A002449 as Solution to System of Equations?

Paul D. Hanna pauldhanna at juno.com
Thu Mar 15 08:17:25 CET 2007

      Help is needed to simplify the following problem.
Consider the infinite system of simultaneous equations:
A = 1 + xAB
B = 1 + xBCD
C = 1 + xCDEF
D = 1 + xDEFGH
E = 1 + xEFGHIJ
F = 1 + xFGHIJKL
What is the unique solution to the variables A,B,C,... as functions in x?

Is there a way to further simplify the above system of equations 
to minimize the computational effort to calculate the 
sequences for A,B,C,...?   Ex., B = (A-1)/(xA), etc. 
I computed the initial coefficients of A to be: 
but time did not permit me to get more terms since 
the above system of equations (in this raw form) 
requires (n+1) iterations of the first 2^n equations 
involving 2^(n+1) power series A,B,C,... O(x^(2^n)) 
just for accuracy on the coefficient of x^n in A!  
I believe that A = A(x) is the g.f. of A002449 
(number of different types of binary trees of height n): 
due to the coincidence of the initial terms, as well as 
the binary nature of the system of equations. 
Could someone calculate more coefficients of A 
to see if they continue to agree with A002449? 
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://list.seqfan.eu/pipermail/seqfan/attachments/20070315/77b40cbd/attachment.htm>

More information about the SeqFan mailing list