seq? Least k such that the length of the Roman numeral for k = the length of the binary representation of k = n
Jonathan Post
jvospost3 at gmail.com
Sun Jul 6 01:52:33 CEST 2008
I'm sorry; I missed the n=5 case by typing error.
1, 2, 7, 8, 18, 33, 78, 138, 278, 688, 1288
n a(n) because
1 1 I = 1_2
2 2 II = 10_2
3 7 VII = 111_2
4 8 VIII = 1000_2
5 18 XVIII = 10010_2
6 33 XXXIII = 100001_2
7 78 LXXVIII = 1001110_2
8 138 CXXXVIII = 10001010_2
9 278 CCLXXVIII = 100010110_2
10 688 DCLXXXVIII = 1010110000_2
11 1288 MCCLXXXVIII = 10100001000_2
On 7/5/08, Jonathan Post <jvospost3 at gmail.com> wrote:
> Okay, here's another weird one relating Roman numerals to a base.
>
> 1, 2, 7, 8, 33, 78, 138, 278, 688, 1288
>
> Least k such that the length of the Roman numeral for k = the length
> of the binary representation of k = n.
>
> a(n) = MIN{k such that A006968(k) = A070939(k) = n}
>
> Cf. A036787, A007088, A006968, A070939
>
More information about the SeqFan
mailing list