[seqfan] Re: A168022
Paolo Lava
paoloplava at gmail.com
Fri Nov 30 11:57:52 CET 2012
Juri,
numbers n such that 4^(n + 1) - 3*2^n + 1 is prime
0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 16, 19, 33, 35, 39, 62, 68, 69, 70, 96,
115, 122, 213, 265, 304, 364, 666, 864, 953, 1448,…
Bye
Paolo
2012/11/25 юрий герасимов <2stepan at rambler.ru>
>
> if
> A168022(non-composite numbers in the eastern ray of the Ulam spiral as
> oriented on the March iover of Scentific American) are 1, 2, 11, 53, 127,
> 233, 541, 743, 977, 1871, 3511,..
> then A_____? = (2^n)-th numbers in the eastem ray of the Ulam spiral as
> oriented on the March iover of Scientific American = 2, 11, 53, 233, 977,
> 4001, 16193, 65153, 261377, 1047041, 4191233, 16771073, 67096577,
> 268410881, 1073692673, 4294868993, 171796725577, 68719083521, 274877120513,
> 1099507957763, 4398043365377, 17592179752961, 70368731594753,
> 281474951544833,...
> or A ? = (numbers n such that 4^(n + 1) - 3*2^n + 1 is prime) =
> 0, 1, 2, 3, 4, 5, 6, 8, 9, 14, 16, a(11) = ?, a(12) = ?, a(13) = ? Dear
> Segfans, help calculat the number o this sequence by computer.
> Regards, Juri-Stepan Gerasimov
> ______________________________**_________________
>
> Seqfan Mailing list - http://list.seqfan.eu/
>
More information about the SeqFan
mailing list