will be traveling for 2 weeks

N. J. A. Sloane njas at research.att.com
Thu Jan 3 02:55:26 CET 2008


starting Friday, i will be away for 2+ weeks.
 Best regards
 			 Neil
Return-Path: <pauldhanna at juno.com>
X-Ids: 166
X-UNTD-OriginStamp: oDbjeIy1VJ6V0JV5e6a+h69UFXjHZpxCKOH/YXvBjj9T8ApN1kJQqQ==
To: seqfan at ext.jussieu.fr
Date: Wed, 2 Jan 2008 21:50:02 -0500
Subject: Re: G.f. for C(q^n,n)? - Generalized
Message-ID: <20080102.215002.1396.1.pauldhanna at juno.com>
X-Mailer: Juno 5.0.33
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary=--__JNP_000_4d15.7177.4b4c
X-Juno-Line-Breaks: 8-6,7-58,60-67,68-32767
From: pauldhanna at juno.com
X-ContentStamp: 19:9:4109534057
X-MAIL-INFO: 026dd01015802df059e9e06961e5f4694d2581f9041140
X-UNTD-Peer-Info: 127.0.0.1|localhost|outbound-jn.dca.untd.com|pauldhanna at juno.com
X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.166]); Thu, 03 Jan 2008 03:51:49 +0100 (CET)
X-Virus-Scanned: ClamAV 0.92/5343/Wed Jan  2 18:41:01 2008 on shiva.jussieu.fr
X-Virus-Status: Clean
X-j-chkmail-Score: MSGID : 477C4DC5.000 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.464 -> 1
X-Miltered: at shiva.jussieu.fr with ID 477C4DC5.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)!

This message is in MIME format.  Since your mail reader does not understand
this format, some or all of this message may not be legible.

----__JNP_000_4d15.7177.4b4c
Content-Type: text/plain; charset=us-ascii  
Content-Transfer-Encoding: 7bit

Seqfans,
     The identity can be generalized further. 
Let F(x) be any formal power series in x such that F(0)=1. 
Then 
(5) Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n!  =  
     Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) 
 
where [y^n] G(y) denotes the coefficient of y^n in G(y).
 
If we let F(x) = exp(x), then we have the nontrivial result 
 
(6) Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n!  =  
     Sum_{n>=0} (m*q^n + b)^n * x^n / n! 
 
which becomes trivial at b=0. 
  
Example of (6): q=2, m=1, b=1:
exp(x) + 2*exp(2x) + 2^4*exp(4x)*x^2/2! + 2^9*exp(8x)*x^3/3! +...+
   2^(n^2)*exp(2^n*x)/n! +...
= 1 + 3x + 5^2*x^2/2! + 9^3*x^3/3! + 17^4*x^4/4! +...+ 
   (2^n+1)^n*x^n/n! +... 
 
Example of (6): q=2, m=1, b=-1:
exp(-x) + 2*exp(-2x) + 2^4*exp(-4x)*x^2/2! + 2^9*exp(-8x)*x^3/3! +...+
   2^(n^2)*exp(-2^n*x)/n! +...
= 1 + x + 3^2*x^2/2! + 7^3*x^3/3! + 15^4*x^4/4! +...+ 
   (2^n-1)^n*x^n/n! +...
 
Example of (5): F(x) = 1+x+x^2, q=2, m=1, b=0: 
Sum_{n>=0} log( 1 + 2^n*x + 2^(2n)*x^2 )^n / n!  =  
    Sum_{n>=0} T(2^n, n) * x^n  
where T(2^n,n) = trinomial coefficient of x^n in (1+x+x^2)^(2^n).  
 
And many other examples can be given. 
 
So the question arises, does (5) have useful applications? 
Does it offer a g.f. for some significant sequences in OEIS? 
     Paul 
 
 
On Sun, 30 Dec 2007 21:03:39 -0500 pauldhanna at juno.com writes:
Seqfans, 
     Recall the identity: 
(2) Sum_{n>=0} log(1 + q^n*x)^n/n!  =  Sum_{n>=0} C(q^n,n)*x^n. 

 From this, I found the more general statements: 

(3) Sum_{n>=0} m^n*log(1 + q^n*x)^n/n!  =  Sum_{n>=0} C(m*q^n,n)*x^n.

(4) Sum_{n>=0} m^n * (1 + q^n*x)^b * log(1 + q^n*x)^n/n!  =  
     Sum_{n>=0} C(m*q^n + b, n)*x^n.

Identity (4) is very interesting ... I wonder if it leads to other
results? 
It certainly can lead to many significant sequences! 

What I would really like is for formula (4) to allow the g.f. 
    A(x,m,b) = Sum_{n>=0} C(m*q^n + b, n)*x^n 
to be manipulated to solve some functional equation ... 

Any ideas along these lines from anyone?
      Paul
----__JNP_000_4d15.7177.4b4c
Content-Type: text/html; charset=us-ascii  
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; charset=3Diso-8859-1">
<META content=3D"MSHTML 6.00.2600.0" name=3DGENERATOR></HEAD>
<BODY bottomMargin=3D0 leftMargin=3D3 topMargin=3D0 rightMargin=3D3>
<DIV>Seqfans,</DIV>
<DIV>
<DIV>     The identity can be generalized further.=
=20
</DIV>
<DIV>Let F(x) be any formal power series in x such that F(0)=3D1. </DIV>
<DIV>Then </DIV>
<DIV>
<DIV>(5) Sum_{n>=3D0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n!  =
=3D =20
</DIV>
<DIV>     Sum_{n>=3D0} x^n * [y^n] F(y)^(m*q^n&=
nbsp;+=20
b) </DIV>
<DIV> </DIV>
<DIV>where [y^n] G(y) denotes the coefficient of y^n in G(y).</DIV></DIV>
<DIV> </DIV>
<DIV>If we let F(x) =3D exp(x), then we have the nontrivial result </D=
IV>
<DIV> </DIV>
<DIV>
<DIV>(6) Sum_{n>=3D0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n!  =3D&=
nbsp;=20
</DIV>
<DIV>     Sum_{n>=3D0} (m*q^n + b)^n * x^n=
 /=20
n! </DIV>
<DIV> </DIV>
<DIV>which becomes trivial at b=3D0. </DIV></DIV>
<DIV>  </DIV>
<DIV>Example of (6): q=3D2, m=3D1, b=3D1:</DIV>
<DIV>exp(x) + 2*exp(2x) + 2^4*exp(4x)*x^2/2! + 2^9*exp(8x)*x^3/3! +...+</DI=
V>
<DIV>   2^(n^2)*exp(2^n*x)/n! +...</DIV>
<DIV>
<DIV>=3D 1 + 3x + 5^2*x^2/2! + 9^3*x^3/3! + 17^4*x^4/4! +...+ </DIV>
<DIV>   (2^n+1)^n*x^n/n! +... </DIV></DIV>
<DIV> </DIV>
<DIV>
<DIV>Example of (6): q=3D2, m=3D1, b=3D-1:</DIV>
<DIV>exp(-x) + 2*exp(-2x) + 2^4*exp(-4x)*x^2/2! + 2^9*exp(-8x)*x^3/3!=20
+...+</DIV>
<DIV>   2^(n^2)*exp(-2^n*x)/n! +...</DIV>
<DIV>
<DIV>=3D 1 + x + 3^2*x^2/2! + 7^3*x^3/3! + 15^4*x^4/4! +...+ </DIV>
<DIV>   (2^n-1)^n*x^n/n! +...</DIV></DIV>
<DIV> </DIV></DIV>
<DIV>Example of (5): F(x) =3D 1+x+x^2, q=3D2, m=3D1, b=3D0: </DIV>
<DIV>Sum_{n>=3D0} log( 1 + 2^n*x + 2^(2n)*x^2 )^n / n!  =3D =
=20
<DIV>    Sum_{n>=3D0} T(2^n, n) * x^n =20
</DIV></DIV></DIV>
<DIV>where T(2^n,n) =3D trinomial coefficient of x^n in (1+x+x^2)^(2^n).=20
 </DIV>
<DIV> </DIV>
<DIV>And many other examples can be given. </DIV>
<DIV> </DIV>
<DIV>So the question arises, does (5) have useful applicatio=
ns?=20
</DIV>
<DIV>Does it offer a g.f. for some significant sequences in OEIS? </DI=
V>
<DIV>     Paul </DIV>
<DIV> </DIV>
<DIV> </DIV>
<DIV>On Sun, 30 Dec 2007 21:03:39 -0500 <A=20
href=3D"mailto:pauldhanna at juno.com">pauldhanna at juno.com</A> writes:</DIV>
<BLOCKQUOTE dir=3Dltr=20
style=3D"PADDING-LEFT: 10px; MARGIN-LEFT: 10px; BORDER-LEFT: #000000 2px so=
lid">
  <DIV>Seqfans, </DIV>
  <DIV>     Recall the identity: </DIV>
  <DIV>(2) Sum_{n>=3D0} log(1 + q^n*x)^n/n!  =3D  Sum_{n>=
=3D0}=20
  C(q^n,n)*x^n. </DIV>
  <DIV> </DIV>
  <DIV>From this, I found the more general statements: </DIV>
  <DIV> </DIV>
  <DIV>(3) Sum_{n>=3D0} m^n*log(1 + q^n*x)^n/n!  =3D  Sum_{n&g=
t;=3D0}=20
  C(m*q^n,n)*x^n.</DIV>
  <DIV> </DIV>
  <DIV>
  <DIV>(4) Sum_{n>=3D0} m^n * (1 + q^n*x)^b * log(1 + q^n*x)^n/n!  =
=3D =20
  </DIV>
  <DIV>     Sum_{n>=3D0} C(m*q^n + b, n)*x^n.</=
DIV>
  <DIV> </DIV>
  <DIV>Identity (4) is very interesting ... I wonder if it leads to other=
=20
  results? </DIV>
  <DIV>It certainly can lead to many significant sequences! </DIV>
  <DIV> </DIV>
  <DIV>What I would really like is for formula (4) to allow the g=
.f.=20
  </DIV>
  <DIV>    A(x,m,b) =3D Sum_{n>=3D0} C(m*q^n + b, n)=
*x^n=20
  </DIV>
  <DIV>to be manipulated to solve some functional equation ... </DIV>
  <DIV> </DIV>
  <DIV>Any ideas along these lines from anyone?</DIV>
  <DIV>      Paul</DIV></DIV></BLOCKQUOTE></BODY><=
/HTML>

----__JNP_000_4d15.7177.4b4c--






More information about the SeqFan mailing list