[seqfan] m-Infinitary Amicable Pair

zbi74583_boat at yahoo.co.jp zbi74583_boat at yahoo.co.jp
Thu Nov 15 03:47:01 CET 2018


    Hi  Seqfans    Once  I generalized InfinitarySigma(n) to m-InfinitarySigma(n)  For example  m=3, 4, 5
    http://oeis.org/A049418
    http://oeis.org/A074847
    http://oeis.org/A097863
    I have computed Perfect Number  for these m-I-Sigma function. But  I haven't computed m-Infinitary Amicable Pair. So  I computed some term  of  {x(n), y(n)}  for m=3    {x(n), y(n)} : 3-Infinitary Amicable Pair  3-I-Sigma(x) = 3-I-Sigma(y) = x+y
    {x(n), y(n)  :  {2^2*5*11, 2^2*71},  {2^3*3^2*13*5*11, 2^3*3^2*13*71},  {2^4*3^3*5*11, 2^4*3^3*71},  {2*3^3*7*5*17,2*3^3*7*107},  {3^2*7*13*5*17, 3^2*7*13*107},  {2*3^3*5*11*19, 2*3^3*5*239},  {3^2*5*13*11*19, 3^2*5*13*239},  ....
    Could anyone confirm them and compute more terms?


    Yasutoshi    


More information about the SeqFan mailing list