<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE></TITLE>

<META content="MSHTML 5.50.4725.2100" name=GENERATOR></HEAD>
<BODY>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003>><FONT face="Times New Roman" color=#000000 size=3>I 
believe a(n)-->1/2, which can lead to conjectures related to primes. 
</FONT></SPAN></FONT></DIV>
<DIV><FONT face="Times New Roman" color=#000000 size=3><SPAN 
class=804573615-19022003></SPAN></FONT> </DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN class=804573615-19022003>This 
is possible, but is not suggested by the graph of (n, a(n)) from n = 1 
to 10^5. (Of course, the </SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003>convergence to 1/2 could be clear from looking at 
larger n, so the graphical evidence isn't the last word either.) 
</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN class=804573615-19022003>It 
appears that there's an infinite subsequence </SPAN></FONT><FONT face=Arial 
color=#0000ff size=2><SPAN class=804573615-19022003>a(n_k) each of whose terms 
have distance > e for some </SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN class=804573615-19022003>small 
constant e > 0--which, if true, would imply divergence.</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003></SPAN></FONT> </DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003>Mathematica code for the graph:</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003></SPAN></FONT> </DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN class=804573615-19022003>t = 
{1};<BR>gt = 1;<BR>For[i = 2, i <= 10^5, i++,<BR>    gt = 1 - 
(Prime[i - 1]/Prime[i]) gt;<BR>    t = Append[t, 
gt]];<BR>ListPlot[t]</SPAN></FONT></DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003></SPAN></FONT> </DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN 
class=804573615-19022003></SPAN></FONT> </DIV>
<DIV><FONT face=Arial color=#0000ff size=2><SPAN class=804573615-19022003>J. L. 
Pe</SPAN></FONT></DIV>
<BLOCKQUOTE>
  <DIV class=OutlookMessageHeader dir=ltr align=left><FONT face=Tahoma 
  size=2>-----Original Message-----<BR><B>From:</B> benoit 
  [mailto:abcloitre@wanadoo.fr]<BR><B>Sent:</B> Tuesday, February 18, 2003 4:05 
  PM<BR><B>To:</B> Pe Joseph-AJP070<BR><B>Cc:</B> 
  seqfan@ext.jussieu.fr<BR><B>Subject:</B> Re: A Generalization of the Sequence 
  Convergence Problem<BR><BR></FONT></DIV>
  <P><FONT face=Geneva>Regarding your generalisation. If s(n), s(n+1)-s(n) are 
  increasing sequences, that seems working. </FONT></P><BR>
  <P><FONT face=Geneva>Coming back to the original problem 
  a(n)=1-(p(n-1)/p(n))*a(n-1), I believe a(n)-->1/2, which can lead to 
  conjectures related to primes. </FONT></P><BR>
  <P><FONT face=Geneva>It's easy to show that limit n-->oo (a(2n)+a(2n+1)) = 
  1 but that doesn't mean limit n-->oo a(2n)= limit n-->oo a(2n+1)= 1/2 at 
  all. </FONT></P><BR>
  <P><FONT face=Geneva>Since : a(2n)=1/p(2n)*sum(k=1,n,p(2*k)-p(2*k-1)) ; 
  a(2n+1)=1/p(2n+1)*sum(k=1,n,p(2*k+1)-p(2*k)) </FONT></P><BR>
  <P><FONT face=Geneva>a(n)-->1/2 would imply sum(k=1,n,p(2*k)-p(2*k-1)) to 
  be asymptotic to (2n)*log(2n)/2 or n*log(n) </FONT></P><BR>
  <P><FONT face=Geneva>but as one can see 
  (http://mathworld.wolfram.com/PrimeGaps.html), the behaviour of p(k+1)-p(k) is 
  quite unknown. </FONT></P><BR>
  <P><FONT face=Geneva>More precisely is : </FONT></P><BR>
  <P><FONT face=Geneva>sqrt(n)*(1/p(2*n+1)*sum(k=1,n,p(2*k+1)-p(2*k)) - 
  1/p(2*n)*sum(k=1,n,p(2*k)-p(2*k-1))) bounded ? </FONT></P><BR><BR>
  <P><FONT face=Geneva>with (PARI) 
  delta(n)=sqrt(n)*(1/prime(2*n+1)*sum(k=1,n,prime(2*k+1)-prime(2*k)) - 
  1/prime(2*n)*sum(k=1,n,prime(2*k)-prime(2*k-1))) </FONT></P><BR><BR>
  <P><FONT face=Geneva>Does limit n-->infinity delta(n) exist? 
  delta(20000)=-0.5846342931598270275... </FONT></P><BR>
  <P><FONT face=Geneva>Is 1/prime(2*n+1)*sum(k=1,n,prime(2*k+1)-prime(2*k)) < 
  1/prime(2*n)*sum(k=1,n,prime(2*k)-prime(2*k-1)) for all n large enough? 
  </FONT></P><BR>
  <P><FONT face=Geneva>If so the sequence of n such that 
  1/prime(2*n+1)*sum(k=1,n,prime(2*k+1)-prime(2*k)) >= 
  1/prime(2*n)*sum(k=1,n,prime(2*k)-prime(2*k-1)) </FONT></P><BR>
  <P><FONT face=Geneva>could be finite : </FONT></P><BR>
  <P><FONT 
  face=Geneva>1,2,3,4,5,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,125,126,127,128,129,239,240,241,242,243,244,261,262,263,264,267,269,274,275,276,277,278,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,313,314 
  </FONT></P><BR>
  <P><FONT face=Geneva>Is 314 the last term? </FONT></P><BR><BR><BR>
  <P><FONT face=Geneva>Benoit Cloitre </FONT></P>
  <P><FONT face=Geneva>abcloitre@wanadoo.fr 
  </FONT></P><BR><BR><BR><BR><BR><BR><BR><BR><BR>
  <P>Le mardi, 18 fév 2003, à 17:12 Europe/Paris, Pe Joseph-AJP070 a écrit : 
  </P><BR>
  <P>Here is a generalization of the sequence convergence problem I posted </P>
  <P>yesterday. (For convenience, I append </P>
  <P>the original problem at the end of this message.) </P><BR>
  <P>============================================================================ 
  </P><BR>
  <P>Let s(n) be a sequence that converges to a real number K different from -1. 
  </P>
  <P>Define the "oscillator sequence" a(n) of s(n) by the rules: </P><BR>
  <P>a(1) = 1; </P>
  <P>a(n) = 1 - (s(n-1)/s(n)) a(n-1) if n > 1. </P><BR>
  <P>Note that the original problem below concerns the convergence of the </P>
  <P>oscillator sequence of s(n) = p(n). </P><BR>
  <P>Examples of s(n) are s(n) = n, s(n) = n^2 and in general, any polynomial 
  </P>
  <P>function in n that is not the zero polyonomial function. </P>
  <P>The oscillator sequence of s(n) may converge or diverge depending on s(n). 
  </P>
  <P>Clearly, if s(n) = 1 is the constant sequence mapping </P>
  <P>each positive integer to 1, then a(n) diverges--in fact, oscillates between 
  </P>
  <P>0 and 1 (hence the name "oscillator sequence"). </P>
  <P>If s(n) = n, it is not hard to prove that a(n) converges to 1/2. </P><BR>
  <P>Can you find conditions on s(n) that will ensure the convergence of its 
</P>
  <P>oscillator sequence? Of course, if s(n) converges, then </P>
  <P>lim s(n) = 1/(K + 1). </P><BR>
  <P>============================================================================ 
  </P><BR>
  <P>J. L. Pe </P><BR>
  <P>============================================================================ 
  </P><BR>
  <P>Original Problem: </P><BR>
  <P>Define the sequence a(n) by: a(1) = 1; a(n) = 1-(p(n-1)/p(n))*a(n-1) if n 
  > </P>
  <P>1, where p(n) denotes the n-th prime. </P>
  <P>It's easy to show (an exercise!) that if L = lim a(n) exists, then L = 1/2. 
  </P>
  <P>Can you prove the convergence of a(n) or the divergence of a(n)? 
  </P><BR><BR></BLOCKQUOTE></BODY></HTML>