see also A033954 - Charlie Marion (charliemath@optonline.net), Dec 8 2007
- Charlie Marion (charliemath@optonline.net), Dec 8 2007
If anyone could supply me with a past reference to these sequences, I
Thanks very much.
Content-type: text/html; charset=us-ascii
Content-transfer-encoding: 7BIT
name="place" downloadurl="http://www.5iantlavalamp.com/"/>
name="City"/>
name="State"/>
name="PostalCode"/>
st1\:*{behavior:url(#default#ieooui) }
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman";}
{color:blue;
text-decoration:underline;}
{color:purple;
text-decoration:underline;}
{font-family:"Courier New";}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:Arial;
color:windowtext;}
{size:8.5in 11.0in;
margin:1.0in 1.25in 1.0in 1.25in;}
{page:Section1;}
style='width:100.0%'>
A045944
|
|
Rhombic matchstick numbers: n*(3*n+2).
|
|
+20
7
|
|
0, 5, 16, 33, 56, 85,
120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008,
|
stage for considering whether or not it is also true that 5^3 + 6^3 = 7^3 and
style='width:100.0%'>
A033954
|
|
n*(4*n+3). Also, second 10-gonal (or decagonal)
numbers.
|
|
+20
16
|
|
0, 7, 22, 45, 76, 115,
162, 217, 280, 351, 430, 517, 612, 715, 826, 945, 1072, 1207,
|
stage for considering whether or not it is also true that 5^3 + 6^3 = 7^3 and
see also 045944
face="Times New Roman">Yorktown Heights
NY 10598
Return-Path:
X-Ids: 168
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=gmail.com; s=gamma;
h=domainkey-signature:received:received:message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references;
bh=3YVcn5XBGwXFzmW2hnPSIdcii1eODnAgOjYvB4jB7B8=;
b=seww3vFiKkgVwflBYiGwDuYQ7Ek3bMQXgOvIv+GSW2U4PMYx/pTT3g6SuNZuFgqae909gXd9TplU2MVv5XJml/PUniKzgtcdzFPv5pdfk1a+bMsDdBq7N+RtoHER+n4p5U3sAc5mzw6wmziKJD24sSkt6svuCFxEIuFsqv6OhcA=
DomainKey-Signature: a=rsa-sha1; c=nofws;
d=gmail.com; s=gamma;
h=message-id:date:from:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references;
b=SuONu8yt9Ma3Z4reslY7EU9RsOQHJO/LqQiYVjltzurIFGGEqrTAnr5mKPe6PfZlozs3rih24zuZuSYvxjjPHl51oa5DyDjJOposZLdatQ9/V9VfOBGkC+tdbbWSH+CHWWwHYblF2mFowwXm7kc4q9TQnOUM5rdz4l3od2utPYY=
Message-ID: <144987c90712151911l7e3c2d8awce67aafa8482dfd3@mail.gmail.com>
Date: Sat, 15 Dec 2007 22:11:41 -0500
From: "Alexander Povolotsky"
To: "Charles Marion"
Subject: Re: Help find reference
Cc: seqfan@ext.jussieu.fr
In-Reply-To: <0JT300296U307FO0@mta2.srv.hcvlny.cv.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 7bit
Content-Disposition: inline
References: <0JT300296U307FO0@mta2.srv.hcvlny.cv.net>
X-Greylist: IP, sender and recipient auto-whitelisted, not delayed by milter-greylist-3.0 (shiva.jussieu.fr [134.157.0.168]); Sun, 16 Dec 2007 04:11:43 +0100 (CET)
X-Virus-Scanned: ClamAV 0.88.7/5140/Sat Dec 15 22:09:37 2007 on shiva.jussieu.fr
X-Virus-Status: Clean
X-j-chkmail-Score: MSGID : 4764976E.002 on shiva.jussieu.fr : j-chkmail score : X : 0/50 1 0.388 -> 1
X-Miltered: at shiva.jussieu.fr with ID 4764976E.002 by Joe's j-chkmail (http://j-chkmail.ensmp.fr)!
Can not help with references but if you are interested here is the
PARI formulation, confirming your identity
a(n)=
sum(k=0,n,(n*(3*n+2)+k)^3)+
2*((-1)^n*sum(k=1,n,(-1)^k*k^2))^2-
sum(k=(n+1),2*n,(n*(3*n+2)+k)^3)
(22:09) gp > a(0)
%9 = 0
(22:09) gp > a(1)
%10 = 0
(22:09) gp > a(2)
%11 = 0
(22:09) gp > a(3)
%12 = 0
(22:09) gp > a(4)
%13 = 0
(22:10) gp > a(5)
%14 = 0
(22:15) gp > a(33)
%15 = 0
On Dec 15, 2007 2:00 PM, Charles Marion wrote:
>
>
>
>
> Dear Seqfans,
>
>
>
> I have submitted the following two comments to OEIS and am planning an
> article about the sequences of equations mentioned therein:
>
>
>
>
> A045944
>
>
>
> Rhombic matchstick numbers: n*(3*n+2).
>
>
>
> +20
> 7
>
>
>
>
>
>
> 0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800,
> 901, 1008,
>
>
>
> The equations 1 + 2 = 3 and 3^2 + 4^2 =5^2 set the stage for considering
> whether or not it is also true that 5^3 + 6^3 = 7^3 and 7^4 + 8^4 = 9^4.
> Reflecting on Fermat's Last Theorem or resorting to a calculator dispels any
> hope that either of the two equations could be correct. However, 5^3 + 6^3
> + 2 does equal 7^3 and 7^4 + 8^4 + 64 equals 9^4. More significantly, each
> of these equations is the first of an infinite sequence of equations
> featuring consecutive integers that conform to the spirit of the equations
> mentioned in A000384. For n>0,
>
> a(n)^3+(a(n)+1)^3 +...+(a(n)+n)^3 +2*A000217(n)^2=
> (a(n)+n+1)^3+...+(a(n)+2n)^3;
>
> e.g., 5^3+6^3+2*1^2=7^3; 16^3+17^3+18^3+2*3^2=19^3+20^3; see also A033954
>
> see also A033954 - Charlie Marion (charliemath@optonline.net), Dec 8 2007
>
>
>
>
>
>
> A033954
>
>
>
> n*(4*n+3). Also, second 10-gonal (or decagonal) numbers.
>
>
>
> +20
> 16
>
>
>
>
>
>
> 0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945,
> 1072, 1207,
>
>
>
> The equations 1 + 2 = 3 and 3^2 + 4^2 =5^2 set the stage for considering
> whether or not it is also true that 5^3 + 6^3 = 7^3 and 7^4 + 8^4 = 9^4.
> Reflecting on Fermat's Last Theorem or resorting to a calculator dispels any
> hope that either of the two equations could be correct. However, 5^3 + 6^3
> + 2 does equal 7^3 and 7^4 + 8^4 + 64 equals 9^4. More significantly, each
> of these equations is the first of an infinite sequence of equations
> featuring consecutive integers that conform to the spirit of the equations
> mentioned in A000384. For n>0,
>
> a(n)^4+(a(n)+1)^4 +...+(a(n)+n)^4 +(4*A000217(n))^3 =
> (a(n)+n+1)^4+...+(a(n)+2n)^4;
>
> e.g., 7^4+8^4+(4*1)^3=9^4; 22^4+23^4+24^4+(4*3)^3=25^4+26^4; see also 045944
>
> - Charlie Marion (charliemath@optonline.net), Dec 8 2007
>
>
>
>
>
> If anyone could supply me with a past reference to these sequences, I
> would greatly appreciate it.
>
>
>
> Thanks very much.
>
>
>
>
>
> Charlie Marion
>
> Yorktown Heights NY 10598
>
>
>
>