[seqfan] Re: Difficult problem

Robert Israel israel at math.ubc.ca
Mon Dec 28 01:03:52 CET 2009

The answer is no.

The equation of your plane says that "a" is a root of a polynomial of 
degree <= 4 over the field generated by x,y,z.  If x,y,z were expressible 
in terms of radicals, so would a (since quartics can be solved in terms of 
radicals), except in the case where the polynomial is trivial (which
requires x=y=z=0).

Robert Israel

On Sun, 27 Dec 2009, Artur wrote:

> Dear Seqfans,
> We have real plane in 3D Cartesian space
> x(1-a)+(a^2-a)y+(2-a^4)z=0
> where a is single one real root of quintic polynomial a^5-a-1=0
> Does exist on this plane rational points (different as od x=y=z=0) ?
> If not does existed points expressible by radicals (polynomial a^5-a-1
> have not solvable Galois group S5 over rationals)
> Best wishes
> Artur
> _______________________________________________
> Seqfan Mailing list - http://list.seqfan.eu/

More information about the SeqFan mailing list