<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=content-type content=text/html;charset=us-ascii>
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY bottomMargin=0 leftMargin=3 topMargin=0 rightMargin=3>
<DIV></DIV>
<DIV>Seqfans, <BR>     Here is 
an accidental observation somewhat related to my question. </DIV>
<DIV>Consider Vladeta Jovovic's nice sequence A060435, where: </DIV>
<DIV>A060435(n) = number of functions f:{1,2,...,n}->{1,2,...,n} with even 
cycles only. </DIV>
<DIV> </DIV>
<DIV>It has the rather complicated formula for the n-th term:</DIV>
<DIV> </DIV>
<DIV><FONT face="Courier New">a(n)=(n-1)!*Sum_{k=0..floor((n-2)/2)} 
(k+1)/2^(2*k+1)*binomial(2*k+2, k+1)*n^(n-2-2*k)/(n-2-2*k)!.</FONT></DIV>
<DIV>  </DIV>
<DIV>(how does Vladeta do that?!). </DIV>
<DIV> </DIV>
<DIV>Now if we square of the e.g.f. of A060435 after we include 
the terms </DIV>
<DIV>A060435(0)=1, A060435(1)=0, </DIV>
<DIV>then we find that the NEW sequence (A134095) has a 
simple formula: <BR>  <BR>a(n) = Sum_{k=0..n} C(n,k) * (n-k)^k * 
k^(n-k). <BR> </DIV>
<DIV>and the e.g.f. follows from Vladeta's formula for A060435: </DIV>
<DIV> </DIV>
<DIV>E.g.f.: A(x) = 1/(1 - LambertW(-x)^2 ).</DIV>
<DIV> </DIV>
<DIV>Below I supply the initial terms of A134095 and the PARI code. 
</DIV>
<DIV> </DIV>
<DIV>Just one of many accidental coincidences of the OEIS. </DIV>
<DIV>     Paul </DIV>
<DIV> </DIV>
<DIV>A134095 begins: 
<BR>1,0,2,12,120,1480,22320,396564,8118656,188185680,4871980800,</DIV>
<DIV>139342178140,4363291266048,148470651659928,5455056815237120,</DIV>
<DIV>215238256785814500,9077047768435752960,407449611073696325536,</DIV>
<DIV>  <BR>(PARI)<BR>a(n)=sum(k=0,n,(n-k)^k*k^(n-k)*binomial(n,k))<BR>/* 
Generated by E.G.F. 1/(1 - LambertW(-x)^2 ): 
*/<BR>{a(n)=local(LambertW=-x*sum(k=0,n,(-x)^k*(k+1)^(k-1)/k!) 
+x*O(x^n));<BR>n!*polcoeff(1/(1-subst(LambertW,x,-x)^2),n)}<BR> </DIV>
<DIV>END.</DIV>
<DIV>On Sat, 6 Oct 2007 01:38:29 -0400 Paul D. Hanna <<A 
href="mailto:pauldhanna@juno.com">pauldhanna@juno.com</A>> writes:<BR>> 
Seqfans,<BR>>     Consider the sequence:<BR>> 
A062817(n) = Sum_{k=0..n} (n-k)^k*k^(n-k),  n>=1<BR>> 0, 1, 4, 22, 
152, 1251, 11980, 130908, 1607488, ...<BR>> Examples: <BR>> A062817(4) = 
3^1*1^3 + 2^2*2^2 + 1^3*3^1 = 22 ;<BR>> A062817(5) = 4^1*1^4 + 3^2*2^3 + 
2^3*3^2 + 1^4*4^1 = 152 ;<BR>> A062817(6) = 5^1*1^5 + 4^2*2^4 + 3^3*3^3 + 
2^4*4^2 + 1^5*5^1 = 1251 <BR>> ;<BR>>   <BR>> This formula 
looks similar to a self-convolution ... and, <BR>> surprisingly (to me), 
<BR>> it is indeed a self-convolution of an integer sequence: A132608 
<BR>> (below). <BR>>  <BR>> Can anyone find another (simpler?) 
formula or g.f. for either <BR>> A062817 or A132608? <BR>>  <BR>> 
Also, what is the value of the limit: <BR>>    
Limit_{n->infinity} [A062817(n+1)/A062817(n)] / n = c <BR>>  <BR>> 
At n=12000, c ~ 1.35936744... and is decreasing.  <BR>> Does the 
limit  c = exp(1)/2 ? <BR>>  <BR>> Thanks, 
<BR>>       Paul <BR>> 
------------------------------------------ <BR>> A132608 <BR>> <BR>> 
1,2,9,58,469,4530,50491,634790,8861043,135750454,2262315973,<BR>> 
40726646802,787471241647,16275700505510,358103286781293,<BR>> 
8357593147404346,206241859929682177,5366082228239257410<BR>> <BR>> 
Self-convolution square-root of A062817 (offset 2); <BR>> thus g.f. A(x) 
satisfies: <BR>>    A(x)^2 = Sum(n>=2} A062817(n)*x^n, 
<BR>> where A062817(n) = Sum_{k=0..n} (n-k)^k*k^(n-k).<BR>> <BR>> 
EXAMPLE.<BR>> A(x) = x + 2x^2 + 9x^3 + 58x^4 + 469x^5 + 4530x^6 +...+ 
a(n)*x^n <BR>> +...<BR>> A(x)^2 = x^2 + 4x^3 + 22x^4 + 152x^5 + 1251x^6 
+...+ A062817(n)*x^n <BR>> +...<BR>> <BR>> (PARI) <BR>> 
{a(n)=polcoeff((sum(m=2,n+1,sum(k=0,m,(m-k)^k*k^(m-k))*x^m <BR>> 
+x*O(x^(n+1))))^(1/2),n)}<BR>> </DIV>
<DIV> </DIV>
<DIV></DIV></BODY></HTML>