[seqfan] Re: Partition into Stroke
zbi74583_boat at yahoo.co.jp
zbi74583_boat at yahoo.co.jp
Fri Jan 28 03:25:01 CET 2022
I explain a little about how to compute the number of Partition into stroke See this figure on my blog, in the manuscript on 2021/6/27
https://mixi.jp/view_diary.pl?id=1979119073&owner_id=716028
For instance, I explain { 6 } and { 5,1 }, they represent the cases of the partition into one stroke which has a path made by 6 edges and the partition into two strokes which has two paths made by 5 edged and one edge The first figure represents 4 vertexes and two edges between them and their names, m, j, x, are upper edges, n, k, y, are downer edges The second figure represents a path made by connected six edges, m, j, x, n, k, y, names without minus mean right directed edges and names with minus mean left directed edges x 16 means 16 symmetrical partition exist The fifth figure represents two paths made by five edges, m, j, x, -y,-k, and n, plus means union So, the number of Partition into stroke = 16 + 16 + 16 + 16 + 16 + .... + 4 + 16 + 8 + 8 + 2 = 490 > Number of Partition into stroke of G_2 j = right directed e_1, if it has minus then it means left o=o directed e_1 k = right directed f_1, if it has minus then it means left directed f_1 Partitions are .... j-k, k-j, -jk, -kj, j + k, -j + -k So, number is 6, it is not 2 I give again the definition of Partition into stroke of directed graph It is the partition which satisfies the following two conditions 1. The graph is union of the edges which are members of edge disjoint directed path s on it
ex x y z o->o->o xyz is a partition, xy + yz is not a partition, because, xy U yz = xyz Allan Ask me any thing that you don't understand, I will continue to explain until you understand it I feel the idea is difficult for people who don't use Kanji, I asked to confirm to several mathematicians but they all don't understand it If P is a set of paths that satisfies the following three conditions then P is a " Partition of G into stroke " 1. For all p_i ( p_i el P => p_i < G ) 2, For all g_j ( g_j el G => ( Exist p_i g_j < p_i ) 3. For all i,j ( p_i el P and p_j el p => p_i U p_j )
Yasutoshi
----- Original Message -----
From: Allan Wechsler <acwacw at gmail.com>
To: Sequence Fanatics Discussion list <seqfan at list.seqfan.eu>
Date: 2022/1/22, Sat 15:03
Subject: [seqfan] Re: Partition into Stroke
Yasutoshi, I urge caution.
The definitions at A131519 seem a little confusing and vague to me. For
example, I am guessing that you do *not* consider v1v2 + v3v2 to be a path,
even though it satisfies all the constraints that are stated. Other
constraints, not stated in A131519, are needed to make "path" correspond to
the usual definition of path in graph theory.
Because the definitions might be confusing, I suspect that Max Alexeyev,
who is a smart guy, interpreted them to mean something other than what you
intended. That means that the data listed in A131519 is counting *something*,
but perhaps not the same thing you *wanted* to count.
If that's the case, then what needs to happen is: (1) A131519 should be
clarified so that it clearly explains what Max was counting. (2) Introduce
a new sequence with your new data, clearly explaining what *it* is counting
(and explaining the difference from A131519). (3) Somebody will then step
up and provide more data, hopefully.
But A131519 is old enough now that there could easily be papers referring
to it in the mathematical literature, or on websites. So it is probably not
a good idea to alter the data at this late date.
I think it would help *me *if you could explicitly enumerate the 6 "stroke
partitions" of G2. I cannot find six of *anything* in G2. G2 only has two
edges, right?
Allan
On Fri, Jan 21, 2022 at 2:12 AM <zbi74583_boat at yahoo.co.jp> wrote:
> Hi Seqfans I abstracted the idea of "Stroke" which is used in writing
> Kanji. For instance, when "木" is written, which means tree, these four
> strokes are used. See " How to write a" 's page
> https://kakijun.jp/page/0461200.html
> My definition of " Partition into stroke " which is an abstraction of
> Kanji 's stroke is the following
> Given an undirected graph G=(V,E), its partition into strokes is a
> collection of directed edge-disjoint paths (viewed as sets of directed
> edges) on V such that (i) union of any two paths is not a path; (ii) union
> of corresponding undirected paths is E.
>
> The other description of the definition is the following
> A "stroke" is defined as follows. If the following conditions are
> satisfied then the partition to directed paths on a directed graph is
> called "a partition to strokes on a directed graph". And all directed paths
> in the partition are called "strokes". C.1. Two different directed paths in
> a partition do not have the same edges. C.2. A union of two different paths
> in a partition does not become a directed path. In other word, a "stroke"
> is a locally maximal path on a directed graph.
> Recently I recomputed the terms of A131519 and I have found it is
> fault
> The correct one is 1, 6, 58, 490, .... So I am going to rewrite
> it but I must confirm it Could anyone confirm it and compute more
> terms ? If the definition is difficult then feel free to ask anything
> about it
>
>
> Yasutoshi
>
> --
> Seqfan Mailing list - http://list.seqfan.eu/
>
--
Seqfan Mailing list - http://list.seqfan.eu/
More information about the SeqFan
mailing list