[seqfan] Re: Maximal prime gaps
Tomasz Ordowski
tomaszordowski at gmail.com
Wed Feb 22 05:47:16 CET 2023
Yes ...
Similar conjecture:
log log prime(n+1) - log log prime(n) < 1/n.
T. Ordowski
wt., 21 lut 2023 o 04:18 Trizen <trizenx at gmail.com> napisał(a):
> Just an observation:
>
> Limit_{p -> Infinity} (p^(p^(1/p)) - p - log(p)^2) = 0
>
> Therefore, if a counter-example exists, it should be just as hard to find
> as finding a counter-example to Cramer's conjecture.
>
> On Mon, Feb 20, 2023 at 11:36 AM Tomasz Ordowski <tomaszordowski at gmail.com
> >
> wrote:
>
> > Hello!
> >
> > Conjecture:
> > if p > 3, then q < p^(p^(1/p)),
> > where q is the next prime after p.
> >
> > Is there a counterexample?
> >
> > Similar to Firoozbakht's conjecture,
> > this is close to Cramer's conjecture:
> > q - p = O(log p)^2.
> >
> > Best,
> >
> > Thomas
> > ______________________
> > https://en.wikipedia.org/wiki/Prime_gap
> >
> > --
> > Seqfan Mailing list - http://list.seqfan.eu/
> >
>
> --
> Seqfan Mailing list - http://list.seqfan.eu/
>
More information about the SeqFan
mailing list