# [seqfan] A156695

юрий герасимов 2stepan at rambler.ru
Wed Nov 21 14:02:11 CET 2012

```Softer version is  another sequence (wath it below), but it also needs a computer check.
If
A156695   ---->   odd numbers which are not of the form p + 2^a + 2^b,  a, b > 0, p prime  --->  1, 3, 5, 6495105,...
then
A______?  -----> the sum of distinct primes p such that n = 2^x + p*2^y,  x, y >=0 and p prime   ---->
0, 0, 2, 5, 5, 7, 8, 12, 14, 5, 15, 18, 19, 21, 31, 12, 15, 31, 31, 24, 54, 15, 37, 41, 43, 19, 66, 21, 20, 60, 52, 43, 79, 15, 70, 31, 34, 68, 117, 24, 42, 95, 52, 58, 174, 37, 97, 88, 108, 26, 109, 19, 50, 143, 123, 8, 101, 20, 72, 119, 141, 113, 229, 43, 63, 122, 62, 99, 240, 70, 74, 102, 112, 107, 361, 68, 166, 127, 118, 103, 174, 42, 206, 178, 136, 57, 299, 58, 84, 263, 231, 37, 202, 65, 157, 81, 92, 205, 247, 43, 134, 210, 172, 122, 517, 50, 199, 226, 208, 232, 445, 68, 213, 214, 303,

and A           ?  -----> numbers n such that n > A_____?(n)  ----->  1, 2, 3, 6, 10, 16, 17, 23, 29, 30, 34, 36, 37, 40, 46, 50, 52, 53, 56, 58, 64, 65, 67, 76, 82, 86, 88, 89, 92, 94, 96, 97, 100, 106, 112,...
or  A          ?  --------> numbers n such that n = A________?(n)   ------>  5, 70,
or   A           ?  --------> primes p such that p > A________?(p)  -------->   2, 3, 17, 23, 29, 37, 53, 67, 89, 97, 127,..

Please heln in the implemenntation of such a test.  Regards. Juri-Stepan Gerasimov

```