<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY bottomMargin=0 leftMargin=3 topMargin=0 rightMargin=3>
<DIV>     Regarding the comment:</DIV>
<DIV>> not EIS-able yet, since the mere existence of the polynomials 
is<BR>> pure conjecture itself.</DIV>
<DIV>this has been addressed by George Andrews in his book (which I 
bought), </DIV>
<DIV>"The Theory of Partitions", section: 11.4 Higher-Dimensional 
Partitions.  </DIV>
<DIV>There, on pages 189-197 he establishes the fact that the polynomials you 
mentioned do indeed exist, and gives a the 
Binomial coefficients needed to calculate n-dimensional 
partitions up to 6 in terms of n. </DIV>
<DIV>  </DIV>
<DIV>These Binomial coefficients that generate n-dimensional 
partitions are recorded in OEIS at:</DIV>
<DIV>   <A 
href="http://www.research.att.com/projects/OEIS?Anum=A096806">http://www.research.att.com/projects/OEIS?Anum=A096806</A><BR>Further, the 
inverse binomial transform of the diagonals of this triangle 
A096806 (also recorded in A096806) seem to provide some hints 
at a pattern for further rows.</DIV>
<DIV> </DIV>
<DIV>
<DIV>      Why is it that the row sums of 
A096651^n form the n-dimensional partitions? </DIV>
<DIV>First note that triangle A096651 forms the coefficients of 
the multidimensional partition transform of n-dimensional partitions 
into (n+1)-dimensional partitions.  </DIV>
<DIV>The property that the row sums of matrix power A096651^n form the 
n-dimensional partitions is due to the fact that the zero-dimensional 
partitions are defined as 1 for all integers.  </DIV>
<DIV>Applying the multidimensional partition transform (A096651) n-times 
upon the sequence of 1's thus generates the n-dimensional partitions, which in 
turn also equal the row sums of the n-th matrix power of 
A096651.    </DIV></DIV>
<DIV> </DIV>
<DIV>Wouter, in my analysis I also observed the possible connection to 
A000806 - very interesting if so. </DIV>
<DIV>One minor correction: I think that for</DIV>
<DIV>> T(n+6,n)=(2400-2292*n-330*n^2+180*n^3+210*n^4+72*n^5)/120</DIV>
<DIV>you meant:</DIV>
<DIV>   T(n+6,n)= 
(1200-1146*n-165*n^2+90*n^3+105*n^4+36*n^5)/120</DIV>
<DIV>which has the 36 in the high order term.</DIV>
<DIV> </DIV>
<DIV>Thanks,</DIV>
<DIV>      Paul</DIV>
<DIV> </DIV>
<DIV> </DIV>
<DIV>On Sat, 23 Oct 2004 23:30:34 +0200 "wouter meeussen" <<A 
href="mailto:wouter.meeussen@pandora.be">wouter.meeussen@pandora.be</A>> 
writes:<BR>> for those who remember, a lower triangular matrix H such that 
the row <BR>> sums of H^k give the count of<BR>> k-dimensional partitions. 
Not the end of math as we know it, but <BR>> still ... (hmm).<BR>> 
<BR>> News:<BR>> the few regularities of H[n,m] known are:<BR>> 
T(n,n)=1<BR>> T(n+1,n)=1<BR>> T(n+2,n)=n<BR>> T(n+3,n)=1<BR>> 
T(n+4,n)=(0+5*n+0*n^2+n^3)/6<BR>> 
T(n+5,n)=(-48+90*n-7*n^2-6*n^3-5*n^4)/24<BR>> 
T(n+6,n)=(2400-2292*n-330*n^2+180*n^3+210*n^4+72*n^5)/120<BR>> <BR>> with 
sketchy hints towards:<BR>> 
T(n+7,n)=(-16560+3600*n+17554*n^2+1395*n^3-3185*n^4-1755*n^5-329*n^6)/720<BR>> 
<BR>> now it looks like the coefficients of the highest powers in n <BR>> 
follow:<BR>> A000806 = 
1,0,1,-5,36,-329,3655,-47844,721315,-12310199,234615096<BR>> 
aka<BR>>  Name:      Bessel polynomial 
y_n(-1).<BR>>  References :<BR>>  G. Kreweras and Y. Poupard, 
Sur les partitions en paires d'un <BR>> ensemble<BR>>  fini 
totalement ordonne, Publications de l'Institut de Statistique<BR>>  de 
l'Universite de Paris, 23 (1978), 57-74.<BR>> <BR>> Does this ring a bell 
with anyone?<BR>> <BR>> <BR>> Can anyone extend the 5-, 6- and 
7-dimensional partitions beyond the <BR>> current<BR>> A000390, A000416 
and A000427 ?<BR>> that could definitively disprove this conjecture.<BR>> 
And disproving conjectures is, .., well, like *fun*<BR>> <BR>> btw, the 
coefficients of the polynomials so far:<BR>> 1<BR>> 0, 1<BR>> 2, 0, 
0<BR>> 0, 5, 0, 1<BR>> -48, 90, -7, -6, -5<BR>> 1200, -1146, -165, 90, 
105, 36<BR>> -16560, 3600, 17554, 1395, -3185, -1755, -329<BR>> <BR>> 
not EIS-able yet, since the mere existence of the polynomials is<BR>> pure 
conjecture itself.<BR>> <BR>> W.</DIV></BODY></HTML>