<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML xmlns:v xmlns:o><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<STYLE></STYLE>

<META content="MSHTML 6.00.2800.1106" name=GENERATOR></HEAD>
<BODY id=MailContainerBody 
style="PADDING-LEFT: 10px; FONT-WEIGHT: normal; FONT-SIZE: 10pt; COLOR: #000000; BORDER-TOP-STYLE: none; PADDING-TOP: 15px; FONT-STYLE: normal; FONT-FAMILY: Verdana; BORDER-RIGHT-STYLE: none; BORDER-LEFT-STYLE: none; TEXT-DECORATION: none; BORDER-BOTTOM-STYLE: none" 
leftMargin=0 topMargin=0 acc_role="text" CanvasTabStop="true" 
name="Compose message area"><?xml:namespace prefix="v" /><?xml:namespace prefix="o" />
<DIV>
<DIV>On 1 December, Leroy Quet wrote:</DIV>
<DIV> </DIV>
<DIV>I figured (and Martin Cohen confirmed {referencing Hardy & Wright 
theorem <BR>320}) that d(m), the number of positive divisors of m, was such 
that<BR><BR>limit{n-> infinity} (1/n) (sum{m=1 to n} d(m))   - 
ln(n)<BR><BR>= 2*c - 1, where c is Euler's constant (.5772...).<BR></DIV>
<DIV> </DIV>
<DIV>******* </DIV>
<DIV>Does anyone know, and if so could someone please tell me, whether the 
"typical" nth term of sequence A018804, the sum of gcd (k,n) for 1 
<= k <= n  </DIV>
<DIV>(a (1) through a (10) are 1, 3, 5, 8, 9, 15, 13, 20, 21, 27 .  . ; 
see <A 
href="http://www.research.att.com/projects/OEIS?Anum=A018804">http://www.research.att.com/projects/OEIS?Anum=A018804</A>), 
</DIV>
<DIV> </DIV>
<DIV>is about the same size as the nth term of sequence A006218, sum_(k=1 . . . 
n) d (k ) (corresponding terms are 1, 3, 5, 8, 10, 14, 16, 20, 23, 27 
 . . ; see <A 
href="http://www.research.att.com/projects/OEIS?Anum=A006218">http://www.research.att.com/projects/OEIS?Anum=A006218</A>), 
</DIV>
<DIV> </DIV>
<DIV>or "about" n* (ln (n ) + 2*c - 1?</DIV>
<DIV> </DIV>
<DIV>Put more technically, does </DIV>
<DIV>limit {n -> infinity}  sum_(k=1 . . . n) A018804(k )/ sum_(k=1 
 . . n) A006218(k )</DIV>
<DIV>=1 (or possibly slightly more or less than 1)?</DIV>
<DIV> </DIV>
<DIV>I can see why this might be true (since A006218 is also sum_(k=1  . . n) 
floor (n/k) ),  but proving it is beyond me.  Thanks in advance 
to anyone who might reply to this query. </DIV>
<DIV> </DIV>
<DIV>Regards,</DIV>
<DIV>Matthew Vandermast</DIV></DIV></BODY></HTML>