[seqfan] Re: Pythagorean primes and nexus primes
Tomasz Ordowski
tomaszordowski at gmail.com
Fri Nov 16 08:52:03 CET 2018
P.S. In particular:
There are no primes p = k^2+1 > 5 such that (k^p-1)/(k-1) is prime or
(k^p+1)/(k+1) is prime.
Thomas Ordowski
czw., 15 lis 2018 o 14:53 Tomasz Ordowski <tomaszordowski at gmail.com>
napisał(a):
> Dear SeqFans!
>
> Let's define:
>
> Primes p = a^2+b^2 such that (a^p-b^p)/(a-b) is prime or (a^p+b^p)/(a+b)
> is prime.
>
> Conjecture: these are primes p = k^2+(k-1)^2 such that k^p-(k-1)^p is
> prime.
>
> There are probably no primes (a^p+b^p)/(a+b) for p = a^2+b^2 > 5.
>
> Cf. https://oeis.org/history/view?seq=A321616&v=13
>
> Maybe someone will prove it or disprove it.
>
> Best regards,
>
> Thomas
> _________________________
> https://oeis.org/draft/A321616
> My invitation to the Discussion.
>
>
>
>
> <#m_-3940598928278203437_m_-6591018314313610903_m_7707275732640479035_DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2>
>
More information about the SeqFan
mailing list