# [seqfan] Re: Anti-Carmichael numbers

Ami Eldar amiram.eldar at gmail.com
Fri Jul 20 00:24:15 CEST 2018

```What about the Anti-Lucas-Carmichael numbers: numbers n such that p+1 non |
n+1 for every prime p | n.
It seems that their density is D > 0.6.

On Thu, Jul 19, 2018 at 2:48 PM, Tomasz Ordowski <tomaszordowski at gmail.com>
wrote:

> Dear SeqFan!
>
> See http://oeis.org/A121707.
>
> Here's a simple definition of these numbers:
>
> Numbers n such that p-1 does not divide n-1 for every prime p dividing n.
>
> PROOF.
>
> Carmichael numbers: composite n coprime to 1^(n-1)+2^(n-1)+...+(n-1)^(n-
> 1).
>
> Anti-Carmichael numbers: n such that p-1 non | n-1 for every prime p | n.
>
>  Odd numbers n>1 such that n | 1^(n-1)+2^(n-1)+...+(n-1)^(n-1). (**)
>
> Equivalently: Numbers n>1 such that n^3 | 1^n+2^n+...+(n-1)^n. (*)
>
> Cf. http://oeis.org/A121707 (see conjecture in the second comment).
>
> Professor Schinzel (2015) proved the equivalence (*) <=> (**). QED.
>
> Problem: What is the natural density D of the set of these numbers?
>
> Can be proved that 0.1 < D < 0.3.  My conjecture: D = 2/pi^2.
>
> Sincerely,
>
> Tomasz Ordowski
> ______________
> Szanowny Panie,
> Podzielność (*) n^3|1^n+...+(n-1)^n=S_n(n) wymaga żeby n było nieparzyste,
> bowiem z 2^a|n (a>0) wynika S_n(n)= n/2 mod 2^(a+2). Zatem (*) jest
> rownoważna  podzielności n^3|(1^n+(n-1)^n)+(2^n+(n-2)^
> n)+...+((n-1)^n+1^n).
> Ale przy n nieparzystym dla każdego i :i^n+(n-i)^n=n^2*i^(n-1), zatem
> podzielność (*) jest rownoważna podzielności (**) n|S_(n-1)(n). Z drugiej
> strony podzielność (**) i warunek 4 nie dzieli n wymagają nieparzystości n.
> Lącze pozdrowienia.
>                 Andrzej Schinzel
>
> --
> Seqfan Mailing list - http://list.seqfan.eu/
>

```