curious eta-GFs and two news seqs
Richard Mathar
mathar at strw.leidenuniv.nl
Fri May 16 22:23:31 CEST 2008
This is a multi-part message in MIME format.
------_=_NextPart_001_01C8B79B.6679D21C
Content-Type: text/plain;
charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable
Seqfans,
=20
Let a =3D (1,3,4,6,8,9,11,12,14,16,17,19,21,22,...) =3D A000201
and b =3D (2,5,7,10,13,15,18,20,23,26,28,31,...) =3D A001950.
=20
We can swap selected pairs of terms of a and b so that two nice things
happen:
=20
1. With each swap both a and b stay monotone (think of them as
"dynamic")
2. At the end, b consists solely of evens.
=20
Right away, you can look at the above a and b, and swap pairs to get
=20
b =3D (2,4,6,10,12,14,18,20,22,26,...)=20
=20
Can someone generalize? For example, given m>1 and any k, which Beatty
sequence-pairs allow swapping so that in the end, one of them has all
terms congruent to k mod m?
=20
Clark Kimberling=20
=20
------_=_NextPart_001_01C8B79B.6679D21C
Content-Type: text/html;
charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; charset=3Dus-ascii">
<META content=3D"MSHTML 6.00.6000.16640" name=3DGENERATOR></HEAD>
<BODY>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008>Seqfans,</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>Let a =3D=
=20
(1,3,4,6,8,9,11,12,14,16,17,19,21,22,...) =3D A000201</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>and b =3D=
=20
(2,5,7,10,13,15,18,20,23,26,28,31,...) =3D A001950.</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>We can sw=
ap selected=20
pairs of terms of a and b so that two nice things happen:</SPAN></FONT></DI=
V>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>1. =
With each=20
swap both a and b stay monotone (think of them as "dynamic")</SPAN></FONT><=
/DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>2. =
At the end,=20
b consists solely of evens.</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>Right awa=
y, you can=20
look at the above a and b, and swap pairs to get</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>b =3D=20
(2,4,6,10,12,14,18,20,22,26,...) </SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>Can=20
someone generalize? For example, given m>1 and any k, which B=
eatty=20
sequence-pairs allow swapping so that in the end, one of them has all terms=
=20
congruent to k mod m?</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D049341121-16052008>Clark=20
Kimberling </SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D049341121-16052008></SPAN></FONT> </DIV></BODY></HTML>
------_=_NextPart_001_01C8B79B.6679D21C--
More information about the SeqFan
mailing list