[seqfan] Re: Primes and prime remainders
Daniel Joyce
hlauk.h.bogart at gmail.com
Sun Oct 5 17:18:35 CEST 2014
Hi Eric,
Why not represent all sequential primes in the remainder.
Also where the next divisor is a sequential prime.
5/3 = 2
13/5 = 3
19/7 = 5
29/11 = 7
37/13 = 11
47/17 = 13
131/19 = 17
Dan
On Sun, Oct 5, 2014 at 5:03 AM, Eric Angelini <Eric.Angelini at kntv.be> wrote:
> Hello SeqFans,
> Primes p(n) such that the remainder
> of p(n)/p(n-1) is prime.
> The seq P starts with p(1)=3 and is always
> extended with the smallest possible
> prime.
>
> P=3,5,7,17,19,41,43,89,...
>
> Example:
> 5/3--> remainder 2
> 7/5--> remainder 2
> 17/7--> remainder 3
> 19/17--> remainder 2
> 41/19--> remainder 3
> 43/41--> remainder 2
> 89/43--> remainder 3
> etc.
> Hope I didn't mistake somewhere.
> Best.
> É.
>
>
> Catapulté de mon aPhone
>
> _______________________________________________
>
> Seqfan Mailing list - http://list.seqfan.eu/
>
More information about the SeqFan
mailing list