<HTML><BODY><DIV style='font-family: "Verdana"; font-size: 10pt;'><DIV>
<DIV>There is a well known result that, modulo any odd prime, every residue is the sum of two squares.  (The proof is fairly simple, using the pigeonhole principle.)  For p > 5, we can show that every residue is the sum of two non-zero squares.  If a + b = 1 with a and b non-zero squares, and r is any non-square, then ra + rb = r is a non-square as the sum of two non-squares.</DIV>
<DIV> </DIV>
<DIV>For any odd p^n, n>1, p + p = 2p is a counterexample.  For 2^n, n>1, 3 + 3 = 6 is a counterexample.</DIV>
<DIV> </DIV>
<DIV>It is straightforward to show that with n, m relatively prime, n*m can only have the property if n and m both do.</DIV>
<DIV> </DIV>
<DIV>To complete the proof, we need only eliminate 15, where 2 + 3 = 5 is a counterexample.</DIV>
<DIV> </DIV>
<DIV>Franklin T. Adams-Watters<BR>16 W. Michigan Ave.<BR>Palatine, IL 60067<BR>847-776-7645</DIV>
<DIV> </DIV> <BR>-----Original Message-----<BR>From: jens@voss-ahrensburg.de<BR><BR>
<STYLE>
.AOLPlainTextBody {
    margin: 0px;
    font-family: Tahoma, Verdana, Arial, Sans-Serif;
    font-size: 12px; 
    color: #000; 
    background-color: #fff; 
}

.AOLPlainTextBody pre {
    font-size: 9pt;
}

.AOLInlineAttachment {
    margin: 10px;
}

.AOLAttachmentHeader {
    border-bottom: 2px solid #E9EAEB;
    background: #F9F9F9;
}

.AOLAttachmentHeader .Title {
    font: 11px Tahoma;
    font-weight: bold;
    color: #666666;
    background: #E9EAEB; 
    padding: 3px 0px 1px 10px;
}

.AOLAttachmentHeader .FieldLabel {
    font: 11px Tahoma; 
    font-weight: bold;
    color: #666666;
    padding: 1px 10px 1px 9px;
}

.AOLAttachmentHeader .FieldValue {
    font: 11px Tahoma; 
    color: #333333;
}

</STYLE>

<DIV class=AOLPlainTextBody id=AOLMsgPart_0_b0e97355-ea5b-4097-8515-1b865c7895b1><PRE><TT>Let R be a ring. We will call a subset T of R *anticlosed* if for any
elements t1 and t2 of T, neither the sum t1 + t2 nor the product t1 * t2
lies in T.

For an integer n >= 2, let R := Z/nZ, and let T be the set of non-squares
of R. For which n is this set T anticlosed?

... Any idea on how to prove that no numbers beyond 10 have an
anticlosed set of non-squares?

</TT></PRE></DIV><!-- end of AOLMsgPart_0_b0e97355-ea5b-4097-8515-1b865c7895b1 --></DIV></DIV>


<hr style="MARGIN-TOP:10px" >
<b>Try the New Netscape Mail Today!</b><br />
Virtually Spam-Free | More Storage | Import Your Contact List<br /><a  href="http://mail.netscape.com">http://mail.netscape.com</a>

</BODY></HTML>