# [seqfan] Re: 1,6,110,2562,66222,...

Peter Pein petsie at dordos.net
Mon Feb 9 12:47:29 CET 2009

```rhhardin at att.net schrieb:
> More terms
> 0 1
> 1 6
> 2 110
> 3 2562
> 4 66222
> 5 1815506
> 6 51697802
> 7 1511679210
> 8 45076309166
> 9 1364497268946
> 10 41800229045610
> 11 1292986222651646
> 12 40317756506959050
> 13 1265712901796074842
> 14 39965073938276694002
> 15 1268208750951634765562
> 16 40419340092267053380782
> 17 1293151592990764737265490
> 18 41512921146114663782643914
> 19 1336696804525969269347753334
> 20 43158316470769422985036007722
> 21 1396894744060840361583526359534
> 22 45313952186387344032141424880310
> 23 1472935673743661698205554658491142
> 24 47967219502930046234923103653158602
> 25 1564763324432611139054569034910940506
> 26 51125575601254146187206660714592557842
>

G.f. is:
x*(1-x)*(1+x)/(x^4-19*x^3+41*x^2-19*x+1)

and

a(n)=(1/Sqrt[205])*((-(19 - Sqrt[205] - Sqrt[550 - 38*Sqrt[205]])^n -
(19 - Sqrt[205] + Sqrt[550 - 38*Sqrt[205]])^n +
(19 + Sqrt[205] - Sqrt[550 + 38*Sqrt[205]])^n +
(19 + Sqrt[205] + Sqrt[550 + 38*Sqrt[205]])^n)/4^n)

```