<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML xmlns:v xmlns:o><HEAD>
<META http-equiv=Content-Type content=text/html;charset=iso-8859-1>
<META content="MSHTML 6.00.2600.0" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY id=MailContainerBody 
style="PADDING-LEFT: 10px; FONT-WEIGHT: normal; FONT-SIZE: 10pt; COLOR: #000000; BORDER-TOP-STYLE: none; PADDING-TOP: 15px; FONT-STYLE: normal; FONT-FAMILY: Verdana; BORDER-RIGHT-STYLE: none; BORDER-LEFT-STYLE: none; TEXT-DECORATION: none; BORDER-BOTTOM-STYLE: none" 
leftMargin=0 topMargin=0 acc_role="text" CanvasTabStop="true" 
name="Compose message area"><?xml:namespace prefix="v" /><?xml:namespace prefix="o" />
<DIV>Hello SeqFans,</DIV>
<DIV> </DIV>
<DIV>I conjectured about A079279 that it contains all 3 mod 6 and 
4 mod 6 numbers, all 2 mod 6 numbers that are not 20 mod 30, and no other 
numbers except 1.  (The sequence starts with 1, 2, and 3, and from then on 
the next member is the smallest integer a) greater than any that have 
yet appeared, and b) such that it shares factors with some, but not all, of 
the previous three members; it begins 1, 2, 3, 4, 8, 9, 10, 14, 15, 16 
.…)  Both Jon Perry and I thought we had proved this.</DIV>
<DIV 
style="FONT-WEIGHT: normal; FONT-SIZE: 10pt; COLOR: #000000; FONT-FAMILY: Verdana">
<DIV>Unfortunately, as I've written to Jon already, the original conjecture 
was incorrect, and so were our "proofs"!  </DIV>
<DIV> </DIV>
<DIV>My conjecture is correct as written until the phrase "and no 
other numbers except 1."  Here's where it goes wrong:</DIV>
<DIV> </DIV>
<DIV>94th member:  196 (4 mod 6)</DIV>
<DIV>95th member:  201 (3 mod 6)</DIV>
<DIV>96th member:  202 (4 mod 6)</DIV>
<DIV>97TH MEMBER: 203 (5 mod 6; shares factors with 196 (7), but not 201 or 
202)    </DIV>
<DIV>98TH MEMBER: 204 (0 mod 6; shares factors with 201 and 202, but not 
203)</DIV>
<DIV> </DIV>
<DIV>Then the sequence continues according to the original conjecture until 413 
and 414, and in general for all numbers 203 or 204 mod 210 (which are 
all members).</DIV>
<DIV> </DIV>
<DIV>I believe I now have a proof (submitted for you to check, if you 
like) that the sequence contains all 3 mod 6 and 4 mod 6 numbers, all 
2 mod 6 numbers that are not 20 mod 30, all 203 mod 210 and 204 mod 210 numbers, 
and no other numbers except 1--in other words, that the residues mod 210 
that always indicate a member of the sequence are:</DIV>
<DIV> </DIV>
<DIV>2,3,4,8,9,10,14,15,16,21,22,26,27,28,</DIV>
<DIV>32,33,34,38,39,40,44,45,46,51,52,56,57,58,</DIV>
<DIV>62,63,64,68,69,70,74,75,76,81,82,86,87,88,</DIV>
<DIV>92,93,94,98,99,100,104,105,106,111,112,116,117,118,</DIV>
<DIV>122,123,124,128,129,130,134,135,136,141,142,146,147,148,</DIV>
<DIV>152,153,154,158,159,160,164,165,166,171,172,176,177,178,</DIV>
<DIV>182,183,184,188,189,190,194,195,196,201,202,203,204,206,207,208,</DIV>
<DIV> </DIV>
<DIV>and there are no other members except 1.  (Unfortunately, when I 
submitted the sequence I worked it out only through 135 or so; otherwise I 
would have caught my mistake.)  </DIV>
<DIV> </DIV>
<DIV>Why does the cycle repeat mod 210?  Because, 
as you can verify, the maximum distance between a(n ) and a(n +3), 
through 210, is 10 (between 16 and 26, 46 and 56, etc.)  So it never 
matters to a number's membership in the sequence, at least through the number 
210, whether or not it is a multiple of 11--by the time a number 
might qualify for membership by virtue of sharing the factor 11 
with one of the previous 3 numbers, the vacancy (the next place in the 
sequence) has already been filled.  It does matter whether or not it 
is a multiple of 2, 3, 5 or 7; and the product of those numbers is 
210.  (Could the cycle repeat in accordance with a smaller 
divisor of 210 as a modulus?  No.  The aliquot divisors of 210 
are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, and 105.  All of 
the divisors greater than 1, except 30 and 42, have both multiple and 
non-multiples in the sequence, so they are too narrow as criteria.  
203 is the first 23 mod 30 number in the sequence, and also the first 35 mod 42 
number.  So 210 is necessary.)   </DIV>
<DIV> </DIV>
<DIV>So since 210 is 2*3*5*7, the product of all the factors that matter (up to 
210), the kind of conclusion that I asserted (wrongly) about 
mod 30 in my comment to the database in February, does work for mod 
210, with the appropriate changes--namely, that the next-largest number 
that shares factors with some but not all of consecutive 2, 3, and 4 mod 210 
numbers is always the next 8 mod 210 number; the next-largest satisfying 
this condition with respect to a 3, 4, and 8 mod 210 number-cluster is always 
the next 9 mod 210 number; . . . ; the next-largest with this relation 
to a 196, 201, and 202 mod 210 number-cluster is always the next 203 mod 
210 number; and so on until the cycle comes around again to the 
beginning.  </DIV>
<DIV> </DIV>
<DIV>There are 100 (instead of 98) different residues of 210 that always 
indicate a member of the sequence, and A079279 (100m +n) = 210m + 
A079279 (n ) for n >1.  </DIV>
<DIV> </DIV>
<DIV>I will be grateful to anyone who checks this, and apologize for my 
earlier error.</DIV>
<DIV> </DIV>
<DIV>Yours sincerely,</DIV>
<DIV>Matthew Vandermast </DIV>
<DIV><A href="mailto:ghodges14@msn.com">ghodges14@msn.com</A></DIV>
<DIV> </DIV>
<DIV>P.S.  My server appears to be having problems right now, so I may not 
be able to reply to you right away.  Sorry for any 
inconvenience.--mjv  </DIV></DIV></BODY></HTML>