# [seqfan] Re: There are more terms in this sequence?

Aai bradypus at xs4all.nl
Sun Feb 6 18:45:56 CET 2011

```FWIW:  you may of course map other functions on the (first k) divisors to create
a whole family of sequences, e.g.

cubes: 1 36 126144 236736 934902 3447632 ...

doubling: 2 6 12 28 40 48 224 234 496 960 8128 47616 174592 ...

In general for some k < tau(G):

k
==========
\\
\\
\\
G =   //  f(d_i)
//
//
==========
0
d_i | G

Hallo Claudio Meller, je schreef op 03-02-11 16:37:
> There are more terms in this sequence?
> Is good the title ?
>
> Numbers that are equal to the sum of the squares of his first divisors
>
> 1, 130, 1860, 148840, 3039520
>
> 130 (1, 2, 5, 10) 1^2+2^2+5^2+10^2 = 1+4+25+100 = 130
>
> 1860 (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30)
>
> 148480 (1, 2, 4, 5, 8, 10, 16, 20, 29, 32, 40, 58, 64, 80, 116, 128, 145,
> 160, 232)
>
> 3039520 (1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 32, 40, 44, 55, 80, 88, 110
> 121, 157, 160, 176, 220, 242, 314, 352, 440, 484, 605, 628, 785, 880) 121,
> 157, 160, 176, 220, 242, 314, 352, 440, 484, 605, 628, 785, 880)
>
> Thanks,
> Claudio
>
> _______________________________________________
>
> Seqfan Mailing list -http://list.seqfan.eu/
>

--
Met vriendelijke groet,
=@@i

```