[seqfan] Re: Riecaman

Nick Matteo kundor at kundor.org
Tue Sep 10 19:27:40 CEST 2019


I computed more terms of some of these sequences.

Most notably, the trajectory for 71 ends after 158228253524 (ca. 158
billion) steps, the last prime subtracted being 4443679700533.

I computed a few more of the minima in your sequence starting with 6:

             i n_i          p_{i+1}
             2   1                5
             5   2               13
            12   1               41
            29   8              113
            78   3              401
           199   4             1223
           508   1             3637
          1355   2            11197
          3592   1            33569
          9589   8            99971
         25752   1           296753
         70579  30           890377
        194228   5          2664229
        539961  60          8002847
       1507602   1         24007873
       4228745   4         72001673
      11913940   7        215991203
      33690443  38        647909833
      95581182  25       1943478491
     272003821  16       5830319399
     776082524  19      17489762779
    2219823175  16      52470123707
    6363074656   9     157409115779
   18275879639  18     472222208149
   52587587974   3    1416658480733
  151572062973  22    4249982656133
  437548314952  61   12749957904521
 1264892207811   8   38249838428717
 3661490934914   3  114749512555373
10612045942623   8  344248576871219
30792215692360  13 1032745848371989

Thus it couldn't hit 0 until around 90 trillion steps.

The first few minima starting with 20 are:
            i n_i        p_{i+1}
            6   1             17
           15   4             53
           46   1            211
          113  10            619
          280   5           1823
          731   6           5531
         1894   9          16339
         5007  38          48679
        13492   1         145819
        36887  10         439367
       101126   5        1315661
       280177  18        3954053
       779238   7       11857073
      2179061  30       35561137
      6122110  21      106653377
     17273371  14      319963883
     48904804  15      959782393
    138917293  12     2879370899
    395717222  87     8638014793
   1130187981   4    25915353869
   3235199798  49    77745289207
   9280360825  36   233232717407
  26672973902   7   699697233679
  76797750557  32  2099101861691
 221477503948  31  6297300594289
 639681173681  58 18891882066913
1850131571990  81 56675642260597

The first few minima starting with 50 are:
            i n_i        p_{i+1}
           10   1             31
           23   6             89
           64   1            313
          159   2            941
          398   5           2731
         1037  12           8273
         2754   1          24923
         7299   8          73973
        19506   1         218761
        53301  26         656429
       146396   9        1962967
       405971   4        5892959
      1132492  25       17685539
      3173065  34       53053547
      8928446  19      159130943
     25226291   6      477406117
     71506842  95     1432061549
    203333407  12     4296147983
    579758492   7    12887968169
   1657251341  24    38665453867
   4747662354  23   115994882567
  13628787329  54   347979525269
  39196613838   9  1043932282319
 112924461059  38  3131800435073
 325846539826  13  9395396532143
 941613240105  10 28186159828283

When starting with 51, the minima occur at the same steps, but each
n_i  is one larger.

For 70:
            i n_i        p_{i+1}
           13   2             43
           36   1            157
           83   4            433
          204  13           1259
          531   8           3833
         1356  15          11213
         3611   8          33739
         9764   5         101987
        26731  10         309109
        73274  15         927191
       202605   2        2788813
       562190   3        8356861
      1569627  20       25062967
      4406454  29       75219323
     12419599  22      225710143
     35130326   1      677159999
     99702241   8     2031695719
    283769884   7     6095160419
    809844705  10    18286822013
   2316543714  53    54859591001
   6640906387  22   164578508771
  19075689854  35   493739715163
  54893524725   2  1481228734481
 158228253522  19  4443679700513
 456789722191  26 13331029653661
1320592376350   1 39993122267353

Similarly to the 50/51 pair, the trajectory for 71 has minima at the
same locations, but each n_i is one larger for the first 158 billion
steps.
When the trajectory for 70 hits 19 at step 158228253522, the
trajectory for 71 instead hits 20, which is equal to the next prime
difference 4443679700533 - 4443679700513,
so that the sequence terminates two steps later.

Cheers,
Nick Matteo

On Wed, Aug 28, 2019 at 6:46 PM <hv at crypt.org> wrote:
>
> Here is a Recaman-inspired sequence with apparent ties to Riemann.
>
> The main purpose of this is to ask why on earth we end up with a series
> of primes whose successive ratios converge to 9.
>
> Define a mapping n_{i-1} -> n_i as:
>   n_{i-1} + p_i    if p_i > n_{i-1}
>   n_{i-1} - p_i    otherwise
> with a given starting point n_0, and where p_i is the i'th prime.
>
> Define a(n) as the least positive k such that n_k is 0 when we set n_0 = n,
> or as 0 if no such k exists.
>
> I've calculated most values of a(0) .. a(100), (see below); the missing ones
> are for n in { 6 16 20 30 42 50 51 56 70 71 76 84 85 90 92 }, and there
> things get interesting. If k exists for any of these, it is at least 1.5e10.
>
> Several of those hard ones collapse to identical trajectories early on:
>   6, 16, 30, 56, 90
>   20, 42, 76
>   50, 84
>   51, 85
> .. so a(6) = a(16) etc. Taking the first of such sets as "primitive",
> that leaves primitives { 6 20 50 51 70 71 92 }.
>
> The shape of the trajectories is that we alternately add and subtract,
> with the net effect that n_{i+2} is smaller than n_i by the prime difference,
> until we reach a local mininum that is either zero (terminating the
> process) or too small for the prime difference causing us to add twice
> in a row. When we hit a local minimum we also switch the parity of
> the lower of each pair of terms, and obviously we can't hit zero when
> that's odd.
>
> Checking the even local minima for the trajectory of 6, for example,
> gives:
> n  n_i  i          p_i
> 6    2  5          13
> 6    8  29         113
> 6    4  199        1223
> 6    2  1355       11197
> 6    8  9589       99971
> 6   30  70579      890377
> 6   60  539961     8002847
> 6    4  4228745    72001673
> 6   38  33690443   647909833
> 6   16  272003821  5830319399
> 6   16  2219823175 52470123707
>
> I looked at this mostly to try and understand whether I should expect
> 0 values of the sequence to exist - my conjecture is no - but looking
> at the ratio of the p_i for those local minima, they turn out to be
> converging on something astonishingly close to 9. For n_0 = 6 we get:
>
> 8.69230769230769 (= 113/13)
> 10.8230088495575
> 9.15535568274734
> 8.92837367151916
> 8.90635284232427
> 8.98815557904124
> 8.99700731502177
> 8.99853858951305
> 8.99865861273323
> 8.99952817610636
>
> The ratios in other examples look similar, eg for 71:
>
> 8.01910828025478
> 8.90627482128674
> 9.09542495317934
> 9.09126653397002
> 9.01309546792409
> 9.00090632116533
> 9.00247399195550
> 9.00106389627424
> 9.00051634900210
>
> That makes no sense to me. I hope someone else can explain it.
>
> Hugo van der Sanden



More information about the SeqFan mailing list