
We consider the following three questions. How many subgroups of the sym-
metric groupSn are generated by

• transpositions;

• 3-cycles;

• products of pairs of transpositions?

For each of the three questions there are three ways of counting the subgroups:

• the total number;

• the number up to conjugacy inSn;

• the number up to isomorphism.

Transpositions

Let T be a set of transpositions generating a subgroupG of Sn. Without loss of
generality,T consists of all transpositions inG. Clearly, if(ab)∈ T and(ac)∈ T,
then(bc) ∈ T. Hence the relation∼ defined by

a∼ b⇔ a = b or (ab) ∈ T

is an equivalence relation, whose equivalence classes are the orbits ofG. (Clearly
each equivalence class is a subset of an orbit. But if two points lie in the same
orbit, they are connected by a chain of transpositions, and hence are interchanged
by a transposition.) Moreover, on each orbit, we have all possible transpositions,
and these generate the symmetric group on the orbit.

HenceG is the direct product of symmetric groups, acting in the obvious way.
We see that the number of subgroupsG is equal to the number of partitions of

{1, . . . ,n}, that is theBell number B(n) (OEIS A000110), and the number up to
conjugacy is the numberp(n) of partitions ofn (OEIS A000041).

The number of subgroups up to isomorphism is also equal to the partition
number. For it is not too hard to show that, if a group is a direct product of
symmetric groups, then the number of factors and their degrees can be recovered
from the isomorphism type of the group. For ifG,G′,G′′, . . . denotes the derived
series ofG, then
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• |G/G′|= 2x, wherex is the number of non-trivial symmetric factors;

• |G′/G′′|= 3y, wherey is the number of factorsS3 or S4;

• |G′′/G′′′|= 4z, wherez is the number of factorsS4;

• G′′′ is the direct product of (simple) alternating groups each of degree at
least 5.

3-cycles

Things are very similar for 3-cycles. Again, ifG is generated by a setT of 3-
cycles, we may assume thatT consists of all the 3-cycles inG. Now, a short
calculation shows that, if two 3-cycles have intersecting support, then they gener-
ate the alternating group of degree at most 5, and soT contains all 3-cycles on the
union of the supports. So the relation∼ defined by

a∼ b⇔ a = b or (∃c)(abc) ∈ T

is an equivalence relation, whose equivalence classes are the orbits, and thatT
consists of all 3-cycles with support contained in an equivalence class. The 3-
cycles generate the alternating group as long as the degree is not 2. So no class
can have size 2.

Hence the number of subgroups is equal to the number of partitions of{1, . . . ,n}
with no part of size 2, and the number up to conjugacy is the number of partitions
of n with no part of size 2. These are OEIS A097514 and A027336.

The number of subgroups up to isomorphism is equal to the number up to
conjugacy, for similar reasons to what happens for transpositions.

Products of pairs of transpositions

These elements are 3-cycles and double transpositions. Life is more complicated
in this case.

Let G be generated by a setT of 3-cycles and double transpositions. As usual,
we can assume thatT consists of all the 3-cycles and double transpositions inG.
Let N be the subgroup ofG generated by the 3-cycles inT. ThenN is a normal
subgroup ofG, and is a product of alternating groups. No non-trivialN-orbit can
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be fixed by a double transposition; for any such orbit has size at least 3, and a
permutation moving it would move at least 6 points.

Hence there are four types of double transpositions inT:

• those with support contained in anN-orbit;

• those for which the two transpositions are contained in differentN-orbits;

• those for which one transposition is contained in anN-orbit and the other
consists of fixed points ofN;

• those whose support consists of fixed points ofN.

We can ignore the first type, since they are already contained inN. To handle the
third and fourth types, we use the following result.

Lemma Let G be a transitive group generated by transpositions and double
transpositions. Then one of the following holds:

(i) G is the symmetric or alternating group;

(ii) G is the Weyl group of typeBn or Dn, and is imprimitive withn blocks of
size 2;

(iii) G is one of the following: Dih10 (degree 5), PSL(2,5) (degree 6), GL(3,2)
(degree 7), or AGL(3,2) (degree 8).

For suppose first thatG is imprimitive. The block size must be 2, since oth-
erwise some generator would move at least 6 points. The group permuting the
blocks is generated by transpositions, and so is the symmetric group. Now it is
easy to see that there are only two possibilities forG, depending on whether the
normal subgroup fixing the blocks consists of all such permutations, or just the
even ones.

On the other hand, ifG is primitive, then classical results of permutation group
theory together with lists of primitive groups of small degree show that either (i)
or (iii) must hold. (Note that none of the groups in (iii) contain transpositions,
since a primitive group containing a transposition must be the symmetric group.)

Now we can describe all groups generated by products of pairs of transposi-
tions as follows. The ingredients in the construction are
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• A groupH, which is the direct product of alternating groups, Weyl groups
of typeDn, and groups of type (iii) in the Lemma;

• A partition of a setM of sizem (say) consisting of the index set of some of
the alternating and Weyl factors ofH andk (say) additional elements.

Each direct factorHi in H of alternating orDn type is a subgroup of index 2 in a
larger groupGi (of symmetric orBn type) generated by the direct factor together
with a transposition. Now, letk be the excess ofm over the number of alternating
andDn factors. Our group will havek orbits of size 2. For each such orbit, we take
H0 to be the trivial group andG0 to be the symmetric group of degree 2. Now,
for each pair{i, j} of elements inM lying in the same part of the partition, take
all double transpositions consisting of a transposition inGi \Hi and a transposi-
tion in G j \H j . Now our groupG is generated byH together with these double
transpositions.

This description can be recovered from the conjugacy class ofG in the sym-
metric group. However, it cannot be recovered from the isomorphism type of
G. For example,G = PSL(2,5) is isomorphic toA5, and has two non-conjugate
actions on a set of size 6 generated by double transpositions.

At least the number of such groups up to conjugacy can now be counted in
principle. We take a partition ofn, where we distinguish three types of parts of
size 6 and 8 and two of each other even size except 2, and two types of parts of
size 5 and 7. Now we take a subset of the parts excluding the third types of size 6
and 8 and the second types of size 5 and 7 but including all parts of size 2, and we
partition this set. We identify two partitions if one can be obtained from the other
by a type-preserving permutation of the parts.
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