[seqfan] Floor of Volume of the unit sphere in 2n-dimensional space
Jonathan Post
jvospost3 at gmail.com
Sun Aug 9 05:35:05 CEST 2009
Should this be considered interesting enough for submission?
a(n) = floor( ((2*pi)^n)/(n-1)!) = integer part of Volume of the unit
sphere in 2n-dimensional space.
for positive n:
6, 39, 124, 259, 408, 512, 536, 481, 378, 264, 166, 94, 49, 24, 10, 4,
1, 0, 0, 0, 0, 0, 0, 0, 0, ....
This also occurs in the recently cited 1944 Chern proof of the
Gauss-Bonnet theorem.
n ((2*pi)^n) / (n-1)!
1 6.28318531
2 39.4784176
3 124.025107
4 259.757576
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
More information about the SeqFan
mailing list