[seqfan] Distribution of the Prime Numbers in a Polynomial

Charles Kusniec ck at centertap.com.br
Tue May 16 14:11:13 CEST 2017

Dear SeqFan Members,

1- At https://en.wikipedia.org/wiki/Prime_number_theorem "In number theory<https://en.wikipedia.org/wiki/Number_theory>, the prime number theorem (PNT) describes the asymptotic<https://en.wikipedia.org/wiki/Asymptotic_analysis> distribution of the prime numbers<https://en.wikipedia.org/wiki/Prime_number> among the positive integers.";
2- Positive integers is a linear recurring sequence and the set of it’s elements form a group;
Now, considering a parabola  x=ay^2+by+C where a, b, and C are integers and a>0, (so, if there are negative elements they will be finite)
3- All sequences of the form x=ay^2+by+C are also linear recurring sequences and also form a group;
4- There is an isomorphism between each group aL^2+bL+C and integers group where coefficients (a;b;C) are integers ;
5- So, distribution of the prime numbers<https://en.wikipedia.org/wiki/Prime_number> among the positive integers or any sequence of integers of the form aL^2+bL+C are both asymptotic.
6- If it is true for a Parabola, will be true for any Polynomial.

Best regards,

Charles Kusniec
cel.: +55 11 987474974
<mailto:ck at centertap.com.br>ck at centertap.com.br<mailto:ck at centertap.com.br>

Esta mensagem e/ou anexos contém informações confidenciais para o destinatário, tem fins específicos e é protegida por lei. Se você não é o destinatário desta mensagem, você deve apagá-la. Qualquer divulgação, cópia ou distribuição desta mensagem, ou qualquer ação tomada com base em tal, é estritamente proibida.

This message and/or attachments contains confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this message. Any disclosure, copying, or distribution of this message, or the taking of any action based on it, is strictly prohibited.

More information about the SeqFan mailing list