Value a(6) in doubt for a = A101877

hv at crypt.org hv at crypt.org
Wed Jan 16 03:33:30 CET 2008


set yields a subset {1,2,3,4,6,7} that gives reciprocal sum 1/28.
some of those missing primes there is no matching subset at all, in which
Return-Path: <hv at zen.crypt.org>
X-Ids: 165
Message-Id: <200801161226.m0GCQDgl005912 at zen.crypt.org>
To: seqfan at ext.jussieu.fr
cc: hv at crypt.org
From: hv at crypt.org
Subject: MAX(p_A093407)
Date: Wed, 16 Jan 2008 12:26:13 +0000
Sender: hv at zen.crypt.org
X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.165]); Wed, 16 Jan 2008 13:25:33 +0100 (CET)
X-Virus-Scanned: ClamAV 0.92/5484/Tue Jan 15 20:31:27 2008 on shiva.jussieu.fr
X-Virus-Status: Clean
X-Miltered: at shiva.jussieu.fr with ID 478DF7BC.000 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)!
  For p = prime(n), the least k such that p divides the numerator of
  a sum 1/k + 1/x1 +...+ 1/xm, where x1,...,xm (for any m) are distinct
  positive integers < k.
Return-Path: <wilson.d at anseri.com>
X-Ids: 165
From: "David W. Wilson" <wilson.d at anseri.com>
To: <seqfan at ext.jussieu.fr>
Subject: Partition-related sequence
Date: Wed, 16 Jan 2008 09:25:54 -0500
Message-ID: <000401c8584b$b4532b00$1cf98100$@d at anseri.com>
MIME-Version: 1.0
Content-Type: multipart/alternative;
	boundary="----=_NextPart_000_0005_01C85821.CB7D2300"
X-Mailer: Microsoft Office Outlook 12.0
Thread-Index: AchYS7O6vaQLlp6bRQCZQSA9MIvBDQ==
Content-Language: en-us
X-Scanned-By: MIMEDefang 2.36
X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.165]); Wed, 16 Jan 2008 15:29:16 +0100 (CET)
X-Virus-Scanned: ClamAV 0.92/5485/Wed Jan 16 14:06:29 2008 on shiva.jussieu.fr
X-Virus-Status: Clean
X-j-chkmail-Score: MSGID : 478E14BB.001 on shiva.jussieu.fr : j-chkmail score : X : 0/50 0 0.564 -> 1
X-Miltered: at shiva.jussieu.fr with ID 478E14BB.001 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)!

This is a multipart message in MIME format.

------=_NextPart_000_0005_01C85821.CB7D2300
Content-Type: text/plain;
	charset="us-ascii"
Content-Transfer-Encoding: 7bit

The partition (1, 1, 2, 2) can be split into either 1, 2, or 3 subpartitions
having equal sum, to wit:

 

     (1, 1, 2, 2)

     (1, 2), (1, 2)

     (1, 1), (2), (2)

 

This is not possible for any smaller nonempty partition. If we define a(n)
as the smallest number of elements in a partition that can be split into 1
through n equal-sum subpartitions, this example shows a(3) = 4.

 

Can we find a few small a(n)? Is the sequence already in the OEIS?


------=_NextPart_000_0005_01C85821.CB7D2300
Content-Type: text/html;
	charset="us-ascii"
Content-Transfer-Encoding: quoted-printable

<html xmlns:v=3D"urn:schemas-microsoft-com:vml" xmlns:o=3D"urn:schemas-micr=
osoft-com:office:office" xmlns:w=3D"urn:schemas-microsoft-com:office:word" =
xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml" xmlns=3D"http:=
//www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=3DContent-Type content=3D"text/html; charset=3Dus-ascii">
<meta name=3DGenerator content=3D"Microsoft Word 12 (filtered medium)">
<style>
<!--
 /* Font Definitions */
 @font-face
	{font-family:Calibri;
	panose-1:2 15 5 2 2 2 4 3 2 4;}
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
	{margin:0in;
	margin-bottom:.0001pt;
	font-size:11.0pt;
	font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
	{mso-style-priority:99;
	color:blue;
	text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
	{mso-style-priority:99;
	color:purple;
	text-decoration:underline;}
span.EmailStyle17
	{mso-style-type:personal-compose;
	font-family:"Calibri","sans-serif";
	color:windowtext;}
.MsoChpDefault
	{mso-style-type:export-only;}
@page Section1
	{size:8.5in 11.0in;
	margin:1.0in 1.0in 1.0in 1.0in;}
div.Section1
	{page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
 <o:shapedefaults v:ext=3D"edit" spidmax=3D"1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
 <o:shapelayout v:ext=3D"edit">
  <o:idmap v:ext=3D"edit" data=3D"1" />
 </o:shapelayout></xml><![endif]-->
</head>

<body lang=3DEN-US link=3Dblue vlink=3Dpurple>

<div class=3DSection1>

<p class=3DMsoNormal>The partition (1, 1, 2, 2) can be split into either 1,=
 2, or
3 subpartitions having equal sum, to wit:<o:p></o:p></p>

<p class=3DMsoNormal><o:p> </o:p></p>

<p class=3DMsoNormal>     (1, 1, 2, 2)<o:p></o:p></p>

<p class=3DMsoNormal>     (1, 2), (1, 2)<o:p></o:p></p>

<p class=3DMsoNormal>     (1, 1), (2), (2)<o:p></o:p></=
p>

<p class=3DMsoNormal><o:p> </o:p></p>

<p class=3DMsoNormal>This is not possible for any smaller nonempty partitio=
n. If
we define a(n) as the smallest number of elements in a partition that can be
split into 1 through n equal-sum subpartitions, this example shows a(3) =3D=
 4.<o:p></o:p></p>

<p class=3DMsoNormal><o:p> </o:p></p>

<p class=3DMsoNormal>Can we find a few small a(n)? Is the sequence already =
in the
OEIS?<o:p></o:p></p>

</div>

</body>

</html>

------=_NextPart_000_0005_01C85821.CB7D2300--







More information about the SeqFan mailing list