMDkwNgozNjkxMjYy NSAzNjQ2NzYyNQozNzExNDE2NSAzNTMyMDg2NgozNzUwMjc5NSAzNTY5MDcx OAozNzUwMzIyNyAzNzA1MTEwNwozNzc5ODUyOCAzNzM0Mjg0OAozODI4MDA1 NSAzNjQzMDQyMgozODM4OTEzMCAzNzkyNjMzMAozODY2ODY4NSAzNjgwMDI3 NAozODY4NDQzMSAzODIxODA3MQozOTI3NTAzMyAzODgwMTU1MwozOTU3MDMz NCAzOTA5MzI5NAo0MDE2MDkzNiAzOTY3Njc3Ngo0MDQ1NjIzNyAzOTk2ODUx Nwo0MTAwMDQ2NSAzOTAxOTM4Ngo0MTA0NjgzOSA0MDU1MTk5OQo0MTM0MjE0 MCA0MDg0Mzc0MAo0MTkzMjc0MiA0MTQyNzIyMgo0MjIyODA0MyA0MTcxODk2 Mwo0MjgxODY0NSA0MjMwMjQ0NQo0MzExMzk0NiA0MjU5NDE4Ngo0MzMzMjI0 NSA0MTIzODQ5OAo0MzcwNDU0OCA0MzE3NzY2OAo0Mzk5OTg0OSA0MzQ2OTQw OQo0NDEwOTUwNSA0MTk3ODIwMgo0NDQ5ODEzNSA0MjM0ODA1NAo0NDU5MDQ1 MSA0NDA1Mjg5MQo0NDg4NTc1MiA0NDM0NDYzMgo0NTI3NTM5NSA0MzA4Nzc1 OAo0NTQ3NjM1NCA0NDkyODExNAo0NjM2MjI1NyA0NTgwMzMzNwo0NjQ0MTI4 NSA0NDE5NzMxNAo0NjY1NzU1OCA0NjA5NTA3OAo0NjgyOTkxNSA0NDU2NzE2 Ngo0NzI0ODE2MCA0NjY3ODU2MAo0NzU0MzQ2MSA0Njk3MDMwMQo0Nzk5NTgw NSA0NTY3NjcyMgo0ODEzNDA2MyA0NzU1Mzc4Mwo0ODQyOTM2NCA0Nzg0NTUy NAo0ODc3MzA2NSA0NjQxNjQyNgo0OTAxOTk2NiA0ODQyOTAwNgo0OTMxNTI2 NyA0ODcyMDc0Nwo0OTkwNTg2OSA0OTMwNDIyOQo0OTkzODk1NSA0NzUyNTk4 Mgo1MDIwMTE3MCA0OTU5NTk3MAo1MDc5MTc3MiA1MDE3OTQ1Mgo1MTA4NzA3 MyA1MDQ3MTE5Mwo1MTEwNDg0NSA0ODYzNTUzOAo1MTY3NzY3NSA1MTA1NDY3 NQo1MTk3Mjk3NiA1MTM0NjQxNgo1MjI3MDczNSA0OTc0NTA5NAo1MjU2MzU3 OCA1MTkyOTg5OAo1MjY1OTM2NSA1MDExNDk0Ngo1Mjg1ODg3OSA1MjIyMTYz OQo1MzQ0OTQ4MSA1MjgwNTEyMQo1Mzc0NDc4MiA1MzA5Njg2Mgo1MzgyNTI1 NSA1MTIyNDUwMgo1NDMzNTM4NCA1MzY4MDM0NAo1NDYwMjUxNSA1MTk2NDIw Ngo1NDYzMDY4NSA1Mzk3MjA4NQo1NDcyMDY4MCA1NDUzNjY0Ngo1NDk5MTE0 NSA1MjMzNDA1OAo1NTIyMTI4NyA1NDU1NTU2Nwo1NjEwNzE5MCA1NTQzMDc5 MAo1NjQwMjQ5MSA1NTcyMjUzMQo1NjkzNDI5NSA1NDE4MzMxOAo1Njk5MzA5 MyA1NjMwNjAxMwo1NzI4ODM5NCA1NjU5Nzc1NAo1Nzg3ODk5NiA1NzE4MTIz Ngo1ODEwMDE4NSA1NTI5Mjg3NAo1ODE3NDI5NyA1NzQ3Mjk3Nwo1ODQ5NDUy MCA1ODI5Nzc5NAo1ODc2NDg5OSA1ODA1NjQ1OQo1OTA2MDIwMCA1ODM0ODIw MAo1OTY1MDgwMiA1ODkzMTY4Mgo1OTY1NDcwNSA1Njc3MjI4Mgo1OTk0NjEw MyA1OTIyMzQyMwo2MDQzMTk2NSA1NzUxMTk4Ngo2MDUzNjcwNSA1OTgwNjkw NQo2MDgyMDU5NSA1Nzg4MTgzOAo2MTQyMjYwOCA2MDY4MjEyOAo2MTU5Nzg1 NSA1ODYyMTU0Mgo2MTcxNzkwOSA2MDk3Mzg2OQo2MjMwODUxMSA2MTU1NzM1 MQo2MjYwMzgxMiA2MTg0OTA5Mgo2MzE5NDQxNCA2MjQzMjU3NAo2MzQ4OTcx NSA2MjcyNDMxNQo2NDMxODI2NSA2MTIxMDUwNgo2NDM3NTYxOCA2MzU5OTUz OAo2NDk2NjIyMCA2NDE4MzAyMAo2NTI2MTUyMSA2NDQ3NDc2MQo2NTQ4NDE1 NSA2MjMyMDA2Mgo2NTg1MjEyMyA2NTA1ODI0Mwo2NjE0NzQyNCA2NTM0OTk4 NAo2NjczODAyNiA2NTkzMzQ2Ngo2NzAzMzMyNyA2NjIyNTIwNwo2NzQyNzMw NSA2NDE2OTMyMgo2NzYyMzkyOSA2NjgwODY4OQo2NzgxNTkzNSA2NDUzOTE3 NAo2NzkxOTIzMCA2NzEwMDQzMAo2ODUwOTgzMiA2NzY4MzkxMgo2ODU5MzE5 NSA2NTI3ODg3OAo2ODgwNTEzMyA2Nzk3NTY1Mwo2OTY5MTAzNiA2ODg1MDg3 Ngo2OTc1OTA4NSA2NjM4ODQzNAo2OTgxNjA0MCA2OTU4MTIzOAo3MDE0Nzcx NSA2Njc1ODI4Ngo3MDI4MTYzOCA2OTQzNDM1OAo3MDU3NjkzOSA2OTcyNjA5 OQo= ------=_Part_17373_17766144.1185831725052-- From petsie at dordos.net Tue Jul 31 04:32:57 2007 From: petsie at dordos.net (Peter Pein) Date: Tue, 31 Jul 2007 04:32:57 +0200 Subject: Do any integers occur in both sequences? In-Reply-To: References: Message-ID: <46AE9F59.9010203@dordos.net> Leroy Quet schrieb: > I have just submitted these two interdependent sequences (So don't look > for them in the database yet): > >> %I A131937 >> %S A131937 1,4,8,14,21,29,38,49,61 >> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131938). >> %e A131937 A131938: 2,5,10,16,23,32,42,53,... >> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >> So A131937(8) = A131937(7) + 11 = 49. >> %Y A131937 A131938 >> %O A131937 1 >> %K A131937 ,more,nonn, > >> %I A131938 >> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131937). >> %e A131938 A131937: 1,4,8,14,21,29,... >> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >> So A131938(8) = A131938(7) + 11 = 53. >> %Y A131938 A131937 >> %O A131938 1 >> %K A131938 ,more,nonn, > > > I have not thought about this too hard; so for all I know, the proof is > quite easy. > > Do any positive integers occur in both A131937 and A131938? > > Thanks, > Leroy Quet > Hello Leroy, let's just do the first step (n=3) to extend these lists: (let A131937=:l1 and A131938=:l2) I get Complement[posint, l2]={1,3,4,6,7,8,9,...} Therefore the third positive integer which is not in l2 is 4 again and l1 starts {1, 4, 4, 6, 8, 10, 12} and l2 begins {2, 5, 5, 7, 9, 11, 13} The Mma-Code and its output: each "grouped output" consists of l1 & l2 so far, n followed by the complement of (the begin of) N w.r.t. l2 and l1 resp.; you can count the elements using the latter. In[26]:= list1={1,4};list2={2,5};n=3; Do[ Print[{list1,list2}]; Print[n," ",Complement[Range[15],#]&/@{list2,list1}]; AppendTo[list1,Part[Complement[Range[n+Length[list2]],list2],n]]; AppendTo[list2,Part[Complement[Range[n+Length[list1]],list1],n]]; n++; ,{5}]; list1 list2 Intersection[%%,%] From In[26]:= {{1,4},{2,5}} From In[26]:= 3 {{1,3,4,6,7,8,9,10,11,12,13,14,15}, {2,3,5,6,7,8,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4},{2,5,5}} From In[26]:= 4 {{1,3,4,6,7,8,9,10,11,12,13,14,15}, {2,3,5,6,7,8,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4,6},{2,5,5,7}} From In[26]:= 5 {{1,3,4,6,8,9,10,11,12,13,14,15}, {2,3,5,7,8,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4,6,8},{2,5,5,7,9}} From In[26]:= 6 {{1,3,4,6,8,10,11,12,13,14,15}, {2,3,5,7,9,10,11,12,13,14,15}} From In[26]:= {{1,4,4,6,8,10},{2,5,5,7,9,11}} From In[26]:= 7 {{1,3,4,6,8,10,12,13,14,15}, {2,3,5,7,9,11,12,13,14,15}} Out[28]= (* A131937 *) {1,4,4,6,8,10,12} Out[29]= (* A131938 *) {2,5,5,7,9,11,13} Out[30]= (* intersection *) {} These are the first elements of l1 and l2 after 100 iterations: {1,4,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,\ 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,\ 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,\ 142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,\ 180,182,184,186,188,190,192,194,196,198,200,202} {2,5,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,\ 55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,\ 105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,\ 143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,\ 181,183,185,187,189,191,193,195,197,199,201,203} and the intersection is empty. Looks like the algorithm separates odd and even numbers. Because the algorithm is very inefficient, I've chosen 10^4 as maximum number of iterations: list1={1,4};list2={2,5};n=3; Do[ AppendTo[list1,Part[Complement[Range[n+Length[list2]],list2],n]]; AppendTo[list2,Part[Complement[Range[n+Length[list1]],list1],n]]; n++; ,{10^4}]; Intersection[list1,list2] --> {} and the lists (almost) are the evens and the odds: Take[#,-5]&/@{list1,list2} {{19994,19996,19998,20000,20002},{19995,19997,19999,20001,20003}} I guess, something went wrong in your definition or in my algorithm. Best regards, Peter From petsie at dordos.net Tue Jul 31 05:11:58 2007 From: petsie at dordos.net (Peter Pein) Date: Tue, 31 Jul 2007 05:11:58 +0200 Subject: Do any integers occur in both sequences? In-Reply-To: References: Message-ID: <46AEA87E.1010709@dordos.net> Leroy Quet schrieb: > I have just submitted these two interdependent sequences (So don't look > for them in the database yet): > >> %I A131937 >> %S A131937 1,4,8,14,21,29,38,49,61 >> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131938). >> %e A131937 A131938: 2,5,10,16,23,32,42,53,... >> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >> So A131937(8) = A131937(7) + 11 = 49. >> %Y A131937 A131938 >> %O A131937 1 >> %K A131937 ,more,nonn, > >> %I A131938 >> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >> does not occur in sequence A131937). >> %e A131938 A131937: 1,4,8,14,21,29,... >> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >> So A131938(8) = A131938(7) + 11 = 53. >> %Y A131938 A131937 >> %O A131938 1 >> %K A131938 ,more,nonn, > > > I have not thought about this too hard; so for all I know, the proof is > quite easy. > > Do any positive integers occur in both A131937 and A131938? > > Thanks, > Leroy Quet > Hi again, even if you meant "n-th pos. int. which does yet not occur in either l1 or l2" (or does one say "..does yet neither occur in l1 nor in l2"?) I get another result list1={1,4};list2={2,5};n=3; Do[ Print[{list1,list2}]; Print["n= ",n," ",Complement[Range[25],list2]]; AppendTo[list1,Part[Complement[Range[3n ],Union[list1,list2]],n]]; Print["n= ",n," ",Complement[Range[25],list1]]; AppendTo[list2,Part[Complement[Range[3n],Union[list1,list2]],n]]; n++; ,{5}]; list1 list2 Intersection[%%,%] {{1,4},{2,5}} n= 3 {1,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} n= 3 {2,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} {{1,4,7},{2,5,8}} n= 4 {1,3,4,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} n= 4 {2,3,5,6,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} {{1,4,7,10},{2,5,8,11}} n= 5 {1,3,4,6,7,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25} n= 5 {2,3,5,6,8,9,11,12,14,15,16,17,18,19,20,21,22,23,24,25} {{1,4,7,10,13},{2,5,8,11,14}} n= 6 {1,3,4,6,7,9,10,12,13,15,16,17,18,19,20,21,22,23,24,25} n= 6 {2,3,5,6,8,9,11,12,14,15,17,18,19,20,21,22,23,24,25} {{1,4,7,10,13,16},{2,5,8,11,14,17}} n= 7 {1,3,4,6,7,9,10,12,13,15,16,18,19,20,21,22,23,24,25} n= 7 {2,3,5,6,8,9,11,12,14,15,17,18,20,21,22,23,24,25} l1: {1,4,7,10,13,16,19} l2: {2,5,8,11,14,17,20} intersection: {} And l1, l2 and intersection for the first 100 iterations are (sorry for weird linewidths): {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304} {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305} {} and after 10^4 iterations (without intersections), lists end : In[121]:= Take[#1, -5]& /@ {list1, list2} Out[121]= {{29992, 29995, 29998, 30001, 30004}, {29993, 29996, 29999, 30002, 30005}} This time we've got {x: x == i mod 3} with i = 1,2. Testing the 10^4 iterations: Union[Mod[#,3]]&/@{list1,list2} --> {{1},{2}} Could you please explain in detail, how you've got your sequences? Peter From maxale at gmail.com Tue Jul 31 05:47:31 2007 From: maxale at gmail.com (Max Alekseyev) Date: Mon, 30 Jul 2007 20:47:31 -0700 Subject: Do any integers occur in both sequences? In-Reply-To: <46AEA87E.1010709@dordos.net> References: <46AEA87E.1010709@dordos.net> Message-ID: On 7/30/07, Peter Pein wrote: > Leroy Quet schrieb: > > I have just submitted these two interdependent sequences (So don't look > > for them in the database yet): > > > >> %I A131937 > >> %S A131937 1,4,8,14,21,29,38,49,61 > >> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which > >> does not occur in sequence A131938). > >> %e A131937 A131938: 2,5,10,16,23,32,42,53,... > >> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... > >> So A131937(8) = A131937(7) + 11 = 49. > >> %Y A131937 A131938 > >> %O A131937 1 > >> %K A131937 ,more,nonn, > > > >> %I A131938 > >> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 > >> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which > >> does not occur in sequence A131937). > >> %e A131938 A131937: 1,4,8,14,21,29,... > >> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... > >> So A131938(8) = A131938(7) + 11 = 53. > >> %Y A131938 A131937 > >> %O A131938 1 > >> %K A131938 ,more,nonn, [...] > Could you please explain in detail, how you've got your sequences? This is my PARI/GP code (for the first 50 terms) that confirms Leroy's values: { A=Set([1,4]); B=Set([2,5]); a=4; na=4; b=5; nb=3; for(n=3,50, until(!setsearch(A,na),na++); until(!setsearch(B,nb),nb++); a+=nb; b+=na; A=setunion(A,[a]); B=setunion(B,[b]); ); print(vecsort(eval(A))); print(vecsort(eval(B))); } Here the sets A and B collect elements (as computed) of A131937 and A131938 respectively; the variables a and b go over elements of A and B; variables na and nb go over non-elements of A and B. The output is: [1, 4, 8, 14, 21, 29, 38, 49, 61, 74, 88, 103, 120, 138, 157, 177, 198, 220, 244, 269, 295, 322, 350, 379, 409, 440, 473, 507, 542, 578, 615, 653, 692, 732, 773, 816, 860, 905, 951, 998, 1046, 1095, 1145, 1196, 1248, 1302, 1357, 1413, 1470, 1528] [2, 5, 10, 16, 23, 32, 42, 53, 65, 78, 93, 109, 126, 144, 163, 183, 205, 228, 252, 277, 303, 330, 358, 388, 419, 451, 484, 518, 553, 589, 626, 665, 705, 746, 788, 831, 875, 920, 966, 1013, 1061, 1111, 1162, 1214, 1267, 1321, 1376, 1432, 1489, 1547] Regards, Max A018892 ("Number of ways to write 1/n as a sum of exactly 2 unit fractions") has a simple formula a(n) = (d(n^2) + 1)/2, as noted in the first comment. There is a simple construction not mentioned there that nicely demonstrates the formula: 1/n = 1/(n+a) + 1/(n+b) implies ab = n^2. The same construction extends to the general case: to write m/n as a sum of 2 unit fractions, find a factorisation n^2 = xy, such that n + x == n + y == 0 (mod m). Then m/n = m/(n+x) + m/(n+y), and the RHS When m = 2, it remains simple: for odd n, any pair of factors of n^2 will both be odd, so n+x, n+y will be even in every case. So given: b(n) = Number of ways to write 2/n as a sum of exactly 2 unit fractions we get: b(n) = { A018892(n/2) if n == 0 (mod 2) For c(n) = Number of ways to write 3/n as a sum of exactly 2 unit fractions, we need to find the number of ways to split n^2 into 2 factors each equivalent either to 1 (mod 3) when n == 2 (mod 3), or vice versa. Writing n = PQ, such that P is a product of primes == 1 (mod 3) and Q a product of primes == 2 (mod 3), I find: c(n) = { A018892(n/3) if n == 0 (mod 3) I have an approach to prove this, by induction on multiplication of prime powers, but I suspect it is overly complex: can anyone suggest a simple proof of c(n)? I think the 2/n and 3/n cases are interesting enough to submit once I've for other m, I don't expect to submit those unless they prove unexpectedly interesting. Hugo From hv at crypt.org Tue Jul 31 14:01:16 2007 From: hv at crypt.org (hv at crypt.org) Date: Tue, 31 Jul 2007 13:01:16 +0100 Subject: A018892 and extensions Message-ID: <200707311201.l6VC1GwJ004230@zen.crypt.org> simplifies to two unit fractions. { A018892(n) if n == 1 (mod 2) { d(P^2) (d(Q^2) - 1) / 4 if n == 1 (mod 3) { d(P^2) (d(Q^2) + 1) / 4 if n == 2 (mod 3) satisfied myself of their correctness; while I plan to investigate m/n Return-Path: X-Ids: 168 Message-ID: <46AF3195.2070803 at dordos.net> Date: Tue, 31 Jul 2007 14:56:53 +0200 From: Peter Pein User-Agent: Thunderbird 1.5.0.12 (X11/20070604) MIME-Version: 1.0 To: Max Alekseyev CC: seqfan at ext.jussieu.fr Subject: Re: a propos divisors... References: <46A50268.3040307 at dordos.net> <46A812CD.60303 at dordos.net> <46ABCB8B.2090809 at dordos.net> In-Reply-To: X-Enigmail-Version: 0.94.2.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 7bit X-Provags-ID: V01U2FsdGVkX1+VNKtH587rPnaVfi40s3YE8ftID31QzFfc18j trNRDsile7wyx+bdbjqmSZ0uoJZRwizXiPofhP1NZDgRVqcQas y1cS+uU/PBrIC9NrqPKL439PjA+y73C X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Tue, 31 Jul 2007 15:01:58 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3834/Tue Jul 31 11:25:17 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46AF32C6.000 on shiva.jussieu.fr : j-chkmail score : X : 0/50 0 0.508 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46AF32C6.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! Max Alekseyev schrieb: > On 7/28/07, Peter Pein wrote: > >>> Each here line contains a pair: >>> n k >>> such that sigma(3,k)=sigma(3,n) and k=a(n) for r=3 (following your >>> notations above). >>> >>> I will let my program to run for a couple more days to reach 10^8 bound. > > I stopped the program after it reached 7*10^7 as it started to eat too > much memory. > The results are attached. Please format them and submit to OEIS as you > feel appropriate. > > P.S. Eventually I've defended Ph.D. in Computer Science ;) ... if you felt that this has been necessary... ;-) > > Regards, > Max > > Thank you again, Max. As soon as I've got a little bit more time to spare, I'll enter the values Peter From petsie at dordos.net Tue Jul 31 15:18:16 2007 From: petsie at dordos.net (Peter Pein) Date: Tue, 31 Jul 2007 15:18:16 +0200 Subject: Do any integers occur in both sequences? In-Reply-To: <46AEA87E.1010709@dordos.net> References: <46AEA87E.1010709@dordos.net> Message-ID: <46AF3698.6080307@dordos.net> Well, I should not post as early in the morning (at least not before I've got the third cup of coffee). I did not add a(n-1).... Sorry for any inconvenience, trouble and the like Peter P.S.: A131938-A131937 is (seems to be after coffee ;) ): {1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 10, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 21, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 25, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 40, 41, 42, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 46, 47, 48, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 52, 53, 54, 55, 56, 56, 56, 56, 56} Peter Pein schrieb: > Leroy Quet schrieb: >> I have just submitted these two interdependent sequences (So don't look >> for them in the database yet): >> >>> %I A131937 >>> %S A131937 1,4,8,14,21,29,38,49,61 >>> %N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >>> does not occur in sequence A131938). >>> %e A131937 A131938: 2,5,10,16,23,32,42,53,... >>> Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >>> So A131937(8) = A131937(7) + 11 = 49. >>> %Y A131937 A131938 >>> %O A131937 1 >>> %K A131937 ,more,nonn, >>> %I A131938 >>> %S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >>> %N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >>> does not occur in sequence A131937). >>> %e A131938 A131937: 1,4,8,14,21,29,... >>> Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >>> So A131938(8) = A131938(7) + 11 = 53. >>> %Y A131938 A131937 >>> %O A131938 1 >>> %K A131938 ,more,nonn, >> >> I have not thought about this too hard; so for all I know, the proof is >> quite easy. >> >> Do any positive integers occur in both A131937 and A131938? >> >> Thanks, >> Leroy Quet >> > Hi again, > > even if you meant "n-th pos. int. which does yet not occur in either l1 > or l2" (or does one say "..does yet neither occur in l1 nor in l2"?) I > get another result > > list1={1,4};list2={2,5};n=3; > Do[ > Print[{list1,list2}]; > Print["n= ",n," ",Complement[Range[25],list2]]; > AppendTo[list1,Part[Complement[Range[3n ],Union[list1,list2]],n]]; > Print["n= ",n," ",Complement[Range[25],list1]]; > AppendTo[list2,Part[Complement[Range[3n],Union[list1,list2]],n]]; > n++; > ,{5}]; > list1 > list2 > Intersection[%%,%] > .... I wrote: >I have just submitted these two interdependent sequences (So don't look >for them in the database yet): > >>%I A131937 >>%S A131937 1,4,8,14,21,29,38,49,61 >>%N A131937 a(1)=1; a(2)=4. a(n) = a(n-1) + (nth positive integer which >>does not occur in sequence A131938). >>%e A131937 A131938: 2,5,10,16,23,32,42,53,... >>Positive integers not in A131938: 1,3,4,6,7,8,9,11,... >>So A131937(8) = A131937(7) + 11 = 49. >>%Y A131937 A131938 >>%O A131937 1 >>%K A131937 ,more,nonn, > >>%I A131938 >>%S A131938 2,5,10,16,23,32,42,53,65,78,93,109 >>%N A131938 a(1)=2; a(2)=5. a(n) = a(n-1) + (nth positive integer which >>does not occur in sequence A131937). >>%e A131938 A131937: 1,4,8,14,21,29,... >>Positive integers not in A131937: 2,3,5,6,7,9,10,11,... >>So A131938(8) = A131938(7) + 11 = 53. >>%Y A131938 A131937 >>%O A131938 1 >>%K A131938 ,more,nonn, > >I have not thought about this too hard; so for all I know, the proof is >quite easy. > >Do any positive integers occur in both A131937 and A131938? > >Thanks, >Leroy Quet I have made no progress towards determining if any particular positive integers occur within both sequences. (In other words: Does A131937(k) = A131938(j) for any j and k {j and k are >= 1}, where j need not equal k?) I conjecture that no particular positive integer occurs in both sequences. Here is a smaller result related to these sequences, which I doubt will help (dis)prove the main conjecture: Let a(n) = A131937(n), b(n) = A131938(n), a(0) = b(0) = 0. Let n = any positive integer. Then n occurs (a(n) - a(n-1) - 1) times in sequence {b(n) - b(n-1) - n + 1}. And n occurs (b(n) - b(n-1) - 1) times in sequence {a(n) - a(n-1) - n + 1}. Not too earth-shattering -- but while we're on the subject... Also, I wonder if anyone can come up with a closed form for {A131937(n)} and {A131938(n)}. They seem like they might be related to Beautty sequences somehow. Thanks, Leroy Quet A comment with seq A001006 http://www.research.att.com/~njas/sequences/A001006 This seems to be wrong, I get the counts Note the starts math, Motzkins start as Someone please verify! From qq-quet at mindspring.com Tue Jul 31 16:18:48 2007 From: qq-quet at mindspring.com (Leroy Quet) Date: Tue, 31 Jul 07 08:18:48 -0600 Subject: Do any integers occur in both sequences? Message-ID: says (near top): Number of sequences of length n-1 consisting of positive integers such that the opening and ending elements are 1 or 2, and the absolute difference between any 2 consecutive elements is 0 or 1. A024537 ,1, 2, 4, 9, 21, 50, 120, 289, 697, 1682 (=?= A018905) [1,] 1, 2, 4, 9, 21, 51, 127, 323, Return-Path: X-Ids: 168 DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=eTM4iBw1Lnw+heXqYO8NGWJOVgYMGpoGs2s4hikTJbo88kRHfaMa2ZhX2vnMly81mwHE4xpJR6C0Ka82cAUpIMg94YlDZnhtecWVoYAenHs80zWIGNUlZrQriVw6qgGjZrJvPY9lzK7Dm2RN4gKI4FJ1tv5EDmfW2HYAuL+HS8A= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=dLvpK8Vovl94Tqxqr/Fp63Nx+oyMfEEBd077JZwlJsnTX4S6yC1hgY2lNm0mA4feEJ7yDuCXmT5htNfBd7Em3eRmNBf2Cv4p0qmPJfP6vGooaHplKRosADj5xspUYpRiKE7arLf6A1F/hGK4ueQMCCEKo6pTSOU87XNt932u7eo= Message-ID: Date: Tue, 31 Jul 2007 10:50:49 -0700 From: "Max Alekseyev" To: "Joerg Arndt" Subject: Re: possibly wrong comment with Motzkin numbers Cc: seqfan at ext.jussieu.fr In-Reply-To: <20070731152620.GA6791 at amd32.purzl.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 7bit Content-Disposition: inline References: <20070731152620.GA6791 at amd32.purzl.net> X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Tue, 31 Jul 2007 19:50:51 +0200 (CEST) X-Virus-Scanned: ClamAV 0.88.7/3835/Tue Jul 31 15:59:27 2007 on shiva.jussieu.fr X-Virus-Status: Clean X-j-chkmail-Score: MSGID : 46AF767A.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.510 -> 1 X-Miltered: at shiva.jussieu.fr with ID 46AF767A.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)! On 7/31/07, Joerg Arndt wrote: > A comment with seq A001006 > http://www.research.att.com/~njas/sequences/A001006 > says (near top): > Number of sequences of length n-1 consisting of positive integers > such that the opening and ending elements are 1 or 2, and the > absolute difference between any 2 consecutive elements is 0 or 1. > > This seems to be wrong, I get the counts > A024537 ,1, 2, 4, 9, 21, 50, 120, 289, 697, 1682 (=?= A018905) > > Note the starts math, Motzkins start as > [1,] 1, 2, 4, 9, 21, 51, 127, 323, With a simple recurrence formula implementation in PARI/GP, I confirm that the comment in A001006 is correct: { a(n,l) = if(n==1,(l==1)||(l==2),if(l<=0,0,a(n-1,l-1)+a(n-1,l)+a(n-1,l+1))) } { f(n) = a(n,1)+a(n,2) } ? vector(10,n,f(n)) %1 = [2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798] Here a(n,l) counts the number of sequences of positive integers of length n, starting with 1 or 2 and ending with l. Max