[seqfan] Re: Sequence to A141530
Klaus Brockhaus
klaus-brockhaus at t-online.de
Thu Feb 12 14:10:25 CET 2009
"vincenzo.librandi at tin.it" wrote:
>
> I think that
> a(n)=4*n^3+6*n^2-1
> is equal to A141530
Not exactly. Offset is 0, therefore a(n) = 4*n^3-6*n^2+1.
PARI:
? for(n=0,36,print1(4*n^3-6*n^2+1,","))
1,-1,9,55,161,351,649,1079,1665,2431,3401,4599,6049,7775,9801,12151,
14849,17919,21385,25271,29601,34399,39689,45495,51841,58751,66249,
74359,83105,92511,102601,113399,124929,137215,150281,164151,178849,
Klaus
> 0 -1
> 1 9
> 2 55
> 3 161
> 4 351
> 5
> 649
> 6 1079
> 7 1665
>
> 8 2431
> 9 3401
> 10 4599
> 11 6049
> 12 7775
> 13
> 9801
> 14 12151
> 15 14849
>
> 16 17919
> 17 21385
> 18 25271
> 19 29601
> 20 34399
> 21
> 39689
> 22 45495
> 23 51841
>
> 24 58751
> 25 66249
> 26 74359
> 27 83105
> 28 92511
> 29
> 102601
> 30 113399
>
> Regards,
> Vincenzo Librandi
>
> %I A141530
> %S A141530 1,1,9,55,161,351,649,1079,1665
> %V A141530 1,
> -1,9,55,161,351,649,1079,1665
> %N A141530 Third from a recurrences
> family concerning numerators of a(i,j) square
> defined
> by j!*a(i,j)=Integral (from i to i+1) u*(u-1)*(-2)* .. *(u-j+1)
> du.
[......]
> %K A141530 sign,uned
> %O A141530
> 0,3
> %A A141530 Paul Curtz (bpcrtz(AT)free.fr), Aug 12 2008
More information about the SeqFan
mailing list