<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY bottomMargin=0 leftMargin=3 topMargin=0 rightMargin=3>
<DIV></DIV>
<DIV>Seqfans, </DIV>
<DIV>     Consider David Wilson's nice 10-adic 
constant A025016: <BR>x = Sum_{n>=0} n! (10-adic) 
<BR>=...92247479478684738621107994804323593105039052556442336528920420940314</DIV>
<DIV>    <BR>Investigating the Bell number 
analogue:<BR> <BR>   B(k) = Sum_{n>=0} n^k*n! 
(10-adic)<BR> <BR>I was quite surprised to find that 
<BR> <BR>   B(1) = -1 = ...99999999999 (10-adic).<BR> <BR>I 
went further to find the remarkable relation </DIV>
<DIV>(see examples at bottom of message):<BR> <BR>   B(n) = 
A014182(n)*B(0) + A014619(n)<BR> <BR>But, wait - this is 
a base-independent formula ! </DIV>
<DIV><BR>Does the same formula hold for p-adic bases other than 10-adic? 
<DIV>I have not had time to check, but I think it does. </DIV>
<DIV> </DIV>
<DIV>This constant A025016 has a b-adic expression for all base b. 
<BR>I believe that the constant A025016 is base-independent, 
</DIV></DIV>
<DIV>but the digits recorded in A025016 are base-10. </DIV>
<DIV>   <BR>Any comments?</DIV>
<DIV>Thanks,</DIV>
<DIV>       Paul<BR> <BR>Conjectured 
Formula: </DIV>
<DIV>B(n) = A014182(n)*B(0) + A014619(n)</DIV>
<DIV>Examples: <BR>B(1) = 0*B(0) - 1 <BR>B(2) = -1*B(0) + 1<BR>B(3) =  
1*B(0) + 1<BR>B(4) =  2*B(0) - 5<BR>B(5) = -9*B(0) + 5<BR>B(6) = 9*B(0) + 
21<BR>B(7) = 50*B(0) - 105<BR>B(8) = -267*B(0) + 141<BR>B(9) = 413*B(0) + 
777<BR>B(10) = 2180*B(0) - 5513<BR>B(11) = -17731*B(0) + 13209<BR>B(12) = 
50533*B(0) + 39821<BR>B(13) = 110176*B(0) - 527525<BR>B(14) = -1966797*B(0) + 
2257425<BR>B(15) = 9938669*B(0) - 
41511<BR> <BR> <BR>A014182   <BR>Expansion of 
exp(1-x-exp(-x)).  <BR>1, 0, -1, 1, 2, -9, 9, 50, -267, 413, 2180, -17731, 
50533, 110176, <BR>-1966797, 9938669, -8638718, -278475061, 2540956509, 
-9816860358,  <BR> <BR>A014619  <BR>Exponential generating 
function is -f(x) * int(exp(exp(-t)-1),t,0,x) <BR>where f(x) = exp(1-x-exp(-x)) 
is an exponential generating function for A014182.  <BR>-1, 1, 1, -5, 5, 
21, -105, 141, 777, -5513, 13209, 39821, -527525, 2257425, <BR>  
<BR>END.</DIV></BODY></HTML>