[seqfan] b-files for apparently matching sequences?

Ron Hardin rhhardin at att.net
Tue Jun 29 17:22:49 CEST 2010

```Doing a survey of permutations constrained by ( i-A <= p(i) <= i+B),  i=1..n, a lot of those sequences already exist, some not described with an obviously corresponding definition.

Which raises the question what to do, if anything, with b-files for my permutation problem when the existing sequence doesn't have a b-file.

The following are existing sequences (via a huge thicket of shell scripts) for various A,B.

existing %N, corresponding %N in permutation sequence, offset equivalence, and (possibly still growing) b-file for the permutation sequence, with offsets adjusted for the existing sequence, stealing initial terms if necessary.

What to do with the b-files?

%N A020701 Pisot sequences E(3,5), P(3,5).
%N xxxxxxx Number of permutations of 1..n with i-1<=p(i)<=i+1
%C xxxxxxx (Empirical) a(n)=A020701(n-3)
%H A020701 R. H. Hardin, <a href="b020701">Table of n,a(n) for n=0..97</a>

%N A020695 Pisot sequence E(2,3).
%N xxxxxxx Number of permutations of 1..n with i-1<=p(i)<=i+1
%C xxxxxxx (Empirical) a(n)=A020695(n-2)
%H A020695 R. H. Hardin, <a href="b020695">Table of n,a(n) for n=0..98</a>

%N A002524 Number of permutations of length n within distance 2.
%N xxxxxxx Number of permutations of 1..n with i-2<=p(i)<=i+2
%C xxxxxxx (Empirical) a(n)=A002524(n)
%H A002524 R. H. Hardin, <a href="b002524">Table of n,a(n) for n=0..100</a>

%N A072827 Number of permutations satisfying i-2<=p(i)<=i+3, i=1..n.
%N xxxxxxx Number of permutations of 1..n with i-3<=p(i)<=i+2
%C xxxxxxx (Empirical) a(n)=A072827(n)
%H A072827 R. H. Hardin, <a href="b072827">Table of n,a(n) for n=1..100</a>

%N A002526 Number of permutations of length n within distance 3.
%N xxxxxxx Number of permutations of 1..n with i-3<=p(i)<=i+3
%C xxxxxxx (Empirical) a(n)=A002526(n)
%H A002526 R. H. Hardin, <a href="b002526">Table of n,a(n) for n=0..100</a>

%N A072850 Number of permutations satisfying i-2<=p(i)<=i+4, i=1..n.
%N xxxxxxx Number of permutations of 1..n with i-4<=p(i)<=i+2
%C xxxxxxx (Empirical) a(n)=A072850(n)
%H A072850 R. H. Hardin, <a href="b072850">Table of n,a(n) for n=1..100</a>

%N A072854 Number of permutations satisfying i-3<=p(i)<=i+4, i=1..n.
%N xxxxxxx Number of permutations of 1..n with i-4<=p(i)<=i+3
%C xxxxxxx (Empirical) a(n)=A072854(n)
%H A072854 R. H. Hardin, <a href="b072854">Table of n,a(n) for n=1..100</a>

%N A072856 Number of permutations satisfying i-4<=p(i)<=i+4, i=1..n (permutations of length n within distance 4).
%N xxxxxxx Number of permutations of 1..n with i-4<=p(i)<=i+4
%C xxxxxxx (Empirical) a(n)=A072856(n)
%H A072856 R. H. Hardin, <a href="b072856">Table of n,a(n) for n=1..100</a>

%N A072852 Number of permutations satisfying i-2<=p(i)<=i+5, i=1..n.
%N xxxxxxx Number of permutations of 1..n with i-5<=p(i)<=i+2
%C xxxxxxx (Empirical) a(n)=A072852(n)
%H A072852 R. H. Hardin, <a href="b072852">Table of n,a(n) for n=1..100</a>

%N A072855 Number of permutations satisfying i-3<=p(i)<=i+5, i=1..n.
%N xxxxxxx Number of permutations of 1..n with i-5<=p(i)<=i+3
%C xxxxxxx (Empirical) a(n)=A072855(n)
%H A072855 R. H. Hardin, <a href="b072855">Table of n,a(n) for n=1..100</a>

%N A154654 Number of permutations of length n within distance 5
%N xxxxxxx Number of permutations of 1..n with i-5<=p(i)<=i+5
%C xxxxxxx (Empirical) a(n)=A154654(n)
%H A154654 R. H. Hardin, <a href="b154654">Table of n,a(n) for n=1..100</a>

%N A122189 Heptanacci numbers: each term is the sum of the preceding 7 terms, with a(0),...,a(6) = 0,0,0,0,0,0,1.
%N xxxxxxx Number of permutations of 1..n with i-6<=p(i)<=i+1
%C xxxxxxx (Empirical) a(n)=A122189(n+7)
%H A122189 R. H. Hardin, <a href="b122189">Table of n,a(n) for n=1..107</a>

%N A072853 Number of permutations satisfying i-2<=p(i)<=i+6, i=1..n.
%N xxxxxxx Number of permutations of 1..n with i-6<=p(i)<=i+2
%C xxxxxxx (Empirical) a(n)=A072853(n)
%H A072853 R. H. Hardin, <a href="b072853">Table of n,a(n) for n=1..100</a>

%N A154655 Number of permutations of length n within distance 6
%N xxxxxxx Number of permutations of 1..n with i-6<=p(i)<=i+6
%C xxxxxxx (Empirical) a(n)=A154655(n)
%H A154655 R. H. Hardin, <a href="b154655">Table of n,a(n) for n=1..100</a>

%N A154656 Number of permutations of length n within distance 7
%N xxxxxxx Number of permutations of 1..n with i-7<=p(i)<=i+7
%C xxxxxxx (Empirical) a(n)=A154656(n)
%H A154656 R. H. Hardin, <a href="b154656">Table of n,a(n) for n=1..100</a>

%N A154657 Number of permutations of length n within distance 8
%N xxxxxxx Number of permutations of 1..n with i-8<=p(i)<=i+8
%C xxxxxxx (Empirical) a(n)=A154657(n)
%H A154657 R. H. Hardin, <a href="b154657">Table of n,a(n) for n=1..68</a>

%N A122265 The (1,10)-entry of the matrix M^n, where M is the 10 X 10 matrix {{0,1,0,0,0, 0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0, 0,0,0,1,0},{0,0,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,1}}.
%N xxxxxxx Number of permutations of 1..n with i-9<=p(i)<=i+1
%C xxxxxxx (Empirical) a(n)=A122265(n+9)
%H A122265 R. H. Hardin, <a href="b122265">Table of n,a(n) for n=0..109</a>

%N A154658 Number of permutations of length n within distance 9
%N xxxxxxx Number of permutations of 1..n with i-9<=p(i)<=i+9
%C xxxxxxx (Empirical) a(n)=A154658(n)
%H A154658 R. H. Hardin, <a href="b154658">Table of n,a(n) for n=1..30</a>

rhhardin at mindspring.com
rhhardin at att.net (either)

```