[seqfan] Re: Using floretions for primality proofs
Creighton Kenneth Dement
creighton.k.dement at mail.uni-oldenburg.de
Wed Dec 2 01:04:06 CET 2009
> Conjecture:
>
> If tes(X) = q and tesseq(X) = (tes(X), tes(X^2), tes(X^3), ...) is a
> sequence of integers, then
>
> p divides tes(X^p) - q^p for all primes > 2.
Sorry- the above should read:
... p divides tes(X^p) - q^p for all primes p > 2
[snip]
> 3 must divide tes(X^3) - 3^3 = -15 + 27 = 12
> 5 must divide tes(X^5) - 3^5 = 17683 = 17440
This should be
3 must divide tes(X^3) - 3^3 = -15 - 27 = -42 = -2*3*7
5 must divide tes(X^5) - 3^5 = 17683 - 243 = 17440
More information about the SeqFan
mailing list